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Abstract

Many experiments require modeling a non-Normal response. In particular,
count responses and binary responses are quite common. The relationship be-
tween predictors and the responses are typically modeled via a Generalized Linear
Model (GLM). Finding D-optimal designs for GLMs, which reduce the general-
ized variance of the model coefficients, is desired. A common approach to finding
optimal designs for GLMs is to use a locally optimal design, but these designs are
vulnerable to parameter misspecification. The focus of this paper is to provide
designs for GLMs that are robust to parameter misspecification. This is done
by applying a bagging procedure to pilot data, where the results of many locally
optimal designs are aggregated to produce an approximate design that reflects
the uncertainty in the model coefficients. Results show that the proposed bagging
procedure is robust to changes in the underlying model parameters. Furthermore,
the proposed designs are shown to be preferable to traditional methods, which
may be over-conservative.
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1. Introduction
In many experiments, researchers are interested in modeling the effect of input factors
on a response that does not follow the Normal distribution. Two common scenarios are
binary responses and count responses. One timely example of a binary response is given

http://dx.doi.org/10.52933/jdssv.v5i1.123


2 Bootstrap Aggregated Designs

in Ouyang et al. (2016), where electronic medical records are examined to study the
relationship between patient risk factors and disease status. Another modern example
is using experimental designs to examine the probability of software failure (Salem et al.
2004). A good example of count data is given by Van Mullekom and Myers (2001) and
Oris and Bailer (1993), who used Poisson regression to model how the number of fish
eggs was impacted by concentrations of chemical toxicants in water.
While the bulk of traditional design methods in textbooks focuses on the linear model,
much work has been done to find optimal designs for Generalized Linear Models
(GLMs). The most common example of a GLM is the case of a binary response,
which was one of the first cases to be studied. Sitter (1992) developed a minimax
class of designs with the aim of minimizing the maximum loss over a range of plausible
values for the parameters in a regression model with binary responses and two pre-
dictors. Chaloner and Larntz (1989) used a Bayesian framework to search for robust
D−optimal designs for a logistic regression model. More recently, Denman et al. (2011)
used Copulas to construct optimal designs for the case of two or more dependent binary
responses.
Several authors have studied optimal designs for count data as well. In particular, the
focus has been on D−optimal designs. Wang et al. (2006a) obtained locally D−optimal
designs for Poisson regression models that included main effects and interactions for
two toxicants. To address how local designs are sensitive to parameter misspecification,
Wang et al. (2006b) studied sequential D−optimal designs for Poisson regression and
demonstrated that it is difficult to analytically form the Fisher Information matrix in
a sequential framework. Russell et al. (2009) found D−optimal designs for Poisson
regression for any number of predictors in an additive model, and they proposed a
clustering algorithm to create designs that were robust to parameter misspecification.
In this paper, we propose a Bootstrap Aggregated (BAG) approach for constructing
designs for GLMs. This approach uses bootstrap resamples from prior experimental
data to address the parameter dependence problem in finding optimal designs. Due to
the nature of bagging, this is a flexible approach that can be applied to many GLMs.
It will be shown that the BAG designs are more robust to parameter misspecification
than local designs. This approach also allows experimenters to estimate the sensitivity
of the design weights to changes in the model coefficients. Furthermore, this approach
does not require experimenters to specify feasible regions or candidates for the unknown
model parameters.
The rest of this paper is organized as follows. Section 2 reviews critical concepts
needed to understand the problem and the proposed methodology. Section 3 describes
the BAG design process in detail. Section 4 provides empirical evidence for the utility
of the proposed methods. Section 5 concludes the paper.

2. Preliminaries
In order to discuss the proposed methodology, it is helpful to first review GLMs, their
associated Fisher information matrices, and the criteria for optimal designs.
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2.1. Generalized linear models
Suppose that we observe responses yi and predictors xi, where i = 1, . . . , N and each xi

is a p × 1 vector. In the GLM framework, the traditional assumption that the response
is Normally distributed is relaxed. The model is written as

E[yi | xi] = µi = g−1(xT
i β), yi ∼ f, (1)

where β is a p × 1 vector of regression parameters to be estimated, f is the probability
density (or mass) function corresponding to yi, µi is the conditional mean, and g is a
link function that specifies the relationship between the mean and the linear predictor
ηi = xT

i β.
We are particularly interested in GLMs for binary and count data. For binary responses,
yi ∼ Bern(πi). It follows that µi = πi. A commonly used link function for binary
data is the logit, i.e., g(πi) = log(πi/(1 − πi)) which has the corresponding inverse
g−1(ηi) = exp(ηi)/(1 + exp(ηi)). For count data, we assume that yi ∼ Poisson(λi). It
follows that µi = λi. A commonly used link function for count data is the log-link
g(λi) = log(λi), which has the corresponding inverse g−1(ηi) = exp(ηi).
In the GLM framework, it is well-known that the maximum likelihood estimators
(MLEs) for β have an asymptotic variance-covariance matrix that is the inverse of
the Fisher information matrix. The Fisher information matrix, in general, may be
written as

I(β) = XT VX, (2)
where X is an N × p matrix of covariates (often called the model matrix) and V is a
diagonal matrix with entries

Vii = 1
Var[yi | xi]

(
∂µi

∂ηi

)2

. (3)

In particular, the diagonal entries for the two models assumed here are given below in
Equations (4) and (5), respectively.

Vii = exp(xT
i β)

(1 + exp(xT
i β))2 , (4)

Vii = exp(xT
i β). (5)

In particular, note that the entries of V depend on β, which is unknown a-priori.

2.2. Optimal designs
To fit a generalized linear model of the form (1), several data points need to be collected.
In an experimental design framework, the experimenters have the ability to choose
specific values of the p covariates used to fit the generalized linear model. Let χ denote
a p−dimensional experimental region, which is a subset of Rp of values for the covariates.
Typically, χ is discretized into N points, referred to as candidate points, that are feasible
to run in real-world conditions. Since the experimenters have the ability to choose the
points used to fit the model, they need to decide which candidate points to include in
the model, and how many times each candidate point should be replicated. Suppose we
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have a matrix Z = [z1, . . . , zN ]T of dimension N × p whose rows are candidate points
that lie in a p−dimensional experimental region χ. An experimental design is a set of
the form {(zj, wj) | ∑N

j=1 wj = 1, wj ≥ 0, j = 1, . . . , N}. Here, wj is interpreted as the
proportion of the N runs that should be allocated to the candidate point zj. If each
proportion wj is required to be an integer multiple of 1/N , then the design is called
an exact design; otherwise, it is an approximate design. Candidate points with weights
greater than 0 are called support points. The focus of this work is on approximate
designs, as they are easier to numerically and theoretically optimize. An example of
an approximate design is given in Table 1. Here, there are 9 candidate points that lie
in χ = [−1, 1]2 for p = 2 covariates. This design has four support points, which are
(−1, −1), (−1, 1), (1, −1), and (1, 1).

Table 1: An example of an approximate design for p = 2 covariates.

Candidate Point (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1)
Weight 0.24 0 0.23 0 0 0 0.27 0 0.26

In the case of GLMs, an optimal approximate design is one that minimizes the asymp-
totic variance of β̂ in some sense. The asymptotic variance of β̂ depends on the infor-
mation matrix of the design, which is denoted as

I(w, β) =
N∑

j=1
wjzjVjjzT

j = ZT VWZ, (6)

where W = diag(w1, . . . , wN). One of the most common approaches is to find weights
that are D−optimal, i.e., minimize the generalized variance of β̂, which corresponds
to maximizing the determinant of the Fisher information matrix (Sitter 1992; Wang
et al. 2006a). These designs minimize the expected volume of a confidence ellipsoid
for β, and are desirable for inference (Russell et al. 2009). Let SN = {(w1, . . . , wN) :∑N

j=1 wj = 1, wj ≥ 0} be an (N − 1) dimensional simplex. In this case, the D-optimal
design corresponds to the weights

w∗ = arg min
w∈SN

log(|(ZT VWZ)−1|). (7)

A complication arises in the optimal design problem (7). Notably, the matrix V depends
on the regression parameters β, which are unknown at the design phase. As stated
in Section 1, several attempts have been made to resolve this parameter dependence
problem. One common approach is to find a locally D-optimal design; here, domain
knowledge or prior data is used to construct an educated guess for β, and then an
optimal design is found (Wang et al. 2006a). Of course, the local method is sensitive
to the assumed value of β.
Much existing work has been done on finding locally optimal designs for GLMs under a
variety of different criteria. Mathew and Sinha (2001) found locally D− and A−optimal
designs for two-parameter logistic regression models, but some of these designs needed
to have symmetric design points. Later, Yang (2008) proposed an algebraic method
for finding optimal designs for two-parameter GLMs under the A−optimality criterion.
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Yang et al. (2011) identified general classes of optimal designs with 2p support points un-
der the D−, A−, and E−optimality criteria for the logistic and probit GLMs. Stufken
and Yang (2012) discussed how locally optimal designs can be found by restricting the
search to particular subclasses of designs known as complete classes. These complete
classes were found for multi-parameter Poisson and logistic regression models, and they
typically consist of designs with at least p + 1 support points. Recent developments
have also been made for finding locally optimal designs for GLMs. Lukemire et al.
(2019) proposed a modified quantum-behaved particle swarm optimization algorithm
to find D−optimal approximate designs for binary response GLMs where the covariates
are both categorical and continuous. Li and Deng (2021) proposed a hybrid algorithm
that provides designs for GLMs that minimize the expected integrated prediction vari-
ance over a subregion of interest. Wang and Stufken (2022) found D−optimal designs
for binary response GLMs that allowed for interactions between continuous covariates
that satisfy the strong effect heredity principle, and they also used orthogonal arrays
to construct D−optimal designs with fewer support points.

A promising approach for robust designs for GLMs is clustering. Dror and Steinberg
(2006) examined designs that were found by clustering the support points of locally
optimal designs for Poisson and binomial GLMs. The locally optimal designs were
found using a greedy exchange algorithm. A similar approach was used in Russell
et al. (2009), who considered clustering locally optimal designs for a Poisson regression
model. Locally optimal designs were found for several user-specified values of β, and
the support points were clustered together. This was done in the context of equally
weighted designs. A generalization of this procedure is summarized in Algorithm 1
below.

Algorithm 1: A Generalization of the Cluster Design from Russell et al. (2009).
Inputs: A grid of values B for β, Candidate points Z = [z1, . . . , zN ]T , Number of
support points k for the final design.

for β ∈ B do
1. Find a locally optimal design with weights w for the candidates Z given β.
2. For j = 1, . . . , N , replicate each candidate zj, ⌈Nwj⌉ times and store these
row-wise in a matrix D, where ⌈·⌉ is the integer ceiling.

end
3. Use k-means (or another clustering algorithm) to cluster the rows of D into k
clusters.

return A design with the cluster means as equally weighted support points.

Algorithm 1 is implemented later in Section 4 for comparison with the proposed meth-
ods in Section 3. The original implementation used a theoretical result to generate
optimal designs for each β; the generalized version allows for any algorithm that pro-
duces optimal weights for a given set of candidates to be used. The generalized im-
plementation uses k-means clustering, but any clustering method could be applied in
practice.

Another approach is the optimal “on-the-average” design (Fedorov and Hackl 1997).
In this framework, the experimenters specify a distribution π(β), where π is selected
to emphasize importance of certain values of β ∈ B. Then, the following optimization
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problem is solved to find the design weights:

w∗ = arg max
w∈SN

∫
β∈B

log(|ZT VWZ|) dπ(β). (8)

The optimal weights identified in (8) maximize the average D−optimality criterion with
respect to the distribution π. A similar approach for considering model uncertainty was
given by Woods et al. (2006), who proposed integrating the D−optimality criterion over
a set of possible link functions, linear predictors, and parameter vectors.
Finally, a popular robust alternative is a minimax or maximin design (Sitter 1992; King
and Wong 2000), which would focus on the following similar optimization problem:

w∗ = arg max
w∈SN

(
min
β∈B

|ZT VWZ|
)

,

where B is a pre-specified set of plausible values for the unknown regression parameters.
Welch (1983) and Chipman and Welch (1996) provide a method for finding approximate
maximin designs over a grid of pre-specified values of β. Suppose there are nβ possible
values of β in the grid. This method works as follows:

1. The locally D−optimal design weights are found for each of the nβ values of β;
denote these as w1, . . . , wnβ

.

2. For each βi, i = 1, . . . , nβ, the relative D-efficiency of the jth design to the ith

design is

relD(j | i) = |ZT V(βi)diag(wj)Z|
|ZT V(βi)diag(wi)Z|

for j = 1, . . . , nβ. The relative D−efficiencies relD∗
i = minj=1,...,nβ

relD(j | i) are
stored, as they represent the worst case for that particular value of βi.

3. The maximin design corresponds to wa∗ , where a∗ = arg maxi=1,...,nβ
relD∗

i .

In Step 2, the term relD(j | i) is the relative D−efficiency of the jth design to the ith

design. If this relative efficiency is low for the jth design compared to that of other
designs, then the jth design is a poor design for βi. The candidate parameter vector that
minimizes this relative D−efficiency is then considered to be the worst-case possible
value of β for a locally optimal design constructed using βi. In Step 3, the maximin
design is approximated by choosing the weights that correspond to the design with the
largest worst-case relative D−efficiency. The maximin design is appealing because it
maximizes the Fisher information for the worst possible choice of β; however, it is often
more computationally intense than finding a locally optimal design.
Bagging has seen limited use before in optimal sampling frameworks. However, to the
best of our knowledge, bootstrap methods have not been applied to finding optimal
designs for GLMs. Recently, Rha et al. (2021) proposed the use of bagging for optimal
sampling for functional linear models in functional data analysis. While conceptually
similar to the proposed work here, the designs in Rha et al. (2021) are concerned with
minimizing the mean squared prediction error; ours are focused on minimizing the
generalized variance in a GLM.
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3. Proposed Methods
In this section, a method for identifying robust weights and support points is proposed
that leverages existing pilot data. This procedure is called a Bootstrap Aggregated
Design (BAG design), and it is summarized below in Algorithm 2.

Algorithm 2: Find BAG Design Weights.
Inputs: Pilot Data (X, Y ), number of bootstrap samples B, Candidate points
Z = [z1, . . . , zN ]T , aggregation function A : SN×B → SN .

for i = 1, . . . , B do
1. Create a bootstrap sample (X(i), Y (i)) by sampling the rows of the data
(X, Y ).

2. Fit a GLM to the bootstrap sample in Step 1 to obtain an estimate of the
coefficients β̂

(i).
3. Given β̂

(i), find and store the weights for the locally optimal design w(i).
end
4. Let Wall = [w(1), . . . , w(B)] be an N × B matrix. Aggregate the weights:

wBAG = A(Wall).

return wBAG

As inputs, Algorithm 2 takes an n × p matrix of predictors X from pilot data, an n × 1
vector Y of responses from pilot data, the number of bootstrap samples B, an N × p
matrix of candidate points Z, and an aggregation function A that takes an N × B
matrix of weights and returns a vector of N weights. In Steps 1, 2 and 3 of Algorithm
2, B bootstrap samples of size n are taken from the pilot data, which also has a sample
size of n. This is done by sampling rows from the pilot data with replacement. For each
of the B resamples, the coefficients β are estimated. Then, locally optimal weights for
each of the N support points are found for each β̂. In Step 4, these weights for the
locally optimal design are aggregated using the aggregation function A(·). Two versions
of the aggregation function are proposed. The first is the mean, i.e.,

wBAG = 1
B

B∑
i=1

w(i). (9)

The second is the geometric median, i.e.,

wBAG = arg min
w∈SN

B∑
i=1

||w(i) − w||2, (10)

which is the vector in SN that minimizes the sum of the L2 distances to all other
bootstrapped weight vectors w(i), i = 1, . . . , B. Algorithm 2 outputs the weights wBAG

for a robust design on the candidate points. The Bootstrap Aggregated Design (BAG
design) procedure is summarized in Figure 1 for the case when the mean is used for
aggregation.
To find weights for the locally optimal design for each of the bootstrap samples, a fast
algorithm is required. One could use a multiplicative algorithm (Yu 2011; Goos et al.
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Figure 1: The BAG Design Process, with Mean Aggregation.

2016) to find optimal weights for all N candidates, but this is not ideal because the
multiplicative algorithm often takes too many iterations to identify the weights for a
locally optimal design. In Algorithm 2, weights for locally optimal designs would need
to be computed for each of the B bootstrap resamples, so the multiplicative algorithm
would be inefficient. It would be more efficient to use an algorithm that works on a
subset of the N candidates Z, and updates both the weights and the subset with each
iteration.
To this end, we implement the algorithm from Yang et al. (2013), which allows for fast
identification of optimal designs for a given β̂. A high-level overview of this procedure
is provided in Algorithm 3. Algorithm 3 uses a directional derivative ∂ϕ(I(w, β))/∂zj

of the optimality criterion ϕ. For the case of D−optimality, this is ∂ϕ(I(w, β))/∂zj =
VjjzT

j I(w, β)−1zj − p. Note that in Algorithm 2, it is only required to find optimal
weights for fixed values of β, so the directional derivative can be clearly evaluated.
As inputs, Algorithm 3 takes the set of N candidate points Z, a vector of coefficients β,
a generalized linear model specified by a link function g and a density f of the response,
and a small positive tolerance ϵ. This algorithm returns a matrix of candidate points
Z(t+1) whose rows are a subset of the rows of Z and corresponding weights for each of
the support points. During each iteration of the algorithm, a Newton-type algorithm is
used to find the optimal weights for the current subset of support points (Step 5). More
details behind the implementation of this algorithm can be found in Yang et al. (2013).
It is important to note that when finding the optimal weights, this Newton algorithm
should remove points that have zero weight. Then, the candidate that maximizes the
directional derivative is identified (Step 6). If the directional derivative is below some
small ϵ, then the algorithm terminates, as the optimal design has been found (Step 7).
Otherwise, the candidate is added to the set of support points, and the previous step
repeats. Hence, at each iteration, at most one point is added. During Step 5, support
points with weights equal to 0 will be removed. By running Algorithm 3 for each
bootstrap resample in Algorithm 2, one can construct w(i) by assigning the weights
w(t+1)

local to the entries of w(i) that correspond to the elements of Z(t+1), keeping all other
weights zero for that iteration.
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Algorithm 3: Find Locally D−Optimal Design (Yang et al. 2013).
Input: Candidate points Z = [z1, . . . , zN ]T , coefficients β, a link function g and
density f as specified in Model (1), and a tolerance ϵ > 0.

1. Set t = 0 and select p + 1 candidate points Z(0) from the rows of Z such that
rank(Z(0)) = p.

2. Let

Vjj =
(

∂g−1(zT
j β)

∂(zT
j β)

)2 1
Varf [yj | zj]

, j = 1, . . . , N.

while δ > ϵ do
3. Let q be the number of rows of Z(t).
4. Let V(t) be a q × q diagonal matrix with diagonal entries of the form(

∂g−1(zT β)
∂(zT β)

)2 1
Varf [y | z]

for each row z of Z(t).
5. Find w(t+1)

local = arg minw∈Sq log(|[(Z(t))T V(t)diag(w)Z(t)]−1|) by using a
Newtonian algorithm.

6. Let j∗ = arg maxj=1,...,N VjjzT
j I(w(t+1)

local , β)−1zj − p.
7. Update δ = Vj∗j∗zT

j∗I(w(t+1)
local , β)−1zj∗ − p.

8. Append zj∗ row-wise to Z(t) to form Z(t+1). Add a weight of 0 to w(t+1)
local for

this point.
9. Update t = t + 1.

end
return w(t+1)

local , Z(t+1)

The BAG design procedure has many advantages. First, it is applicable to any GLM
with an information matrix that has a closed form. It is particularly advantageous
when locally optimal designs can be quickly identified. By aggregating the weights
of B bootstrap resamples, we can obtain weights for an optimal design that reflect
the uncertainty associated with the original MLE for β. Also, the BAG design can
accommodate constraints in the experimental region. If the candidate points satisfy
the experimental constraints, then the resulting BAG design is also feasible. Theorem
1 below provides an additional benefit for the BAG design, in the event that there is no
model misspecification, and helps describe its asymptotic behavior as the pilot sample
size increases.

Theorem 1 (Asymptotic efficiency of the BAG design). Let the true parameter
vector be β ∈ Rp. Suppose that there is no parameter misspecification, i.e., E[yi |
xi] = g−1(xT

i β) for i = 1, . . . , n, where n is the size of the pilot dataset. If Algorithm
2 is used with mean aggregation to find wBAG for candidate points zi, i = 1, . . . , N , it
follows that, as n → ∞,

log(|I(wBAG, β)|) →
p

log(|I(w∗, β)|).
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Theorem 1 shows that as the size of the pilot dataset increases, the log D−efficiency
of the BAG design evaluated at the true parameter vector β converges to the log
D−efficiency of the optimal design in probability. Therefore, the chance of identifying
an optimal design increases with the size of the pilot data.
Alternative robust designs presume knowledge of plausible values of β, which may not
always be available or may be incorrectly specified. A minimax or maximin optimal
design often requires the user to specify either (1) feasible bounds for β or (2) a set of
feasible candidate parameter vectors for β. The BAG design does not require the user
to pre-specify any bounds, nor does it require candidate parameter vectors. In a sense,
the candidate parameter vectors are automatically generated via bootstrapping. The
BAG design is also more intuitive. A Bayesian optimal design requires that a prior for
β is specified, while this is not a requirement for the BAG design. In classical literature,
a conjugate prior is often used for β, but a conjugate prior may not always exist for
a given link function g (e.g., logistic regression), and even if it does exist, there is no
guarantee that it is the correct prior distribution.
There are some concerns that must be addressed when dealing with the BAG design.
While the BAG design requires more computation time than a single locally optimal
design, this can be mitigated by finding optimal designs for different bootstrap samples
in parallel. The other drawback of the BAG design is that it requires pilot data, which
may not always be available at the design stage. However, the use of pilot data provides
more realistic values of β to consider - a minimax or Bayesian approach might consider
values of β that are too extreme and result in a design that is over-conservative.

3.1. Reducing the number of support points
As written, Algorithm 2 often produces approximate designs that have too many sup-
port points. This happens because some of the support points may only be selected by
a small number of bootstrap resamples. For instance, if one candidate point is selected
by only one of B = 50 bootstrap samples, then the weight of this candidate point in
the final BAG design must be less than 1/B = 0.02. In general, this can lead to designs
with too many support points, each with a weight that may not be easy to convert to
an exact design for a fixed sample size. To address this concern, we consider a modi-
fication of Algorithm 2 that filters out support points with low weights. Let wBAG be
the weights returned by Algorithm 2. The modified weights are given by

w∗∗
j = wBAG,jI(wBAG,j ≥ γ)∑N

ℓ=1 wBAG,ℓI(wBAG,ℓ ≥ γ)
, (11)

where j = 1, 2, . . . , N is an index over the candidate points, wBAG,j is the weight of the
jth candidate point, γ is a small tolerance level that satisfies 0 ≤ γ ≤ maxj=1,...,N wBAG,j ,
and I(wBAG,j ≥ γ) is the indicator function that is equal to 1 if the weight of the jth

candidate is greater than or equal to γ. The purpose of the tolerance parameter γ is to
remove support points with low average weights from the design. If wBAG,j < γ, then
(1/B)∑B

i=1 w
(i)
j < γ. Therefore, if the average weight of candidate point zj over the B

bootstrap resamples is less than γ, w∗∗
j = 0.

It is straightforward to show that increasing γ will either maintain or decrease the
number of support points in the design. In general, for any set of weights w ∈ SN , let
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wγ,j = wjI(wj ≥ γ)/(∑N
ℓ=1 wℓI(wℓ ≥ γ)). Suppose 0 ≤ γ1 ≤ γ2 < maxj=1,...,N wj. Let

S1 = {zj | wγ1,j > 0, j = 1, . . . , N} and S2 = {zj | wγ2,j > 0, j = 1, . . . , N}. S1 and S2
are the support points for designs with tolerance parameters γ1 and γ2, respectively. It
follows that S2 ⊂ S1 and that |S2| ≤ |S1|.
The effect of trimming the BAG weights on the log D−efficiency can also be shown.
Consider arbitrary weights w ∈ SN , and let wγ be defined as above for 0 < γ <
maxj=1,...,N wj. Let cγ = ∑N

ℓ=1 wℓI(wℓ ≥ γ). Then, since wj ≥ wjI(wj ≥ γ), it follows
that wj ≥ cγwγ,j for all j = 1, . . . , N . Therefore,

log(|I(w, β)|) = log
∣∣∣∣ N∑

j=1
wjVjj(β)zjzT

j

∣∣∣∣
 (12)

≥ log
∣∣∣∣cγ

N∑
j=1

wγ,jVjj(β)zjzT
j

∣∣∣∣
 = p log(cγ) + log(|I(wγ, β)|). (13)

This implies that log(|I(w, β)|)− log(|I(wγ, β)|) ≥ p log(cγ). Since 0 < cγ ≤ ∑N
ℓ=1 wℓ =

1, it follows that p log(cγ) ≤ 0, with equality at γ = 0. A tolerance of γ = 0 is identical
to the regular BAG design. In Section 4, the impact of the modification to the weights
in (11) on the relative D−efficiency and number of support points will be examined.

4. Results
Simulations were used to study the performance of the BAG designs. The aim of the
simulations was to evaluate the robustness of the BAG designs when compared to the
cluster and maximin designs. We also investigated the number of support points used
by the various designs across several simulated scenarios. Finally, we examined the
impact of trimming the weights as described in Equation (11) on the relative efficiency
and number of support points.

4.1. Robustness of BAG design
Simulations were used to compare the relative D−efficiencies of several designs (BAG,
cluster, and maximin) relative to the true local design for known values of β. All of
the designs used the same grid of parameter vector candidates that were generated by
bootstrap resampling. Values of γ = 0, 0.01, 0.02 were considered for the BAG designs.
In particular, γ = 0.02 was selected because each BAG design used B = 50 bootstrap
resamples, so a value of γ = 0.02 would ensure that candidate points that only appeared
in one of the 50 bootstrap resamples were excluded from the design. For each scenario,
pilot data of size n (for n = 50, 200) were simulated. The p = 2 covariates were drawn
from independent N(0, σ) distributions, with σ = 0.5, 2. For each iteration, the true
value of β was drawn from a uniform distribution on [0, 1]p+1. The pilot responses
were drawn from either the binomial distribution or the Poisson distribution. In the
binomial case, Yi ∼ Bernoulli(pi = exp(XT

i β)/(1 + exp(XT
i β))) for i = 1, . . . , n. In

the Poisson case, Yi ∼ Poisson(λi = exp(XT
i β)) for i = 1, . . . , n. The candidate points

were taken from Z = {−1, −0.9, . . . , 0.9, 1}p. To examine how robust the designs are to
parameter misspecification, a test set of 100 parameter vectors β̃s, s = 1, . . . , 100 were
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randomly sampled from independent multivariate normal distributions N(µ, σ̃2Ip+1),
where µ ∈ Rp+1 is a mean vector that is outside of [0, 1]p+1. Two mean vectors were
considered, and they are denoted as µ1 = (−3, −4, −5)T and µ2 = (1, 3, 1)T ; µ1 was
placed far from [0, 1]p+1, while in µ2, only the second coordinate is outside of [0, 1]. The
relative log D−efficiency of the BAG, cluster, and maximin designs to the local design
dramatically increases as the distance between β and µ increases. If the test parameter
vector β̃ is far from β, then a locally optimal design based on a good estimate of β
would have poor D−efficiency when evaluated at β̃. Since β is uniformly generated
on [0, 1]p+1, µ1 and µ2 were selected so that the test parameter vectors would be close
enough to the true β to ensure that the relative efficiencies did not diverge to infinity,
but far away enough that it would still make sense to use a robust design. The scenario
where µ = µ1 represents a more extreme misspecification case, as µ1 is completely
outside of [0, 1]p+1 and has misspecified signs. In the other case, where µ = µ2, the
signs are correctly specified, but the mean vector is closer to [0, 1]p+1. Looking at
both cases provides us with a sense of how well the BAG designs perform under these
different magnitudes of parameter misspecification. In this section, σ̃2 = 0.25 is used.
Additional simulation results for σ̃2 = 1 are provided in Appendix B, which is included
in the supplementary materials. The factors used to specify these simulated scenarios
are summarized in Table 2. Overall, there are 24 = 16 simulated scenarios.

Table 2: Summary of Simulation Factors.

Simulation Factor Levels
Pilot Data Size (n) Small (50), Large (200)
Standard Deviation of Covariates (σ) Low (0.5), High (2)
Distribution of Response Binomial, Poisson

Parameter Vector Test Distribution Mean (µ) µ1 = (−3, −4, −5)T ,
µ2 = (1, 3, 1)T

Each scenario was simulated using the following procedure:

1. Randomly sample β̃s ∼ N(µ, σ̃2Ip+1), s = 1, . . . , 100, where µ is one of the two
mean vectors specified in Table 2.

2. Next, a pilot dataset was generated for a combination of n, σ, and a response
distribution given in Table 2, with the true β randomly drawn from U([0, 1]p+1).

3. Given the pilot dataset, the MLE for β̂ was found and used to find a locally
optimal design. The weights selected by the locally optimal design were stored
for use in Step 5.

4. B = 50 bootstrap resamples were taken from the pilot dataset, and used as
parameter vector candidates to construct the cluster, maximin, and BAG (for
γ = 0, 0.01, 0.02) designs. The cluster design used k = 5.

5. For each β̃s, s = 1, . . . , 100, the relative D−efficiencies of the BAG, cluster, and
maximin designs were computed with respect to the local designs identified in
Step 3. The average of these 100 relative D−efficiencies was stored for each
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Figure 2: Average Relative D−efficiencies to Local Design, Binomial Response, µ1

design construction method. This was done to see how robust the designs are
under parameter misspecification.

6. Steps 2 to 5 were repeated 25 times. This was done to get a sense of how the
BAG design (which is stochastic) performs on average for a given pilot dataset.
The relative D−efficiencies were averaged across all 25 repetitions and stored.

7. Steps 2 to 6 were repeated 30 times. In total, 30 pilot datasets were created, and
each design method had 30 average relative D−efficiencies, corresponding to the
30 pilot datasets. This was done to see how robust the designs were when the
pilot dataset changed.

The relative D−efficiency of each of the designs was found with respect to the locally
optimal design. The distributions of the average relative D−efficiencies for each of
the 8 scenarios where µ = µ1 = (−3, −4, −5)T are shown in Figures 2 and 3, for
the Binomial and Poisson responses, respectively. In each figure, values above the red
line indicate that the design has higher average D−efficiency than the locally optimal
design. On the x-axis of the figures, “BAG 0.02” means that the BAG weights were
adjusted as in (11) with γ = 0.02 with the mean aggregation function specified in (9);
“BAG 0.01” has a similar meaning. “BAGmed” means that the BAG design was used
with the geometric median aggregation function (10), and “BAGmed0.01” means that
the BAG design was used with the geometric median aggregation function, and then
the weights were trimmed with γ = 0.01.
In general, Figures 2 and 3 show that increasing the size of the pilot data reduces
the variation in the relative D−efficiency of the BAG designs. In these figures, the
horizontal red line is drawn at 1 on the y-axis, which corresponds with a relative
D−efficiency of 1. In the Binomial case, when the standard deviation of the pilot
covariates increases from σ = 0.5 to σ = 2, the median relative D−efficiency of the



14 Bootstrap Aggregated Designs

Figure 3: Average Relative D−efficiencies to Local Design, Poisson Response, µ1.

BAG designs decreases. When the response was Binomial, the BAG designs that used
the mean aggregation function had the highest median relative D−efficiencies. These
are followed by the cluster designs, and then BAG designs with geometric median
aggregation (γ = 0). This suggests that the BAG design compares well with the
maximin and cluster designs in terms of robustness to parameter misspecification when
µ = µ1.
These simulations also allow us to examine the effect of γ, which was used to help
filter out support points that had low weights. The plots reveal that, for the Binomial
response, larger values of γ led to designs with lower median relative D−efficiency to
the local design. In most scenarios, increasing γ also reduced the IQR of the relative
D−efficiencies. These results make sense, since larger values of γ lead to fewer support
points in the BAG design. In the Poisson case, all of the BAG designs had similar
median performance, especially in the case when n = 200.
Figures 4 and 5 show boxplots of the average relative D−efficiencies when µ = µ2. In
this scenario, only the second coordinate of µ2 is far from the interval [0, 1], so this
scenario is less extreme than when µ = µ1. This is reflected in Figures 4 and 5, since
most of the relative D−efficiencies are close to 1; this indicates that the locally optimal
design still performs quite well in this scenario. In Figure 4, when the response is
Binomial, the BAG designs with geometric median aggregation performed the best in
terms of relative D−efficiency. In the Poisson case, the performance of the BAG designs
was similar regardless of aggregation function. In both the Poisson and Binomial cases,
the BAG designs were preferred to cluster designs.
In terms of computation time, it is quite fast to find an individual BAG design. For
example, when σ = 0.5, n = 50, and µ = µ1 for the Poisson response, it takes an
average of 0.752 minutes (45.12 seconds) to find the BAG design weights. In the same
case, under the Binomial response, it takes an average of 1.312 minutes (78.72 seconds)
to find the BAG design weights. Running the entire simulation for all 25 simulated
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Figure 4: Average Relative D−efficiencies to Local Design, Binomial Response, µ2.

Figure 5: Average Relative D−efficiencies to Local Design, Poisson Response, µ2

datasets is more efficient in parallel. For example, when σ = 0.5, n = 50, and µ = µ1
for the Poisson response, the total computing time was 4 hours, 22 minutes, and 43
seconds, and the average computing time per simulated pilot dataset was 57.82 minutes.
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Table 3: Average Support Size Comparison, Binomial Response, µ = µ1.

n σ Local BAG (mean) BAG (median) Cluster Maximin
γ = 0 0.01 0.02 γ = 0 0.01 0.02

50 0.5 3.6 38.5 20.8 16.5 38.5 10.5 5.2 5.0 3.9
50 2 3.7 17.6 9.9 8.2 17.6 5.1 4.2 4.9 3.8

200 0.5 3.8 16.8 9.6 8.0 16.8 4.8 4.1 5.0 3.9
200 2 3.8 7.3 5.4 5.2 7.3 4.0 3.9 4.5 3.8

4.2. Support point comparison
It was also of interest to compare the average number of support points selected by
the designs discussed in Section 3. For each of the 8 simulation scenarios in Section
4.1, the average number of support points was computed for the local, BAG (with
γ = 0, 0.01, 0.02), cluster, and maximin designs. The average number of support points
used for each method (over all simulated pilot datasets) are shown in Tables 3 and 4,
for the binomial and Poisson responses, respectively, when µ = µ1.
The cluster design used a target of k = 5 support points. However, in some cases,
the number of distinct support points selected among the B bootstrap resamples was
actually less than 5. In this case, all of these points were selected by the cluster design,
and the number of support points was less than 5. This explains why in many rows, the
average number of support points for the cluster design is less than 5; this is especially
true in the Poisson case.

Table 4: Average Support Size Comparison, Poisson Response, µ = µ1.

n σ Local BAG (mean) BAG (median) Cluster Maximin
γ = 0 0.01 0.02 γ = 0 0.01 0.02

50 0.5 3.3 9.2 5.8 4.5 9.2 4.4 4.0 4.8 3.4
50 2 3.2 4.1 3.5 3.4 4.1 3.3 3.3 3.8 3.3

200 0.5 2.7 5.4 4.4 4.0 5.4 3.6 3.5 4.3 3.4
200 2 3.2 3.6 3.4 3.3 3.6 3.2 3.2 3.5 3.3

In Tables 3 and 4, the number of support points used in the BAG design decreases as
γ increases. This behavior is expected, as it is a direct consequence of Equation (11);
larger values of γ mean that more support points have the potential to be filtered out
of the final design. In general, when γ = 0.02, the average number of support points
used is slightly larger than the average number of support points used by the locally
optimal design. The average number of support points used for the BAG designs in
the binomial case is greater than that of the Poisson case; this is especially true when
γ = 0. These tables also show that when γ = 0.01 and γ = 0.02, the BAG designs
found using geometric median aggregation had fewer support points on average when
compared to those found using mean aggregation. Tables 5 and 6 below show similar
results for the case when µ = µ2.
As an example, Figure 6 illustrates the average weights of candidate points (across
all 25 simulated datasets and all 50 bootstrap resamples) that were selected by the
BAG design in the case of a Poisson response for when n = 50 and σ = 2. Points
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Table 5: Average Support Size Comparison, Binomial Response, µ = µ2.

n σ Local BAG (mean) BAG (median) Cluster Maximin
γ = 0 0.01 0.02 γ = 0 0.01 0.02

50 0.5 3.3 37.3 20.2 16.5 37.3 8.8 4.9 5.0 3.9
50 2 3.5 23.9 13.4 10.6 23.9 6.1 4.3 5.0 3.7

200 0.5 3.6 20.6 12.0 10.4 20.6 5.3 4.2 5.0 3.8
200 2 3.6 9.6 7.0 6.4 9.6 4.2 4.0 4.6 3.9

Table 6: Average Support Size Comparison, Poisson Response, µ = µ2.

n σ Local BAG (mean) BAG (median) Cluster Maximin
γ = 0 0.01 0.02 γ = 0 0.01 0.02

50 0.5 3.4 8.8 6.5 5.3 8.8 5.2 4.6 4.7 3.5
50 2 3.3 3.9 3.5 3.5 3.9 3.2 3.2 3.8 3.5

200 0.5 3.5 6.5 4.7 4.2 6.5 4.1 3.8 4.5 3.4
200 2 3.3 3.7 3.5 3.4 3.7 3.2 3.2 3.7 3.5

Figure 6: Support Points Selected by BAG Design for Poisson Response, n = 50, σ = 2.

that had an average weight of 0 were excluded. In all cases, most of the weight is
concentrated on the extreme corner points (−1, −1), (−1, 1), (1, −1), and (1, 1). As γ
increases, the number of support points decreases. In this case, when γ = 0.01, the
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geometric median aggregation method resulted in roughly two fewer support points
than mean aggregation.

5. Conclusion
This paper proposed a novel algorithm for constructing experimental designs for gen-
eralized linear models. The proposed designs were shown to be robust for different
parameters β for the linear predictor in a GLM. The empirical evidence showed that
BAG designs had high D−efficiencies and are robust to parameter misspecification.
These designs are competitive with existing approaches for robust designs, such as
cluster or maximin designs. Moreover, the evidence showed that it is possible to reduce
the number of support points in the BAG design without significantly lowering the
relative efficiency of the BAG designs.
There are several open questions for future work in the development of BAG designs.
It would be interesting to develop more theoretical results about the robustness and
efficiency of BAG designs. Theorem 1 shows that as the pilot sample size increases to
infinity, the BAG designs behave like locally optimal designs. In practice, the size of the
pilot data might be small. Therefore, it would be useful to bound the log D−efficiency
of the BAG designs for fixed pilot sample sizes when the parameter vector β is mis-
specified. Furthermore, it would be helpful to derive optimal values for the tolerance
parameter γ under various parameter misspecification scenarios. This paper focused
entirely on the D−optimality criteria; future work could investigate the performance
of the BAG design under different criteria, such as the A− or I− optimality criterion.
Finally, although this paper considered both Poisson and Binomial data, there are other
generalized linear models that should be investigated. For example, it would be useful
to extend these results to GLMs with overdispersion parameters.

Computational Details
The results in this paper were obtained using R 4.3.1. R itself and all packages used
are available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/. All R code and simulation results can be found on the following
public Github repository: https://github.com/nrios4/BAGdesign/.
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A. Proofs

Proof of Theorem 1. Let n and N denote the number of data points in the pilot
sample and the number of candidate design points, respectively. For each i = 1, . . . , B,
(X(i), Y (i)) denote the ith bootstrap sample of the pilot data (X, Y ), let β be the true
vector of regression parameters in Model (1), and let β̂

(i) be the MLE for β in the ith

bootstrap sample. Let zj be the jth candidate design point, where j ∈ {1, . . . , N}. By
Theorem 3 of Yang et al. (2013), it follows that w(i) = arg maxw∈SN log(|I(w, β̂

(i))|) for
each i = 1, . . . , B; i.e., each w(i) is a locally D−optimal design for β̂

(i). Let wBAG =
(1/B)∑n

i=1 w(i), and let w∗ = arg maxw∈SN log(|ZT V(β)diag(w)Z|). Let wBAG,j , w
(i)
j ,

and w∗
j denote the jth elements of wBAG, w(i), and w∗, respectively, for j = 1, . . . , N .

Notice that by definition of w∗,

log(|I(wBAG, β)|) = log
∣∣∣∣ N∑

j=1
Vjj(β)wBAG,jzjzT

j

∣∣∣∣
 (14)

≤ log
∣∣∣∣ N∑

j=1
Vjj(β)w∗

j zjzT
j

∣∣∣∣
 = log(|I(w∗, β)|). (15)

Also notice that by concavity of the log determinant,

log
∣∣∣∣ N∑

j=1
Vjj(β)wBAG,jzjzT

j

∣∣∣∣
 = log

∣∣∣∣ 1
B

B∑
i=1

N∑
j=1

Vjj(β)w(i)
j zjzT

j

∣∣∣∣
 (16)

≥ 1
B

B∑
i=1

log
∣∣∣∣ N∑

j=1
Vjj(β)w(i)

j zjzT
j

∣∣∣∣
. (17)

Combining (15) and (17) and taking the limit in probability as n → ∞ (with respect
to the bootstrap resamples) yields

plim
n→∞

1
B

B∑
i=1

log(|I(w(i), β)|) ≤ plim
n→∞

log(|I(wBAG, β)|) ≤ plim
n→∞

log(|I(w∗, β)|) (18)

1
B

B∑
i=1

log
(∣∣∣∣I(plim

n→∞
w(i), β

)∣∣∣∣) ≤ plim
n→∞

log(|I(wBAG, β)|) ≤ log(|I(w∗, β)|) (19)

The limit in probability is moved inside of the log determinant in (19) by continuity of
the log determinant. If plimn→∞w(i) = w∗ for every i = 1, . . . , B, then the left hand
side of (19) reduces to log(|I(w∗, β)|). From the squeeze theorem, this would imply
that plimn→∞ log(|I(wBAG, β)|) = log(|I(w∗, β)|), which would conclude the proof.

It suffices to prove that w(i) →
p

w∗ for each i = 1, . . . , B. For each i = 1, . . . , B, β̂
(i) is

the MLE of β, which is a consistent estimator of β. Therefore, as n → ∞ and for fixed
B, it follows that ∀i = 1, . . . , B, β̂

(i)
→
p

β. By continuity, it follows that as n → ∞,

zT
j β̂

(i)
→
p

zT
j β for all i = 1, . . . , B and for all j = 1, . . . , N . Let
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V(i)
jj =


exp(zT

j β̂
(i))

(1 + exp(zT
j β̂

(i)))2
for a Binomial response, and

exp(zT
j β̂

(i)) for a Poisson response,

(20)

and let Vjj be similarly defined (i.e., replace β̂
(i) with β). In either case, V(i)

jj is
a continuous function of zT

j β̂
(i), so it follows that as n → ∞, V(i)

jj →
p

Vjj for all
i = 1, . . . , B and for all j = 1, . . . , N . Therefore, by continuity,

V(i)
jj zT

j I(w(i), β̂
(i))(−1)zj →p VjjzT

j I
(

plim
n→∞

w(i), β
)(−1)

zj. (21)

Recall that w(i) is a locally D−optimal design for β̂
(i). By Theorem 4.1 of Stufken and

Yang (2012), it follows that for all i = 1, . . . , B and j = 1, . . . , N ,

V(i)
jj zT

j I(w(i), β̂
(i))(−1)zj − p ≤ 0 (22)

=⇒ plim
n→∞

V(i)
jj zT

j I(w(i), β̂
(i))(−1)zj − p ≤ 0 (23)

=⇒ VjjzT
j I
(

plim
n→∞

w(i), β
)(−1)

zj − p ≤ 0. (24)

By (24), it follows that plimn→∞w(i) = arg maxw∈SN log(|I(w, β)|) = w∗ for all i =
1, . . . , B. This completes the proof.

B. Additional Simulation Results
In this Appendix, additional simulation results are provided for the case when σ̃2 = 1.
The simulation scenarios are otherwise identical to those described in Section 4.1.
Figures 7 and 8 show the average relative D−efficiencies of the BAG, cluster, and
maximin designs to the local designs for the case when µ = µ1 and σ̃2 = 1.
For the Binomial response, when σ = 0.5, the BAG designs with mean aggregation have
higher median relative D−efficiencies than all other designs. When n = 50, increasing
the tolerance parameter γ slightly decreases the median relative D−efficiency, but this
effect is negligible when n = 200. When n = 50, σ = 2, the cluster designs have the
highest median relative D−efficiency for both the Binomial and Poisson responses.
Figures 9 and 10 show the average relative D−efficiencies of the BAG, cluster, and
maximin designs to the local designs for the case when µ = µ2 and σ̃2 = 1. For
the Poisson response, the BAG designs have higher median relative D−efficiency to
the local design when n = 50. When n = 200 and σ = 0.5, the maximin designs
perform slightly better than the BAG designs, but when n = 200 and σ = 2, all designs
have relatively similar performance. For the Binomial response, when σ = 0.5, the
BAG designs with geometric median aggregation and γ = 0 (untrimmed) have higher
median relative D−efficiencies than all other designs. When n = 50, σ = 2, this is also
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Figure 7: Relative D−efficiencies to Local Design, Binomial Response, µ1, σ̃2 = 1.

Figure 8: Relative D−efficiencies to Local Design, Poisson Response, µ1, σ̃2 = 1.

the case. When n = 200, σ = 2, all of the designs have similar performance apart from
the cluster and maximin designs, which have lower median relative D−efficiency than
all other considered designs.
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Figure 9: Relative D−efficiencies to Local Design, Binomial Response, µ2, σ̃2 = 1.

Figure 10: Relative D−efficiencies to Local Design, Poisson Response, µ2, σ̃2 = 1.

Overall, in all cases it is observed that the BAG design is a promising alternative
for finding designs that are robust to parameter misspecification. For all considered
scenarios with a Binomial response, one of the BAG designs was preferred to the cluster
or maximin designs. Specifically, when µ = µ1, mean aggregation had the best results.
In this case, the test parameter vectors are centered on a point that is far away from
the true β. When µ = µ2, which was a more mild misspecification scenario, geometric
median aggregation was generally preferred. For the Poisson response, the cluster
design was the most promising in the extreme case (µ = µ1), but the cluster designs
performed worse than BAG designs in the more mild misspecification scenario (µ = µ2).
Also, it was noted that in all scenarios, increasing γ reduces the relative D−efficiency
of the BAG designs to some degree for both mean aggregation and geometric median
aggregation of the weights.
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