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Orthogonal arrays are arguably one of the most fascinating
and important statistical tools for efficient data collection.
They have a simple, natural definition, desirable properties
when used as fractional factorials, and a rich and beauti-
ful mathematical theory. Their connections with combina-
torics, finite fields, geometry, and error-correcting codes
are profound. Orthogonal arrays have been widely used in
agriculture, engineering, manufacturing, and high-technology
industries for quality and productivity improvement exper-
iments. In recent years, they have drawn rapidly growing
interest from various fields such as computer experiments,
integration, visualization, optimization, big data, machine
learning/artificial intelligence through successful applications
in those fields. We review the fundamental concepts and
statistical properties and report recent developments. Dis-
cussions of recent applications and connections with vari-
ous fields are presented. Some interesting open research
directions are also presented.
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1 | DEFINITION AND HISTORY
Orthogonal arrays have applications in many areas and have proven to be a fascinating and rich subject for re-

search. Statisticians, mathematicians and other researchers have studied orthogonal arrays since their introduction
by C. R. Rao in a series of seminar papers (Rao, 1946, 1947, 1949). Factorial experiments are used to determine the
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settings of factors, so that effects of these factors on a response variable can be explored simultaneously. The possible
settings for these factors are called levels. Let S be a set of s levels, conventionally denoted by 0, 1, . . . , s − 1. Formally,
we can define an orthogonal array as follows.
Definition 1.1 An N × k array A with entries from S is said to be an orthogonal array with s levels, strength t , and index
λ if every N × t subarray of A contains each t -tuple based on S exactly λ times as a row.

We use OA (N , sk , t ) to denote such an orthogonal array. Note that λ is not included in the notation because it
can be derived as λ = N /s t . An OA (N , sk , t ) can be used to determine N input settings or level combinations for k
factors each with s levels. Each row of an OA (N , sk , t ) is called a run while each column corresponds to the setting
of a factor or input variable.
Example 1.1 Table 1 displays an OA (8, 24, 3) , an orthogonal array with two levels, strength three, and index unity. It has
eight runs and it is for four factors. It has the property that every subarray consisting of its three distinct columns contains
all the eight level combinations exactly once.

TABLE 1 An OA (8, 24, 3)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

In the above definition of orthogonal arrays, all factors have the same number of levels. Such arrays are often
referred to as “fixed-level” or “pure-level” or symmetrical orthogonal arrays. In some experiments, different factors
are allowed to have different numbers of levels, and this leads to a class of arrays named mixed (or asymmetrical)
orthogonal arrays. They began to receive more attention in the early 1960s, especially through the consideration
of asymmetrical orthogonal main effects plans in Addelman and Kempthorne (1962). Rao (1973) discussed, among
others, the notion of asymmetrical orthogonal arrays. Significant advances have been made during the past decades
on their constructions (Wu, 1991;Wang andWu, 1991; Hedayat et al., 1992; Sitter, 1993; DeCock and Stufken, 2000;
Suen et al., 2001; Pang et al., 2021), resulting in wider applications. Formally, mixed (or asymmetrical) arrays can be
defined as follows.
Definition 1.2 Amixed orthogonal arrayOA (N , sk11 s

k2
2 · · · skvv , t ) is an N × k array where k = k1 +k2 + · · · +kv is the total

number of factors, in which the first k1 factors have s1 levels, the next k2 factors have s2 levels, and so on, with the property
that in any N × t subarray every possible t -tuple occurs an equal number of times as a row.
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Example 1.2 Table 2 shows anOA (12, 2431, 2) , a mixed orthogonal array of strength two, with 12 runs, with the first four
factors at two levels and the fifth at three levels.

TABLE 2 A mixed orthogonal array OA (12, 2431, 2) (transposed)

0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 1 0 1 0
0 0 0 0 1 1 1 1 2 2 2 2

The term orthogonal arrays was first introduced by Bush (1950), although the concept was previously described in
Rao’s 1943 master thesis and three papers (Rao, 1946, 1947, 1949), first for the special case of what was called a
hypercube of strength d (Rao, 1946) and then for general orthogonal arrays. Orthogonal arrays have since found appli-
cations in various fields, including as fractional factorials for agricultural, medical, industrial, and other experiments.
They are particularly useful in scenarios where the number of input variables is relatively small but too large to per-
mit exhaustive testing of all possible combinations. In software testing, orthogonal arrays are effective in identifying
errors related to faulty logic. In quality control, they are closely associated with the Taguchi methods, developed in
the early 1950s and widely adopted by industries in India, Japan, and later the United States. These methods have
been instrumental in improving the quality of manufactured goods, reducing costs, and accelerating the time to mar-
ket. Orthogonal arrays have also been applied in engineering, biotechnology, marketing, advertising, and many other
modern technological fields.

The broad applicability of orthogonal arrays across disciplines underscores the need for a comprehensive review
that summarizes existing knowledge and highlights recent advances. Despite their extensive use, the literature on or-
thogonal arrays is often fragmented, with research addressing different aspects, such as construction, properties, and
applications. This review aims to bridge that gap by synthesizing theoretical developments, computational challenges,
practical applications, and recent progress in the study of orthogonal arrays.

Briefly outlining the content, in Section 2, we examine the use of orthogonal arrays as fractional factorials in
experimental design. Section 3 delves into the applications of orthogonal arrays in numerical integration, computer
experiments, and subsampling of large datasets. Section 4 explores the relationships between orthogonal arrays and
error-correcting codes, discussing key theoretical aspects such as Rao’s bounds and the linear programming bound. In
Section 5, we investigate the connections between orthogonal arrays and various combinatorial structures. In Section
6, we review several commonly used construction methods for orthogonal arrays. Section 7 addresses optimality
criteria for orthogonal arrays. We present recent developments and advances in the field in Section 8. Finally, we
conclude the article with a brief summary and selected research challenges.

2 | ORTHOGONAL ARRAYS AS FRACTIONAL FACTORIAL EXPERIMENTS
Orthogonal arrays were introduced for their use in fractional factorial experiments, and this remains their most

important application in statistics. An N × k orthogonal array can be used to perform a fractional factorial experi-
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ment with N runs and k factors, where the number of levels for a factor is equal to the number of symbols for the
corresponding column. Many examples of experiments using fractional factorials appear in textbooks on design and
analysis of experiments, such as Wu and Hamada (2011) and Montgomery (2019). Typically, the number N of runs
would be much smaller than the number of all possible level combinations for the k factors. If all runs of the orthog-
onal array are distinct, in which case it is called a simple orthogonal array, then its runs form a subset of those in a full
factorial which consists of all possible level combinations for the factors. However, the definition of an orthogonal
array does not require distinct runs, and we consider it to represent a fractional factorial as long as N is smaller than
the number of all possible level combinations.

A well-known class of fractional factorials in which all factors have the same number s of levels consists of the reg-
ular fractional factorials (cf. Box and Hunter, 1961, for s = 2). Regular fractional factorials are a subclass of orthogonal
arrays, and are closely related to linear orthogonal arrays (cf. Hedayat et al., 2012, Chapter 4). A fractional factorial is
said to be regular if N is a power of s , say N = sp , there are p factors so that every possible level combination appears
once for these p factors, and the columns for the other k − p factors can be computed as explained below from the
columns of the initial p factors. The relationships that exist between different columns in a regular fractional factorial
are called alias relationships. For example, consider the OA (8, 24, 3) in Table 1. Any two or three columns of this
orthogonal array are orthogonal in the sense that every possible level combination appears twice (for two columns)
or once (for three columns). Selecting any three columns, the levels for the fourth column can then be obtained by
observing that d1 + d2 + d3 + d4 = 0 (modulo 2), where the four columns are denoted as d1, d2, d3, d4. Because of this
relationship, the four-factor interaction is part of the defining relation of this fractional factorial. It also implies that,
with all computations modulo 2, d1 = d2 + d3 + d4, d2 = d1 + d3 + d4, d3 = d1 + d2 + d4 and d4 = d1 + d2 + d3. This is
to be interpreted as the main effect of the first factor being aliased with (i.e., indistinguishable from) the three-factor
interaction of factors 2, 3, and 4; the main effect of the second factor being aliased with the three-factor interaction
of factors 1, 3, and 4; and so on. Every regular fractional factorial has a defining relation. The relationships between
the factors are captured by the alias structure. For example, if we wish to construct a regular fractional factorial of
16 runs with 7 two-level factors, we can start with a full factorial of 16 runs and 4 factors. Denoting these factors
by A,B ,C ,D , we can define the additional 3 factors using these four columns. Rather than using levels 0 and 1, for
2-level fractional factorials, it is common practice to use levels −1 and 1, which we will follow in this example. One
possible choice for defining three remaining factors is E = AB , F = BCD , G = AD . As such, we obtain the defin-
ing relation I = ABE = BCDF = ADG = ACDEF = BDEG = ABCFG = CEFG , where I represents a column
of all ones. Here, ABE , BCDF , ADG , ACDEF , BDEG , ABCFG , and CEFG are called words, and correspond to
interactions in the defining relation that are equal to I . Multiplying each term in the defining relation by A, and us-
ing that A2 = I , we obtain that A = BE = ABCDF = DG = CDEF = ABDEG = BCFG = ACEFG . This is
part of the alias structure, implying that if we try to estimate the main effect of factor A, we are really estimating
A + BE + ABCDF + DG + CDEF + ABDEG + BCFG + ACEFG . We may interpret this as the main effect of A if the
interactions in this sum can be assumed to be negligible. The complete alias structure of this fractional factorial is,

A = BE = ABCDF = DG = CDEF = ABDEG = BCFG = ACEFG B = AE = CDF = ABDG = ABCDEF = DEG = ACFG = BCEFG

C = ABCE = BDF = ACDG = ADEF = BCDEG = ABFG = EFG D = ABDE = BCF = AG = ACEF = BEG = ABCDFG = CDEFG

E = AB = BCDEF = ADEG = ACDF = BDG = ABCEFG = CFG F = ABEF = BCD = ADFG = ACDE = BDEFG = ABCG = CEG

G = ABEG = BCDFG = AD = ACDEFG = BDE = ABCF = CEF AC = BCE = ABDF = CDG = DEF = ABCDEG = BFG = AEFG

AF = BEF = ABCD = DFG = CDE = ABDEFG = BCG = ACEG BC = ACE = DF = ABCDG = ABDEF = CDEG = AFG = BEFG

BD = ADE = CF = ABG = ABCEF = EG = ACDFG = BCF EFG BF = AEF = CD = ABDFG = ABCDE = DEFG = ACG = BCEG

BG = AEG = CDFG = AGD = ABCDEFG = DE = ACF = BCEF CE = ABC = BDEF = ACDEG = ADF = BCDG = ABEFG = FG

CG = ABCEG = BDFG = ACD = ADEFG = BCDE = ABF = EF
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Together with the defining relation, these 15 equations establish the relationships between the 27 = 128 effects
including the grand mean effect, main effects, two-factor interaction effects, and higher-order interaction effects. We
refer to Chapters 4 and 5 ofWu and Hamada (2011) and Chapter 9 of Cheng (2016) for in-depth discussions of regular
fractional factorials. Although the relationships between the columns of a regular fractional factorial are simple, this
simplicity comes at the cost of the run size having to be a power of the number s of levels. For example, for a two-
level regular fractional factorial, the run size must be a power of 2, i.e. 4, 8, 16, 32, 64, and so on, thereby creating an
increasingly large gap between any consecutive possible run sizes.

The general class of fixed-level orthogonal arrays does not have such a constraint on the run size. For a two-level
orthogonal array of strength two, for example, the run size can be any multiple of 4, that is, 4, 8, 12, 16, 20, and so on.
Such arrays are known as non-regular fractional factorials if they are not regular. Their columns remain orthogonal
(in the sense that all level combinations appear equally often as a row for any set of up to t columns), but factors are
now partially aliased (in the sense that there are no alias relationships as for regular factorials). For instance, Table 3
displays a two-level non-regular fractional factorial of 12 runs, 11 factors, and strength two. Any two columns of are
orthogonal. But, for example, the levels for the factor corresponding to the third column cannot be computed from
those of the factors corresponding to the first two columns (or any other two columns), because 00 for the first two
factors can result in 0 or 1 for the third factor. Adding the levels for the first three factors modulo 2 results eight times
in a sum of 0 and four times in a sum of 1, making the absolute correlation between the third factor and the interaction
of the first two 1

3 . Since this absolute correlation is not 0 or 1, we call this partial aliasing. Similar observations hold
for other sets of three columns.

Non-regular fractional factorials exhibit a complex alias structure. Due to this complexity, they were traditionally
avoided when selecting fractional factorials, and, unless certain interactions were orthogonal to main effects, their
analysis was typically limited to main effects. Hamada and Wu (1992) introduced a path-breaking approach that
enabled consideration of two-factor interactions, leveraging the effect sparsity and effect heredity principles. Their
empirical studies suggest that this strategy is effective when both principles hold and when correlations between
partially aliased effects remain small to moderate. More advanced analytical methods have since been developed
to enhance the analysis of non-regular fractional factorials (Box and Meyer, 1993; Chipman et al., 1997; Yuan et al.,
2007). Through the findings of these important contributions, as well as others such as Lin and Draper (1992); Cheng
(1995); Deng and Tang (1999a); Hedayat et al. (2012); Dean et al. (2015); Shi and Tang (2023); Cheng and Tang (2025),
the potential benefits of non-regular fractional factorials are widely recognized, and the complex alias structure is now
often viewed as a potential strength rather than a weakness.

Definition 1.1 implies a key projection property of orthogonal arrays. Specifically, when an orthogonal array of
strength t is projected onto any subset of t or fewer factors, the resulting subarray consists of one or more replicates
of the full factorial for those factors. This projection property has an important statistical implication: if there are at
most t active (i.e., important) factors, then an orthogonal array of strength t allows for the estimation of all factorial
effects of these active factors. Notably, this holds regardless of which factors are active.

Deng and Tang (1999a) introduced the concept of J -characteristics for studying two-level regular and non-regular
fractional factorials. Let D = [d1, d2, . . . , dk ] = (di j ) denote an N × k two-level factorial with levels 1 and −1. For
1 ≤ m ≤ k and any m-subset S = {dj1 , dj2 , . . . , djm } of the columns in D , Deng and Tang (1999a) defined

Jm (S) = Jm (dj1 , dj2 , . . . , djm ) = |
N∑
i=1

di j1 · · · di jm | . (1)

It can be shown that two-level orthogonal arrays of strength t have Jm (S) = 0 for all m-subsets S and 1 ≤ m ≤ t . In
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TABLE 3 An OA (12, 211, 2)

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1
0 0 1 1 1 0 0 0 1 1 1
0 1 0 1 1 0 1 1 0 0 1
0 1 1 0 1 1 0 1 0 1 0
0 1 1 1 0 1 1 0 1 0 0
1 0 0 1 1 1 1 0 0 1 0
1 0 1 0 1 0 1 1 1 0 0
1 0 1 1 0 1 0 1 0 0 1
1 1 0 0 1 1 0 0 1 0 1
1 1 0 1 0 0 0 1 1 1 0
1 1 1 0 0 0 1 0 0 1 1

addition, D is a regular fractional factorial if and only if the J -characteristics of any subset is either 0 or N . Thus, if the
J -characteristic of some subset of a two-level fraction is strictly between 0 and N , then D is a non-regular fractional
factorial.

An immediate question when using an orthogonal array as a fractional factorial is how to select the array (we
will discuss this issue further in Section 7). In the pioneering work, Box and Hunter (1961) introduced the concept
of resolution to evaluate and compare two-level fractional factorials. In the context of regular two-level fractional
factorials, they defined a fraction to be of resolution R if no c-factor effect is aliased with any other effect containing
less than R − c factors. For example, a fraction of resolution III does not alias main effects with one another but
allows main effects to be aliased with interactions of two or more factors, and a fraction of resolution IV does not
alias main effects with each other or with two-factor interactions but does allow two-factor interactions to be aliased
with each other. In two-level regular fractional factorials, its resolution is the length of the shortest word in the
defining relation and is one more than the strength of the corresponding orthogonal array. Deng and Tang (1999a)
introduced generalized resolution to assess non-regular fractional factorials. Let r be the smallest integer such that
max|S|=r Jr (S) > 0, where Jr (S) is as defined in (1) and the maximization is over all r -subsets S of r distinct columns
of D . Deng and Tang (1999a) defined the generalized resolution of design D to be

R (D ) = r + [1 − max
|S|=r

Jr (S)/N ] . (2)

As the values of Jr (S) are between 0 and N and the max in (2) is positive, we have r ≤ R (D ) < r + 1. A regular or
nonregular fractional factorial of resolution R is an orthogonal array of strength ⌊R ⌋ -1 where ⌊R ⌋ is the largest integer
that does not exceed R . In view of this relationship, orthogonal arrays offer many attractive statistical properties
when used as fractional factorials. For example, an orthogonal array of strength t is universally optimal for any model
consisting of factorial effects involving at most ⌊t/2⌋ factors (Cheng, 1980).
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3 | SELECTED APPLICATIONS OF ORTHOGONAL ARRAYS
Orthogonal arrays play a role in many applications. In Section 2, we have already explained the connection of

orthogonal arrays to fractional factorials. Fractional factorials were introduced by Finney (1945) and have found
applications in many fields, as already pointed out in Section 1. Experiments using fractional factorials are especially
prevalent in industry for product development and improvement and quality control. In this section, we highlight a
few other applications with selected references for further reading.

3.1 | Application in Numerical Integration
Orthogonal arrays are an important tool for numerical integration. This is due to the structure imposed by their

definition. Considering the rows of an s-level orthogonal array of strength two as points in k -dimensional space, the
array has the properties that (a) when projecting the points on any coordinate axis, the projections are uniformly
distributed over s equally spaced points; and (b) when projecting the points on any coordinate plane, the projections
are uniformly distributed over s × s grids. In numerical integration, property (a) helps filter out the main effects, while
property (b) is useful for filtering out two-factor interactions as well as main effects. This will become clear as we
define main effects and interaction effects below.

Let f be a known, but computationally expensive function on [0, 1]k ,Y = f (X ) ∈ R, whereX = (X 1,X 2, . . . ,X k )
and X j is the j th variable. In numerical integration, a fundamental problem is how to select N inputs X1,X2, . . . ,XN to
approximate ∫ f (X )dX accurately with a minimal sample size N . Often, ∫ f (X )dX is estimated by Ȳ =

∑N
i=1 f (Xi )/N

where f (Xi ) is the value of the function evaluated at the input Xi . The main effect of the input variable X j is defined
as fj (X j ) = E [f (X ) |X j ] − E (Y ) and the interaction effect between variable X i and variable X j is fi j (X i ,X j ) =

E [f (X ) |X i ,X j ] − E (Y ) − fi (X i ) − fj (X j ) , for 1 ≤ i , j ≤ k . The simplest way to select N inputs is random
sampling and the corresponding variance of Ȳ is N −1var[f (X ) ]. McKay et al. (1979) introduced Latin hypercube
sampling, which is based on a Latin hypercube that is an array that, by definition, satisfies that each column is a
permutation of 1, 2, . . . ,N , where N is the run size of the Latin hypercube. McKay et al. (1979) showed that Latin
hypercube sampling achieves a smaller variance for Ȳ than random sampling or stratified sampling when f satis-
fies certain monotonicity conditions. Stein (1987) further derived that the variance of Ȳ under Latin hypercube
sampling is N −1var[f (X ) ] − N −1 ∑k

i=1 var[fi (X i ) ] + o (N −1 ) which is asymptotically smaller than the variance of
Ȳ under random sampling. Rows of different Latin hypercubes for the same value of N can have very different
projections on two-dimensional coordinate planes. Owen (1992) and Tang (1993) independently took the idea in
McKay et al. (1979) further and introduced sampling methods based on orthogonal arrays to achieve further vari-
ance reduction for numerical integration. Their methods are based on randomized orthogonal arrays and orthogonal
array-based Latin hypercubes, respectively. Tang (1993) proved that the variance of Ȳ under strength two orthogonal
array-based Latin hypercube sampling is N −1var[f (X ) ] − N −1 ∑k

i=1 var[fi (X i ) ] − N −1 ∑k
i<j var[fi j ] + o (N −1 ) . Here

we briefly explain the procedure for obtaining an orthogonal array-based Latin hypercube from an orthogonal array
D = OA (N , sk , t ) . For each column of D , replace the N /s positions with entry u , u = 0, 1, ..., s − 1, by a permutation
of uN /s + 1,uN /s + 2, . . . ,uN /s +N /s = (u + 1)N /s . The resulting array has the property that each column is a permu-
tation of 1, 2, . . . ,N and thus a Latin hypercube (McKay et al., 1979). Example 3.1 illustrates this procedure using an
OA (9, 34, 2) . Properties of sampling by using such an orthogonal array-based Latin hypercube are discussed in Tang
(1993), who refers to this procedure as U sampling. One key conclusion is that if the underlying function f is additive,
then U sampling gives a smaller variance of the integral approximation than the sampling in Owen (1992).
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Example 3.1 ConsiderD , anOA (9, 34, 2) , shown below. For each column ofD , we replace level 0 by a random permutation
of 1, 2, 3, level 1 by a random permutation of 4, 5, 6, and level 2 by a random permutation of 7, 8, 9. The orthogonal array-
based Latin hypercube L shown below is one of the arrays that we might obtain.

D =

©­­­­­­­­­­­­­­­­­­­«

0 0 0 0

0 1 1 2

0 2 2 1

1 0 1 1

1 1 2 0

1 2 0 2

2 0 2 2

2 1 0 1

2 2 1 0

ª®®®®®®®®®®®®®®®®®®®¬

, L =

©­­­­­­­­­­­­­­­­­­­«

1 2 3 3

2 6 4 9

3 8 7 6

4 3 6 4

5 5 9 1

6 7 1 7

7 1 8 8

8 4 2 5

9 9 5 2

ª®®®®®®®®®®®®®®®®®®®¬

.

3.2 | Application in Computer Experiments
With the exponential growth of computing power, researchers are increasingly using computer experiments to

simulate real-world phenomena and complex systems through mathematical models. These models are solved using
numerical methods such as computational fluid dynamics and finite element analysis to gain deeper insights into the
systems being studied. Several illustrative case studies of computer experiments are presented in Santner et al. (2003);
Gramacy (2020). The underlying mechanisms of these computer experiments are represented and executed through
computer codes. To choose inputs to run computer codes, a widely used approach is to use space-filling designs
which aim to spread out the design points evenly over the entire design space. Unlike traditional physical experiments,
computer experiments often involve a larger number of input variables and require more runs. However, only a subset
of these input variables is typically considered of primary importance. To identify the key input variables, space-filling
designs with desirable low-dimensional projection properties are commonly used. These designs can be generated
using orthogonal array-based Latin hypercubes, which were described in Subsection 3.1. In addition, Chen and Tang
(2022) justified orthogonal array-based designs under a broad class of space-filling criteria including commonly used
distance-, orthogonality- and discrepancy-based measures.

Orthogonal arrays are not only directly used in orthogonal array-based Latin hypercubes but also serve as a
cornerstone for various constructions of space-filling designs. For instance, Steinberg and Lin (2006), Lin et al. (2009),
Pang et al. (2009), Lin and Kang (2016), Sun and Tang (2017a) and Sun and Tang (2017b) constructed another class of
space-filling designs known as orthogonal Latin hypercubes, which are Latin hypercubes with the property that every
two distinct columns have zero correlation. More specifically, for example, let us consider how orthogonal arrays are
used in Lin et al. (2009). For any positive integer u , let gu be the u × 1 vector with i th element i − (u + 1)/2, 1 ≤ i ≤ u ,
and Γu be the set of the u ! vectors generated by permuting the elements of gu . Let B = (bi j ) be an n × p matrix
with columns from Γn . Suppose that an orthogonal array OA (n2, n2f , 2) , say A, with n2 rows, 2f columns, n symbols,
and strength two is available. Denote the symbols in A by 0, 1, 2, . . . , n − 1. Lin et al. (2009) proposed the following
construction steps:

I. For 1 ≤ j ≤ p , obtain an n2 × (2f ) matrix Aj by replacing the symbols 0, 1, 2, . . . , n − 1 in A by b1j , b2j , . . . , bnj

respectively, and then partition Aj as Aj = [Aj 1, . . . ,Aj f ], where each of Aj 1, . . . ,Aj f has two columns.
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II. For 1 ≤ j ≤ p , obtain the n2 × (2f ) matrix M j = [Aj 1V , . . . ,Aj fV ] , where
V =

[
1 −n
n 1

]
.

III. Finally, obtain the matrix M = [M1, . . . ,Mp ], of order N × q , where N = n2 and q = 2pf .
Step II of this construction applies a rotation to pairs of columns of the orthogonal array Aj . Lin et al. (2009)

showed that the resulting matrix M is a Latin hypercube design in which the correlation between any two distinct
columns depends only on correlations of columns of the matrix B . Thus, this construction can be used to obtain
orthogonal Latin hypercubes of larger run sizes from those with smaller run sizes.

In Section 8, we will discuss selected recent developments for orthogonal arrays. Some of these are motivated by
applications in computer experiments. For example, sliced orthogonal arrays, introduced by Qian and Wu (2009), are
a special class of orthogonal arrays with the property that runs can be partitioned into smaller orthogonal arrays, and
these arrays are needed in computer experiments with both quantitative and qualitative inputs (Qian et al., 2008).

3.3 | Application in Subsampling of Big Data
With the advancement of technology, data generation continues to grow exponentially, potentially resulting in

huge datasets. As a result, many fields, including statistical science, face unique challenges and unprecedented op-
portunities. One such challenge and opportunity is the development of subsampling methods for efficiently selecting
subdata (i.e., a subset of a large dataset) with minimal loss of information. For example, Wang et al. (2019) proposed
a novel approach, termed information-based optimal subdata selection (IBOSS), in the context of big data linear re-
gression problems, and proposed a computationally efficient algorithm for approximating the optimal subdata via the
IBOSS method. Wang et al. (2021) also considered a subsampling approach, but used orthogonal arrays to select
optimal subdata. Consider the linear regression model with p predictors or features,

y = β0 + β1x1 + β2x2 + . . . + βpxp + ϵ,

where y is the response and the random errors ϵ are independent and identically distributed with mean 0 and variance
σ2. The least squares estimate of β = (β0, β1, . . . , βp )T is β̂ = (X̃T X̃ )−1X̃T y where y is the response vector, X̃ =

(1,X ) and X is the N × p matrix of feature values for the N observations. Now take a subsample of size n from the
full dataset (X , y) and let (Xs , ys ) denote this subsample. The least squares estimate based on the subsample is

β̂ s = (X̃T
s X̃s )−1X̃T

s ys ,
where X̃s = (1,Xs ) . The covariance matrix of β̂ s is σ2 (X̃T

s X̃s )−1. Information-based subsampling approaches aim to
find subdata that, in some way, minimize the variance of β̂ s . Using an optimality function, say φ, the optimal subdata
minimizes φ ( (X̃T

s X̃s )−1 ) , i.e.,
X ∗
s = argmin

Xs ⊂X
φ ( (X̃T

s X̃s )−1 ) .

Finding an exact solution for N >> n is too expensive, so that algorithms seek a highly efficient solution for X ∗
s .

Common choices for φ are the determinant and trace, which correspond to the criteria of D - and A-optimality,
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respectively, in optimal design of experiments. The orthogonal subsampling proposed by Wang et al. (2021) selects
the subsample Xs such that if all the covariates are scaled to [-1,1], Xs mimics a two-level orthogonal array of strength
two as closely as possible. The method is inspired by the optimality of orthogonal arrays for linear regression models.
For example, Cheng (1980) showed that an orthogonal array of strength two with s levels is universally optimal for a
main-effects model. That is, such an array is optimal under a wide range of criteria that include D - and A-optimality,
among all s-level factorial designs.

A subsample Xs whose rows form a two-level orthogonal array generally does not exist in the full dataset from
which the sample is taken. Wang et al. (2021) introduced a discrepancy function that is to be minimized in order to
sequentially select subdata that aims for the simultaneous attainment of two features. These two features are: (i) select
points with extreme values of the features: selected points are located near the corners of the feature space and have
a large distance from the center, and (ii) aim for orthogonality of columns corresponding to any two features. Wang
et al. (2021) derived a lower bound for their discrepancy function and proposed an efficient algorithm to sequentially
select points for inclusion in the subdata that minimize the discrepancy function. Interested readers are referred to
their article for the details of this method and algorithm.

Zhang et al. (2024) and Zhu et al. (2024) extended the idea of the orthogonal subsampling to independence-
encouraging subsampling for nonparametric additive models and group-orthogonal subsampling for hierarchical data
based on linear mixedmodels, respectively. In both cases, orthogonal arrays serve as an essential tool for the proposed
subsamplings.

4 | ORTHOGONAL ARRAYS AND ERROR-CORRECTING CODES
This section focuses on connections between orthogonal arrays and error-correcting codes. These two concepts

have deep connections as first observed in Bose (1961) for linear codes and linear orthogonal arrays. The latter
are orthogonal arrays with a defining relation (cf. Hedayat et al., 2012, Section 11.5). An even deeper connection
between the two topics is established by Delsarte (1973). We begin by reviewing fundamental concepts of an error-
correcting code. Excellent references on this topic are MacWilliams and Sloane (1977), Stinson (2006) and Hedayat
et al. (2012). Error-correcting codes are used to detect and correct errors that occur during data transmission over
noisy communication channels. With a set of symbols S of size s , called the alphabet, an error-correcting code is any
collection C of vectors from S k , the set of all sk vectors of length k based on the alphabet S . The vectors in C

are called the codewords. For codes it is not common that codewords are repeated (i.e., all vectors in C are typically
distinct), but since this is not a requirement for orthogonal arrays, we allow repetition of codewords for codes.

An important concept for a code C is its minimal distance, which is defined as
d = min

u,v ∈C
u,v

dist(u,v ),

where dist(u,v ) is the number of positions where vectors u and v differ, referred to as the Hamming distance between
u and v . A code with minimal distance d can correct ⌊ (d − 1)/2⌋ errors by associating a received signal with the word
in the code that is closest to the signal in Hamming distance. If C contains N codewords, it is a code of length k , size
N , and minimal distance d over an alphabet of size s , denoted as a (k ,N , d )s code. Table 4 provides a (7, 8, 4)2 code.

When S corresponds to a Galois field, we define a linear code C of length k as a code with distinct codewords
that form a vector subspace of S k . This definition implies that C has size N = sn for some nonnegative integer
n , 0 ≤ n ≤ k , where k is now called the dimension of the code. A linear code may be characterized by an n × k
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generator matrix G . The rows of G form a basis for the code, so that all codewords can be obtained by taking all
possible linear combinations of the rows of G . For any linear code C , there is another linear code called its dual, and
denoted by C⊥. This consists of all vectors v ∈ S k such that uvT = 0 for all u ∈ C . For a (k , sn , d )s linear code
C , its dual code C⊥ is a (k , sk −n , d⊥ )s code, where d⊥ is called the dual distance of C . Example 4.1 illustrates these
concepts. Common examples of linear codes include Hamming codes, Bose-Chaudhuri-Hocquenghem (BCH) codes,
Reed-Solomon codes, cyclic codes, Golay codes, and Reed-Muller codes. Hedayat et al. (2012) devoted a chapter to
the construction of orthogonal arrays using these codes.

Nonlinear codes have been investigated much less than linear codes, but there are families of nonlinear codes
that tend to have better error-correcting capabilities than linear codes of the same size (MacWilliams et al., 1972).
Nordstrom and Robinson (1967) provided the first nonlinear code now known as the Nordstrom-Robinson code. It is
a (16, 256, 6)2 code that has dual distance 6 and offers the advantage over linear codes in that any binary linear code
of length 16 with minimal distance 6 can contain at most 128 codewords. For development of families of nonlinear
codes that generalize the Nordstrom-Robinson code we refer to MacWilliams and Sloane (1977).

Example 4.1 Table 4 shows a (7, 8, 4)2 code. Each row corresponds to a codeword. The generator matrix of this code is

G =


1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1

 .
Its dual code is a (7, 16, 3)2 code which has the generator matrix,


1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1


.

TABLE 4 A (7, 8, 4)2 code

0 0 0 0 0 0 0
1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1
1 0 0 1 1 1 0
0 1 0 0 1 1 1
1 0 1 0 0 1 1
1 1 0 1 0 0 1
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4.1 | Basic Relationship Between Orthogonal Arrays and Codes
An orthogonal arrayOA (N , sk , t ) based on the Galois field S = GF (s ) is said to be linear if its runs are distinct and

form a vector space over S k . This is identical to the definition for a linear code. Consequently, a linear orthogonal array
OA (N , sk , t ) is a linear code (k ,N , d )s for some d , and vice versa, a linear code (k ,N , d )s is a linear orthogonal array
OA (N , sk , t ) for some strength t . It turns out that this relationship connects the strength of a linear orthogonal array
to the dual distance of a code. The relationship is formulated precisely in Theorem 4.1 below, which was first stated by
Bose (1961) (see also Hedayat et al., 2012, for a statement and proof). Through this relationship it is possible to obtain
linear orthogonal arrays from linear codes, and conversely. Existence results can also be translated from orthogonal
arrays to codes and vice versa.
Theorem 4.1 If C is a (k ,N , d )s linear code over S = GF (s ) with dual distance d⊥, then the codewords of C form the
rows of an OA (N , sk , d⊥ − 1) with entries from GF (s ) . Conversely, the rows of a linear OA (N , sk , t ) over GF (s ) form a
(k ,N , d )s linear code over GF (s ) with dual distance d⊥ ≥ t + 1. If the orthogonal array has strength t but not t + 1, then
d⊥ = t + 1.

It should be noted that a linear orthogonal array corresponds to a regular fractional factorial and that the words
in the defining relation correspond to the rows in the dual of this linear orthogonal array.

4.2 | Rao’s Bound and the Linear Programming Bound
A fundamental and practically significant question in the study of orthogonal arrays is determining their existence.

Thus, for specific parameters N (the number of runs), k (the number of factors), s (the number of levels per factor),
and t (the strength of the array), does an OA (N , sk , t ) exist? A simple necessary condition for existence is that N
must be a multiple of s t . But that is far from enough to ensure the existence of the array. For example, a larger value
for the number of factors may require a larger number of runs for the array to exist. Similarly, with a larger value for
the number of runs, it tends to be possible to facilitate the use of a larger number of factors. Existence results are of
theoretical interest, but also provide experimenters with an idea whether use of an orthogonal array is a viable option
for a planned experiment. Two very basic and related problems associated with the existence of orthogonal arrays
are the following:
1. For given values of k , s and t , what is the smallest number N of runs for which an OA (N , sk , t ) exists?
2. For given values of N , s and t , what is the largest number k of factors for which an OA (N , sk , t ) exists?
It turns out that a complete answer to the second question implies a complete answer to the first question (cf. Hedayat
et al., 1992, Chapter 2).

Unfortunately, exact answers to these questions are often unknown. Rao (1947) provides a lower bound for N
in terms of k , s and t that applies to any orthogonal array. The bound is now also known as Rao’s bound. Implicitly,
Rao’s bound also provides an upper bound for the value of k for given N , s and t . Rao’s bound states that for an
OA (N , sk , t ) it must hold that

N ≥
u∑
i=0

(
k

i

)
(s − 1) i , if t = 2u, and

N ≥
u∑
i=0

(
k

i

)
(s − 1) i +

(
k − 1

u

)
(s − 1)u+1, if t = 2u + 1,
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for u ≥ 0. This result can be understood by counting degrees of freedom for main effects and interaction effects that
can be estimated orthogonally when the orthogonal array is used in a fractional factorial experiment. The result helps
practitioners determine whether or not an orthogonal array is available and what are appropriate choices given the
available resources.

While improvements on Rao’s bound were found for special cases, it wasn’t until the seminal work by Delsarte
(1973) that another general bound was established, which is known as the linear programming bound. Unlike Rao’s
bound, the linear programming bound provides a bound through computation (by linear programming) and does not
provide an explicit lower bound for N . Theorem 4.2 presents the linear programming bound.

Theorem 4.2 LetNLP (k , d⊥ ) be the solution to the following linear programming problem: find real numbersA0,A1, . . . ,Ak

to minimize

A0 + A1 + · · · + Ak ,

subject to the constraints

A0 ≥ 1, Ai ≥ 0, 1 ≤ i ≤ k

B0 = 1, Bi ≥ 0, 1 ≤ i ≤ k

B1 = . . . = Bt = 0,

where Bi =
∑k

j=0 Aj Pi (j ), 0 ≤ i ≤ k , the Pi (j ) are the Krawtchouck polynomials Pi (j ) =
∑i

r=0 (−1) r (s − 1) i−r
(j
r

) (k −j
i−r

)
,

and t = d⊥ − 1. Then, in an OA (N , sk , t ) , it holds that

N ≥ NLP (k , d⊥ ) .

Delsarte (1973) demonstrated that Rao’s bound follows as a consequence of Theorem 4.2, establishing that the
linear programming bound is always at least as strong as Rao’s bound. In many cases, the linear programming bound is
significantly stronger. Hedayat et al. (2012) provided a comparative table highlighting the differences between Rao’s
bound and the linear programming bound for binary orthogonal arrays of strength 4 with k factors. Building on the
work of Delsarte (1973), Sloane and Stufken (1996) extended these results and formulated the linear programming
bound for mixed-level orthogonal arrays. Notably, Table 9.7 in Hedayat et al. (2012) presents the linear program-
ming bounds for OA (N , 2k13k2 , t ) ’s, demonstrating significant improvements over Rao’s bound extended to mixed
orthogonal arrays.

5 | CONNECTIONS BETWEEN ORTHOGONAL ARRAYS AND OTHER COMBI-NATORIAL STRUCTURES
In this section, we will briefly explore connections between orthogonal arrays and other combinatorial structures,

such as mutually orthogonal Latin squares, Hadamard matrices, incomplete block designs and difference schemes.
Interested readers are referred to Chapters 6, 7 and 8 in Hedayat et al. (2012).
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5.1 | Mutually Orthogonal Latin Squares
Interest by mathematicians in Latin squares and mutually orthogonal Latin squares dates back to the early 1700s.

Their applications in statistics first occurred in the 1930s largely due to the influential work of R. A. Fisher. In particular,
Latin squares and mutually orthogonal Latin squares can play a role in experiments for comparing different treatments
in the presence of multiple blocking variables. A Latin square of order s is an s × s array with entries from a set S of s
elements such that each element of S appears once in every row and column. For example, the following three arrays
are Latin squares of order 4:

0 2 3 1 0 2 3 1 0 2 3 1

3 1 0 2 1 3 2 0 2 0 1 3

1 3 2 0 2 0 1 3 3 1 0 2

2 0 1 3 3 1 0 2 1 3 2 0

Two Latin squares of order s are said to be orthogonal to each other if, when superimposed on each other, each
of the s2 pairs (i , j ) appears in exactly one cell, for 1 ≤ i , j ≤ s . It can be verified that any two of the above three
Latin squares of order 4 are orthogonal to each other. A set of mutually orthogonal Latin squares is a collection of
Latin squares of order s in which any pair is orthogonal. The existence and construction of mutually orthogonal Latin
squares are discussed in Hedayat et al. (2012). The primary connection between mutually orthogonal Latin squares
and orthogonal arrays is summarized in Theorem 5.1. The proof can be found in Hedayat et al. (2012) and Cheng
(2016).

Theorem 5.1 A set of k mutually orthogonal s × s Latin squares is equivalent to an OA (s2, sk+2, 2) .

For example, the threemutually orthogonal Latin squares of order 4 are equivalent to anOA (16, 45, 2) . It is known
that an upper bound on the number of mutually orthogonal Latin squares of order s is s − 1 and this upper bound
can be achieved when s is a prime or prime power. Even with today’s computing power, the problem of obtaining the
maximum possible number of mutually orthogonal Latin squares for other values of s remains, with few exceptions,
a challenging undertaking. The study of this problem was pioneered by Bose et al. (1960) and Wilson (1974), and
pursued by many others. Interested readers are referred to the brief survey provided by Colbourn and Dinitz (2001).
We note that although the connection betweenmutually orthogonal Latin squares and orthogonal arrays is fascinating,
the use of mutually orthogonal Latin squares for constructing new orthogonal arrays may be limited. Hedayat et al.
(2012) described a number of interesting related research problems to be addressed.

5.2 | Hadamard Matrices
The concept of a Hadamard matrix originated in 1983 from the work of the French mathematician Jacques Sa-

lomon Hadamard. The study of Hadamard matrices expanded significantly in the 20th century, particularly with their
applications in coding theory, signal processing, and design of experiments. Formally, a Hadamard matrix is a square
matrix whose entries are either 1 or −1 and whose rows (and, hence, columns) are mutually orthogonal. Mathemati-
cally, a Hadamard matrix H satisfies,

HHT = NIN
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where N is the order of the matrix and IN is the N ×N identity matrix. Theorem 5.2 establishes a connection between
Hadamard matrices and orthogonal arrays. Multiplication of entire rows or columns of a Hadamard matrix by −1 will
again result in a Hadamard matrix, so that for every order N for which a Hadamard matrix exists, there is one with all
entries in the first row or column equal to 1.
Theorem 5.2 SupposeH is aHadamardmatrix of orderN > 2 such that all entries in its first column are 1. If the first column
of H is removed, the resulting matrix is anOA (N , 2N −1, 2) . Conversely, appending a column of all 1’s to anOA (N , 2N −1, 2)
produces a Hadamard matrix of order N .

The proof of Theorem 5.2 can be found in Hedayat et al. (2012) and Cheng (2016). Since the existence of an
OA (N , 2N −1, 2) is equivalent to the existence of an OA (2N , 2N , 3) , the existence of the latter orthogonal array is
also equivalent to the existence of a Hadamard matrix of order N (cf. Hedayat andWallis, 1978; Hedayat et al., 2012).
If there exists a Hadamard matrix of order N > 2, then N must be a multiple of 4. According to the Hadamard con-
jecture, Hadamard matrices exist for all orders that are multiples of 4, but their existence has not been proven for
all such orders. The smallest multiple of 4 for which no Hadamard matrix has been found is 668, despite extensive
computational searches. Given the equivalence between Hadamard matrices and orthogonal arrays, it is clear that
two-level orthogonal arrays can be constructed by selecting specific columns from Hadamard matrices. Orthogonal
arrays obtained from Hadamard matrices, also called Hadamard designs, are not regular when the order N of the
Hadamard matrix is not a power of 2; when N is a power of 2, they may be either regular or non-regular. This flexibil-
ity allows Hadamard designs to accommodate a wider range of run sizes compared to regular designs. In their seminal
work, Plackett and Burman (1946) introduced the use of Hadamard designs in factorial experiments. The Hadamard
designs described in their paper are now commonly known as Plackett-Burman designs.

Several well-established methods have been introduced to construct Hadamard matrices. These include the
Sylvester construction, Paley construction, Williamson construction, conference matrices, and algebraic approaches
involving group theory or combinatorial designs (Sylvester, 1867; Paley, 1933;Williamson, 1944; Hall, 1998; Georgiou
et al., 2003; Kline, 2019). For small orders, Hadamardmatrices can be found through exhaustive search or optimization
algorithms. Several researchers have conducted theoretical investigations into identifying suitable Hadamardmatrices
for constructing two-level non-regular designs (Shi and Tang, 2018; Chen et al., 2023). In addition, Hadamardmatrices
have been used to construct mixed orthogonal arrays through clever use of properties of Hadamard matrices (Dey
and Ramakrishna, 1977; Chacko et al., 1979; Chacko and Dey, 1981; Agrawal and Dey, 1982; Cheng, 1989; Wang,
1990). See Section 4.3 of Dey and Mukerjee (2009) for detailed construction methods and results.

5.3 | Incomplete Block Designs
Blocking is one of the three fundamental principles in the design of experiments. It is an effective strategy for

explaining response variability by controlling for known nuisance factors, thereby increasing the precision of treatment
effect estimation (Wu and Hamada, 2011). The simplest and most frequently used block designs are randomized
complete block designs. However, blocking should be based on differences in experimental units, and it may not
always be feasible to include all treatments within a single block. Incomplete block designs may then be a sensible
choice. Yates introduced balanced incomplete block designs, for which v treatments are arranged in b blocks of k
experimental units, k < v , each treatment occurring in r blocks, and any two treatments occurring together in λ

blocks. Each balanced incomplete block design has five parameters: v (the number of treatments); b (the number
of blocks); r (the number of blocks in which each treatment appears); k (the number of treatments in each block); λ
(the number of blocks in which any pair of treatments appears together). Necessary conditions for the existence of a
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balanced incomplete block design are that the parameters satisfy bk = v r , λ (v − 1) = r (k − 1) and b ≥ v . If b = v ,
then r = k and the design is called a symmetric balanced incomplete block design (cf. Lander, 1983).

The connection between orthogonal arrays and incomplete block designs is partly due to both being connected
to Hadamard matrices (Hedayat and Wallis, 1978). One connection between orthogonal arrays and incomplete block
designs is stated in the following theorem.
Theorem 5.3 Th existence of an orthogonal array OA (N , 2N −1, 2) implies the existence of a symmetric balanced incom-
plete block design with v = b = N − 1, r = k = N /2 − 1, and λ = N /4 − 1.

To see the validity of Theorem 5.3, we represent an incomplete block design through its incidence matrix, say
M = (mi j ) . This is a v × b matrix with entries 0 and 1, and with mi j = 1 if and only if the i th treatment appears in
the j th block. Starting from the orthogonal array, we obtain a Hadamard matrix of order N (see Theorem 5.2), and
convert it to one in which all entries in both the first column and row are 1. The matrix that remains after deleting the
first column and row is the incidence matrix for a symmetric balanced incomplete block design with the parameters
as in Theorem 5.3. The converse also holds, so that the existence of this symmetric balanced incomplete block design
is equivalent to the existence of an orthogonal array OA (N , 2N −1, 2) .

There are multiple other block designs that are related to the incomplete block design in Theorem 5.3. For ex-
ample, by replacing each block by its complement in the treatment set we obtain a symmetric balanced incomplete
block design with v = b = N − 1, r = k = N /2, and λ = N /4. As another example, starting from the symmetric
block design in Theorem 5.3, upon deleting an entire block and deleting the treatments in that block also from all of
the other blocks, we obtain the so-called residual design, which is a balanced incomplete block design with v = N /2,
b = N − 2, r = N /2 − 1, k = N /4, and λ = N /4 − 1. Additional connections can be found in Hedayat and Wallis (1978)
and Raghavarao (1988).

5.4 | Difference Schemes
Difference schemes were first defined by Bose and Bush (1952). We review their definition and their connection

with orthogonal arrays. More importantly, they provide a simple yet powerful tool for constructing orthogonal arrays
as we will see in Section 6.

An r ×c arraywith entries from a finite Abelian group containing s entries is called a difference scheme if each vector
difference between any two distinct columns of the array contains every element from the group equally often (Bose
and Bush, 1952). Such an array is denoted by D (r , c, s ) . Table 5 displays a D (9, 9, 3) . Hedayat et al. (2012) discussed
the existence, construction, properties, and generalizations of difference schemes. Statistical Analysis Software (SAS)
provides a library of difference schemes with a large number of different values for r and c and 3 ≤ s ≤ 22. The library
can be accessed at the webpage SAS (2019). In this definition, difference schemes are of strength two. Hedayat et al.
(1996) introduced difference schemes of strength t for the integer t ≥ 2.

Every orthogonal array OA (N , sk , 2) based on an Abelian group is a difference scheme D (N , k , s ) , but typically
not a very interesting one. When looking for a difference scheme D (r , c, s ) one is typically interested in obtaining
an array with the largest possible value of c for given values of r and s , and the additional structure required by an
orthogonal array will fail to provide an array with the maximum possible value for c.

For s = 2, using the multiplicative Abelian group consisting of 1 and −1, a Hadamard matrix of order N is a
difference scheme D (N ,N , 2) and, conversely, such a difference scheme can be converted to a Hadamard matrix
of order N . Thus, through Hadamard matrices, this provides a connection between orthogonal arrays and difference
schemes. While this is a simple and interesting connection, what is perhapsmore interesting is that difference schemes
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can be used to construct larger arrays that are orthogonal arrays. For example, as we will see in Subsection 6.1,
the existence of a difference scheme D (λs, k , s ) implies that of an orthogonal array OA (λs2, sk+1, 2) and a mixed
orthogonal array OA (λs2, (λs )1sk , 2) . These orthogonal arrays can therefore be presented via the smaller difference
schemes, and exploring the construction of the different schemes, whether through combinatorial or computational
methods, can be easier than direct constructions of orthogonal arrays. On the flip side, not every orthogonal array
can be constructed through a difference scheme.

If s is a prime or prime power, then D (s, s, s ) can be obtained based on the Galois field GF (s ) , so that we can
obtain an OA (s2, s s+1, 2) , which provides equality in the Rao’s bound. Hedayat et al. (2012) studied an extension to
difference schemes of strength t , t ≥ 3, established the existence of such arrays, and showed how they could be used
for the construction of orthogonal arrays of strength t . Difference schemes have also been used for the construction
of mixed orthogonal arrays (cf. Wang and Wu, 1991).
TABLE 5 A difference scheme D (9, 9, 3)

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0

6 | SELECTED CONSTRUCTION METHODS FOR ORTHOGONAL ARRAYS
This section provides a concise review of selected construction methods for orthogonal arrays. The literature on

methods for constructing orthogonal arrays is extensive, encompassing a wide range of approaches. These include
direct construction methods and methods based on other mathematical structures such as Hadamard matrices, finite
fields, Latin squares, difference sets, cyclic groups, and projective planes. Recursive methods, such as those utilizing
Kronecker products or Kronecker sums, are also widely used. In addition, intelligent computer-based searches have
become an important tool for generating orthogonal arrays tailored to specific requirements. Here, we review several
general and widely recognized methods.

6.1 | Constructions Based on Difference Schemes
Theorem 6.1 indicates that a different scheme can be converted into an orthogonal array straightforwardly.
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Theorem 6.1 If D is a difference scheme D (r , c, s ) based on an Abelian group A = {σ0,σ1, . . . ,σs−1} with the binary
operation +, then

A =



D0

D1

.

.

.

Ds−1


is an OA (r s, sc , 2) , where Di is obtained from D by adding σi to each of its entries.

The orthogonal array in Theorem 6.1 can be extended by at least one column. For this we use the Kronecker product
of an n1 × m1 matrix A = (ai j ) and an n2 × m2 matrix B that are based on the same group with the binary operation
+. Their Kronecker product is denoted by A ⊗ B , and is defined as the (n1n2 ) × (m1m2 ) block matrix with the block
in location (i , j ) equal to ai j + B , 1 ≤ i ≤ n1, 1 ≤ j ≤ m1. If σ0 denotes the identity element of the group, then the
column that can be added to the array in Theorem 6.1 is (σ01r /s ) ⊗ (σ0, ...,σs−1 )T , where σ01r /s denotes the (r /s ) × 1

vector with every entry equal to σ0 and (σ0, ...,σs−1 )T is the s × 1 vector that contains every element of A. Thus, a
difference scheme D (r , c, s ) implies the existence of an orthogonal array OA (r s, sc+1, 2) . This explains the claim in
Subsection 6.1 that a difference scheme D (s, s, s ) results in an OA (s2, s s+1, 2) .

Kronecker products are a workhorse in constructing orthogonal arrays from difference schemes. Another use is
outlined in Theorem 6.2. This theorem states that a difference scheme, combined with an existing orthogonal array,
can be used to generate an orthogonal array with a larger run size and more columns.
Theorem 6.2 If D is a difference scheme D (r , c, s ) and B is anOA (N , sk , 2) , both based on the same Abelian group, then
the array

A = B ⊗ D

is an orthogonal array OA (N r , sk c , 2) .

Additional methods for using difference schemes in the construction of orthogonal arrays can be found in Chapter
6 of Hedayat et al. (2012). The concept was generalized by Seiden (1954), who introduced difference schemes of
strength t . Subsequently, Hedayat et al. (1996) examined their existence and construction, providing methods to
construct orthogonal arrays of strength t from these schemes for t > 2.

6.2 | Constructions Based on Hadamard Matrices
In Theorem 5.2 we already saw how a Hadamard matrix of order N can be used to construct an orthogonal array

OA (N , 2N −1, 2) . In addition, if H is a Hadamard matrix, then the array[
H

−H

]

is an orthogonal array OA (2N , 2N , 3) . Both arrays give equality in the Rao’s bound. Thus, the construction of these
orthogonal arrays boils down to the construction of Hadamard matrices. For the same order, different Hadamard
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matrices can result in orthogonal arrays with different properties. For example, if N is a power of 2, we could obtain
a regular or non-regular fractional factorial depending on the Hadamard matrix that we use.

The simplest construction method for Hadamard matrices of order N = 2m , m ≥ 2, is the Sylvester method,
which is based on repeated use of the Kronecker product (with the binary operation being multiplication), as defined
in Subsection 6.1. This result is formally stated in Theorem 6.3.
Theorem 6.3 Let H be an array obtained by the (m − 1)-fold Kronecker product, m ≥ 2,

H =

[
1 −1
1 1

]
⊗ · · · ⊗

[
1 −1
1 1

]
.

Then H is a Hadamard matrix of order 2m .

More generally, for Hadamard matrices H1 and H2 of order N1 and N2, their Kronecker product H1 ⊗ H2 is a
Hadamard matrix of order N1N2.

Based on Galois fields, Paley (1933) developed two methods of construction for infinite families of Hadamard
matrices. The first Paley construction works when q = N − 1 is an odd prime power, where N , a multiple of 4, is the
order of the Hadamard matrix to be constructed. Denote the elements of a Galois field GF (q ) by α1 = 0, α2, . . . , αq ,
and define a function χ : GF (q ) → {0, 1, −1} as

χ (β ) =


1, if β = x2 for some x ∈ GF (q ) ;
0, if β = 0;
−1, otherwise.

Let A = (ai j ) be the q × q matrix with ai j = χ (αi − αj ) for i , j = 1, 2, . . . , q , and define

H =

[
1 −1Tq
1q A + Iq

]
(3)

where 1q is a column of q ones and Iq is the q × q identity matrix. The matrix H in (3) is a Hadamard matrix of order
N (cf. Hedayat et al., 2012; Cheng, 2016). The OA (N , 2N −1, 2) constructed from H in (3) is also known as the Paley
design of order N .

The second Paley construction is for Hadamard matrices of order N = 2q + 2, where q is an odd prime power and
q − 1 is a multiple of 4. Using the matrix A as defined for the first Paley construction, define

H =


1 1Tq −1 1Tq

1q A + Iq 1q A − Iq

−1 1Tq −1 −1Tq
1q A − 1q −1q −A − Iq


. (4)

Then H in (4) is a Hadamard matrix of order N . Multiplying the (q + 2)th row of H in (4) by −1 gives a Hadamard
matrix with its first column equal to 1, which can be used to construct an orthogonal array OA (N , 2N −1, 2) . Chen et al.
(2023) conducted a comprehensive study of orthogonal arrays constructed from Hadamard matrices obtained by the
Paley constructions in terms of generalized resolution, projectivity, and hidden projection property.
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6.3 | The Rao-Hamming Construction
Multiple methods of construction for orthogonal arrays make use of Galois fields or finite geometries. One of the

earlier and simpler methods to describe was introduced independently by Rao (1947, 1949) and Hamming (1950), and
the corresponding orthogonal arrays were named Rao-Hamming arrays by Hedayat et al. (2012). There are actually
multiple methods of construction for the Rao-Hamming arrays (see Hedayat et al., 2012, for the three methods), and
we present one of these methods here. Rao-Hamming arrays are orthogonal arrays OA (sn , sk , 2) where s is a prime
power, k = (sn − 1)/(s − 1) , and n ≥ 2.
Construction of Rao-Hamming Arrays: Construct an sn × n array with the rows consisting of all n-tuples based on
GF (s ) . Denote the columns of this array as C1, . . . ,Cn . The columns of the orthogonal array are obtained as

z1C1 + · · · + znCn = [C1 . . .Cn ]z ,

using all n-tuples z = (z1, . . . , zn )T based onGF (s ) , with zi , 0 for at least one i and the first non-zero zi equal to the
unit element 1. There are (sn − 1)/(s − 1) such n-tuples, resulting in the required number of columns. Theorem 6.4
summarizes the result of this construction.

Theorem 6.4 If s is a prime power, then an OA (sn , sk , 2) with k = (sn − 1)/(s − 1) exists whenever n ≥ 2.

The Rao-Hamming arrays achieve equality in the Rao’s bound and can also be presented as linear orthogonal
arrays. The number (sn −1)/(s −1) corresponds to the number of points in the finite projective geometry PG (n −1, s ) ,
and the n-tuples used in the proof can be thought of as the points in this geometry.

6.4 | Recursive Constructions
Recursive methods are essential tools for constructing orthogonal arrays. In Subsection 6.1, we presented a

recursive approach based on difference schemes. This subsection examines a recent recursive technique proposed
by He et al. (2022) for constructing larger orthogonal arrays from smaller ones with a large number of factors.

We first define an operator based on the Kronecker product. For an n1 × m1 matrix A and n2 × m2 matrix B ,
n1 ≤ n2, and the rows of B partitioned into submatrices B1, ...,Bn1 , we define the generalized Kronecker product as

A ⃝∗ B = A ⃝∗
©­­­­«

B1

.

.

.

Bn1

ª®®®®¬
= [ai ⊗ Bi ]1≤i ≤n1 =

©­­­­«
a1 ⊗ B1

.

.

.

an1 ⊗ Bn1

ª®®®®¬
, (5)

where ai denotes the i th row of A and the operator ⊗ represents the usual Kronecker product defined in Subsec-
tion 6.1. Note that A ⃝∗ B depends on the partition of the rows of B , that A ⃝∗ B has the same number of runs as B ,
and that the number of factors in A ⃝∗ B is m1m2. For example, with addition modulo 3, let A = (0, 1, 2)T and
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B =
©­­­«

B1

B2

B3

ª®®®¬ =

©­­­­­­­­­­­­­­­­­­­«

0 0 0 0

0 1 1 2

0 2 2 1

1 0 1 1

1 1 2 0

1 2 0 2

2 0 2 2

2 1 0 1

2 2 1 0

ª®®®®®®®®®®®®®®®®®®®¬

, then we have A ⃝∗ B =

©­­­­­­­­­­­­­­­­­­­«

0 0 0 0

0 1 1 2

0 2 2 1

2 1 2 2

2 2 0 1

2 0 1 0

1 2 1 1

1 0 2 0

1 1 0 2

ª®®®®®®®®®®®®®®®®®®®¬

.

The construction in He et al. (2022) uses an n1 × m1 matrix A with rows a1, . . . , an1 and n1 matrices B1, . . . ,Bn1each of size (n2/n1 ) × m2 that partition the rows of B , with entries for all matrices from the Galois field GF (s ) =

{α0 = 0, α1, . . . , αs−1} for a prime power s . They define s + 1 arrays D1,D2, . . . ,Ds+1 as follows, where the Kronecker
products are based on addition in GF (s ) :
(i) For αg ∈ GF (s ) and g = 1, . . . , s − 1, define

Dg = A ⃝∗ (αg ∗ B ) =
©­­­­«

a1 ⊗ (αg ∗ B1 )
.
.
.

an1 ⊗ (αg ∗ Bn1 )

ª®®®®¬
,

where ∗ represents multiplication in GF (s ) .
(ii) For g = s ,

Ds = 0n1 ⃝∗ B =

©­­­­«
0 ⊗ B1

.

.

.

0 ⊗ Bn1

ª®®®®¬
,

where 0 denotes the zero element in GF (s ) and 0n1 is the n1 × 1 vector of 0’s.
(iii) For g = s + 1,

Ds+1 = A ⊗ 0(n2/n1 ) ,

where 0(n2/n1 ) is the (n2/n1 ) × 1 vector of 0’s.
Now define the array

E = [D1,D2, . . . ,Ds+1 ] . (6)
For 1 ≤ g ≤ s − 1, Dg is an n2 × (m1m2 ) , while Ds and Ds+1 are n2 ×m2 and n2 ×m1 arrays, respectively. Consequently,
E is an n2 × [ (s − 1)m1m2 +m1 +m2 ] array.

The key result in He et al. (2022) is summarized in the following theorem.
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Theorem 6.5 For a prime power s , if A is an OA (n1, s1, 1) or an OA (n1, sm1 , 2) for m1 > 1, and each Bi , i = 1, . . . , n1, is
an OA ( (n2/n1 ), sm2 , 2) , then the array E in (6) is an OA (n2, sk , 2) , where k = (s − 1)m1m2 +m1 +m2.

Thus, for a prime power s , if A and the Bi ’s in this construction are s-level orthogonal arrays of strength two, then
so is the resulting array E . This construction uncovers the hidden structure of many existing fixed-level orthogonal
arrays, often producing arrays with more factors then previously known for a given run size. In addition, He et al.
(2022) explored how the construction in (6) can be leveraged in the construction of orthogonal arrays of strength
three, as well as other types of orthogonal arrays, such as resolvable orthogonal arrays, balanced sliced orthogonal
arrays, and nested orthogonal arrays. These variants of orthogonal arrays, which will be further discussed in Section 8.

7 | DISTINGUISHING BETWEEN ORTHOGONAL ARRAYS WITH THE SAMEPARAMETERS
Two orthogonal arrays OA (N , sk , t ) with the same values for the parameters N , k , s and t may have different

properties with respect to statistically meaningful criteria when used as fractional factorials. Often, if there is an
orthogonal array for a set of parameters, there are many such arrays, leading to the question of which one to use in an
experiment. Some are isomorphic and others are non-isomorphic. Two orthogonal arrays are (algebraically) isomorphic
if one can be obtained from the other by row permutations, column permutations, and/or relabeling the levels of one
or more factors. Two isomorphic orthogonal arrays have similar properties with respect to some statistical criteria,
but not with respect to others. Nevertheless, studying isomorphism classes is valuable for the enumeration of all
possible orthogonal arrays for a given set of parameters. This is a challenging combinatorial problem due to the huge
number of possible arrays. For any given array, there are after all N ! × k ! × (s !)k permutations to consider, although
this number can be reduced since many of these permutations will result in the same array. With increasing values
for N and k , determining the isomorphism classes is an NP-hard problem.

The study of isomorphism of orthogonal arrays has resulted in an extensive literature. Draper andMitchell (1967)
compared word-length patterns of designs to determine their isomorphism. However, two designs with the same
word-length pattern could be non-isomorphic. Draper and Mitchell (1970) proposed a more sensitive test for isomor-
phism using a “letter pattern comparison.” However, Chen and Lin (1991) gave two non-isomorphic 231−15 designs
with identical letter pattern matrices and thus demonstrated that the letter pattern also does not uniquely deter-
mine a fractional factorial. Lin and Sitter (2008) subsequently showed that there are many such cases. Chen (1992)
discussed the isomorphism of 2m−p fractional factorials in terms of the existence of a relabeling map between two
frequency vectors together with an appropriately defined matrix. Using this frequency representation, Chen (1992)
proved that the word-length pattern uniquely determines any 2m−p fractional factorial with p = 1 or two and any mini-
mum aberration 2m−p fractional factorial when p = 3 or 4. Clark and Dean (2001) introduced a method of determining
isomorphism of any two (regular and non-regular) fractional factorials by examining the Hamming distance matrices
of their projection designs. An algorithm was provided for checking the isomorphism of fractional factorials when all
the factors have two levels which saves considerable time for detecting non-isomorphic arrays. Other work on deter-
mining isomorphism of orthogonal arrays focuses on using different properties of the arrays such as the centered L2

discrepancy (Ma et al., 2001), minimal column base (Sun et al., 2002), singular value decomposition (Katsaounis et al.,
2013), and degree of isomorphism (Weng et al., 2023). Katsaounis and Dean (2008) provided a survey and evaluation
of methods for determination of isomorphism of fractional factorials.

While the criteria mentioned in the previous paragraph can be helpful in deciding whether two arrays are isomor-
phic, they don’t solve the enumeration problem of non-isomorphic orthogonal arrays for given parameters. Nonethe-
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less, significant progress has been made on this enumeration problem. The foundational work of Chen et al. (1993)
provided a comprehensive catalog of all possible 2m−p fractional factorials of size 16 and 32 and all resolution four
(or higher) fractions of size 64. Block and Mee (2005) extended the enumeration to two-level 128-run resolution
IV designs, offering an expanded set of designs for experimental applications requiring a larger number of runs. Xu
(2005) proposed methods based on coding theory to efficiently classify and rank fractional factorials. This approach
facilitated the enumeration of fractional factorials with 27, 81, and 243 runs at resolution IV or higher, as well as
729-run arrays at resolution V or higher. Stufken and Tang (2007) provided a complete solution to enumerating non-
isomorphic two-level orthogonal arrays of strength d with d + 2 constraints for any d and any run size N = λ2d . Their
work represents a significant milestone, as it systematically classified all structurally unique designs within this class.
Schoen et al. (2010) introduced aminimum complete set algorithm for generating catalogs of non-isomorphic symmet-
ric andmixed-level orthogonal arrays with specified strength, run sizes, number of factors, and number of factor levels.
The cases include all mixed-level strength two orthogonal arrays with the run size N ≤ 28, all symmetric strength two
orthogonal arrays with N ≤ 27, all OA (28, 2a , 2) with a ≤ 7, all strength three orthogonal arrays with N ≤ 64 ex-
cept OA (56, 2a , 3) , OA (64, 2a , 3) , and OA (64, 412a , 3) , and all strength four orthogonal arrays with N ≤ 168 except
OA (160, 2a , 4) . For OA (56, 2a , 3) , OA (64, 2a , 3) , OA (64, 412a , 3) and OA (160, 2a , 4) , the catalog of non-isomorphic
designs are obtained for a ≤ 8, 7, 6, 8, respectively. The accompanying Python-based software provides an extensive
collection of catalogs containing non-isomorphic orthogonal arrays covering more cases than the results provided by
Schoen et al. (2010). More recent studies, such as Vazquez and Xu (2019); Bohyn et al. (2023); Eendebak et al. (2023),
have focused on constructing non-isomorphic orthogonal arrays for specific levels and larger run sizes.

Another critical problem in the study of orthogonal arrays is ranking arrays with specific parameters to identify
the optimal ones according to a meaningful criterion. Early foundational works include Box and Hunter (1961) and
Fries and Hunter (1980), which introduced the optimality criteria of resolution and minimum aberration, respectively,
for regular fractional factorial designs. This line of research gained momentum in the late 20th century, and numer-
ous studies have been published since that time. Proposed optimality criteria include minimum G-aberration (Deng
and Tang, 1999a), minimum G2-aberration (Deng and Tang, 1999b), minimum moment aberration (Xu, 2003), various
uniformity measures (Fang and Mukerjee, 2000), and estimation capacity (Cheng et al., 1999). For a comprehensive
review, see Xu et al. (2009), Cheng (2016), and Cheng and Tang (2025).

8 | SELECTED RECENT DEVELOPMENTS
In recent years, practical applications in science, engineering, and technology have led to multiple innovations

in research related to orthogonal arrays. This section highlights some of the most notable developments that have
drawn particular interest within the experimental design community. These include sliced orthogonal arrays, nested
orthogonal arrays, strong orthogonal arrays, and grouped orthogonal arrays. The following subsections provide an
overview of these concepts and key advancements in their development.

8.1 | Sliced Orthogonal Arrays
Sliced orthogonal arrays were developed to address the needs of computer experiments involving both quantita-

tive and qualitative input variables, a scenario that frequently occurred in real-world applications. For example, a data
center experiment might include qualitative factors such as diffuser height and the location of hot-air return vents
(Schmidt et al., 2005). Similarly, computer experiments in marketing and social sciences often involve qualitative fac-
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tors such as education level, race, and social background. Qian and Wu (2009) was the first to introduce the concept
of sliced orthogonal arrays to tackle experimental design challenges in such mixed-input computer experiments.

To define sliced orthogonal arrays, we first define the concept of a level-collapsing projection. A mapping δ ( ·) is
called a level-collapsing projection if the mapping is from a set S with s elements to a set of s0 elements and satisfies
(a) S can be partitioned into s0 subsets S1, . . . , Ss0 , with each having s/s0 elements, and (b) for any two elements
x ∈ Si , y ∈ Sj , δ (x ) = δ (y ) for i = j , and δ (x ) , δ (y ) otherwise. Table 6 provides an example of the level-collapsing
projection δ (0) = δ (1) = 0 and δ (2) = δ (3) = 1.
Definition 8.1 AnOA (N , sk , 2) D is called a sliced orthogonal array if the N rows of D can be partitioned into v subarrays
D1,D2, . . . ,Dv such that each Di becomes an OA (N0, s

k
0 , 2) with N0 = N /v after the s levels in each column of D are

collapsed to s0 levels according to some level-collapsing projection.

We denote such an array by SOA (N , sk , 2;v , s0 ) . Furthermore, if each column in each slice Di of a sliced orthog-
onal array is balanced, that is, has an equal occurrence of each of the s levels, it is called a balanced sliced orthogonal
array (Ai et al., 2014). We use BSOA (N , sk , 2;v , s0 ) to denote such an array. The sliced orthogonal array D in Table 6
is a BSOA (16, 43, 2; 4, 2) , where rows 1–4, 5–8, 9–12, 13–16 correspond to D1, D2, D3 and D4, respectively.
TABLE 6 An orthogonal array D = OA (16, 43, 2) and the level-collapsing projection δ : D is also a
BSOA (16, 43, 2; 4, 2) and an NOA (16, 43, 2; 4, 2)

D δ (D )

0 0 0 0 0 0

2 1 3 1 0 1

1 3 2 0 1 1

3 2 1 1 1 0

2 2 2 1 1 1

0 3 1 0 1 0

3 1 0 1 0 0

1 0 3 0 0 1

1 1 1 0 0 0

3 0 2 1 0 1

0 2 3 0 1 1

2 3 0 1 1 0

3 3 3 1 1 1

1 2 0 0 1 0

2 0 1 1 0 0

0 1 2 0 0 1

A sliced orthogonal array can be used to construct sliced space-filling designs, which are used to choose inputs
for computer experiments with both qualitative and quantitative inputs. Suppose we have v level combinations of the
qualitative factors, and k quantitative input variables in the experiment. We will use a sliced orthogonal array with
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v slices and k factors. The procedure of constructing sliced space-filling designs consists of two main steps. First,
for the quantitative factors, a Latin hypercube design is generated using a sliced orthogonal array in the same way as
done for generating an orthogonal array-based Latin hypercube (see Subsection 3.1), with the rows of the resulting
Latin hypercube designs being partitioned into v slices corresponding to the partition in the sliced orthogonal array.
Second, each of these v slices is then associated with a level combination of the qualitative factors. This approach
ensures an efficient and balanced design for experiments with mixed inputs. For example. the sliced orthogonal array
in Table 6 can be used to generate sliced space-filling designs for a computer experiment with three quantitative input
variables and four level combinations for two-level qualitative factors, where the four level combinations could form
a full factorial for two qualitative factors or a fractional factorial for three qualitative factors.

Qian and Wu (2009) introduced several methods for constructing sliced orthogonal arrays, including based on
the Rao-Hamming method. Building on this pioneering work, additional construction methods have been developed,
as detailed in, among others, Xu et al. (2011); Ai et al. (2014); Li et al. (2015); Hwang et al. (2016); Zhang et al. (2018);
He (2019); Tsai (2022); He et al. (2022); Pang and Zhu (2024), to construct sliced orthogonal arrays with more flexible
parameters.

8.2 | Nested Orthogonal Arrays
Qian et al. (2009b) introduced the concept of nested orthogonal arrays to construct nested space-filling designs,

which are used to select inputs for computer experiments at two levels of accuracy or fidelity. Such experiments are
commonly seen in practice when computer models can be run with varying degrees of sophistication, resulting in
different computational time. For instance, Qian andWu (2008) studied computer simulations for a heat exchanger in
an electronic cooling application. In this case, two computer codes were employed to simulate linear cellular alloys for
electronic cooling systems. One code used finite-element analysis, providing high accuracy but requiring more com-
putational time, while the other relied on the finite difference method, yielding a faster but less precise approximation.
The differences in numerical methods and grid resolution created a trade-off between accuracy and computational
efficiency, highlighting the need for nested designs.
Definition 8.2 An OA (N , sk , 2) D is called a nested orthogonal array if D contains a subarray D0 that, after applying a
specific level-collapsing projection to each column of D , becomes an OA (N0, s

k
0 , 2) .

We denote such an array by NOA (N , sk , 2;N0, s0 ) . For illustration, consider the BSOA (16, 43, 2; 4, 2) D in Table 6.
This array is also an NOA (16, 43, 2; 4, 2) where any Di for i = 1, 2, 3, 4, can serve as the subarray D0 (rows 1–4, 5–8,
9–12, 13–16 correspond to D1, D2, D3 and D4, respectively). In fact, a sliced orthogonal array is a nested orthogonal
array, however the reverse does not hold.

Mukerjee et al. (2008) and Wang and Yin (2013) explored the existence of nested orthogonal arrays. Building on
the work of Qian et al. (2009b), many studies have investigated methods for constructing nested orthogonal arrays,
includingQian et al. (2009a); Dey (2010); He andQian (2011); Dey (2012);Wang and Li (2013); Sun et al. (2014); Zhang
et al. (2018, 2019); He et al. (2022); Pang and Zhu (2024). In general, nested orthogonal arrays can be constructed
through various direct methods, such as the Rao-Hamming method, Bush’s method, or by leveraging structures like
nested difference matrices, Hadamard matrices, resolvable orthogonal arrays, zero-sum arrays, and operators like
the Kronecker product and subgroup projection. Recursive methods are also used, offering an iterative approach
to generate larger nested orthogonal arrays from smaller ones. These construction methods aim to provide greater
flexibility in terms of run sizes and the number of levels for each factor, enabling the development of nested designs
tailored to a wide range of experimental requirements.
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8.3 | Strong Orthogonal Arrays
He and Tang (2013) introduced the concept of strong orthogonal arrays, which are used to generate space-filling

designs with enhanced projection and space-filling properties. These arrays have broad applications in optimization,
prediction, and sensitivity analysis of complex systems, where effective exploration of the design space is critical.
The introduction of strong orthogonal arrays by He and Tang (2013) has received considerable interest from both
researchers and practitioners, leading to advancements in both design theory and practical applications.
Definition 8.3 An N × k array with entries from {0, 1, . . . , s t − 1} is called a strong orthogonal array of size N , k factors, s t

levels, and strength t if any subarray of g columns for any g with 1 ≤ g ≤ t can be collapsed into anOA (N , su1 su2 · · · sug , g )
for any positive integers u1, . . . ,ug with u1 + u2 + · · · + ug = t where collapsing s t levels into suj levels is done through the
map a → [a/s t−uj ], with [x ] denoting the largest integer not exceeding x .

Note that in Definition 8.3, the notation su1 stands for a single factor at su1 levels rather than for u1 factors at s
levels. Similarly for the other g − 1 factors. We use SOA (N , (s t )k , t ) to denote such a strong orthogonal array. Note
that, despite sharing the same acronym as sliced orthogonal arrays, the notation differs in both the type and number
of parameters. Table 7 presents an SOA (8, 83, 3) . This array has the following properties:
(i) The array becomes an OA (8, 23, 3) after the eight levels are collapsed into two levels according to [a/4] = 0 for

a = 0, 1, 2, 3 and [a/4] = 1 for a = 4, 5, 6, 7, where [x ] denotes the largest integer not exceeding x ;
(ii) Any two columns of the array become an OA (8, 2141, 2) orOA (8, 4121, 2) after the eight levels of one column are

collapsed into two levels by [a/4] and the eight levels of the other column are collapsed into four levels by [a/2];
(iii) Any column of the array is an OA (8, 81, 1) .

TABLE 7 An SOA (8, 83, 3)

0 0 0
2 3 6
3 6 2
1 5 4
6 2 3
4 1 5
5 4 1
7 7 7

Clearly, N = λs t must hold for some integer λ. As was the case for an orthogonal array, λ is called the index of
the strong orthogonal array. He and Tang (2013) noted that the definition of a strong orthogonal array is motivated
by nets for quasi-Monte Carlo point sets, and nets are a special case of strong orthogonal arrays. Their connection
is documented in He and Tang (2013). If λ = sw for some integer w , then the existence of an SOA (λs t , (s t )k , t ) is
equivalent to that of a (w ,m, k )-net with base s where m = w + t . Nets are defined with the restriction that the index
is a power of s while strong orthogonal arrays do not have such a restriction.
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Looking into the definition of strong orthogonal arrays, if we focus on t = 2, we can see that an SOA (N , (s2 )k , 2)
of strength two is an orthogonal array of strength one itself and becomes an orthogonal array of strength two if its
s2 levels are collapsed into s levels according to [a/s ]. This implies that an SOA (N , (s2 )k , 2) has the same projec-
tion property as an orthogonal array of strength two. An SOA (N , (s3 )k , 3) however, offers better stratification and
projection property than an s-level orthogonal array of strength three. This is because an SOA (N , (s3 )k , 3) achieves
stratification on s2 × s and s × s2 grids in two-dimensions and s × s × s grids in three-dimensions while an s-level
orthogonal array of strength three can only promise stratification on s × s grids in two-dimensions and s × s × s grids in
three-dimensions. We therefore conclude that to enjoy the benefits of better space-filling properties, when compared
to ordinary orthogonal arrays, strong orthogonal arrays need to have strength three or higher which may require run
sizes that are too large for experimenters to afford in practice. He et al. (2018) introduced a new class of arrays, called
strong orthogonal arrays of strength two plus.
Definition 8.4 An N × k array with entries from {0, 1, . . . , s2 − 1} is called a strong orthogonal array of size N , k factors, s2

levels, and strength 2+ if any subarray of two columns can be collapsed into anOA (N , (s2 )1s1, 2) and anOA (N , s1 (s2 )1, 2) .

Since their introduction, several research topics on strong orthogonal arrays have been explored, leading to sig-
nificant advancements in their theory and applications. First, a number of studies have focused on developing con-
struction methods for strong orthogonal arrays, particularly those of strength three and strength two plus. Notable
contributions in this area include He et al. (2018) and Shi and Tang (2020). Second, selecting an optimal strong orthog-
onal array from the broader class based on specific design criteria remains a fundamental problem. Representative
works addressing this challenge include Shi and Tang (2019) and Chen and Tang (2024). Understanding and character-
izing strong orthogonal arrays is another critical research direction. He and Tang (2014) made significant contributions
in this area, providing deeper insights into the properties of strong orthogonal arrays. In addition, substantial advance-
ments have been achieved by imposing additional structures on strong orthogonal arrays. For example, Li et al. (2021)
and Zhou and Tang (2019) considered column-orthogonal strong orthogonal arrays; Liu and Liu (2015) studies sliced
strong orthogonal arrays; Zheng et al. (2024) introduced nested strong orthogonal arrays; Wang et al. (2022) investi-
gated strong group-orthogonal arrays. Shi et al. (2023) empirically showed the advantage of strong orthogonal arrays
in hyperparameter tuning in deep neural networks, providing an example of the use of strong orthogonal arrays in
machine learning. Their advantages can be attributed to superior low-dimensional projection properties. In particular,
Sun and Tang (2023) demonstrated that strong orthogonal arrays are nearly optimal in general, and optimal in a special
case, under the uniform projection criterion (Sun et al., 2019).

8.4 | Grouped Orthogonal Arrays
Chen et al. (2025) introduced the concept of grouped orthogonal arrays, motivated by applications in computer

experiments where interactions between factors only arise from disjoint groups of variables. In such experiments,
the true response surface or the preferred surrogate model is additive, with each component being a function of one
specific group of variables. A practical example is provided in the engine block and head joint sealing experiment dis-
cussed by Joseph et al. (2008), where eight factors were involved. Their analysis identified significant linear, quadratic,
and interaction effects among the first, second, and sixth factors. The eight factors can be divided into two groups:
one comprising the first, second, and sixth factors, and the other containing the remaining factors. In such cases, a
design with superior projection and space-filling properties for the first group is more desirable than traditional space-
filling designs that lack this feature because it enables more accurate estimation of the main and interaction effects
within the first group.
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Definition 8.5 An orthogonal array is called an s-level grouped orthogonal array with N runs, g groups and strength t if its
factors can be partitioned into g groups where the i th group has k i factors and is of strength t i , where t i ≥ t , for i = 1, . . . , g .

We use GOA (N , (k1, k2, . . . , kg ), (t1, t2, . . . , tg ), s, t ) to denote such an array. An an example, Table 8 displays a
GOA (27; (4; 3; 3) ; (3, 3, 3) ; 3; 2) , for which the whole array is a three-level orthogonal array of strength two, but where
the columns are partitioned into three groups, denoted by D1, D2 and D3 in Table 8, that each form an orthogonal
array of strength three.

The concept of grouped orthogonal arrays is not new. In addressing the experimental design issue in physical
experiments and applications in combinatorics, Lin (2012) introduced designs of variable resolution andRaaphorst et al.
(2014) coins variable strength orthogonal arrays. Lin (2012) and Lekivetz and Lin (2016) provided several constructions
for designs of variable resolutionwith the focus on two-level designs. The variable strength orthogonal arrays obtained
by Raaphorst et al. (2014) have groups of three factors and their run sizes are limited to s3 for a prime power s .
Zhang et al. (2023) constructed variable strength orthogonal arrays with strength l containing a subarray with strength
greater than l , where l ≥ 2. In addition to the drawback that the designs constructed have only one group with larger
strength, the resulting designs have very restrictive run sizes s t for a prime power s and an integer t ≥ 4. Chen
et al. (2025) proposed several construction methods to generate many more designs with flexible run sizes and better
within-group projection properties for any prime power number of levels.

The research on grouped orthogonal arrays is quite new. Several important directions are called for. First, current
constructions mostly produce regular designs and thus construction methods for non-regular grouped orthogonal
arrays are needed. Second, constructions on grouped orthogonal arrays with differing group sizes and mixed-level
grouped orthogonal arrays are worth exploring. Another important topic is the use of group orthogonal arrays in
analysis of computer experiments and beyond such as models with blocked additive kernels, as done in Lin andMorrill
(2014), which showed the advantages of designs of variable resolution in model selection of linear models.

9 | SUMMARY AND RESEARCH DIRECTIONS
This review is based on the experiences and interests of the authors, and therefore incomplete and selective.

Yet, even this selective review demonstrates the enormous impact that the introduction of orthogonal arrays by Rao
(1946, 1947, 1949) has had on applications and research. Orthogonal arrays are a simple yet elegantmathematical and
statistical tool with a rich theoretical foundation and diverse applications across many fields. This review highlights
fundamental results and recent advancements, hoping to interest more readers in research on orthogonal arrays and
related structures or to use orthogonal arrays in novel applications. In an era where, in some fields, large datasets are
regularly collected, there continue to be emerging roles for orthogonal arrays, as we have pointed out in this review.
This includes applications in data subsampling and machine learning. There is no doubt that orthogonal arrays will
remain a prominent and versatile tool that will continue to drive innovation, including in the rapidly evolving realm of
artificial intelligence.

There remain specific research challenges associated with each topic discussed (see also the Research Problems
throughout Hedayat et al. (2012)), but rather than trying to explore these here in detail, we outline several general
directions for future research on orthogonal arrays:
• Scalability: Develop methodologies for identifying or constructing orthogonal arrays with desired properties for

large-scale and high-dimensional experimental settings.
• Improved algorithms: Develop improved algorithms for the construction of orthogonal arrays or for exploring
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TABLE 8 The design matrix D = (D1,D2,D3 ) for GOA(27, (4, 3, 3), 3 × 3, 3, 2) .
D1 D2 D3

0000 000 000
1110 111 111
2220 222 222
0120 012 012
1200 120 120
2010 201 201
0210 021 021
1020 102 102
2100 210 210
0111 122 200
1221 200 011
2001 011 122
0201 101 212
1011 212 020
2121 020 101
0021 110 221
1101 221 002
2211 002 110
0222 211 100
1002 022 211
2112 100 022
0012 220 112
1122 001 220
2202 112 001
0102 202 121
1212 010 202
2022 121 010

their existence. Such algorithms would be of great practical value. This extends to algorithms for enumerating
non-isomorphic orthogonal arrays for given parameters and for constructing orthogonal arrays with additional
properties.

• Model-based evaluation: Study the performance of orthogonal arrays under diverse statistical models, such as
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hierarchical or nonlinear frameworks.
• Prior knowledge integration: Identify desiderata for orthogonal arrays or related arrays in view of available domain

knowledge or structural constraints relevant to the experimental setting.
• Applications in emerging experimental settings: Explore the use of orthogonal arrays in novel experimental set-

tings, building on their success in factorial experiments and computer experiments (in the spirit discussed in
Subsection 3.3).

• Artificial intelligence (AI)-driven design automation: Employmachine learningmethods to facilitate the automated
selection of optimized orthogonal arrays.

• Open-source infrastructure: Expand publicly available libraries and software packages for orthogonal arrays.
While existing catalogs and R packages provide some coverage, there is a need for more comprehensive and
up-to-date public libraries for orthogonal arrays, particularly for new or specialized designs.
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