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Abstract. The role that highly curated knowledge, provided by domain
experts, could play in creating e!ective tutoring systems is often over-
looked within the AI for education community. In this paper, we highlight
this topic by discussing two ways such highly curated expert knowledge
could help in creating novel educational systems. First, we will look at
how one could use explainable AI (XAI) techniques to automatically cre-
ate lessons. Most existing XAI methods are primarily aimed at debugging
AI systems. However, we will discuss how one could use expert specified
rules about solving specific problems along with novel XAI techniques to
automatically generate lessons that could be provided to learners. Sec-
ondly, we will see how an expert specified curriculum for learning a target
concept can help develop adaptive tutoring systems, that can not only
provide a better learning experience, but could also allow us to use more
e"cient algorithms to create these systems. Finally, we will highlight the
importance of such methods using a case study of creating a tutoring
system for pollinator identification, where such knowledge could easily
be elicited from experts.

Keywords: Explainable AI · Concept-Based Teaching · Concept High-
lighting · Feature Localization.

1 Introduction

Artificial Intelligence (AI) as a field is currently in the midst of a transformative
moment, marked by advances and achievements happening at a pace nearly
unthinkable just a few years ago [20]. Rapid advancement has also brought with
it some implicit and explicit notions of how to build successful AI systems.
Chief among those notions is the push to downplay the need for, and in some
cases completely reject, the use of any expert-specified knowledge [25]. While AI
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for education, as a subfield, has always embraced the use of expert knowledge,
we feel in this moment of the extreme proliferation of end-to-end trained AI
systems; it is worth re-emphasizing the need and advantage of using expert-
specified knowledge. Through this position paper, we would like to go one step
further and call for additional e!orts to more e!ectively (a) gather, (b) represent,
and (c) utilize experts in and for AI systems.

Our primary argument relates to the positioning of education in the larger
landscape of possible AI applications and how it di!ers from the kind of problems
on which the broader AI community typically focuses. To begin, many recent
successes in AI relate to tacit knowledge tasks [7], like vision [26] and robotics [1],
where it is unclear how relevant expert knowledge could even be gathered. The
other domain where there is a lot of recent excitement is the development and
deployment of large-language models (LLM) [2]. These models operate on such
large scales that gathering expert knowledge would never be cost-e!ective. One
could argue that LLM fine-tuning through processes like RLHF [18] acts as
a proxy for expert feedback. However, these systems are able to get by with
feedback from non-expert users, given that these systems are mostly deployed
in low-stakes everyday use cases.

Education, on the other hand, can be a high-stakes application. For example,
we do not want our systems to hallucinate and provide the learners with mislead-
ing or incorrect lessons; factually correct, appropriately sca!olded lessons that
are responsive to individual learner needs are beyond the current capabilities of
AI systems. While the state-of-the-art methods may not be able to provide the
level of robustness and e"ciency we would require for authentic or impactful
educational settings [5], there are ways we can accommodate the system’s short-
comings by leveraging existing human expertise. We have an extensive knowledge
base on creating e!ective lessons and supporting learners across disciplinary do-
mains (e.g. mathematics or history) and institutional contexts (e.g. elementary
school or workplace learning). We also have experts who have the training to
help craft approaches. While we want to minimize the demands placed on the
experts, the solution should not be to ignore them. We should build systems that
leverage expert input to help more learners with a wider variety of needs [3].

To demonstrate our argument, we present two examples where expert-specified
knowledge can be combined with state-of-the-art AI methods to generate better
learning outcomes. First, we will show how explainable AI methods could be ex-
tended and augmented with expert-specified rules to generate lessons automati-
cally. Second, we will examine how one could combine a hierarchically structured
curriculum with a POMDP-based adaptive tutoring system to e!ectively gener-
ate lessons. To demonstrate the viability of these approaches, we ground them
in an important citizen science learning problem of pollinator identification.

Tracking pollinator health is a common goal shared by many community
science (also known as citizen science) groups across the country [13, 17, 28],
particularly those groups that are concerned with issues of environmental sus-
tainability or conservation. Such tracking can provide valuable ecological data
pertaining to local environmental health. Learning more about insects and polli-
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nators, including identification and behavior patterns, from experts is generally
touted as one benefit of joining such groups. It is also in the interest of group
organizers to provide e!ective educational opportunities for these potential com-
munity scientists so they can carry out their scientific mission accurately and
reliably. Unfortunately, many of these organizations have capacity limitations,
particularly around the availability of content domain experts, and do not have
the resources to provide the level of individualized training some learners require.
The availability of e!ective automated instruction systems could make a huge
impact on the ability to scale their organizational processes, recruit more par-
ticipants, and guide those participants appropriately, ultimately enabling such
organizations to achieve their scientific or environmental health aims [10, 21].
As we will see in the following section, while such organizations may lack the
resources to provide extensive training, they are fully capable of providing the
level of information our proposed methods would require.

2 Using Explainable AI Methods to Generate Lessons

Fig. 1. An example showing the application of our system.

Explainable AI (XAI) as a field emerged out of the realization that as AI
systems were becoming more capable, it was not always clear why the system
was making the decisions it did [6]. Even in a domain as specific as AI decision-
making, the term explanation could include many aspects. However, most works
in this space have focused on a few settings that the designers deemed most
important. Specifically, one could think of most works in this space as debug-
ging mechanisms that could be used to verify whether the AI system is working
the way it was expected. These methods may be meant for the system designer
to debug the algorithm/model or for the domain expert to check if it uses the
correct problem features to make its decisions [11]. To pick two di!erent XAI
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techniques, consider feature attribution methods [12] and concept-based expla-
nation methods [9]. In the former, the explanation includes highlighting parts
of the input deemed most relevant to the decision. In the case of concept-based
explanation, the explanation system can present high-level concepts that might
influence the decision.

As a concrete example, consider the task of classifying a wasp presented
in Figure 1. The subfigure (B) presents an example of a feature attribution
method showing the image area that determined it was a wasp. A concept-
based explanation might explain that the concept “pinched-waist" influenced
the decision. An entomologist can examine either explanation and determine
that the system is correctly identifying the wasp using a relevant feature.

However, if we wanted to use this tool to help learners understand how to
recognize a wasp, we quickly see that the two methods are insu"cient. If the
learner is not aware of the concept of “pinched-waist" or cannot visually recognize
it, then neither of the explanations on its own will teach them about recognizing
wasps. On the other hand, these automatically generated pieces of information
could be part of a pipeline to generate lessons for the learner. We can create
such lessons by using a curated list of rules to recognize wasps, expressed in
terms of concepts that the XAI system can identify. Once the AI system has
identified an image to contain a wasp, one can iterate over the expert-specified
rules provided and see which one can be surfaced to the learner and can be used
to demonstrate the fact that the current image contains a wasp. Subfigure (C)
in Figure 1 shows an example of how such a lesson might look for the given
image. Note that in this case, we can also account for cases where the AI system
may be making incorrect predictions by associating uncertainty with the decision
and the presence or absence of concepts. Such approaches (cf. [9,23]) have been
previously used to ensure fidelity of generated explanation, in this case, is used
to ensure the learner is getting accurate lessons.

3 Expert-Specified Curriculum to Structure Lessons

Partially Observable Markov Decision Processes or POMDPs [22] have been
widely discussed as a potential framework to represent adaptive tutoring systems
[19]. They are particularly e!ective as they provide a natural way to encode
the system’s uncertainty about the learner’s current knowledge. POMDPs also
provide natural ways to capture actions to query the learner to test for their
level of expertise and then provide lessons that might be better suited to it.

However, a naive application of POMDPs to most education settings remains
infeasible as generating policies for them is quite computationally expensive
[15]. One of the biggest problems is the explosion of belief space that is needed
to capture uncertainty related to the potential expertise the current learner
might possess. However, the use of a well-structured curriculum, created with the
help of domain experts, could be helpful in simplifying the space. In particular,
identifying hierarchies between concepts and the order in which they need to be
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Fig. 2. A hierarchical representation of concepts relevant to pollinator classification.

taught could go a long way in simplifying the set of possible expertise levels the
system needs to consider at any given point.

Going back to pollinator identification tasks, a curriculum could dictate that
before they are trained to identify morphospecies, they should be able to identify
the genus. Additionally, before they can recognize the genus, they should be able
to recognize whether the given insect is a bee, wasp, or a fly [14]. By encoding
this order into the POMDP, you can have a policy that focuses on first testing the
learner’s ability to recognize the three groups before moving on to more granular
distinction. Figure 2 shows how a policy produced for such a POMDP might play
out based on the feedback given by the learner. This method of structuring belief
spaces has shown to provide computational advantages in other settings [24], and
we expect it to carry over in this new setting as well.

4 A Potential Tutoring System for Pollinator
Identification

Fig. 3. An overview of our proposed tutoring system.
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Putting these two pieces together, one can start seeing the outlines of an
e!ective tutoring system that community scientists can use. To build such a
system, we would need the domain experts to first build a curriculum that spec-
ifies in what order learners should be exposed to or master di!erent concepts.
Next, we would also require them to compile a set of rules that the learner can
use to recognize di!erent groups of insects. While this may at first glance seem
like a lot of information for an expert to provide, this is a set of information
that is commonly provided to community scientists as part of their onboard-
ing training.4 The morphospecies and concept classifiers needed to build the
XAI pipeline that was described in the earlier section can be trained using data
available from public repositories like iNaturalist [16]. One could also leverage
the existing volunteer pool to get additional annotations and examples. We can
reuse the organization’s existing teaching materials for the lessons and questions
needed to build out the POMDP-based tutoring system. The objective func-
tion and the transition probabilities used by the POMDP can be initially set to
default values and then refined over time based on learner feedback.

Once we have the two pieces in place, we can actually build a tutoring system
that will allow the learners to take pictures of insects they see in the wild and
ask the system to teach them about them. The POMDP-based system will query
them to identify their current level of expertise and then determine the exact
level of details that need to be included in the user feedback. This is then used
to determine the rules that the XAI component needs to use to identify the
feedback to be generated for the current image. The system can also provide
them with more resources for them to better learn the target concept (in this
case, a group, morphospecies). However, building such a system with the current
state-of-the-art AI methods would require the use of expert-specified knowledge.
One that we argue is readily available in this case.

5 Recommendations to the Community

To conclude, here are our recommendations to the community.

Building Tools that Empower Experts. Our first recommendation is to build
better tooling and interfaces that will empower domain experts, who might not
be AI experts, to easily specify their knowledge in forms that AI systems can
use. Potential early steps from the AI side in this direction include the use of
symbolic interfaces [8] and the use of LLMs as semantic parsers [4]. It is also
worth noting that the domain experts themselves may not be education experts,
so there is a question about whether we can build tools that can help education
experts introduce best practices into the knowledge we collect to support the
integration of AI and domain expertise with high-quality education design.

4 Here are slides that were prepared for Native Bee Watch, a citizen science organiza-
tion, by our co-author Lisa Mason https://rb.gy/r03y0g
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Focusing on interdisciplinary teams. While the AI for education community
has always emphasized the importance of building interdisciplinary teams, this
trend may erode as more researchers from the broader AI community engage
with education as their target application. As a community, AI for education
needs to emphasize building and supporting interdisciplinary teams.

Broader Public Education. Finally, there is a need to educate the broader AI
community, the public, and policymakers about what state-of-the-art AI systems
can and cannot do in educational contexts. More work is needed to identify
problem spaces where AI might be a valuable tool and where AI technology might
still lag behind. We need to perform outreach activities to AI scientists so they
better appreciate the challenges related to education and to the policymakers
and public to make sure that resources are not being diverted to quixotic projects
that are are bound to fail. Specifically, in the context of this proposal, we need
to do a better job of identifying how expert knowledge can be best utilized and
integrated at each level of education, including preK-12, higher ed, workforce
development, and informal learning.
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