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Abstract

Floods are among the most destructive natural disasters, posing significant risks to human lives and property. This study investigates
the impact of Hurricane Matthew on built assets in Greenville, North Carolina, USA in 2016 using an integrated approach that
combined floodwater extent mapping, depth estimation, and impact assessment. In particular, our objective is to accurately map and
estimate floodwater depth using deep learning techniques combined with aerial imagery and lidar data to assess the extent of flooding’s
impact on critical infrastructure such as buildings and roads. The pretrained UNET model utilized, achieved high accuracy in mapping
flood extent, with a 93% accuracy, while floodwater depth estimates yielded a root mean square error (RMSE) of 0.75, reflecting a
deviation of approximately 1ft from field measurements. The results highlighted the severe damage sustained by essential assets,
notably Greenville Airport, which experienced significant flooding and disruption. The research results revealed that approximately
32% (415 acres) of developed land, 26% (185) of buildings, and 66% (23 miles) of roads were affected. These findings provide critical
insights that can guide policymakers in crafting effective mitigation and adaptation strategies to protect urban areas and essential

infrastructure.

1. Introduction

The increasing frequency and intensity of climate change-driven
flooding poses a growing threat to lives and properties,
particularly in flood-prone areas. Globally, projections indicate
that by 2100, 52% of the population and 46% of all assets will be
at risk from intensified flooding. Also, the frequency of flood will
continue to rise, with areas near rivers likely to experience
flooding every 10-50 years, instead of the anticipated 100 year
interval (Wienhold et al., 2023). In the United States, flooding
from major tropical cyclones has consistently inflicted severe
economic damage, especially in urban and coastal areas.
Hurricanes like Harvey (2017) and Ian (2022) caused over USD
100 billion in economic losses combined, while earlier storms,
such as Katrina (2005), was responsible for more than USD 5
billion in infrastructural damage across Alabama, Louisiana, and
Mississippi (Museru et al., 2024; Shahabi and Tahvildari, 2024).
These extensive societal and financial damages can be attributed
to the fact that over 80% of the population in the United States
are located in urban areas (World Bank, 2023).

Coastal states are particularly vulnerable to these devastating
flood events. Studies predict that by 2100, the area to U.S. coastal
floodplains susceptible to a 100-year flood event could expand
by 55% if shorelines remain fixed (Alizadeh Kharazi and
Behzadan, 2021). North Carolina, for example, suffered
catastrophic damage from Hurricane Matthew in 2016. Reports
from local, state, and federal agencies estimated economic losses
of about USD 5 billion, including the destruction of roughly
110,000 homes and businesses, as well as severe impacts to
electricity infrastructure, with inundated substations and blown
transformers, leaving approximately 900,000 people without
electricity (Benfield, 2017; Berg, 2017). Given the increasing
severity, frequency, and impact of flooding, there is a pressing
need to leverage advanced technology to map and assess risks
and vulnerabilities in populated areas, helping to mitigate future
losses.

Access to accurate and timely information following major
natural disasters, such as floods, is crucial for effective
emergency response and recovery. Additionally, it plays a vital
role in supporting mitigation and adaptation strategies aimed at
ensuring long-term socio-economic and environmental resilience
in vulnerable areas. (Alizadeh Kharazi and Behzadan, 2021).

Consequently, researchers have increasingly applied advanced
remote sensing techniques to efficiently map and analyze flood
dynamics (Do Lago et al., 2023; Gebrehiwot and Hashemi-Beni,
2021). Other studies have focused on flood damage and
susceptibility mapping (Museru et al., 2024; Wang et al., 2020).
Moderate resolution satellite imagery, including Landsat 8 and
Sentinel 2 provide valuable information for mapping flooded
areas, as well as training models for predicting flood
vulnerabilities and damage assessment for various flood
scenarios. Additionally, other remotely sensed datasets,
including radar imagery (e.g. Sentinel 1, PALSAR-2) (Cian et al.,
2018; Iervolino et al., 2015; Schumann et al., 2007), aerial
imagery (including UAV imagery) (Fonstad and Marcus, 2005;
Scorzini et al., 2018), as well as surveillance camera footage(e.g.
river cameras) (Liu and Huang, 2024; Moy De Vitry et al., 2019)
have been relied on for various flood studies.

Traditionally, classical remote sensing methods and machine
learning techniques were applied to process and extract
meaningful environmental information from these datasets for
different applications (Agboola and Hashemi-Beni, 2023;
Anokye et al., 2024; Wasehun et al., 2024) ; However, these
methods tend to yield low accuracy results due to the complex
textual information and nonlinear relationships between flood
related variables, especially in complex environments like the
urban area (Gebrehiwot and Hashemi-Beni, 2022). The use of
advanced deep learning networks, particularly convolutional
neural networks (CNNs), for flood mapping and assessment is
increasingly being adopted to address existing limitations and
demonstrate high performance (Gebrehiwot et al., 2019;
Hashemi-Beni et al., 2024). CNNs excel at learning and detecting
complex nonlinear relationships among features through various
convolutional operations.

Their capability to process and extract information from raw
image data, leveraging spatial information at the pixel level, has
contributed to their widespread acceptance and application
within the remote sensing community. (Guo et al.,, 2020;
Hashemi-Beni and Gebrehiwot, 2021). Various remote sensing
studies have applied different CNN network architectures for
flood mapping, with the UNET architecture being particularly
prevalent in studying various flood dynamics (Kabir et al., 2023;
Popandopulo et al., 2023; Yokoya et al., 2022). Other
architectures, such as Mask R-CNN (Alizadeh Kharazi and
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Behzadan, 2021; Song and Tuo, 2021), conditional Generative
Adversarial Network (¢cGAN) (Burrichter et al., 2023; Do Lago
et al., 2023), and Deeplabv3+ (Muhadi et al., 2024) have also
been applied for similar purposes. Despite its robust capabilities,
deep learning is inherently data-intensive, requiring sufficient
high-quality data to achieve optimal performance.

Rarely do studies provide a comprehensive approach that
includes floodwater extent mapping, water depth estimation, and
impact assessment. This study aims to address this limitation by
leveraging artificial intelligence and advanced remote sensing
techniques to predict floodwater extent, estimate water depth,
assess the impact on building structures and road infrastructure
in settlement areas. This integrated analysis offers a
comprehensive perspective on flood dynamics and potential
impacts, with each indicator contributing valuable insights
essential for shaping sustainable flood mitigation and adaptation
policies.

2. Data and Methodology
2.1 Study Area

The study focused on Greenville, a city in Pitt County, North
Carolina, USA. Situated in the north-central coastal plains region
of East North Carolina, Greenville was significantly impacted by
Hurricane Matthew, which brought severe flooding to the coastal
plains, causing widespread damage to both lives and properties.

Our analysis focused on the Greenville airport enclave (Figure
1), with a land cover area of 1,981 acres. The area constitutes
approximately 66% built-up areas, 19% open water, 15%
vegetation, and less than 1% other land cover types (Figure 2).
This area includes around 708 buildings and approximately 35
miles of roadway (Table 1).
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Figure 1: Study area map of Greenville airport enclave
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Figure 2: Landcover types for study area

Built assets Total

Building structures 708

Roads 34.94 miles

Table 1: Building structures and road infrastructure statistics.

2.2 Data

To achieve the study objective, a range of geospatial datasets
were employed. The primary data sources included post-flood
aerial imagery from NOAA, landcover data from the National
Land Cover Database (NLCD), lidar data and building footprints
from North Carolina Emergency Management (NCEM), and
road data from Open Street Map (OSM) (Figure 2).

The post flood aerial imagery, with a resolution of approximately
25 cm was downloaded from the NOAA web portal and used for
mapping flooded areas within the study area. The 2016 Land
Cover dataset for the Continental United States (CONUS) was
accessed from the NLCD web portal, at a resolution of
approximately 30 m, was employed to estimate land cover types
in the study area. Lidar data, derived from the North Carolina
Spatial data web portal, at 2 points per meter resolution for 2015,
was used to generate a digital elevation (DEM) raster for the
study area. Building footprints for 2020 were accessed from the
same source. Additionally, road data was extracted from open
street map (osm) using a plugin API in QGIS. These datasets
facilitated the impact assessment analysis. USGS field
measurements of floodwater depth was also utilized as reference
points for evaluating the accuracy of the floodwater depth
estimates.

Figure 3: (A) Post flood Aerial imagery. (B) National
landcover data. (C) Lidar data from NCEM. (D) Building
footprint, and road data (osm).

2.3 Methodology

The methodology leveraged the artificial intelligence (Al)
capabilities of ArcGIS pro, combined with a series of key steps
to delineate floodwater extent, and estimate floodwater depth.
This approach facilitated a detailed analysis of flood impact on
building structures and road infrastructure within the designated
study area. The flowchart (Figure 4) shows the steps of the
proposed methodology, which are further outlined below
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Figure 4: Flowchart of the proposed methodology

2.3.1 Floodwater Extent Boundary Extraction: To estimate
floodwater depth, identifying flooded areas within the study
region is essential. The initial step in our methodology focused
on delineating these areas using the post-flood aerial imagery,
which is processed through the UNET image segmentation
algorithm. The UNET model, originally proposed by
(Ronneberger et al.,, 2015), is highly effective for image
segmentation tasks and is widely recognized for its performance
in similar applications (Blay et al., 2024; Guo et al., 2022; Kabir
et al., 2023).

The UNET architecture is a U-shaped network, constituting two
main parts; a contracting path for downsampling and an
expansive path for upsampling. The contracting path applies 3x3
convolutions with ReLU and 2x2 max-pooling, doubling the
feature channels at each step. The expansive path upsamples with
2x2 convolutions, concatenates with cropped feature maps from
the contracting path, and uses additional two 3x3 convolutions,
each followed by a ReLU activation to refine results. The final
layer map features to classes with a 1x1 convolution, amounting
to a total of 23 convolutional layers. Furthermore Input tile sizes
are chosen to ensure smooth tiling of the segmentation output
(Ronneberger et al., 2015).

For this study, we leveraged a pre-trained UNET model,
specifically the “High resolution Land Cover Classification-
USA” model available in the ArcGIS python API. This model,
trained on the Chesapeake Bay Landcover dataset, has an overall
accuracy of approximately 87%, and about 93% in precision,
recall, and F1-score for detecting open water areas (ESRI, 2024).
The UNet model was employed to perform segmentation of the
post flood aerial imagery into seven (7) land cover classes. Our
primary interest was in the open water class, so we extracted the
water class and qualitatively reviewed it for any
misclassifications, including errors of commissions or omissions
in this category. Any misclassifications, such as the classification
of other land cover classes as open water, or otherwise, were
corrected (Figure 5).

The following steps summarize ArcGIS Pro deep learning
implementation workflow;

1. Segmentation of Imagery: Loaded the post-flood
aerial imagery into the ‘Classify Pixels using Deep
Learning’ tool, and segment it into seven land cover
classes using the pre-trained model. Converted
segmented raster results into polygon using “Raster to
Polygon” tool.

2. Visual Quality Assessment (VQA): Conducted a post-
segmentation VQA focused on the open water class
and other landcover types (Figure 6).

3. Extraction of Flooded Areas: Used SQL Query
Builder to extract the open water class, from the
segmentation results, as an indicator for flooded areas.

4. Flood Extent Assessment: Refine the floodwater
extent delineation and finalize results.

This workflow enabled efficient segmentation and extraction of
floodwater extent, leveraging artificial intelligence capabilities to
accurately identify open water areas (Figure 5 and 6).
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Figure 5: Floodwater extent delineation workflow.
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Figure 6: (A) aerial imagery. (B) segmentation results with
water misclassification. (C) Final floodwater extent post VQA
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2.3.2  Floodwater depth estimation and Impact assessment:
Our approach for estimating the floodwater depth is based on a
knowledge-based approach employed by various studies (Blay et
al., 2024; Gebrehiwot and Hashemi-Beni, 2021; Surampudi and
Kumar, 2023; Wienhold et al., 2023), which leverages on just
floodwater extent and an underlying DEM data. This approach is
a pixel-wise estimation of floodwater depth within a flood
domain, by deducting the water surface height from the
underlying DEM (Blay et al., 2024). This approach is based on
the principle of hydrostatic equilibrium, which states that
stationary fluids exert equal pressure in all directions due to
gravitational forces. This causes water to flow into lower areas,
creating a relatively level surface in the absence of flow. Thus,
we can assume that the water surface along the perimeter of the
flooded area is close to a uniform elevation. By interpolating this
water surface height using the water extent, we can estimate the
floodwater depth by subtracting it from the DEM, giving an
estimated water level within each flooded region. After obtaining
these floodwater depth estimates, we overlaid building and road
infrastructure, as well as the landcover data on the flood map to
assess the impact, determining the number of affected buildings,
roadways, and the extent of affected developed areas within the
study area. Our implementation followed the steps outlined in
(Blay et al., 2024), allowing for an effective evaluation of flood
depth and its impact on built infrastructure.

In summary, the implementation workflow included; (1)
Clipping the underlying DEM to the floodwater extent boundary;
(2) extracting elevation values along the water extent perimeter
from the clipped DEM; (3) using linear interpolation to estimate
the water surface heigh for each flooded area; and (4) calculating
floodwater depth by subtracting the estimated water surface
height from the underlying DEM (Figure 7).

Floodwater extent

Floodwater depth
result

Impact Assessment

Figure 7: Floodwater depth and impact assessment workflow

3. Results and Discussion

The estimated floodwater depth results revealed a maximum
water depth of approximately 16ft within the Greenville airport
enclave. Due to the absence of actual field measurements specific
to our study site, field gage height measurement data from USGS
on the Tar River was used as a reference for accuracy assessment
using the RMSE score. Our floodwater depth achieved an RMSE
score of 0.75, indicating an average deviation of approximately
1ft between our water depth estimation and the reference
measurement. This deviation may be attributed to several factors,
including the temporal mismatch between datasets, the reliability
of the ground truth data for the study areas, and minor
inaccuracies in both the floodwater extent results and the DEM
data.

The flooded areas were concentrated primarily in the southern
part of the study area (Figure 8), with the highest depth levels
clustered around the south and southwest of the Greenville
airport (Figure 9). Given the proximity of these areas to the
floodplains of the Tar River, this result aligns with expectations.
Further analysis revealed that approximately 32% (about 415
acres) of the total 1300.5 acres of the builtup area within the
airport enclave was affected by flooding. Furthermore,
approximately 26% (185) of the total building structures and 66%
(23 miles) of road infrastructure within the study area were
impacted by the hurricane (Figure 10).

As illustrated in Figure 10, critical built assets such as the
Greenville airport and various commercial and residential
buildings, suffered substantial impacts. This level of damage
underscores the potential for significant economic losses to the
city following the hurricane. For instance, various state reports
revealed that approximately 30,000 businesses across the state
suffered physical damage or operational interruptions, with
estimated losses totaling USD 2 billion (Benfield, 2017).
Additionally, many smaller roads, including those in Greenville,
were expected to be closed for months due to the extent of the
damage caused by the hurricane. This widespread impact
highlights the severe economic and infrastructural challenges
incurred by the affected communities, including Greenville.

4. Conclusion

Comprehensively mapping floodwater extent, estimating the
water depth, as well as analyzing the flood impact in populated
areas provides in-depth insights into flood dynamics and
strategies for mitigating severity. This study leveraged geospatial
datasets and artificial intelligence to map floodwater extent,
estimate flood water depth and assessed its impact on buildings
and roads affected by Hurricane Matthew in Greenville, North
Carolina. The deep learning and geospatial analytical capabilities
were integrated with aerial imagery, lidar-derived DEM, building
and road data, as well as landcover data. Our findings show that
Hurricane Matthew affected 32% of developed land, 26%
building structures, and approximately 66% of roads within study
area. Notable assets, such as the Greenville airport, were
significantly affected. Flood extent results achieved 93%
accuracy, while floodwater depth estimation showed RMSE of
0.75, indicating a deviation from the ground truth measurements
of approximately 1ft.
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Figure 8: Floodwater extent result
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Figure 9: Floodwater depth estimation result
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Figure 10: Impact assessment results with ground truth

Despite the study’s comprehensive approach, several
improvements are needed for future research. A key limitation is
using DEMs to estimate floodwater depth in complex urban
terrains, as it may lead to significant underestimations. DEMs
tend to oversimplify urban landscapes, smoothing out critical
elevation variations caused by buildings, bridges, roads, artificial
slopes, and vegetation—features that influence natural water
flow. This simplification can lead to inaccuracies and misclassify
high-risk areas. Another key limitation is the temporal mismatch
in datasets used, as all were captured at different times. For
example, the aerial imagery was captured in 2016, while building
footprint data dates to 2020—four years post-disaster. This
discrepancy may introduce inaccuracies in the impact
assessment, potentially identifying buildings that did not exist at
the time of the disaster as affected or overlooking those that were
impacted. Future studies should find comprehensive ways of
addressing these challenges to improve flood mapping and
impact assessment. Such improvements could significantly
strengthen emergency response planning and infrastructure
resilience initiatives.
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