
Biometrika (2025), 112, 2, asaf031 https://doi.org/10.1093/biomet/asaf031
Advance Access publication 15 April 2025

Exact sampling of spanning trees via fast-forwarded
random walks

By EDRIC TAM

Department of Biomedical Data Science, Stanford University,
300 Pasteur Drive, Palo Alto, California 94304, U.S.A.

edrictam@stanford.edu

DAVID B. DUNSON

Department of Statistical Science and Department of Mathematics, Duke University,
Box 90251, Durham, North Carolina 27708, U.S.A.

dunson@duke.edu

AND LEO L. DUAN

Department of Statistics, University of Florida,
101C Griffin-Floyd Hall, P.O. Box 118545, Gainesville, Florida 32611, U.S.A.

li.duan@ufl.edu

SUMMARY

Tree graphs are used routinely in statistics. When estimating a Bayesian model with a
tree component, sampling the posterior remains a core difficulty. Existing Markov chain
Monte Carlo methods tend to rely on local moves, often leading to poor mixing. A promis-
ing approach is to instead directly sample spanning trees on an auxiliary graph. Current
spanning tree samplers, such as the celebrated Aldous–Broder algorithm, rely predomi-
nantly on simulating random walks that are required to visit all the nodes of the graph.
Such algorithms are prone to getting stuck in certain subgraphs. We formalize this phe-
nomenon using the bottlenecks in the random walk’s transition probability matrix. We then
propose a novel fast-forwarded cover algorithm that can break free from bottlenecks. The
core idea is a marginalization argument that leads to a closed-form expression that allows
for fast-forwarding to the event of visiting a new node. Unlike many existing approximation
algorithms, our algorithm yields exact samples. We demonstrate the enhanced efficiency
of the fast-forwarded cover algorithm, and illustrate its application in fitting a Bayesian
dendrogram model on a Massachusetts crime and community dataset.

Some key words: Aldous–Broder algorithm; Bayesian modelling; Invariant distribution; Isoperimetric constant;
Random walk; Spectral graph theory.

1. Introduction

Tree graphs are commonly encountered in statistical modelling. An undirected tree is
an acyclic and connected graph T = (VT ,ET) with nodes VT = (1,…,m) and edges

⃝c The Author(s) 2025. Published by Oxford University Press on behalf of the Biometrika Trust.
All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints.
All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our
site—for further information please contact journals.permissions@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

https://orcid.org/0000-0003-4469-1168

2 E. Tam, D. B. Dunson and L. L. Duan

ET = {(j, l)} with |ET | = m − 1. By designating a node r ∈ VT as the root, one can easily
obtain from T a directed tree T⃗ = (VT⃗ ,ET⃗ , r), with identical nodes VT⃗ = VT and directed
edges ET⃗ = {(j→ l)} obtained from ET by pointing the edges away from r. Such tree struc-
tures provide succinct ways to capture complex dependencies that arise from a wide range
of statistical applications.

In hierarchical modelling, directed trees represent multi-layer dependence structures
underlying the observed data. From a generative perspective, we consider a T⃗ where each
node v is equipped with a parameter µv. Using this tree, we define an augmented like-
lihood for data y1,…, yn and parameters µ1,…,µm conditioned on assignment labels
zi ∈ (1,…,m):

L(y,µ|T⃗ , z) =
{ n∏
i=1

F(yi|µzi)

}{
R(µr)

∏
(j→l)∈ET⃗

H(µl|µj)

}
. (1)

Here H(µl|µj) is the transition probability kernel from µj to µl, R(µr) is the marginal ker-
nel for µr in the root and F is the conditional kernel of the data yi given the assignment zi
for that observation. The T⃗ that we condition on includes both the edge set ET⃗ and the root
node r. There are potentially other parameters characterizing F and H, including depen-
dence on covariates via decision trees (Chipman et al., 1998; Castillo & Ročková, 2021) or
related ensemble methods (Chipman et al., 2010; Linero & Yang, 2018), but we suppress
these temporarily for ease of notation. Model (1) induces a partition on (1,…, n) via the
latent assignments z. In contrast to traditional mixture models, which often assume each
µk to be generated independently from a common distribution, (1) characterizes the depen-
dence inµj andµl through an ancestry tree. Ancestors of v include the tree nodes in the path
from the root to v. This type of dependence is well motivated in many application areas. The
tree can be interpreted as an inferred evolutionary/phylogenetic history in certain biological
settings (Huelsenbeck & Ronquist, 2001; Suchard et al., 2001; Neal, 2003), or alternatively
as a multi-layer partitioning of a dataset (Heller & Ghahramani, 2005).

It is also common to use a collection, or forest, of trees for flexibility in modelling.
Consider

L(y|T⃗1,…, T⃗K) =

K∏
k̄=1

{
R(yr(k̄))

∏
(j→l)∈ET⃗k̄

H(yl|yj)
}
, (2)

where each T⃗ k̄ = {VT⃗ k̄
,ET⃗ k̄

, r(k̄)} is a component tree, and (VT⃗1
,…,VT⃗K

) gives a K parti-

tion of data index (1,…, n), where n =
∑K

k̄=1 |VT⃗ k̄
|. The kernel R describes how the first

point in a group arises, and H characterizes the conditional dependence of the subsequent
points given the previous ones. The use of trees and forests in graphical modelling (Lau-
ritzen, 1996) dates back at least to the single-linkage clustering algorithm (Gower & Ross,
1969), and is recently seen in dependence graph estimation (Duan & Dunson, 2023), con-
tiguous spatial partitioning (Teixeira et al., 2019; Luo et al., 2021, 2024) and model-based
spectral clustering (Duan & Roy, 2024). In addition, likelihood (2) has been extended to a
mixture of overlapping trees in Bayesian network estimation (Meilă & Jordan, 2000; Meilă
& Jaakkola, 2006; Elidan & Gould, 2008).

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

Exact sampling of spanning trees 3

Although there is a rich literature on algorithmic approaches for obtaining point esti-
mates of tree graphs (Kruskal, 1956; Prim, 1957), we are particularly interested in model-
based Bayesian approaches. Such methods have the advantage of providing a characteriza-
tion of uncertainty in estimating trees, while also inferring a generative probability model
for the data. Quantification of uncertainty is crucial in this context. Algorithms that pro-
duce a single tree estimate are ripe for over-interpretation and lack of reproducibility, since
in most applications there are many different trees that are almost equally plausible for the
data. Naturally, the success of such a Bayesian approach hinges on whether one can conduct
inferences based on the posterior distribution of trees in a computationally efficient way.

Sampling from posterior distributions for trees is generally a difficult problem. Current
Markov chain Monte Carlo samplers often navigate tree spaces using local modifications,
such as pruning and growing moves. Since tree spaces are combinatorial and large in size,
these samplers often exhibit poor mixing. A natural alternative is to rely on conjugacy to
employ block updates on T⃗ in Gibbs-type samplers. Our strategy is to view T⃗ as a spanning
tree T⃗ under a complete and weighted auxiliary graphG = (VG,EG). Here, a spanning tree
T⃗ of G is simply a subtree of G that spans all the nodes of G with edges oriented away from
some root node r. For the generative process in (1), one can consider a complete graph G
with nodes (1,…,m), with a weighted adjacency matrix Q ∈ [0,∞)m×m of elements qj, l =
H(µl|µj) for every pair (j, l). Observe that using (1) and a uniform prior 50(T⃗) ∝ 1, we can
conduct a full conditional update from 5(T⃗ |−) by drawing from the two distributions

Pr(r) =
gr/ρr∑m

r′=1 gr′/ρr′
, Pr(T⃗ |r) = ρr

∏
(j→l)∈ET⃗

qj, l. (3)

Here, Pr(r) is a discrete probability distribution on (1,…,m) and Pr(T⃗ |r) is a distribu-
tion over the edges of T⃗ given a root node r. We define gr = R(µr). The term ρr =
{
∑

T⃗ rooted at r
∏

(j→l)∈ET⃗
qj, l}−1 is a normalization constant in Pr(T⃗ |r) that could vary with

r. The uniform prior 50(T⃗) ∝ 1 is a special case of a more general class of conjugate pri-
ors, consisting of a root term multiplied by a product on the edges of the spanning tree.
We discuss the sampling of Pr(r) under various scenarios in § 2.4. Here, the imperative is to
efficiently sample from spanning tree distributions of the form Pr(T⃗ |r).

The celebrated Aldous–Broder algorithm (Broder, 1989; Aldous, 1990) provides a
tractable way to draw exact samples from Pr(T⃗ |r). Figure 1 provides an illustration. The
algorithm proceeds by taking a random walk Xt = (r, x1, x2,…, xt) on VG and stops at the
cover time of the walk when all nodes have been visited. By collecting the first entrance edges
of Xt, which are the set of edges via which the walk first visited each node, one obtains a
spanning tree T⃗ rooted at r. By separately specifying a distribution on the root node r, a dis-
tribution is obtained on the directed spanning trees T⃗ . For a graph G containing m nodes,
Broder & Karlin (1989) showed an expected cover time of O(m logm) in well-connected
graphs and O(m3) in the worst case.

The Aldous–Broder algorithm can be empirically slow. In practice, even if the number
of nodes m in G is small, the algorithm can get stuck in certain subgraphs for a long time.
This issue is inherent to the nature of random walks. Other popular algorithms, such as
Wilson’s algorithm based on the loop-erased random walk (Wilson, 1996), also suffer from
the same problem. Beyond randomwalks, there are Laplacian-based algorithms that sample
uniform spanning trees from unweighted graphs (Guenoche, 1983; Kulkarni, 1990; Harvey
& Xu, 2016). There are also approximate random spanning tree samplers (Madry et al.,

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

4 E. Tam, D. B. Dunson and L. L. Duan

1
2

3

4

5

6

7

8
9

Fig. 1. Illustration for sampling a spanning tree. The edges of the underlying connected graph are shown with
solid black lines. We start from a root node r (drawn proportional to gr/ρr) and perform a random walk (dashed
arrows) until we visit all nodes. The nodes are labelled by the order in which they are visited. The first entrance

edges (red lines) of each node together form a spanning tree T⃗ .

2015; Schild, 2018) that rely on Laplacian solvers. In this article, we focus on algorithms
based on random walks for their more general applicability.

We formalize the pathological phenomenon of theAldous–Broder algorithm using eigen-
values of the normalized Laplacian to characterize bottlenecks in the graph. We then
propose a fast-forwarded cover algorithm for exact sampling from Pr(T⃗ |r), while bypassing
wasteful randomwalk steps. The key observation is that we do not need to simulate the entire
random walk trajectory to obtain the first entrance edges to each node. We derive a closed-
form expression that allows for direct, fast-forwarded sampling of these first entrance edges
via a marginalization argument. In simulations, our fast-forwarded sampler enjoys much
faster empirical performance against competitors when bottlenecks are present.

Existing spanning tree samplers often perform transitions directly according to the under-
lying graph’s adjacency matrix Q, restricting their applicability to symmetric/undirected
cases. We show that, by using an auxiliary matrixW, which is generated from Q under cer-
tain transformations, to specify the randomwalk transition probabilities, our fast-forwarded
cover algorithm can be extended to more general scenarios, including cases where the
underlying graph has an asymmetric adjacency matrix or the induced Markov chains are
irreversible. These results are of independent interest. We illustrate our sampler by fit-
ting a Bayesian dendrogram model on a Massachusetts crime and community dataset. The
resulting Gibbs sampler exhibits drastically improved mixing performance compared to a
reversible-jump sampler based on local moves and a sampler based on subtree prune and
regraft moves.

2. Method

2.1. Background on the Aldous–Broder algorithm

We review and summarize results of the Aldous–Broder algorithm (Broder, 1989; Aldous,
1990) in this section. This algorithm samples a random spanning tree T⃗ from the underlying
graph G based on a random walk. Consider a weight matrixW ∈ [0,∞)m×m that is used to
specify the probabilities of random walk transitions on G. For simplicity, it suffices for now
to considerW as the graph’s weighted adjacency matrix Q in (3), an important special case
that applies when Q is symmetric. However, our results hold for more general cases where
W is some specific transformation of Q. A detailed discussion is given in § 2.4 below.

We use W to specify a random walk over the state space VG = (1,…,m). This random
walk is a discrete-time Markov chain X = (x0, x1,…) with transition probabilities

pj, l = Pr(xt+1 = l|xt = j) =
wj, l
dj

, dj =
m∑

v=1

wj, v,

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

Exact sampling of spanning trees 5

where dj > 0 andw denotes entries ofW.We assume that theMarkov chain is irreducible: for
any pair of (j, l), there exists t > 0 such that Pr(xt = l|x0 = j) > 0. We denote the random
walk up to time t by Xt = (x0, x1,…, xt), and the invariant distribution of xt : t → ∞ by
(π1,…,πm). The result of Broder (1989) further assumes reversibility of the Markov chain,
πjpj, l = πlpl,j; however, this condition is not needed here.

TheAldous–Broder algorithmproceeds as follows: initialize thewalk x0 at root r; perform
the randomwalk until all nodes are visited at the cover time t̂; construct a directed spanning
tree T⃗ with the edge set as the set of first entrance edges all pointed away from r. Formally,

ET⃗ =
⋃

j∈(VG\r)

{
(x(tj−1)→ xtj) : tj = min

1 ⩽ t ⩽ t̂
(t : xt = j)

}
.

The following theorem characterizes the induced distribution of T⃗ .

Theorem 1 (Extended Aldous–Broder algorithm). Let T⃗ be generated as above; then

Pr(T⃗ |r) ∝
{ ∏

(j→l)∈ET⃗

pj, lπj
πl

}
1
πr
∝

∏
(j→l)∈ET⃗

pj, lπj, (4)

where the probability is normalized over all directed spanning trees T⃗ rooted from r.

If the underlying graph G is directed, the choice of root r affects the transition probabili-
ties involved in sampling T⃗ . We discuss details on sampling r in § 2.4 below. The first term in
(4) is based on an adaptation of Theorem 3 of Fredes & Marckert (2023), where a directed
tree with edges pointed towards the root is used, as is standard in the probability literature.
While this is the opposite of our choice of orientation, the mathematical results carry over.
The second term is based on the fact that {

∏
(j→l)∈ET⃗

πl}πr =
∏m

j=1 πj, which is invariant to
ET⃗ and hence can be omitted.

In § 2.4 below, we also describe how one can choose W as some appropriate trans-
formation of Q so that (4) becomes the product form shown in (3) in general settings
without requiring matrix symmetry for W. For now, in the following subsection we focus
on computational aspects and discuss bottleneck effects that impact the cover time of the
Aldous–Broder algorithm.

2.2. Bottlenecks in the random walk cover algorithm

The Aldous–Broder algorithm is only efficient if there is a short cover time t̂ to reach all
nodes in VG. However, when there are bottlenecks in the graph that lead to close-to-zero
probabilities to move from the visited nodes U to the unvisited nodes Ū = VG \ U , the
random walk can spend a long time within U. We now characterize the consequences of
this curse of bottlenecks.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

6 E. Tam, D. B. Dunson and L. L. Duan

Fig. 2. Illustration of some commonly encountered graphs with the curse of bottlenecks: low transition prob-
ability to move from the visited nodes (blue) to those unvisited (grey). (a) Low edge weight between visited
nodes (blue) and unvisited nodes (grey). (b) Unvisited nodes (grey) that are isolated. (c) Large probability

(magenta lines) to return to visited nodes (blue) in a directed graph.

Figure 2 illustrates three common challenges through example graphs. The first two
graphs are either directed or undirected, while the third is directed. First, as in panel (a),
there may be disjoint sets of nodes that are only weakly connected, in the sense that the
transition probability between these sets is small. Second, as in panel (b), there may be nodes
that are isolated with few edges incident to them, with each incident edge having low transi-
tion probability. In this case, the random walk cover algorithm may visit most of the nodes
within a short time, but faces difficulties reaching the last few. Third, as in panel (c), in a
directed graph, due to edge weight asymmetry, there may be a much higher probability to
remain in a node set that has been visited.

Regardless of the specific scenario, the curse of bottleneck phenomenon can be under-
stood as a close-to-zero probability to move to the unvisited set, marginalized over both the
current node and the potential arrival node amongst unvisited nodes.

We now formally characterize this phenomenon. Consider a strictly increasing node set
(r) = U1 ⊂ U2 ⊂ · · · ⊂ Um = VG, recording the history of nodes visited by the

random walk, with Uk =
⋃t̂k

t=0Xt and t̂k = min(t ⩾ 0: |
⋃t

t̃=0Xt̃| = k), where we refer to
t̂k as the partial cover time for k nodes. The probability of transitioning outside of Uk
at time t + 1, conditional on the walk remaining within Uk from the beginning through
time t, is

Pr(xt+1 ∈ Ūk|xt̃ ⩽ t ∈ Uk) =
∑
j∈Uk

{∑
l∈Ūk

wj, l
dj

Pr(xt = j|xt̃ ⩽ t ∈ Uk)

}

⩽ max
j∈Uk

(∑
l∈Ūk

wj, l
dj

)

=

(
min
j∈Uk

∑
l′∈Uk

wj,l′∑
l∈Ūk

wj, l
+ 1

)−1
,

where the inequality uses the fact that theweighted average over j ∈Uk is less than or equal to
themaximum, and the last equality is based on decomposing dj =

∑
l∈Ūk

wj, l +
∑

l′∈Uk
wj,l′ .

Therefore, if the total outgoing weights to Ūk are dominated by the weights to stay within

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

Exact sampling of spanning trees 7

Uk, in the sense that
∑

l∈Ūk
wj, l ≪

∑
l′∈Uk

wj,l′ , it is unlikely that xt+1 ∈ Ūk. With the above
ingredients, we are ready to quantify the expected cover time.

Theorem 2. For a history of visited nodes (U1,…,Um), the corresponding expected cover
time t̂ = t̂m has the lower bound

E(t̂|U1,…,Um) ⩾ (m− 1)+
m−1∑
k=1

min
j∈Uk

∑
l′∈Uk

wj,l′∑
l∈Ūk

wj, l
.

Remark 1. The lower bound applies to any W ∈ [0,∞)m×m that leads to an irreducible
Markov chain. In practice, when the random walk cover algorithm appears to be stuck at
a certain Uk, one can directly use minj∈Uk(

∑
l′∈Uk

wj,l′)/(
∑

l∈Ūk
wj, l) as an estimate of the

expected time for the walk to leave Uk.

The above result is a quantification for a specific node history of (U1,…,Um). One
can obtain a worst-case expected cover time by maximizing over all possible sequences of
(U1,…,Um). We are mainly interested in W matrices that satisfy a circulation condition:∑m

l=1 wj, l =
∑m

k=1 wk,j, j = 1,…,m. This condition can be applied to the directed graph
setting, and includes symmetricW with wj, l = wl,j as a special case.

Theorem 3. For a random walk X based on weight matrix W satisfying the circulation
condition, the worst-case expected cover time t̂ satisfies

max
{U∗⊂VG : r∈U∗}

E{t̂|(U1,…,Um),U∗ ∈ (U1,…,Um)} ⩾
1

M{λ2(L)}1/2
+m− 2

with M = supt ⩾ 0 supj{Pr(xt = j)/πj}, and λ2(L) the second smallest eigenvalue of the
normalized graph Laplacian L.

Remark 2. The above worst-case scenario corresponds to when the sampler visits a certain
node subset Û∗ ⊂ VG and gets stuck. Although the above lower bound on expected cover
time is inspired by earlier work (Matthews, 1988; Lovász & Winkler, 1993; Levin & Peres,
2017), our result is distinguished by a directly computable lower bound. For example, the
constantM−1 has a lower bound minj πj for any root distribution on x0 = r.

2.3. Skipping bottlenecks via fast-forwarding

With the curse of bottlenecks on the cover time of random walks established, we now
exploit a useful fact: when transforming the random walk trajectory Xt̂ into the spanning
tree edges ET⃗ , one only needs the first entrance edges to each node. It is unnecessary to sim-
ulate entire random walk trajectories until reaching a new node if the marginal distribution
of the next first entrance edge can be directly sampled. We formalize this idea below.

We set up the notation here. At any time t, suppose we have visited the nodes in U, and
let etj = 1 if the walk is at node j ∈ U at time t and the first exits U at time t+ 1. Let etj = 0
otherwise. Intuitively, etj represents the decision made at node j and time t on whether to
leave U at the next time point t+ 1. These decision probabilities can differ with j.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

8 E. Tam, D. B. Dunson and L. L. Duan

Given a starting location xt0 = j0 ∈ U at some time t0, drawing the first entrance edge
into Ū at t0 + δ for some fixed δ ∈ Z+ can be understood as the result of the events

(et0j0 = 0)⇒ (xt0+1 = j1 ∈ U)⇒ (et0+1j1
= 0)⇒ · · · ⇒ (xt0+δ = j′ ∈ U)⇒ (et0+δ

j′ = 1),

where A ⇒ B represents the event B occurring after A. The trajectory of the walk stays
within U from time t0 until t0 + δ and exits from node j′ ∈ U to node l′ ∈ Ū at time
t0 + δ + 1. This implies that the first entrance edge j′→ l′. We write

ηj = Pr(etj = 1|xt = j), 1− ηj = Pr(etj = 0|xt = j) =

∑
k∈U wj,k
dj

.

Collect the η into vector form ηU = (ηj : j ∈ U). Let PU ,U = {pj, l : j ∈ U , l ∈ U} denote the
submatrix of transition probabilities from nodes in U back into U. Writing a state vector
st = {Pr(xt = j′|xt0 = j0, xt̃ ∈ U , t̃ < t)}j′∈U , we have the recursive relation st+1 = PT

U ,Ust,
when the walk has not left U by time t+ 1. The initial state st0 is a |U|-dimensional vector
with the element corresponding to j0 set to 1 and all others equal to 0. For notational ease,
we omit xt̃ ∈ U , t̃ < t0 + δ, in the conditioning below. We then have the vector

{Pr(xt0+δ = j′, xt0+δ+1 ∈ Ū|xt0 = j0)}j′∈U = diag(ηU)(PT
U ,U)δ−1st0 .

Here, we started at the initial state at time t0, transitioned within the visited nodesU for δ−1
times and visited Ū at time t0 + δ + 1 via diag(ηU). This expression yields a distribution on
the nodes j′ that xt0+δ can take. We can further marginalize the above by summing over
δ ∈ Z ⩾ 0. Since the summation involves a Neumann series, it has a closed form for the
marginal if the series converges. The following theorem shows a sufficient condition.

Theorem 4. If PU ,U is irreducible (cannot be rearranged to a block upper triangular matrix
by row and column permutations) and there exists at least one j ∈ U : ηj > 0, then

{Pr(x(t̂|U|+1−1) = j′|xt0 = j0)}j′∈U = diag(ηU)(I − PT
U ,U)−1st0 , (5)

where (t̂|U|+1 − 1) is the time point before moving to a node in Ū.

The above irreducibility condition is satisfied when wj, l > 0 for all j |= l. This theorem
allows us to sample the first exit edge (j′, l′) from U to Ū in a straightforward manner. We
first draw j′ ∈ U according to the distribution specified by the vector in (5). We then take a
random step from the drawn node j′ via the transition specified by

Pr(xt̂|U|+1 = l′|x(t̂|U|+1−1) = j′, e
(t̂|U|+1−1)
j = 1) =

wj′,l′∑
k∈Ū wj′,k

(6)

to obtain l′ ∈ Ū . We refer to steps (5) and (6) as the fast-forwarding steps.

Remark 3. The direct calculation of thematrix inverse (I − PT
U ,U)−1 hasO(|U|3) cost, but

solving the linear equation x : (I − PT
U ,U)x = st0 using iterative numerical methods can lead

to a lower cost O(K̃|U|), with K̃ the number of iterations until convergence (Saad, 2003).

A natural algorithm for drawing a spanning tree performs Aldous–Broder-type random
walk steps until a bottleneck is reached, and then uses fast-forwarding steps; this is then
repeated until all nodes are visited. We call this approach the fast-forwarded cover algorithm.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

Exact sampling of spanning trees 9

Algorithm 1. The fast-forwarded cover algorithm.

Initialize x0 = r. Initialize the first entrance step tracker α = 1. Initialize τ = 1.
1. Simulate one random walk step to xτ .
2. If xτ has not been visited before, update α← τ .
3. If the steps taken since the first entrance step (τ −α) ⩾ κ0, a preset threshold,

update xτ+1 to j′ sampled according to (5),
update xτ+2 to l′ sampled according to (6),
update α← τ + 2 and τ ← τ + 3. Go to step 1.

If (τ − α) < κ0, update τ ← τ + 1. Go to step 1.
Repeat the above until all α = m, where m is the number of nodes of the underlying
graph.
Collect and return the first entrance edges.

We use a new index τ above, since the iteration number will be different from the under-
lying random walk time index t as soon as a fast-forwarding step is used. The algorithm
completes when all nodes have been visited, and the number of iterations required is at
most κ0(m− 1). In this article, we set κ0 = 1000, which leads to excellent performance in all
our experiments. More generally, since the fast-forwarding step has complexity O(K̃|U|), it
is natural to consider a varying threshold κτ ∝ mτ , wheremτ is the number of visited nodes
|U| by iteration τ .

Before presenting our empirical results, we generalize the random walk cover and our
fast-forwarded modifications to be broadly applicable to sampling any directed spanning
tree with probability in the form of (3). This is accomplished through a careful specification
of the transition matrix P, or, equivalently,W up to row-wise normalization.

2.4. Sampling from the root distribution and applicability of cover algorithms

Given a graph with weighted adjacency matrix Q, our goal is to draw samples from (3)
using cover algorithms, a terminology we use to include random walk cover and our fast-
forwarded modifications. We now discuss how to sample Pr(r) ∝ gr/ρr. Two cases are of
interest.

Case 1 (Circulation). We start with the canonical case in which a simple condition∑m
l=1 qj, l =

∑m
k=1 qk,j holds for j = 1,…,m. If we view qj, l as a flow from node j to l,

these equalities describe a type of flow conservation, withQ describing a circulation matrix
(Chung, 2005). This includes the special case where Q is symmetric. Under this circulation
condition, setting the random walk transition probabilities wj, l as equal to the underlying
graph’s edge weights qj, l is sufficient for cover algorithms to produce samples satisfying

Pr(T⃗ |r) ∝
∏

(j→l)∈ET⃗

qj, l,

corresponding to ρr ∝ 1. Therefore, we can simply draw the root from Pr(r) ∝ gr, and use
a cover algorithm withW = Q to obtain samples distributed according to (3).

Case 2 (General form).For a general and irreducibleQ ∈ [0,∞)m×m, the stationary distri-
bution vectorπ is a deterministic transformof a left eigenvector of the transition probability

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

10 E. Tam, D. B. Dunson and L. L. Duan

matrix P. Here, (pj, lπj) ∝ qj, l may not hold for all (j, l). To solve this problem, we intro-
duce an auxiliary Markov chain as a mathematical tool for calculating P. Consider a chain
Y = (y0, y1,…) over VG with transition kernel

p̃l,j = Pr(yt+1 = j|yt = l) =
q∗l,j∑m
k=1 q

∗

l,k
, q∗l,j = qj, l.

We denote the invariant distribution of yt : t→∞ by (π∗1 ,…,π∗m), which can be numerically
computed as a left eigenvector of the transition matrix formed by the p̃l,j.

We now form the chain X = (x0, x1,…) with the transition probability specified as

pj, l =
p̃l,jπ∗l
π∗j

. (7)

Reversibility (pj, l = p̃j, l) is not needed; however, we can see that
∑

j pj, lπ
∗
j = π∗l for all l.

Therefore, X has the same invariant distribution (π1,…,πm) = (π∗1 ,…,π∗m) as Y. As a
result, we can run a cover algorithm using P from (7). The probability in (4) from Theorem
1 becomes

Pr(T⃗ |r) ∝
∏

(j→l)∈ET⃗

p̃l,jπ
∗

l =
∏

(j→l)∈ET⃗

qj, l∑m
k=1 qk,l

π∗l ∝

(∏
(j→l)∈ET⃗

qj, l

)(∑m
k=1 qk,r
π∗r

)
,

using the invariance to T⃗ implied by

π∗r∑m
k=1 qk,r

∏
(j→l)∈ET⃗

π∗l∑m
k=1 qk,l

=

m∏
l=1

π∗l∑m
k=1 qk,l

.

The normalizing constant is now varying with r, ρr ∝ (
∑m

k=1 qk,r/π
∗
r). Therefore, we draw

the root from Pr(r) ∝ gr/ρr, and then use a cover algorithm to draw from Pr(T⃗ |r).

3. Simulations

To investigate the gain in computational efficiency of our fast-forwarded cover algorithm
over competitors, we conduct several simulations in R and compare the run times of various
spanning tree sampling algorithms on a machine equipped with an Apple M4 Max chip.

We compare the fast-forwarded cover algorithm against other random walk-based com-
petitors, namely, the Aldous–Broder algorithm and Wilson’s algorithm. First, we assess the
impact of the bottleneck size, quantified via 1/{λ2(L)}1/2, on wall-clock runtime. We sim-
ulate a graph with m = 500 nodes, where we partition the nodes V into two blocks with
|V1| = |V2| = 250. The graph is represented by a symmetric weight matrix W ∈ R500×500

with each wj, l = uj, lbj, l. The factor uj, l representing the size of the weight is simulated
from Un(0, 1). We set bj, l = |V1|

2 for those j and l that are in the same node partition, and
bj, l ∼ Ber(ζ) for those j and l that are in different partitions. This creates two complete
subgraphs connected by a small number of edges having small weight. We perform experi-
ments at different edge densities with ζ from (0.5, 0.1, 0.05, 0.01), corresponding to a range
of bottleneck values near 1/{λ2(L)}1/2 = (249, 560, 786, 1738), corresponding to graphs 1
to 4 in Fig. 3(a). Under each value of ζ , we draw 10 spanning trees from each of the three

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

Exact sampling of spanning trees 11

0

2000

4000

6000

8000

2 blocks 4 blocks 8 blocks 10 blocks

R
un

tim
e

(c
s)

0

2000

4000

6000

graph 1 graph 2 graph 3 graph 4

R
un

tim
e

(c
s)

0

1000

2000

3000

4000

500 600 800 1000

R
un

tim
e

(c
s)

(a) (b)

(c)

Fig. 3. Comparisons of the runtime between the Aldous–Broder algorithm (blue), fast-forwarded cover algo-
rithm (grey) and Wilson’s algorithm (orange). In each setting, the fast-forwarded algorithm runtime has a
small mean and variance, so each grey box appears close to a thin line. (a) Runtime for different bottleneck
sizes 1/{λ2(L)}1/2. (b) Runtime over different numbers of blocks and hence bottlenecks. (c) Runtime over

different numbers of nodes.

algorithms under comparison. Figure 3(a) shows that while the runtimes for the Aldous–
Broder algorithm and Wilson’s algorithm increase rapidly as the bottleneck size increases,
the fast-forwarded algorithm runtime is almost unaffected by bottleneck size. Similar plots
are shown in the SupplementaryMaterial, where we compare theAldous–Broder algorithm,
Wilson’s algorithm and the fast-forwarded algorithm under the same setting, but measure
time by the number of random walk steps taken.

Second, we assess the effects of the number of blocks on the runtime; more blocks implies
more bottlenecks. We simulate W ∈ R600×600 according to wj, l = uj, lbj, lcj, l. The factors
uj, l and bj, l are simulated as above, except that we partition the 600 nodes into K blocks
(V1,…,VK) each of node size (600/K), and use bj, l = bl,j ∼ Ber(0.001) and cj, l = 0.005/K
for those (j, l) : j ∈ Vk, l ∈ V \ Vk. The factors cj, l are chosen so that empirically the size
of 1/{λ2(L)}1/2 remains roughly the same. We vary K in (2, 4, 8, 10), and draw 10 spanning
trees using each of the algorithms under comparison. Figure 3(b) shows that runtimes of the
Aldous–Broder andWilson’s algorithms increase quickly as the number of blocks increases,
while the fast-forwarded algorithm is again almost unaffected.

Third, we assess scalability by running the samplers on graphs with numbers of nodes
ranging within (500, 600, 800, 1000) in the two-block case using bj, l = bl,j ∼ Ber(0.1).
Figure 3(c) shows that the runtimes for the Aldous–Broder andWilson’s algorithms increase
much faster than the runtime of the fast-forwarded cover algorithm. In the Supplementary
Material, we present a comparison with a Laplacian-based sampler outlined in Algorithm 1
of Harvey & Xu (2016). While the Laplacian-based sampler offers improved mixing against
the reversible-jump sampler, the fast-forwarded cover algorithm enjoys substantially better
mixing.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf031#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf031#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf031#supplementary-data

12 E. Tam, D. B. Dunson and L. L. Duan

4. Bayesian dendrogram inference for crime and community data

We demonstrate the use of our algorithm in inferring a Bayesian dendrogram. We con-
sider a hierarchical model in the form of (1) for continuous yi ∈ Rd̃ with T⃗ rooted at node
1. We choose

F(yi|µzi) = φ(yi;µzi ,6), H(µl|µj,6) = φ(µl;µj, λ−16).

By symmetry of kernelH, the underlying graph G is undirected. This leads to the hierarchi-
cal model

L(y|µ, z) =
n∏
i=1

φ(yi;µzi ,6), 5(µ|ET⃗ , r) = R(µr)
∏

(j→l)∈ET⃗

φ(µl;µj, λ−16)

with priors 50(T⃗ |r = 1) ∝ 1, zi
i.i.d.
∼ Categorical(π̃1,…, π̃K̃), (π̃1,…, π̃K̃) ∼ Dir(α,…,α),

6 ∼ W−1(ν,60), R(µ1 = 0) = 1. Since F and H have a shared covariance 6 up to a scale
change λ > 0, a conjugate normal-inverse Wishart prior can be chosen for µ and 6.

Our interest is inferring the posterior on T⃗ , but we also have uncertainty in allocations zi
and component-specific parameters (µk). The resulting joint posterior distribution is highly
complex. Because of computational challenges, the literature tends to avoid characterizing
the uncertainty in T⃗ . For example, for Bayesian hierarchical clustering, Heller & Ghahra-
mani (2005) used a hypothesis testing criterion to iteratively merge clusters, while Heard
et al. (2006) combined clusters based on a metric that captures the closeness between clus-
ters. Alternatively, one can use a Markov chain Monte Carlo sampling algorithm. Classical
algorithms rely on making local changes in T⃗ using reversible-jump Metropolis–Hastings
(Chipman et al., 1998; Denison et al., 1998), which tends to be very inefficient. Wu et al.
(2007) considered adding a move that allows a larger tree to be restructured to improve
mixing, but with high per iteration expense for large graphs.

Our new spanning tree sampler can bypass these computational challenges. We take an
overfitted modelling approach, considering an encompassing tree T⃗ with m̃ nodes rooted at
1, with m̃ sufficiently large to provide an upper bound on the true value m̃ ⩾ m. This allows
us to build a blocked Gibbs sampler based on drawing from 5(z|y,µ, T⃗), 5(µ|y, z, T⃗) and
5(T⃗ |µ), with T⃗ a spanning tree for m̃ nodes, in addition to the steps of updating other
parameters.

After obtaining a posterior sample, we canmarginalize redundant nodes and change each
sampled spanning tree T⃗ to a reduced dendrogram T⃗ , while maintaining an equivalent gen-
erative model for the data. Given a sample of (z1,…, zn), and T⃗ initialized at T⃗ , we use the
following pruning procedures corresponding to integrating out the densities related to j.

(i) If j is an empty leaf node, without any downstream edge (j → l) and with∑n
i=1 1(zi = j) = nj = 0, we remove j and (k→ j) from T⃗ .

(ii) If j only has two edges (k→ j) and (j → l), and nj = 0, we remove j and replace the
two edges by (k→ l) in T⃗ .

We iterate the above pruning steps on the tree’s nodes until we cannot reduce the size of
T⃗ any further. The spanning tree T⃗ can be viewed as a latent variable that facilitates the
specification of the model and posterior computation for the dendrogram T⃗ . We refer to
this approach as a spanning tree-augmented dendrogram.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

Exact sampling of spanning trees 13

To illustrate this model, we consider an application to the community and crime dataset
from the University of California Irvine Machine Learning Repository. The dataset con-
sists of socioeconomic attributes from the 1990 U.S. census, crime statistics from the 1995
Uniform Crime Report and law enforcement attributes from the 1990 Law Enforcement
Management and Administrative Statistics Survey. We focus on economic data from the
state of Massachusetts, where there are n = 123 relevant entries, each corresponding to a
community in the state, with d = 2 continuous attributes: the community’s median income
and median rent. These attributes are log transformed and standardized to have sample
mean 0 and marginal sample variance 1. Our focus is on characterizing variability in these
economic attributes by grouping the communities hierarchically. A dendrogram is natural
for this purpose.

We choose priors to favour node parameters µj that are broadly spread across the sup-
port of the data, with relatively few data points associated with each µj. This is achieved
by choosing ν = n, 60 = 0.22Id̃ , λ = 0.25 and m̃ = ⌊n/4⌋. To favour effective elimi-
nation of unnecessary clusters, we follow common practice in the literature on overfitted
mixtures (Van Havre et al., 2015) and choose a symmetric Dirichlet with a small concen-
tration parameter (α = 0.1) for weights π̃1,…, π̃m̃. Since the data have been centred, we
fix root choice r = 1 and µ1 = 0. There are implicit Bayesian Occam’s razor effects that
favour the induced dendrogram T⃗ to be small. As in other Bayesian mixture models, the
marginal likelihood will tend to decrease if data are overclustered, favouring setting nk = 0
to automatically remove some of the clusters. This tendency is furthered by our symmetric
Dirichlet prior with precision close to zero for the cluster weights. In addition, the uniform
prior on T⃗ leads to higher weight on dendrograms with few nodes as such dendrograms
have more ways to be marginalized (pruned) from an m̃-node T⃗ .

Using aGibbs sampler, we can update each term above using closed-form full conditional
distributions.We provide the details in the SupplementaryMaterial. To show computational
advantages of this Gibbs sampler, we compare with sampling the posterior for a directly
specified dendrogram using a reversible-jump Markov chain Monte Carlo sampler. The
model is almost the same as our spanning tree-augmented version, with the same choice
of F and G, priors for the parameters and upper bound m̃ on the number of nodes in
T⃗ . However, we allow the number of nodes in T⃗ to vary; therefore, some nodes amongst
(1,…, m̃) might not be in T⃗ . In the likelihood, we replaceF(yi|µk) by zero if k is not a node
of T⃗ , and use the prior 50(T⃗) ∝ 0.01|VT⃗ | to favour small dendrograms. Accordingly, we use
birth/death proposals to add/remove nodes from T⃗ , and aMetropolis–Hastings criterion to
accept or reject each proposal. We provide details in the Supplementary Material.

We run each sampler for 5000 iterations, with a burn-in of 3500 iterations. In wall-clock
time, both the Gibbs sampler using our fast-forward cover algorithm and the reversible-
jumpMarkov chain Monte Carlo sampler run for approximately 0.5 to 1 h. However, there
are dramatic differences in mixing performance. The reversible-jump Markov chain Monte
Carlo sampler tends to be stuck in certain states for a long time, while the spanning tree–
based Gibbs sampler shows excellent mixing. Figure 4 compares the mixing for the number
of nonempty leaves of the dendrogram. The Gibbs sampler for a spanning tree-augmented
dendrogram model shows much faster mixing, compared to a reversible-jump sampler for
a directly specified dendrogram model. The posterior distributions targeted by the Gibbs
sampler and reversible-jump sampler are slightly different due to how the complexity of the
tree is regulated. Results for other summaries are shown in the Supplementary Material.
We compare effective sample sizes per iteration in Table 1. We further conducted posterior

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf031#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf031#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf031#supplementary-data

14 E. Tam, D. B. Dunson and L. L. Duan

0 500 1000 1500
5.0

5.2

5.4

5.6

5.8

6.0
C

ou
nt

s

Iteration

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

A
ut

oc
or

re
la

tio
n

Lag

0 500 1000 1500
3.0

3.5

4.0

4.5

5.0

C
ou

nt
s

Iteration

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

A
ut

oc
or

re
la

tio
n

Lag

0 500 1000 1500
9

10

11

12

13

14

15

C
ou

nt
s

Iteration

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

A
ut

oc
or

re
la

tio
n

Lag

0 500 1000 1500

6

8

10

12

C
ou

nt
s

Iteration
0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

A
ut

oc
or

re
la

tio
n

Lag

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a) Trace of the maximum degree from the reversible-jump sampler. (b) Autocorrelation of the max-
imum degree for the reversible-jump sampler. (c) Trace of the maximum degree from the Gibbs sampler. (d)
Autocorrelation of the maximum degree from the Gibbs sampler. (e) Trace of the number of nonempty leaves
for the reversible-jump sampler. (f) Autocorrelation of the number of nonempty leaves for the reversible-jump
sampler. (g) Trace of the number of nonempty leaves from theGibbs sampler. (h) Autocorrelation of the number

of nonempty leaves from the Gibbs sampler.

Table 1. Effective sample size per iteration for the inferred tree from the reversible-jump
sampler and our proposed spanning tree–augmented dendrogram Gibbs sampler

Gibbs sampler for the Reversible-jump
Parameter spanning tree–augmented dendrogram sampler

Maximum degree 0.913 0.003
Maximum depth 0.29 0.007
Number of leaves 0.702 0.002

sampling using the subtree prune and regraft move (Evans & Winter, 2005; Song, 2006).
The results are provided in the Supplementary Material.

To quantify the uncertainty around the obtained clusters and visualize the inferred hier-
archical structures, we use the posterior similarity matrix (Fritsch & Ickstadt, 2009). We
record whether communities share an ancestor node at depths 1, 2 and 3 of the sampled
dendrogram, and average over the posterior samples to compute a probability for each such
pairing. The results are shown in heat maps in Fig. 5. One can observe clear block-diagonal
structures at all depths, which become increasingly noisy as the depth increases.

To interpret the inferred clusters, we visualize the communities in Massachusetts on a
map. We identified the largest diagonal block obtained from the posterior similarity matrix
at depth 1 and coloured the map by membership. We juxtapose the cluster membership
map with another map coloured by whether the median rent in the community is above the
threshold of $550 in Fig. 6. There is a nearly identical correspondence between the twomaps,
suggesting that the clustering faithfully captures the variation in the data.We also observed a
visible concentration of such higher income and rent communities in easternMassachusetts

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf031#supplementary-data

Exact sampling of spanning trees 15

Communities

0.25

0.50

0.75

1.00

C
om

m
un

iti
es

Communities

0.00

0.25

0.50

0.75

1.00

C
om

m
un

iti
es

Communities

C
om

m
un

iti
es

0.00

0.25

0.50

0.75

1.00

(a) (b) (c)

Fig. 5. Posterior similarity matrices at different depths for the crime and community data: (a) depth 1,
(b) depth 2, (c) depth 3.

Median rent >
 $550

0

1

Massachusetts townships

41.5°N

42.0°N

42.5°N

41.5°N

42.0°N

42.5°N

73.5°W 73.0°W 72.5°W 72.0°W 71.5°W 71.0°W 70.5°W 70.0°W 73.5°W 73.0°W 72.5°W 72.0°W 71.5°W 71.0°W 70.5°W 70.0°W

Cluster

Cluster 1

Not cluster 1

Massachusetts townships(a) (b)

Fig. 6. (a) Map plot of Massachusetts communities, coloured by membership of a depth-1 cluster. (b) Map plot
of Massachusetts communities, coloured by whether median rent is above threshold. The communities in the
largest cluster, red in panel (a), at depth 1 of the estimated dendrogram roughly match with those with median

rent above $550 in panel (b).

near the coast. Details for computing posterior similarity matrices and maps are provided
in the Supplementary Material.

5. Discussion

This article is motivated by improving the computational efficiency of posterior inference
for tree parameters. Expanding beyond the application to dendrograms, it is of interest to
develop spanning tree-augmented models for more complex models, such as more elaborate
discrete latent structure models (Zeng et al., 2023) or the treed Gaussian process (Gra-
macy & Lee, 2008; Payne et al., 2024). For broader classes of tree models that may not
admit a product-over-edge probability distribution, onemaymodify our randomwalk cover
algorithm to form a computationally efficient proposal-generating distribution. Related
Metropolis–Hastings algorithms for sampling graph partitions have recently been studied by
Autry et al. (2023). For a tree with an unknown number of nodes or structural dependence
on a latent arrival process, such as diffusion trees (Neal, 2003) or Bayesian phylogenetic
trees (Huelsenbeck & Ronquist, 2001), it would be interesting to explore extending the
fast-forwarding algorithm to bypass wasteful random walks on an infinite graph or under
time-varying transition probabilities.

Acknowledgement

This work was partially supported by Merck, the European Research Council, the Office
of Naval Research, the National Institutes of Health and the National Science Foundation
of the United States.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf031#supplementary-data

16 E. Tam, D. B. Dunson and L. L. Duan

Supplementary material

The Supplementary Material contains further simulations. All codes for this paper can
be found at www.github.com/edrictam/fast_spanning_tree_sampler.

Appendix

Proof of Theorem 2. Considering (t̂k+1 − t̂k) as the interarrival time, we want to show that

E(t̂k+1 − t̂k) ⩾ 1/q̃, q̃ =
{
1+min

j∈Uk

∑
l∈Uk

wj,l∑
l′∈Ūk

wj,l′

}−1
.

Consider a sequence of independent Bernoulli events with success probabilities p̃1, p̃2,…, with all
p̃ĩ ⩽ q̃, and denote the index on the first success in this sequence by T̃ . If ET̃ <∞ then ET̃ ⩾ 1/q̃.
Since T̃ ⩾ 0, we know thatET̃ =

∑
∞

t=0 Pr(T̃ > t) =
∑
∞

t=1

∏t
ĩ=1(1− p̃ĩ) ⩾

∑
∞

t=1

∏t
ĩ=1(1− q̃) = 1/q̃.

Adding over t̂ =
∑m

k=1(t̂k+1 − t̂k) with t̂1 = 0 yields the result. □

Proof of Theorem 3.We first state Cheeger’s inequality for circulation graphs (Chung, 2005, The-
orem 5.1). For a directed and weighted graph with nonnegative weight matrixW, having

∑m
l=1 wj, l =∑m

l=1 wl,j for all j, the second smallest eigenvalue λ2(L) satisfies

{λ2(L)}1/2 ⩾ min
{U : 1 ⩽ |U| ⩽ m−1}

∑
j∈U ,l∈Ū wj, l

min(
∑

j∈U dj,
∑

j∈Ū dj)
.

Letting U =
⋃

t̃ ⩽ t Xt̃, |U| ⩽ m− 1, the probability of exiting U at time t+ 1 is

Pr(xt+1 ∈ Ū|xt̃ ∈ U for all t̃ ⩽ t) =
∑
j∈U

{∑
l∈Ū wj, l

dj
St(j)

}
,

where St(j) = Pr(xt = j). Using ẽj =
∑

l∈Ū wj, l, we obtain[∑
j∈U

{
ẽj
dj
St(j)

}] ∑
j∈U

dj =
∑
j∈U

{
ẽjSt(j)

∑
j′∈U dj′

dj

}

⩽
∑
j∈U

ẽj max
j∈U

{
St(j)

∑
j′∈U dj′

dj

}

⩽

(∑
j∈U

ẽj

)
max
j∈U∪Ū

{
St(j)

∑
j′∈U∪Ū dj′

dj

}
.

After rearranging terms, we obtain

Pr(xt+1 ∈ Ū|xt̃ ∈ U for all t̃ ⩽ t) ⩽

∑
j∈U ẽj∑
j∈U dj

max
j∈U∪Ū

{
St(j)

∑
j′ dj′

dj

}

⩽

∑
j∈U ẽj

min(
∑

j∈U dj,
∑

j∈Ū dj)
max
j∈U∪Ū

{
St(j)

∑
j′ dj′

dj

}
.

Using πj = dj/
∑

j′ dj′ and taking the minimum over both sides, we have

min
U : |U| ⩽ m−1

Pr(xt+1 ∈ Ū|xt̃ ∈ U for all t̃ ⩽ t) ⩽ {λ2(L)}1/2 max
j
St(j)/πj.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf031#supplementary-data
http://www.github.com/edrictam/fast_spanning_tree_sampler
www.github.com/edrictam/fast_spanning_tree_sampler

Exact sampling of spanning trees 17

Letting Uk∗ reach the minimum on the left-hand side, by a similar argument as in the proof of
Theorem 2,

E(t̂k∗+1 − t̂∗k) ⩾
1

M{λ2(L)}1/2
.

Adding the other (m− 2) steps, each with t̂k′+1 − t̂k′ ⩾ 1, leads to the result. □

Proof of Theorem 4. The Neumann series converges if the spectral radius λ1(PU ,U) < 1 strictly.
SincePU ,U is a nonnegative matrix, by the Perron–Frobenius theorem, λ1(PU ,U) ⩽ maxi

∑
j pi,j ⩽ 1.

Since PU ,U is irreducible, by the Perron–Frobenius theorem, there exists a unique vector PT
U ,Uφ∗ =

λ1(PU ,U)φ∗, with φ∗ all positive and 1Tφ∗ = 1. We follow Chapter 8 of Meyer (2023), and let Q be a
nonnegative matrix such that PT

U ,U +Q has each column summable to 1; hence, 1T(PT
U ,U +Q)φ ⩽ 1

for any φ all positive and 1Tφ = 1. Since there exists at least ηj > 0, we know that at least one
Qj, l > 0.If λ1(PU ,U) = 1, we would have

1T(PT
U ,U +Q)φ∗ = 1Tφ∗ + 1TQφ∗ > 1,

which is a contradiction. Therefore, we know that λ1(PU ,U) < 1. □

REFERENCES

Aldous, D. J. (1990). The random walk construction of uniform spanning trees and uniform labelled trees.
SIAM J. Discrete Math. 3, 450–65.

Autry, E., Carter, D., Herschlag, G. J., Hunter, Z. & Mattingly, J. C. (2023). Metropolized forest
recombination for Monte Carlo sampling of graph partitions. SIAM J. Appl. Math. 83, 1366–91.

Broder, A. Z. (1989). Generating random spanning trees. In 30th Ann. Symp. Foundat. Comp. Sci., pp. 442–47.
Piscataway, NJ: IEEE Press.

Broder, A. Z. & Karlin, A. R. (1989). Bounds on the cover time. J. Theor. Prob. 2, 101–20.
Castillo, I. & Ročková, V. (2021). Uncertainty quantification for Bayesian CART. Ann. Statist. 49, 3482–509.
Chipman, H. A.,George, E. I. &McCulloch, R. E. (1998). Bayesian CARTmodel search. J. Am. Statist. Assoc.

93, 935–48.
Chipman, H. A., George, E. I. & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. Ann.

Appl. Statist. 4, 266–98.
Chung, F. (2005). Laplacians and the Cheeger inequality for directed graphs. Ann. Combinat. 9, 1–19.
Denison, D. G., Mallick, B. K. & Smith, A. F. (1998). A Bayesian CART algorithm. Biometrika 85, 363–77.
Duan, L. L. &Dunson, D. B. (2023). Bayesian spanning tree: estimating the backbone of the dependence graph.

J. Mach. Learn. Res. 24, 1–44.
Duan, L. L. & Roy, A. (2024). Spectral clustering, Bayesian spanning forest, and forest process. J. Am. Statist.

Assoc. 119, 2140–53.
Elidan, G. & Gould, S. (2008). Learning bounded treewidth Bayesian networks. In Advances in Neural Infor-

mation Processing Systems, vol. 21, Ed. D. Koller, D. Schuurmans, Y. Bengio and L. Bottou, pp. 1–8. Red
Hook, NY: Curran Associates.

Evans, S. N. &Winter, A. (2005). Subtree prune and regraft: a reversible real tree-valuedMarkov process. Ann.
Prob. 34, 918–61.

Fredes, L. & Marckert, J.-F. (2023). A combinatorial proof of Aldous–Broder theorem for general Markov
chains. Random Struct. Algor. 62, 430–49.

Fritsch, A. & Ickstadt, K. (2009). Improved criteria for clustering based on the posterior similarity matrix.
Bayesian Anal. 4, 367–91.

Gower, J. C. & Ross, G. J. (1969). Minimum spanning trees and single linkage cluster analysis. J. R. Statist. Soc.
C 18, 54–64.

Gramacy, R. B. & Lee, H. K. H. (2008). Bayesian treed Gaussian process models with an application to
computer modeling. J. Am. Statist. Assoc. 103, 1119–30.

Guenoche, A. (1983). Random spanning tree. J. Algor. 4, 214–20.
Harvey, N. J. A. & Xu, K. (2016). Generating random spanning trees via fast matrix multiplication. In LATIN

2016: Theoretical Informatics Lecture Notes Comp. Sci. 9644), Ed. E.Kranakis, G.Navarro and E. Chávez,
pp. 522–35. Berlin: Springer.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

18 E. Tam, D. B. Dunson and L. L. Duan

Heard, N. A., Holmes, C. C. & Stephens, D. A. (2006). A quantitative study of gene regulation involved in the
immune response of anopheline mosquitoes: an application of Bayesian hierarchical clustering of curves. J.
Am. Statist. Assoc. 101, 18–29.

Heller, K.A.&Ghahramani, Z. (2005). Bayesian hierarchical clustering. InProc. 22nd Int. Conf.Mach. Learn.,
pp. 297–304. New York: Association for Computing Machinery.

Huelsenbeck, J. P. & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics
17, 754–5.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proc.
Am. Math. Soc. 7, 48–50.

Kulkarni, V. G. (1990). Generating random combinatorial objects. J. Algor. 11, 185—207.
Lauritzen, S. L. (1996). Graphical Models. New York, NY: Oxford University Press.
Levin, D. A. & Peres, Y. (2017). Markov Chains and Mixing Times, 2nd ed. Providence, RI: American

Mathematical Society.
Linero, A. R. & Yang, Y. (2018). Bayesian regression tree ensembles that adapt to smoothness and sparsity. J.

R. Statist. Soc. B 80, 1087–110.
Lovász, L. & Winkler, P. (1993). A note on the last new vertex visited by a random walk. J. Graph Theory 17,

593–6.
Luo, Z. T., Sang, H. & Mallick, B. (2021). A Bayesian contiguous partitioning method for learning clustered

latent variables. J. Mach. Learn. Res. 22, 1748–99.
Luo, Z. T., Sang, H.&Mallick, B. (2024). A nonstationary soft partitionedGaussian processmodel via random

spanning trees. J. Am. Statist. Assoc. 119, 2105–16.
Madry, A., Straszak, D. & Tarnawski, J. (2015). Fast generation of random spanning trees and the effective

resistance metric. In Proc. 26th Ann. ACM-SIAM Symp. Discrete Algor., pp. 2019–36. Philadelphia, PA:
Society for Industrial and Applied Mathematics.

Matthews, P. (1988). Covering problems for Markov chains. Ann. Prob. 16, 1215–28.
Meilă, M. & Jaakkola, T. (2006). Tractable Bayesian learning of tree belief networks. Statist. Comp. 16, 77–92.
Meilă, M. & Jordan, M. I. (2000). Learning with mixtures of trees. J. Mach. Learn. Res. 1, 1–48.
Meyer, C. D. (2023).Matrix Analysis and Applied Linear Algebra. Philadelphia, PA: Society for Industrial and

Applied Mathematics.
Neal, R.M. (2003). Density modeling and clustering using Dirichlet diffusion trees. Bayesian Statist. 7, 619–29.
Payne, R.D.,Guha, N. &Mallick, B. K. (2024). ABayesian survival treed hazardsmodel using latentGaussian

processes. Biometrics 80, ujad009.
Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–401.
Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Philadelphia, PA: Society for Industrial and

Applied Mathematics.
Schild, A. (2018). An almost-linear time algorithm for uniform random spanning tree generation. In Proc. 50th

Ann. ACM SIGACT Symp. Theory Comp., pp. 214–27. New York: Association for Computing Machinery.
Song, Y. S. (2006). Properties of subtree-prune-and-regraft operations on totally-ordered phylogenetic trees.

Ann. Combinat. 10, 147–63.
Suchard, M. A., Weiss, R. E. & Sinsheimer, J. S. (2001). Bayesian selection of continuous-time Markov chain

evolutionary models.Molec. Biol. Evol. 18, 1001–13.
Teixeira, L. V., Assunção, R. M. & Loschi, R. H. (2019). Bayesian space-time partitioning by sampling and

pruning spanning trees. J. Mach. Learn. Res. 20, 1–35.
Van Havre, Z., White, N., Rousseau, J. & Mengersen, K. (2015). Overfitting Bayesian mixture models with

an unknown number of components. PloS One 10, e0131739.
Wilson, D. B. (1996). Generating random spanning trees more quickly than the cover time. In Proc. 28th Ann.

ACM Symp. Theory Comp., pp. 296–303. New York: Association for Computing Machinery.
Wu, Y., Tjelmeland, H. & West, M. (2007). Bayesian CART: prior specification and posterior simulation. J.

Comp. Graph. Statist. 16, 44–66.
Zeng, Z.,Gu, Y.&Xu, G. (2023). A tensor-EMmethod for large-scale latent class analysis with binary responses.

Psychometrika 88, 580–612.

[Received on 5May 2024. Editorial decision on 21March 2025]

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf031/8113846 by U
niv. O

f Lake Alfred C
rec user on 26 August 2025

