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Abstract. We consider gravity water waves in two space dimen-

sions, with finite or infinite depth. Assuming some uniform scale

invariant Sobolev bounds for the solutions, we prove local energy

decay (Morawetz) estimates globally in time. Our result is uniform

in the infinite depth limit.

1. Introduction

Our aim in this paper is to initiate the study of Morawetz inequalities
for water waves. The water-wave equations describe the dynamics of
the interface separating air from a perfect fluid. This is a system of
two coupled equations: the incompressible Euler equation inside the
fluid domain, and a kinematic equation describing the evolution of the
interface. Assuming that the flow is irrotational, we thus have two
unknowns: the velocity potential ϕ, whose gradient gives the velocity,
and the free surface elevation η, whose graph is the free surface.

We consider the 2D-gravity equations, without surface tension, and
assume that the fluid domain has a flat bottom. Then, at time t, the
fluid domain is of the form

Ω(t) = { (x, y) ∈ R× R : −h < y < η(t, x) },

where h > 0 is the depth. Given a compactly supported bump function
χ = χ(x), we want to estimate the local energy

g

2

∫︂ T

0

∫︂
R
χ(x−x0)η2(t, x) dxdt+

1

2

∫︂ T

0

∫︂
R

∫︂ η(t,x)

−h
χ(x−x0) |∇x,yϕ(t, x, y)|2 dydxdt,

uniformly in time T and space location x0.

In the infinite depth case (h = ∞), neglecting all nonlinearities, the
gravity water-wave equations can be written as a fractional Schrödinger
equation

∂tu+ i |Dx|
1
2 u = 0, with u = η + i |D|

1
2 ψ.

For this equation, one can obtain a Morawetz inequality by using some
standard dispersive tools. The first goal of this paper is to extend
this linear analysis to the finite depth case, and prove an estimate
which is uniform with respect to h ≥ 1. This problem exhibits some
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very interesting difficulties at low frequencies, whose analysis requires
a careful study of harmonic functions in a strip.

The second and main task of this paper is to obtain a Morawetz
inequality for the nonlinear equations. Our main result extends the
linear inequality; it holds provided that some scale invariant norms re-
main small enough uniformly in time. Our nonlinear analysis is highly
non-perturbative, since it is a very delicate problem to estimate the
nonlinearities by scale invariant norms (this can be seen by recalling
that one does not even know the existence of weak-solutions in such
scale invariant spaces).

The proofs combine multiple methods and ideas in a novel way: i)
local conservation laws for the momentum conservation (inspired by
Morawetz, and introducing a new momentum density for the water
waves equations); ii) a systematic use of conformal transformations,
iii) appropriate Littlewood-Paley decompositions and multilinear esti-
mates to analyze the low-frequency component, iv) a fully nonlinear
normal form type modification of the momentum density to handle the
worst nonlinearities.

In the Appendix, we also complement this analysis by showing a
Morawetz inequality for possibly large solutions, but at the expense
of loosing the uniformity in the depth as well as the control of the
low-frequency component of the velocity potential.

1.1. Morawetz estimates. Also known as local energy decay, they
were originally introduced in Morawetz’s paper [35]. In their original
form they assert that, for solutions to the linear wave equation, the
local energy of the solutions is bounded, globally in time, by the initial
energy. One may view this as a statement about the local decay of
solutions which is invariant with respect to time translations.

Another interesting example is the Schrödinger equation. Unlike the
wave equation, where one has a finite speed of propagation, in this
case the group velocity increases to infinity in the high frequency limit.
Because of this, the natural local energy measures a higher regularity
(1/2 derivative more to be precise) than the initial data energy of the
solutions; for this reason the Morawetz estimates for the Schrödinger
equation have been originally called local smoothing, see [18], [40].

Up to the present time, the Morawetz estimates have had a rich and
complex history, which is too extensive to try to describe here. For
further references we direct the reader to [33] for the wave equation,
[32] for the Schrödinger equation and [37] for other models. Morawetz
estimates have been proved for linear and nonlinear models, and have
been used as a key ingredient in many results concerning the long time
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behavior of solutions in nonlinear dispersive flows. One other key devel-
opment was the introduction of interaction Morawetz estimates in [17],
which has played a major role in the study of nonlinear Schrödinger
equations.

We turn our attention now to Morawetz estimates for water waves.
Here additional challenges arise due to the fact that the equations are
not only fully nonlinear, but also nonlocal. Another striking difference
is due to the fact that in the high frequency limit the dispersive part
of the group velocity goes to zero. Because of this, here we have the
opposite phenomena to local smoothing, namely a loss of 1/4 deriv-
ative in the local energy. Combined with the nonlinear and nonlocal
character of the equations, this brings substantial difficulties in the low
frequency analysis.

1.2. The water wave equations. Consider the incompressible Euler
equations for a potential flow in a 2D-domain located between with a
free surface and a flat bottom. At time t the fluid domain is of the
form

Ω(t) = { (x, y) ∈ R× R : −h < y < η(t, x) },
where h > 0 is the depth and η, the free surface elevation, is an un-
known function. The velocity field is the gradient of a harmonic po-
tential function ϕ = ϕ(t, x, y), satisfying the Bernoulli equation,⎧⎪⎪⎨⎪⎪⎩

∆x,yϕ = 0 in Ω(t)

∂tϕ+
1

2
|∇x,yϕ|2 + P + gy = 0 in Ω(t)

ϕy = 0 on y = −h,

(1.1)

where g > 0 is the acceleration of gravity, P : Ω → R is the pressure,
∇x,y = (∂x, ∂y) and ∆x,y = ∂2x+∂

2
y . Partial differentiations in space are

denoted by suffixes so that ϕx = ∂xϕ and ϕy = ∂yϕ.
The water-wave equations are given by two boundary conditions on

the free surface: firstly an equation describing the deformations of the
domain,

∂tη =
√︁

1 + η2x ϕn|y=η = ϕy(t, x, η(t, x))−ηx(t, x)ϕx(t, x, η(t, x)), (1.2)

and secondly an equation expressing the balance of forces at the free
surface. In the present article we consider pure gravity waves, so that
this balance of forces reads

P |y=η = 0. (1.3)

One can give more explicit evolution equations by introducing the
trace of the velocity potential at the free surface,

ψ(t, x) = ϕ(t, x, η(t, x)),
3



as well as the Dirichlet to Neumann operator associated to the fluid
domain Ω(t), defined by

G(η)ψ =
√︁

1 + η2x ϕn|y=η = (ϕy − ηxϕx)|y=η .

Then (see [46]), with the above notations, the water-wave system reads⎧⎨⎩
∂tη = G(η)ψ

∂tψ + gη +
1

2
ψ2
x −

1

2

(G(η)ψ + ηxψx)
2

1 + η2x
= 0.

(1.4)

1.3. Symmetries and conservation laws. Introduce the energy H,
defined by

H =
g

2

∫︂
R
η2 dx+

1

2

∫︂
R

∫︂ η(t,x)

−h
|∇x,yϕ|2 dydx. (1.5)

The energy is conserved. Furthermore, it is known since Zakharov
([46]) that the water-wave system is Hamiltonian. Precisely, we have

∂η

∂t
=
δH
δψ

,
∂ψ

∂t
= −δH

δη
.

A second conservation law arises by Noether’s theorem from the
invariance with respect to horizontal translations. This is the horizontal
momentum, which has the form

M =

∫︂
R
ηψx dx. (1.6)

Together with the energy, this will play a key role in what follows.
Another symmetry is given by the scaling invariance which holds in

the infinite depth case (that is when h = ∞). If ψ and η are solutions
of the gravity water waves equations (1.4), then ψλ and ηλ defined by

ψλ(t, x) = λ−3/2ψ(
√
λt, λx), ηλ(t, x) = λ−1η(

√
λt, λx),

solve the same system of equations. The (homogeneous) Sobolev spaces

invariant by this scaling correspond to η in Ḣ
3/2

(R) and ψ in Ḣ
2
(R).

1.4. The Cauchy problem. The energy, the momentum and the
scale invariant norms are super-critical for the current local well-posedness
results about the Cauchy problem. One does not even know the exis-
tence of weak-solutions for initial data such that these three quantities
are finite.

The local well-posedness for the Cauchy problem with initial data
in Sobolev spaces has been extensively studied; we refer the reader to
[36, 41, 42, 16, 30, 19, 28, 38, 4, 25, 29, 5, 1]. The water wave equations
are now known to be locally well-posed in suitable function spaces
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which are 1/2-derivative1 more regular than the scaling invariance, e.g.
when initially

η ∈ Hs(R), ψ − Tϕy |y=ηη ∈ Hs+ 1
2 (R), s ≥ 2,

where Tab is the paraproduct decomposition of the product of two
functions a and b; it represents the portion which favours the “low-
high” interaction when a low-frequency component of a is multiplied
with a high-frequency component of b. Here the expression ψ−Tϕy |y=ηη
represents the so called good unknown of Alinhac ([10, 9, 28, 8]), and
is imposed by the non-diagonal quasilinear structure of the equations.
Alternatively, one can re-express the second condition in terms of the
gradient of the velocity potential, namely by requiring that ∇ϕ|y=η
belongs to Hs− 1

2 (R).
Since we are interested in uniform in time estimates, let us recall

that much less is known concerning the long time dynamics. For data
of size ϵ it is known that solutions persist for at least a cubic lifespan
O(ϵ−2), see2 [6, 25] for the deep water case and [24] for the finite depth
case (see also [45] for the 3D problem). For longer times it is not at
all clear what happens to the solutions, and the blow-up scenario in
particular has not been excluded (see [15, 20] for large data blow-up).
An exception to this is the case when the initial data is not only small
but also localized, where there solutions are known to be global, see
[43, 27, 7, 25, 26] and also similar results in three dimensions [22, 44].
Rather than trying to study the size of the solutions for longer time,

in the present article we take a different track, and assume that we
have a solution which stays bounded (small) in a reasonable Sobolev
norm on a time interval [0, T ], with no a-priori bound on T , and ask
what can be said about the dispersive properties of the solutions. More
precisely, our goal here is to initiate the study of Morawetz inequalities
for water waves. We consider the case of gravity waves in the present
article, and the case of gravity-capillary waves in a second article.

1.5. Function spaces. In this paragraph we introduce three spaces:
a space E0 associated to the energy, a space E

1
4 associated to the

momentum, and a uniform in time control norm ∥·∥X which respects
the scaling invariance.

The above energy H (Hamiltonian) corresponds to the energy space
for (η, ψ),

E0 = g−
1
2L2(R)× Ḣ

1
2

h (R),

1Even slightly below that, see [5, 1].
2As a historical note, the question of obtaining cubic lifespan bounds first arose

in the work of Zakharov [46] in the context of the NLS approximation for deep

water waves; see also [39] for more recent results in this direction.
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with the depth dependent H
1
2
h (R) space defined as

Ḣ
1
2

h (R) = Ḣ
1
2 (R) + h−

1
2 Ḣ

1
(R).

Similarly, in order to measure the momentum, we use the space E
1
4 ,

which is the h-adapted linear H
1
4 -type norm for (η, ψ) (which corre-

sponds to the momentum),

E
1
4 := g−

1
4H

1
4
h (R)× g

1
4 Ḣ

3
4

h (R)

with

H
1
4
h (R) := Ḣ

1
4 (R) ∩ h

1
4L2(R), Ḣ

3
4

h (R) = Ḣ
3
4 (R) + h−

1
4 Ḣ

1
(R).

For our uniform a-priori bounds for the solutions, ideally one would like
to use a scale invariant norm, which would correspond to the following
Sobolev bounds:

η ∈ H
3
2
h (R), ∇ϕ|y=η ∈ H1

h(R).

Our uniform control norm, denoted by X, nearly matches the above
ideal scenario. Precisely, we define the homogeneous norm X0 by

X0 := L∞
t H

3
2
h × g−

1
2L∞

t H
1
h,

and then set

∥(η, ψ)∥X := ∥P≤h−1(η,∇ϕ|y=η)∥X0
+

∑︂
h−1≤λ∈2Z

∥Pλ(η,∇ϕ|y=η)∥X0 .

Here we use a standard Littlewood-Paley decomposition beginning at
frequency 1/h,

1 = P<1/h +
∑︂

1/h<λ∈2Z
Pλ.

Based on the expression (1.5) for the energy, we introduce the fol-
lowing notations for the local energy. Fix an arbitrary compactly sup-
ported nonnegative function χ. Then, the local energy centered around
a point x0 is

∥(η, ψ)∥2LEx0
:= g

∫︂ T

0

∫︂
R
χ(x−x0)η2 dx dt+

∫︂ T

0

∫︂
R

∫︂ η(t,x)

−h
χ(x−x0) |∇x,yϕ|2 dy dx dt.

It is also of interest to take the supremum over x0,

∥(η, ψ)∥2LE := sup
x0∈R

∥(η, ψ)∥2LEx0
.
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1.6. Main result. Our main result for gravity water waves is as fol-
lows:

Theorem 1.1 (Local energy decay for gravity waves). Let s > 5/2.
There exist ϵ0 and C0 such that the following result holds. For all T ∈
(0,+∞), all g ∈ (0,+∞), all h ∈ [1,+∞) and all solutions (η, ψ) ∈
C0([0, T ];Hs(R)×Hs(R)) of the water-wave system (1.4) satisfying

∥(η, ψ)∥X ≤ ϵ0 (1.7)

the following estimate holds

∥(η, ψ)∥2LE ≤ C0(∥(η, ψ)(0)∥2
E

1
4
+ ∥(η, ψ)(T )∥2

E
1
4
). (1.8)

We continue with several remarks concerning the choices of param-
eters/norms in the theorem.

Remark 1.2. One key feature of our result is that it is global in time
(uniform in T ) and uniform in h ≥ 1. In particular our estimate is
uniform in the infinite depth limit.

Remark 1.3. Another feature of our result is that the statement of
Theorem 1.1 is invariant with respect to the following scaling law (time
associated scaling)

(η(t, x), ψ(t, x)) → (η(λt, x), λψ(λt, x))

(g, h) → (λ2g, h).

This implies that the value of g is not important. By scaling one could
simply set it to 1 in all the proofs. We do not do that in order to
improve the readability of the article.

Remark 1.4. As already explained, the uniform control norms in (1.7)
are below the current local well-posedness threshold for this problem,
and are instead what one might view as the critical, scale invariant
norms for this problem. The dependence on h is natural as spatial
scaling will also alter the depth h. In the infinite depth limit one
recovers exactly the homogeneous Sobolev norms. We also note that,
by Sobolev embeddings, our smallness assumption guarantees that

|η| ≲ ϵ0h, |ηx| ≲ ϵ0.

Remark 1.5. The constraint h ≥ 1 is due to the window size of 1
in the local energy norm. Of course, once a local energy estimate is
obtained for a window size, the similar bound for all larger window
sizes also follow. Then bounds for h < 1 or for smaller window sizes
can also be achieved by scaling; however, the uniformity in h will be
lost.
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Remark 1.6. In Appendix A, we complement this result by showing
a similar estimate for possibly large solutions (satisfying a smallness
assumption which is milder than (1.7)), but at the expense of loosing
the uniformity in the depth as well as the control of the low-frequency
component of the velocity potential.

As in Morawetz’ s original paper ([35]), we will obtain these results
by using the multiplier method, based on the momentum conservation
law. When doing this, we encounter two difficulties:

• High frequency issues which are due to the fact that our
equations are quasilinear.

• Low frequency issues which are due both to the fact that
the equations are nonlocal, and that they have quadratic non-
linearities.

Of these, the low frequency issues are far more delicate. To approach
them we use both the Eulerian coordinates and the holomorphic coor-
dinates. The latter will provide a better setting to understand the fine
bilinear and multilinear structure of the equations.

1.7. Plan of the paper. In the next section, we review density flux
pairs for the momentum. The density ηψx implicit in (1.6) only allows
one to control the local potential energy, while for the local kinetic
energy we introduce an alternate density and the associated flux.

To exploit the density flux identities we need a good understand-
ing of the Dirichlet problem in a strip, which in turn leads us to the
holomorphic coordinates. This is discussed in the following section,
which also provides the formulation of the equations in holomorphic
coordinates and reviews the correspondence between the two settings.

In Section 4 we use the quadratic versions of the above density flux
pairs in order to prove the local energy bounds for the corresponding
linear flow. This will be later used to handle the leading, quadratic
part of the nonlinear identities.

Finally, in the last sections we use the nonlinear density flux pairs to
prove the local energy decay bounds in the theorem. Here we use the
linear analysis for the main quadratic terms, and the bulk of the work
is devoted to estimates for the cubic and higher terms. It is there that
a delicate analysis is required in order to handle both the low and high
frequency contributions. In particular, the worst such contribution
turns out to be unbounded. However, we discovered that this error
term can be balanced using a carefully chosen nonlinear normal form
type correction to the momentum density.

Acknowledgements. This research was initiated at IHÉS in the spring
2016 during a Trimester on nonlinear waves. The authors thank the
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two authors thank the École Normale Supérieure de Cachan and the
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BS01-0010-03. The second author was partially supported by a Clare
Boothe Luce Professorship. The third author was partially supported
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2. Conservation of momentum and local conservation
laws

This section contains several formal identities related to the conser-
vation of momentum (these formal computations will be made rigorous
later on). We prove that there are certain momentum densities that
one can use in defining the horizontal momentum. Clever manipula-
tions of such quantities will lead to control of the kinetic and potential
components of the local energy.

The fact that the momentum is a conserved quantity comes from the
fact that the problem is invariant with respect to horizontal translation
(see Benjamin and Olver [13] for studies of the invariants and symme-
tries of the water-wave equations). To exploit the conservation of the
momentum we will use density flux pairs (I, S) which by definition
must satisfy

M =

∫︂
I dx, (2.1)

and also the conservation law

∂tI + ∂xS = 0. (2.2)

In what follows m(x) is a positive increasing function. Multiplying
the identity (2.2) by m = m(x), integrating over [0, T ] × R and then
integrating by parts yields∫︂∫︂

[0,T ]×R
S(t, x)mx dxdt =

∫︂
R
m(x)I(T, x) dx−

∫︂
R
m(x)I(0, x) dx.

Since mx is nonnegative, the above identity is favorable provided that
S is also nonnegative.

We begin by writing the momentum as an integral over the whole
water domain

M(t) =

∫︂
R

∫︂ η(t,x)

−h
ϕx(t, x, y) dydx.

The next lemma shows that the momentum is an invariant. As already
mentioned, this is a well-known result. For the sake of completeness, we
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give, following Longuet-Higgins [31], a formal computational proof of
the conservation of momentum which is linked to other computations
made below. We also give three different expressions for a possible
choice of the momentum density.

Lemma 2.1. We have
d

dt
M = 0.

Proof. Set Ω(t) = {(x, y) : −h < y < η(t, x)}. To prove this result we
first check that, for any function f = f(t, x, y), one has

d

dt

∫︂∫︂
Ω(t)

f(t, x, y) dydx =

∫︂∫︂
Ω(t)

(∂t +∇x,yϕ · ∇x,y)f dydx.

Indeed, ∫︂
R
(∂tη)f(t, x, η) dx =

∫︂
R
(∂nϕ)f(t, x, η)

√︁
1 + η2x dx

=

∫︂
∂Ω(t)

n · (f∇x,yϕ) dσ

=

∫︂∫︂
Ω(t)

divx,y(f∇x,yϕ) dydx

=

∫︂∫︂
Ω(t)

∇x,yϕ · ∇x,yf dydx.

By applying the previous identity with f = ϕx, we deduce that

d

dt
M =

∫︂∫︂
Ω(t)

(∂t +∇x,yϕ · ∇x,y)ϕx dydx,

so

d

dt
M =

∫︂∫︂
Ω(t)

∂x(∂tϕ+
1

2
|∇x,yϕ|2) dydx = −

∫︂∫︂
Ω(t)

∂xP dydx.

Now, we have∫︂∫︂
Ω(t)

∂xP dydx =

∫︂
R
∂x

(︂∫︂ η(t,x)

−h
P dx

)︂
dx−

∫︂
ηxP |y=η dx = 0,

where we used the boundary condition P |y=η = 0. This gives the
wanted result. □

In addition to the conservation of momentum, one has local con-
servation laws of the form (2.2), which imply the conservation of mo-
mentum. The study of these conservation laws for water waves was
initiated by Benjamin and we refer to his broad survey paper about
impulse conservation in [12]. Here we discuss density-flux pairs (I, S)
for the momentum. These are not unique, and in effect there are three
such pairs that play a role in our work. The first two pairs are well
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known in fluid mechanics, but the third one is new to the best of our
knowledge.

Lemma 2.2. The expression

I1(t, x) =

∫︂ η(t,x)

−h
ϕx(t, x, y) dy,

is a density for the momentum, with associated density flux

S1(t, x) := −
∫︂ η(t,x)

−h
∂tϕ dy −

g

2
η2 +

1

2

∫︂ η(t,x)

−h
(ϕ2

x − ϕ2
y) dy.

Proof. This result follows from the study by Benjamin in [12]. We give
here another proof.

From now on, given a function f = f(t, x, y), we denote by ˜︁f the
function ˜︁f(t, x) = f(t, x, η(t, x)).

With this notation, one has

∂tI1 = ∂t

∫︂ η

−h
ϕx dy = (∂tη)˜︂ϕx + ∫︂ η

−h
∂tϕx dy.

Using the equations for η and the velocity ϕx this gives that

∂tI1 = ( ˜︁ϕy − ηx˜︂ϕx)˜︂ϕx − ∫︂ η

−h
∂x

(︃
1

2
|∇x,yϕ|2 + P

)︃
dy.

We deduce that

∂tI1 = ˜︁ϕy˜︂ϕx + 1

2
ηx ˜︁ϕ2

y −
1

2
ηx˜︂ϕx2 + ηx ˜︁P − ∂x

∫︂ η

−h

(︃
1

2
|∇x,yϕ|2 + P

)︃
dy.

Using the two equations for the pressure (in the fluid domain and at
the free surface), we conclude that

∂tI1 = ˜︁ϕy˜︂ϕx + 1

2
ηx ˜︁ϕ2

y −
1

2
ηx˜︂ϕx2 + ∂x

∫︂ η

−h
(∂tϕ+ gy) dy.

Since ∂x
∫︁ η
−h gy dy = ∂x(gη

2/2), to conclude the proof, it remains only
to check that˜︁ϕy˜︂ϕx + 1

2
ηx ˜︁ϕ2

y −
1

2
ηx˜︂ϕx2 = 1

2
∂x

∫︂ η

−h
(ϕ2

y − ϕ2
x) dy.

This can be verified by a direct computation, noticing that∫︂ η

−h
(ϕxϕyx−ϕxϕxx) dy =

∫︂ η

−h
(ϕxϕyx+ϕxϕyy) dy =

∫︂ η

−h
∂y(ϕxϕy) dy =˜︂ϕx ˜︁ϕy,

where we used the equations for ϕ to get ϕxx = −ϕyy and ϕy(t, x,−h) =
0. □

11



Lemma 2.3. The expression

I2(t, x) = η(t, x)ψx(t, x)

is a density for the momentum, with associated density flux

S2(t, x) := −ηψt −
g

2
η2 +

1

2

∫︂ η(t,x)

−h
(ϕ2

x − ϕ2
y) dy.

Proof. We write that

I1 =

∫︂ η(t,x)

−h
ϕx(t, x, y) dy = ∂x

∫︂ η(t,x)

−h
ϕ dy − ηxψ

= ∂x

(︄∫︂ η(t,x)

−h
ϕ dy − ηψ

)︄
+ ηψx

= ∂x

(︄∫︂ η(t,x)

−h
ϕ dy − ηψ

)︄
+ I2.

This immediately implies that M =
∫︁
I1 dx =

∫︁
I2 dx and

∂tI2 = ∂tI1−∂x

(︄∫︂ η(t,x)

−h
∂tϕ dy − ηψt

)︄
= −∂x

(︄
S1 +

∫︂ η(t,x)

−h
∂tϕ dy − ηψt

)︄
,

so that the wanted expression for S2 can be deduced from the previous
lemma. □

To define the third pair we introduce two auxiliary functions as fol-
lows (we shall later rigorously justify that these functions are well-
defined). The function q, defined inside the fluid domain, is the stream
function, or the harmonic conjugate of ϕ, and satisfies⎧⎪⎨⎪⎩

qx = −ϕy, in − h < y < η(t, x),

qy = ϕx, in − h < y < η(t, x),

q(t, x,−h) = 0.

(2.3)

The function θ is the harmonic extension of η with Dirichlet boundary
condition on the bottom:⎧⎪⎨⎪⎩

∆x,yθ = 0 in − h < y < η(t, x),

θ(t, x, η(t, x)) = η(t, x),

θ(t, x,−h) = 0.

(2.4)

Now the following lemma states that there is another natural den-
sity/flux pair for the momentum.

Lemma 2.4. The expression

I3(t, x) =

∫︂ η

−h
∇θ(t, x, y) · ∇q(t, x, y) dy

12



is a density for the momentum, with associated density flux

S3(t, x) := −g
2
η2 −

∫︂ η(t,x)

−h
θyϕt dy +

∫︂ η(t,x)

−h

(︂1
2
(ϕ2

x − ϕ2
y) + θtϕy

)︂
dy.

Proof. We write

∇θ · ∇q = ∂x(θqx) + ∂y(θqy),

and integrate in y,∫︂ η(x,t)

−h
∇θ · ∇q dy =

∫︂ η(x,t)

−h

(︁
∂x(θqx) + ∂y(θqy)

)︁
dy

= ∂x

(︄∫︂ η(x,t)

−h
θqx dy

)︄
− ηx˜︂θqx + ˜︂θqy,

where we recall that, given f = f(t, x, y), we set ˜︁f(t, x) = f(t, x, η(t, x)).
Now we notice that

−ηx ˜︁qx + ˜︁qy = ηx ˜︁ϕy +˜︂ϕx = ∂x˜︁ϕ = ψx,

so, recalling that ˜︁θ = η, we conclude that

I3 = I2 + ∂x

∫︂
θqx dy.

Hence I3 is also a momentum density. Further, its flux is

S3 = S2 − ∂t

∫︂ η(t,x)

−h
θqx dy.

We further expand the last time derivative,

∂t

(︂∫︂ η(t,x)

−h
θqx dy

)︂
= ηt˜︂θqx + ∫︂ η(t,x)

−h

(︁
− θtϕy + θqxt

)︁
dy

= −ηtη ˜︁ϕy + ∫︂ η(t,x)

−h

(︁
− θtϕy − θϕyt

)︁
dy

= −ηtη ˜︁ϕy − η ˜︁ϕt + ∫︂ η(t,x)

−h

(︁
− θtϕy + θyϕt

)︁
dy

= −ηψt +
∫︂ η(t,x)

−h

(︁
− θtϕy + θyϕt

)︁
dy.

The conclusion of the lemma easily follows. □

2.1. The expressions ϕt and θt. Here we provide a better descrip-
tion of the functions θt and ϕt arising in the last momentum flux S3.
For that we introduce two bounded operators, HD and HN , which act
on functions on the top and produce their harmonic extension within
the fluid domain with zero Dirichlet, respectively Neumann boundary
condition on the bottom (we shall explain later on that these operators
are defined on a space large enough to contain all the functions that

13



we shall encounter, namely they are well defined on uniformly local L2

spaces). As an example of the usage of these notations, we have

θ = HD(η), ϕ = HN(ψ),

which means that⎧⎪⎨⎪⎩
∆θ = 0 in − h < y < η,

θ|y=η = η,

θ|y=h = 0,

⎧⎪⎨⎪⎩
∆ϕ = 0 in − h < y < η,

ϕ|y=η = ψ,

∂yϕ|y=h = 0.

Recall that, given a function f = f(t, x, y), we set ˜︁f(t, x) := f(t, x, η(t, x)).

Lemma 2.5. The function ϕt is harmonic in the fluid domain, with
homogeneous Neumann boundary condition on the bottom, and can be
represented as

ϕt = −gHN(η)−HN

(︂
˜︂|∇ϕ|2

)︂
. (2.5)

The function θt is harmonic in the fluid domain, with homogeneous
Dirichlet boundary condition on the bottom, and can be represented as

θt = ϕy −HD

(︂
˜︂∇θ · ∇ϕ

)︂
. (2.6)

Proof. The equation for ϕ follows directly from the Bernoulli equation.
To compute the equation for θ, we write that, on the top {y = η(t, x)},˜︁θt = ηt

(︁
1− ˜︁θy)︁, ˜︁θx = ηx

(︁
1− ˜︁θy)︁.

Then we deduce that

˜︂θt − ϕy = −ηx˜︂ϕx(︁1− ˜︁θy)︁− ˜︃ϕyθy = −˜︃θxϕx − ˜︃θyϕy = − ˜︂∇θ · ∇ϕ. (2.7)

Since θt−ϕy vanishes on the bottom {y = −h}, this implies that θt−ϕy
is the harmonic extension with the Dirichlet boundary condition of
∇θ · ∇ϕ. □

3. Holomorphic coordinates

3.1. Harmonic functions in the canonical domain. Here we dis-
cuss two classes of harmonic functions in the horizontal strip S =
R× (−h, 0).

We start by considering solutions to the homogeneous Laplace equa-
tion with homogeneous Neumann boundary condition on the bottom,⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆u = 0 in S

u(α, 0) = f

∂βu(α,−h) = 0.

(3.1)

14



The solution may be written in the form

u(α, β) = PN(β,D)f(α) :=
1

2π

∫︂
pN(ξ, β)f̂(ξ)e

iαξ dξ,

where the Fourier multiplier symbol pN is given by

pN(ξ, β) =
cosh((β + h)ξ)

cosh(hξ)
.

We are also interested in the Dirichlet to Neumann map DN defined
by

DNf = uβ(·, 0).
This is closely related to the Tilbert transform, defined by the formula

Thf(α) = − 1

2h
lim
ϵ↓0

∫︂
|α−α′|>ϵ

cosech
(︂ π
2h

(α− α′)
)︂
f(α′) dα′, (3.2)

or equivalently, given by the Fourier multiplier

Th = −i tanh(hD).

We remark that it takes real-valued functions to real-valued functions.
We denote the inverse Tilbert transform by T −1

h ; a-priori this is only
defined modulo constants.

With this notation the Dirichlet to Neumann map for the problem
(3.1) is given by

DNf = Th∂αf.

We will also need to consider to similar problem with the Dirichlet
boundary condition on the bottom⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆v = 0 in S

v(α, 0) = g

v(α,−h) = 0.

(3.3)

The solution may be written in the form

v(α, β) = PD(β,D)g(α) :=
1

2π

∫︂
pD(ξ, β)ĝ(ξ)e

iαξ dξ,

where the Fourier multiplier symbol pD is given by

pD(ξ, β) =
sinh((β + h)ξ)

sinh(hξ)
.

The Dirichlet to Neumann map DD for this problem is given by

vβ(α, 0) = DDg = −T −1
h ∂αg.

The solutions to the two problems (3.1) and (3.3) can be related via
harmonic conjugates. Precisely, given a real-valued solution u to (3.1),

15



there exists a unique solution v to (3.3), which is harmonic conjugate
to u, i.e., satisfying the Cauchy-Riemmann equations⎧⎪⎨⎪⎩

uα = −vβ
uβ = vα

∂βu(α,−h) = 0.

The Dirichlet data g for v on the top is determined by the Dirichlet
data f for u on the top via the relation

g = −Thf.

Conversely, given v we could seek a corresponding harmonic conjugate
u. The difference in this case is that u will only be uniquely determined
modulo real constants.

3.2. A parabolic estimate for harmonic functions. We are inter-
ested in estimates of harmonic functions on vertical lines in terms of
the Dirichlet data on the top. These are parabolic type estimates for
solutions of these elliptic equations. To introduce these estimates, let
us consider the Laplace equation in the half space:

∆v = 0 in β < 0, v|β=0 = g.

By considering the Fourier transform in α, one obtains that

∂2β v̂ − |ξ|2v̂ = 0,

so

v̂ = A(ξ)eβ|ξ| +B(ξ)e−β|ξ|.

Since β < 0, one has necessarily B(ξ) = 0 so we deduce that v solves a
parabolic equation (we see β as a time variable)

∂βv − |Dα| v = 0 in β < 0, v|β=0 = g.

This is a backward parabolic equation. Namely, the function w(α, β) =
v(α,−β) satisfies ∂βw + |Dα|w = 0. Now, if we perform a standard
energy estimate, multiplying the equation by v, one obtains that

∥v(·, β)∥2L2
α
+ 2

∫︂ 0

β

⃦⃦
|Dα|1/2 v(·, β′)

⃦⃦2
L2
α
dβ′ = ∥g∥2L2

α
.

By letting β go to −∞, we conclude that

2 ∥v∥2
L2
βḢ

1
2
α

≤ ∥g∥2L2
α
.

The following lemma improves this inequality in several directions: it

allows to control the L∞-norm instead of the Ḣ
1/2

-norm, it allows to
consider initial data in Hs, and it gives a result that is uniform with
respect to the depth. Our main estimate is as follows

16



Proposition 3.1. i) Let s ∈
(︁
−∞, 1

2

)︁
. Then the solutions to the

equation (3.3) satisfy the following bound:

∥β−sv(α, β)∥L2
βL

∞
α
≲ ∥g∥Hs

h
. (3.4)

ii) The same result also holds for the equation (3.1).

This will transfer easily later on to a similar bound for the Laplace
equation in the fluid domain.

Proof. As already mentioned, the solution to (3.3) is of the form

v(α, β) =
1

2π

∫︂
pD(ξ, β)ĝ(ξ)e

iαξ dξ,

where

pD(ξ, β) =
sinh((β + h)ξ)

sinh(hξ)
.

Notice that |pD(ξ, β)| ≤ ecβ|ξ| for some positive constant c.
We now consider a Littlewood-Paley decomposition of g,

g = g≤1/h +
∑︂

1/h<λ∈2Z
gλ.

By the triangle inequality and Bernstein’s inequality applied to each
corresponding dyadic piece of v we obtain

∥v(β)∥L∞
α
≲ h−

1
2∥g≤1/h∥L2 +

∑︂
λ>1/h

λ
1
2 ecβλ∥gλ∥L2 .

For s <
1

2
the functions β−secβλ are easily seen to be almost orthogonal

in L2(−h, 0). Then it follows that

∥β−sv∥2L2
βL

∞
α
≲ h−2s∥g≤1/h∥2L2 +

∑︂
λ>1/h

λ2s∥gλ∥2L2 ,

which completes the proof of i).
To prove ii), we remark that we above we have only used the fact

that |pD(ξ, β)| is bounded from above by ecβ|ξ|. Since the symbol pN
satisfies the same bound, the same conclusion holds for the solution to
(3.1). □

3.3. Holomorphic functions in the canonical domain. Here we
consider holomorphic functions w in the canonical domain S := {α +
iβ : α ∈ R, −h ≤ β ≤ 0}, which are real on the bottom {R − ih}.
These functions form a real algebra. Such functions are uniquely de-
termined by their values on the real line {β = 0}, and can be expressed
as

w = u+ iv,
17



where u and v are harmonic conjugate functions which solve the equa-
tions (3.1), respectively (3.3).

By extension we will call functions on the real line holomorphic if
they are the restriction on the real line of holomorphic functions in
the strip and satisfy the above boundary condition on the bottom.
This consists of functions w : R → C so that there is an holomorphic
function, still denoted by w : S → C, which satisfies

Imw = −ThRew

on the top.
The complex conjugates of holomorphic functions are called anti-

holomorphic.

3.4. Holomorphic coordinates and water waves. Given the fluid
domain Ω at some time t we introduce holomorphic coordinates z =
α + iβ, via conformal maps

Z : S → Ω(t),

which associate the top to the top, and the bottom to the bottom.
These maps are uniquely defined up to horizontal translations in

S. Restricted to the real axis this provides a parametrization for the
water surface Γ. Because of the boundary condition on the bottom of
the fluid domain the function W is holomorphic when α ∈ R.

Such a conformal transformation exists by the Riemann mapping
theorem, and can be constructed as follows:

• construct the harmonic function β in the fluid domain, which
takes values 0 on the top, and −h on the bottom.

• construct the function α in the fluid domain as a harmonic con-
jugate of β. This is uniquely determined modulo real constants.

• invert the holomorphic map x + iy → α + iβ to obtain the
desired conformal map Z.

Given such a map Z, we denote by

W := Z − α,

where W = 0 if the fluid surface is flat i.e., η = 0.
Turning our attention to the velocity potential ϕ, we consider its

harmonic conjugate q and then the function Q := ϕ + iq taken in
conformal coordinates is the holomorphic counterpart of ϕ. Here q is
exactly the stream function also used in the previous section.

One can model the water wave equations in holomorphic coordinates
as an evolution for (W,Q) within the space of holomorphic functions
defined on the surface. This is described in detail in the papers [25] for
the infinite depth case, respectively [24] for the finite depth case (see
also [21]). We recall the equations:
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⎧⎪⎨⎪⎩
Wt + F (1 +Wα) = 0

Qt + FQα − gTh[W ] +Ph

[︃
|Qα|2

J

]︃
= 0,

(3.5)

where

J = |1 +Wα|2, F = Ph

[︃
Qα − Q̄α

J

]︃
.

Here Ph represents the orthogonal projection on the space of holomor-
phic functions with respect with the inner product in the Hilbert space
Hh introduced in [24]. This has the form

⟨u, v⟩Hh
:=

∫︂
(ThReu · ThRe v + Imu · Im v) dα,

and coincides with the L2 inner product in the infinite depth case.
Written in terms of the real and imaginary parts of u, the projection
Ph takes the form

Phu =
1

2

[︁
(1− iTh) Reu+ i(1 + iT −1

h ) Imu
]︁
. (3.6)

Since all the functions in the system (3.5) are holomorphic, it follows
that these relations also hold in the full strip S for the holomorphic
extensions of each term.

We also remark that in the finite depth case there is an additional
gauge freedom in the above form of the equations, in that ReF is a-
priori only uniquely determined up to constants. This corresponds to
the similar degree of freedom in the choice of the conformal coordinates,
and will be discussed in the last subsection.

A very useful function in the holomorphic setting is

R =
Qα

1 +Wα

,

which represents the “good variable” in this setting, and corresponds
to the Eulerian function

R = ϕx + iϕy.

We also remark that the function θ introduced in the previous section
is described in holomorphic coordinates by

θ = ImW.

Also related to W , we will use the auxiliary holomorphic function

Y =
Wα

1 +Wα

.

Another important auxiliary function here is the advection velocity

b = ReF,
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which represents the velocity of the particles on the fluid surface in the
holomorphic setting.

It is also interesting to provide the form of the conservation laws
in holomorphic coordinates. We begin with the energy (Hamiltonian),
which has the form

H =
g

2

∫︂
| ImW |2(1 + ReWα) dα− 1

4
⟨Q, T −1

h [Qα]⟩Hh
.

The momentum on the other has the form

M =
1

2
⟨W, T −1

h Qα⟩Hh
=

∫︂
R
ThReW · ReQα dα =

∫︂
R
ImW · ReQα dα.

3.5. Uniform bounds for the conformal map. In order to freely
switch computations between the Eulerian and holomorphic setting it
is very useful to verify that our Eulerian uniform smallness assumption
also has an identical interpretation in the holomorphic setting.

To account for the uniformity in time in the X norm it is very conve-
nient to use the language of frequency envelopes. We define a frequency
envelope for (η,∇ϕ|y=η) in X to be any positive sequence{︁

cλ; h−1 < λ ∈ 2Z
}︁

with the following two properties:

(1) Dyadic bound from above,

∥Pλ(η,∇ϕ|y=η)∥X0 ≤ cλ.

(2) Slowly varying,

cλ
cµ

≤ max

{︄(︃
λ

µ

)︃δ
,
(︂µ
λ

)︂δ}︄
.

Here δ ≪ 1 is a small universal constant. Among all such frequency
envelopes there exists a minimal frequency envelope. In particular, this
envelope has the property that

∥(η,∇ϕ|y=η)∥X ≈ ∥c∥ℓ1 .

This will play an important role in our analysis:

Definition 3.2. By {cλ}λ≥1/h we denote the minimal frequency enve-
lope for (η,∇ϕ|y=η) in X0. We call {cλ} the control frequency envelope.

Since in solving the Laplace equation on the strip, solutions at depth
β are localized at frequencies ≤ λ where λ ≈ |β|−1, we will also use the
notation

cβ = cλ, λ ≈ |β|−1.

This uniquely determines cβ up to a small multiplicative constant,
which suffices for our purposes.
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We now use the control envelope to transfer the control norm bound
for (η,∇ϕ|y=η) to their counterpart (ImW,R) in the holomorphic co-
ordinates.

Proposition 3.3. Assume the smallness condition (1.7), and let {cλ}
be the control envelope as above. Then we have

∥Pλ(ImW,R)∥X0 ≲ cλ. (3.7)

Remark 3.4. We remark that this in particular implies the X bound

∥(ImW,R)∥X ≲ ϵ0, (3.8)

and also, by Bernstein’s inequality, the pointwise bound

∥Wα∥L∞ ≲ ϵ0. (3.9)

This in turn implies that the Jacobian matrix for the change of co-
ordinates stays close to the identity.

Proof. By a continuity argument, it suffices to prove the desired bounds
under the additional bootstrap assumption

∥(ImW,R)∥X ≤ ϵ1, ϵ0 ≪ ϵ1 ≪ 1. (3.10)

We caution the reader that the two X norms and their associated
frequency envelopes for (η,∇ϕ|y=η), respectively (ImW,R) are relative
to different coordinate systems, Eulerian vs. holomorphic.

To prove the proposition we first compare the regularity of ImW
with the regularity of η, since (either of) these functions determine the
conformal map. Let {cλ}, {dλ} be minimal frequency envelopes for
(η,∇ϕ|y=η), respectively (ImW,R) in X, so that we have

∥d∥ℓ1 ≤ ϵ1.

Then we will show that for each λ ≥ 1/h we have the equivalence

cλ ≈ dλ. (3.11)

Our bootstrap assumption insures that ReWα is pointwise small,
which implies that the change of coordinates x = α + ReW (α) is
biLipschitz, so we easily have the norm equivalence

∥f∥L2
α
≈ ∥f∥L2

x
, ∥f∥

Ḣ
1
α
≈ ∥f∥

Ḣ
1
x
. (3.12)

The L2 bound allows us to easily compare the L2 norms of η and ImW ,
which accounts for the case λ = 1/h, namely

∥ ImW<1/h∥L2 ≲ h
3
2 c1/h, ∥η∥L2 ≲ h

3
2d1/h.
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For higher frequencies, it remains to compare minimal frequency en-

velopes for their derivatives ηx and ImWα in H
1
2
h , which are also com-

parable to cλ, respectively dλ. Here we also need bounds for

ReWα = −T −1
h ∂α ImW.

But it is easily seen that dλ is also an envelope for ReWα in H
1
2
h .

To begin with, we note that by interpolation, the bound (3.12) in-
sures the equivalence of all intermediate lp(Hs

h) norms and envelopes for
all 1 ≤ p ≤ ∞ and 0 < s < 1, with uniform frequency envelope bounds.

We will use this property for the norm ℓ1H
1
2
h , in order to harmlessly

switch the function ηx to holomorphic coordinates. Hence it remains to

compare the H
1
2
h frequency envelopes for the functions ηx and Wα both

measured in the holomorphic coordinates. This is convenient since by
chain rule we have the relation

ηx =
ImWα

1 + ReWα

.

To deal with the nonlinear expression we use the algebra property of

ℓ1H
1
2
h , expressed in a frequency envelope fashion. For convenience, we

state this as

Lemma 3.5. a) The space ℓ1H
1
2
h is an algebra3. Furthermore, if u, v ∈

ℓ1H
1
2
h have frequency envelopes cuλ, c

v
λ then an envelope for uv is given

by

cuvλ = cuλ∥cv∥ℓ1 + cvλ∥cu∥ℓ1 .

b) Let u ∈ L2 and v ∈ ℓ1H
1
2
h have frequency envelopes cuλ, c

v
λ then an

envelope for uv in L2 is given by

cuv(λ) = cuλ∥cv∥ℓ1 .

The proof of the lemma is relatively simple and is omitted.
The smallness of ϵ1 in our bootstrap assumption allows us to use the

lemma in order to estimate the difference

ηx − ImWα = −ImWα · ReWα

1 + ReWα

.

Precisely, a frequency envelope for ηx − ImWα will be given by ϵ1dλ.
Then, by the triangle inequality for minimal frequency envelopes, we
must have

|cλ − dλ| ≲ ϵ1dλ.

3This property suffices in the present paper since Wα is small in L∞. However,

even if Wα were large, then bounds as in the lemma would still be valid. However,

proving that would require corresponding Moser estimates in ℓ1H
1
2

h . For that we

refer the reader to the similar analysis in [25].
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Since ϵ1 ≪ 1, this implies that cλ ≈ dλ. This concludes the proof of
(3.11) restricted to the η and ImW components.

Next we consider the equivalence of the frequency envelopes for
∇ϕ|y=η respectively R = (ϕx + iϕy)|y=η in H1

h. These are one and the
same function, and the only difficulty is that the H1

h norms and fre-
quency envelopes are measured in different frames, Eulerian vs. holo-
morphic. The L2 part of the H1

h norm is easily dealt with using (3.12),
so it remains to compare the frequency envelopes for their derivatives
in L2.
As before, we compute using the chain rule

g := ∂x(ϕx + iϕy)|y=η =
Rα

1 + ReWα

.

Using part (b) of the last lemma, it is easily seen that in holomorphic
coordinates the function g has a minimal frequency envelope compara-
ble to that of Rα. Thus it only remains to see that the function g has
equivalent L2 minimal frequency envelopes in Eulerian and holomor-
phic coordinates.
This follows if we show the following off-diagonal decay:

∥PE
λ Pµg∥L2 ≲

{︃
λ

µ
,
µ

λ

}︃
, (3.13)

where PE
λ and Pµ are Littlewood-Paley projectors in the Eulerian, re-

spectively holomorphic frame.
To prove (3.13) we consider two cases:

a) λ ≥ µ. Then we write

∥PE
λ Pµg∥L2 ≲ λ−1∥∂xPµg∥L2 ≲ λ−1∥∂αPµg∥L2 ≲ µ/λ.

b) λ ≤ µ. Then we use duality to interchange the two projections,
and then argue exactly in the same way.

The proof of the Proposition 3.3 is complete. □

As a consequence of the last proposition we can further extend the
range of our frequency envelope estimates:

Remark 3.6. The previous proposition and its proof show that {cλ}
is also a frequency envelope for

• (ImW,R) in X0.

• Wα in H
1
2
h and L∞.

• Y in H
1
2
h .

Here the last property is a direct consequence of Lemma 3.5.
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3.6. Vertical strips in Eulerian vs holomorphic coordinates.
In our main result, we define local energy functionals using vertical
strips in Eulerian coordinates. On the other hand, for the multilinear
analysis in our error estimates in the last two sections, we would like
to use vertical strips in holomorphic coordinates. Of course these two
types of vertical strips do not perfectly match. To switch from one
to the other we need to estimate the horizontal drift between the two
strips in depth.

As the conformal map is biLipschitz, it suffices to compare the cen-
ters of the two strips. It is more convenient to do this in the reverse
order, and compare the Eulerian image of the holomorphic vertical
section with the Eulerian vertical section:

Proposition 3.7. Let (x0, η(x0)) = Z(α0, 0), respectively (α0, 0) be
the coordinates of a point on the free surface in Eulerian, respectively
holomorphic coordinates. Assume that (1.7) holds, and let {cλ} be the
control frequency envelope in Definition 3.2. Then we have the uniform
bounds:

|ReZ(α0, β)− x0 + β ImWα(α0, β)| ≲ cλ, |β| ≈ λ−1. (3.14)

As a corollary, we see that the distance between the two strip centers
grows at most linearly:

Corollary 3.8. Under the same assumptions as in the above proposi-
tion we have

|ReZ(α0, β)− x0| ≲ ϵ0|β|. (3.15)

Proof. We consider the expression

D = ReZ(α, β)−x0+β ImWα(α0, β) = ReW (α, β)−ReW (α, 0)+β ImWα(α0, β).

We can express this in terms of ImW on the top as follows:

D = (PN(D, β)− 1)ReW (α, 0) + β∂αPD(D, β) ImW (α, 0)

=
(︁
T −1
h (PN(D, β)− 1)− iβDPD(D, β)

)︁
ImW (α, 0).

The symbol for the multiplier

M(D, β) = T −1
h (PN(D, β)− 1)− iβDPD(D, β)

is

m(ξ, β) =
i cosh ((β + h)ξ)− cosh(hξ)

sinh(hξ)
− iβξ sinh ((β + h)ξ)

sinh(hξ)

=
2 sinh (βξ/2) sinh ((h+ β/2)ξ)− βξ sinh ((β + h)ξ)

sinh(hξ)
.

This is easily seen to be smooth and satisfy the bound

|m(ξ, β)| ≲ min{1, |βξ|2}.
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Given this symbol bound, the conclusion of the proposition follows by
applying Bernstein’s inequality for each dyadic frequency, and then
summing up. □

3.7. The horizontal gauge invariance. Here we briefly discuss the
gauge freedom due to the fact that ReF is a-priori only uniquely de-
termined up to constants. In the infinite depth case this gauge free-
dom is removed by making the assumption F ∈ L2. In the finite
depth case (see [24]) instead this is more arbitrarily removed by set-
ting F (α = −∞) = 0.

In the present paper no choice is necessary for our main result, as
well as for most of the proof. However, in the choice of the normal
form momentum density correction in Section 5 it is convenient to
make such a choice, which is discussed next. This choice is used in the
very last step in Section 7.

Assume first that we have a finite depth. We start with a point
x0 ∈ R where our local energy estimate is centered. Then we resolve
the gauge invariance with respect to horizontal translations by setting
α(x0) = x0, which corresponds to setting ReW (x0) = 0. In dynamical
terms, this implies that the real part of F is uniquely determined by

0 = ReWt(x0) = Re(F (1 +Wα))(x0),

which yields

ReF (x0) = ImF (x, 0)
ImWα(x0)

1 + ReWα(x0)
.

In the infinite depth case, the canonical choice for F is the one vanish-
ing at infinity. This corresponds to a moving location in the α variable.
We can still rectify this following the finite depth model, at the expense
of introducing a constant component in both ReW and in F . We will
follow this convention in the paper, in order to insure that our infinite
depth computation is an exact limit of the finite depth case.

4. Local energy decay for linear gravity waves

4.1. Linearized equations in Eulerian coordinates. In Eulerian
coordinates the linearized equations around the zero solution are{︃

∂tη = DNψ
∂tψ = −gη, (4.1)

where DN is the Dirichlet to Neumann map associated to depth h > 0,
given by

DNψ = ∂yϕ|top = Th∂xψ,
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where recall that Th is the Tilbert operator given by (3.2) and ϕ is the
harmonic extension of ψ in the flat strip S = {(x, y) ∈ R2 : −h < y <
0}, so that ⎧⎪⎨⎪⎩

∆ϕ = 0 in S,

ϕ|y=0 = ψ,

∂yϕ|y=−h = 0.

For such η and ψ we define the (conserved) energy as

Elin(η, ψ) :=
g

2
∥η∥2L2 +

1

2
⟨Th∂xψ, ψ⟩.

We can express the energy in a more symmetric fashion by using the
harmonic extension ϕ of ψ in the strip S with Neumann boundary
condition on the bottom. Then

Elin(η, ψ) =
g

2
∥η∥2L2 +

1

2
∥∇ϕ∥2L2(S).

We also introduce higher energies

Es
lin(η, ψ) :=

g1−2s

2
∥(T −1

h ∂x)
sη∥2L2 +

g−2s

2
∥(T −1

h ∂x)
s∇ϕ∥2L2(S).

These are homogeneous norms in the infinite depth case, but the ho-
mogeneity is broken in the finite depth case.

The local energy for the linearized equation is given by

∥(η, ψ)∥2LE = ∥η∥2LE0 + ∥∇ϕ∥2
LE− 1

2
,

where

∥η∥LE0 := sup
x0∈R

∥η∥LE0
x0
, ∥η∥2LE0

x0
=

∫︂ T

0

∫︂
χ(x− x0)η

2 dx dt

while

∥∇ϕ∥
LE− 1

2
:= sup

x0∈R
∥∇ϕ∥

LE
− 1

2
x0

, ∥∇ϕ∥2
LE

− 1
2

x0

=

∫︂ T

0

∫︂∫︂
S

χ(x−x0)|∇ϕ|2 dxdydt.

With these notations, the local energy decay estimate for the linearized
equation is as follows:

Theorem 4.1. There exists a constant C such that, for all h ∈ [1,+∞)
and all T ∈ (0,+∞), solutions (η, ψ) to the above system (4.1) satisfy
the local energy bound

∥(η, ψ)∥LE ≤ C

(︃
∥(η, ψ)(0)∥

E
1
4
lin

+ ∥(η, ψ)(T )∥
E

1
4
lin

)︃
. (4.2)

The rest of the section is devoted to the proof of the theorem. By
scaling we can and will assume without any loss of generality that
h ≫ 1. Precisely, in the following proof h will play the role of an
(inverse) semiclassical parameter.
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The proof is based on Morawetz’ identities starting from the momen-
tum conservation, and more precisely from the linear counterparts of
the momentum densities I2 and I3 in section 2. We define the momen-
tum as

M =

∫︂
ηψx dx

with I2(x) = ηψx as the first momentum density.
For this proof, given a function f = f(t, x, y) with (x, y) ∈ S, we set˜︁f(t, x) := f(t, x, 0).

Now, using the equations for η, ψ, given a bounded increasing function
m, we compute

∂t

∫︂
m(x)I2(t, x) dx =

∫︂
m ˜︁ϕyψx dx− ∫︂ gmηηx dx.

The second term in the right-hand side gives

g

2

∫︂
mxη

2 dx.

The first term can be written as∫︂
m ˜︁ϕy˜︂ϕx dx =

∫︂∫︂
m∂y(ϕyϕx) dydx

=

∫︂∫︂
m(ϕyyϕx + ϕyϕxy) dydx

=

∫︂∫︂
m(−ϕxxϕx + ϕyϕxy) dydx

=
1

2

∫︂∫︂
mx(ϕ

2
x − ϕ2

y) dydx.

Thus we conclude that

∂t

∫︂
mI2 dx =

g

2

∫︂
mxη

2 dx+
1

2

∫︂∫︂
mx(ϕ

2
x − ϕ2

y) dydx. (4.3)

The first term on the right is a component of the local energy, whereas
the second is nonnegative when mx is replaced by 1 (see Lemma A.3
in the appendix, applied with w = 1 and η = 0).

We now continue by using a second momentum density I3, which in
addition to the functions η, ψ and ϕ, depends on the functions θ and
q introduced in the previous sections (see (2.3) and (2.4)):

• θ is the harmonic extension of η with Dirichlet boundary con-
dition on the bottom;

• q is the harmonic conjugate of ϕ with Dirichlet boundary con-
dition on the bottom.
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With these notations, one has

M =

∫︂
I3 dx with I3 =

∫︂ 0

−h
∇θ · ∇q dy.

Although it is natural to define I3 in terms of (θ, q), for the com-
putations it is convenient to express I3 in terms of (θ, ϕ). It follows
immediately from the equations qx = −ϕy and qy = ϕx that

I3(t, x) =

∫︂ 0

−h

(︁
θyϕx − θxϕy) dy.

Notice that

∂tθ = ϕy

(this is the simplified version of (2.6) for the linearized equation). As
a result, we get for any weight m,

d

dt

∫︂
mI3 dx = −

∫︂∫︂
m
(︁
ϕyyϕx−ϕyxϕy

)︁
dydx+

∫︂∫︂
m
(︁
θy∂tϕx−θx∂tϕy

)︁
dydx.

(4.4)
Since ϕyy = −ϕxx, integrating by parts, the first term gives the expres-
sion

−
∫︂∫︂

m
(︁
ϕyyϕx − ϕyxϕy

)︁
dydx =

1

2

∫︂∫︂
mx|∇ϕ|2 dydx,

which is the second part of the local energy. Our second observation
is that the second term depends only on m and η. To see this, we use
the operator HD (respectively HN) introduced in the previous section,
which maps a function f = f(x) to its harmonic extension in the strip
S with Dirchlet (respectively Neumann) boundary condition on the
bottom. Then, by definition, one has θ = HD(η). On the other hand,
since ∂tϕ|y=0 = −gη, it follows that ∂tϕ = −gHN(η). Consequently,
one has ∫︂∫︂

m
(︁
θy∂tϕx − θx∂tϕy

)︁
dydx = gQm(η),

where

Qm(η) :=

∫︂∫︂
m
(︁
HN(η)yHD(η)x −HN(η)xHD(η)y

)︁
dydx. (4.5)

Thus, we conclude that

d

dt

∫︂
mI3 dx =

1

2

∫︂∫︂
mx|∇ϕ|2 dydx+ g

∫︂∫︂
mQm(η) dydx. (4.6)

Notice that in the infinite depth case, one has HN(η) = HD(η) so
Qm(η) = 0, which greatly simplifies the proof of the theorem. To prove
a result that holds uniformly in the finite depth case, the idea here is
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now to try to combine the two local energies in a more balanced way.
Given a parameter σ ∈ [0, 1], we define

Iσm(t) = σ

∫︂
mI2 dx+ (1− σ)

∫︂
mI3 dx.

Then we have the following:

Proposition 4.2. Let h≫ 1. Then
a) For each σ ∈ [0, 1] we have

|Iσm(t)| ≲ ∥(η, ψ)∥2
E

1
4
lin

. (4.7)

b) There exist σ < 1
2
close to 1

2
and c < 1 independent of h so that

Iσm(T )− Iσm(0) ≥ ∥(η, ψ)∥2LEx0=0
− c∥(η, ψ)∥2LE (4.8)

holds for all solutions (η, ψ) of the equation (4.1).

The conclusion of the theorem follows by taking supremum over all
translates of (4.8). The remainder of the section is devoted to the proof
of the proposition.

We begin with part (a). We need to consider the the two momentum
densities I2 and I3. The contribution of I2 has the form∫︂

mηψx dx.

We estimate this as follows⃓⃓⃓⃓∫︂
mηψx dx

⃓⃓⃓⃓
≲ ∥mη∥

H
1
4
h

∥ψx∥
H

− 1
4

h

,

and conclude using the fact thatm is a bounded multiplication operator

in H
1
4
h ,

∥mη∥
H

1
4
h

≲ ∥mx∥L1∥η∥
H

1
4
h

. (4.9)

Now we consider the contribution of I3. To do so, we integrate by
parts to arrive at

I3 =

∫︂∫︂
S

m(θyϕx − θxϕy) dydx =

∫︂∫︂
S

m
(︁
∂y(θϕx)− ∂x(θϕy)

)︁
dydx

=

∫︂
mI2 dx−

∫︂∫︂
S

mxθqx dydx.

It remains to estimate the second part for which we will use the x-
localized L2 bounds for harmonic extensions in Proposition 3.1. This
yields ⃦⃦

y−
1
4 θ
⃦⃦
L∞
x (L2

y)
≤
⃦⃦
y−

1
4 θ
⃦⃦
L2
y(L

∞
x )

≲
⃦⃦
η
⃦⃦
H

1
4
h

,

and similarly ⃦⃦
y+

1
4ϕy
⃦⃦
L∞
x (L2

y)
≲
⃦⃦
ϕy|y=0

⃦⃦
H

− 1
4

h

.

29



Since mx is a positive function with integral 1, we conclude that⃓⃓⃓⃓∫︂∫︂
S

mxθϕy dydx

⃓⃓⃓⃓
≤
(︂∫︂

mx dx
)︂⃦⃦
y−

1
4 θ
⃦⃦
L∞
x (L2

y)

⃦⃦
y+

1
4ϕy
⃦⃦
L∞
x (L2

y)

≲ ∥η∥
H

1
4
h

∥ϕy∥
H

− 1
4

h

.

Since ϕy|y=0 = Dψ, this gives the wanted estimate (4.7).
We now prove part (b). We have

Iσm(T )− Iσm(0) = LEϕ + LEη, (4.10)

where

LEϕ =

∫︂ T

0

∫︂∫︂ (︂1− σ

2
mx|∇ϕ|2 +

σ

2
mx(ϕ

2
x − ϕ2

y)
)︂
dydxdt,

and

LEη =
σg

2

∫︂ T

0

∫︂
mxη

2 dxdt+ (1− σ)g

∫︂ T

0

Qm(η) dt,

where Qm(η) is defined by (4.5). We first observe that the second
term in LEϕ is clearly positive if σ < 1

2
. So, to conclude the proof,

it is sufficient to prove that the LEη component controls the potential
energy. This in turn is straightforward in the infinite depth case, since
then, Qm(η) = 0. Hence from here on we focus on the finite depth case
where the challenge is in part to gain the uniformity as h→ ∞.
So the goal is to prove that for some σ ∈ (0, 1/2), the expression LEη

is positive definite, either directly or after taking a supremum over all
translations of m. For that we need to write it in terms of η and mx.

Notation 4.3. Given a complex-valued function b = b(ξ1, ξ2), we de-
fine the bilinear Fourier multiplier B with symbol b by

B(f, g)(x) :=
1

2π

∫︂∫︂
R2

eix(ξ1+ξ2)b(ξ1, ξ2)f̂(ξ1)ĝ(ξ2) dξ1 dξ2.

Lemma 4.4. The bilinear form Qm admits the representation

Qm(η) =

∫︂
mxB

h(η, η) dx,

where Bh(η, η) is a bilinear Fourier multiplier with symbol

bh(ξ, ζ) =
ξζ

sinh 2ξh sinh 2ζh

cosh 2hξ − cosh 2hζ

(ξ + ζ)(ξ − ζ)
.

Proof. Recall that

ˆ︂HD(η)(ξ, y) =
sinh ξ(y + h)

sinh ξh
η̂(ξ), resp. ˆ︂HN(η)(ξ, y) =

cosh((h+ y)ξ)

cosh(hξ)
η̂(ξ).
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Consequently,(︁
HN(η)yHD(η)x −HN(η)xHD(η)y

)︁
(t, x, y)

=
1

2π

∫︂∫︂
R2

eix(ζ+ξ)bh0(y, ξ, ζ)η̂(t, ξ)η̂(t, ζ) dξ dα,

where

bh0(y, ξ, ζ) = iξζ

(︃
sinh ξ(y + h)

sinh ξh

sinh ζ(y + h)

cosh ζh
− cosh ξ(y + h)

sinh ξh

cosh ζ(y + h)

cosh ζh

)︃
=

−iξζ
sinh ξh cosh ζh

cosh((y + h)(ξ − ζ)).

Integrate in y to get∫︂ 0

−h
bh0(y, ξ, ζ) dy =

−iξζ
sinh ξh cosh ζh

sinhh(ξ − ζ)

ξ − ζ
.

Notice that for any bilinear Fourier multiplier B with symbol b, one
has

B(f, f) = Bsym(f, f) with bsym(ξ1, ξ2) =
1

2
(b(ξ1, ξ2) + b(ξ2, ξ1)).

By so doing, we obtain that∫︂ (︁
HN(η)yHD(η)x −HN(η)xHD(η)y

)︁
(t, x, y) dx = Bh

1 (η, η),

where Bh
1 is the bilinear Fourier multiplier with symbol

bh1(ξ, ζ) =
−2iξζ

sinh 2ξ sinh 2ζh

sinhh(ξ + ζ) sinhh(ξ − ζ)

2(ξ − ζ)
.

Integrating by parts we obtain∫︂
m(x)Bh

1 (η, η) dx =

∫︂
mx(x)B

h(η, η) dx,

where the symbol of Bh is given by

bh(ξ, ζ) =
i

ξ + ζ
bh1(ξ, ζ) =

2ξζ

sinh 2ξh sinh 2ζh

sinhh(ξ + ζ) sinhh(ξ − ζ)

2(ξ + ζ)(ξ − ζ)
,

which gives the desired result. □

To conclude the proof of (4.8), in light of (4.10) and the previous
lemma, it remains only to prove the following result.

Proposition 4.5. For the bilinear form Bh above there exists c < 1
2

so that we have∫︂ T

0

∫︂
mxB

h(η, η) dxdt ≥ −c sup
x0∈R

∫︂ T

0

∫︂
mx(x− x0)η

2 dxdt. (4.11)
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This concludes the proof of the Proposition 4.2. It now remains to
prove this proposition. We remark that we have written this proposi-
tion as a separate result in order to be able to apply it directly also for
the nonlinear problem.

Our first task is to understand the properties of the symbols Bh and
of their kernels Kh. The first observation concerning the symbols bh is
that they are all obtained by scaling from a single symbol

b(ξ, ζ) =
2ξζ

sinh 2ξ cosh 2ζ

sinh(ξ + ζ) sinh(ξ − ζ)

(ξ + ζ)(ξ − ζ)
,

as follows,

bh(ξ, ζ) = b(hξ, hζ).

Then the kernels Kh are related to the kernel K of B by

Kh(x1, x2) = h−2K(h−1x1, h
−1x2).

Concerning the symbol b, one easily sees that it has the following
properties:

• It is real, even and symmetric.
• It is uniformly smooth.
• It decays exponentially away from the axes ξ = 0, ζ = 0,

|b(ξ, ζ)| ≤ 1

1 + |ξ|+ |ζ|
e−cmin{|ξ|,|ζ|}.

• Near ξ = 0 it has the expansion

b(ξ, ζ) =
1

|ζ|
2ξ

sinh 2ξ
+O(|ζ|−3), |ζ| → ∞,

and symmetrically near ζ = 0.

Next, we consider the kernel K of B, which is the inverse Fourier
transform of the symbol b(ξ, ζ):

K(x1, x2) =
1

(2π)2

∫︂∫︂
eix1ξ+ix2ζb(ξ, ζ) dξ dα.

From the above properties of b we the corresponding properties of K,
which for later reference are collected in the following lemma:

Lemma 4.6. The kernel K has the following properties:

(1) K is real, even in each variable and symmetric.
(2) K is smooth and rapidly decreasing away from the axes x1 = 0,

x2 = 0.
(3) Near the axes x1 = 0, x2 = 0 we can expand

K(x1, x2) = − ln |x1| sech2 x2 − ln |x2| sech2 x1 +K lip(x1, x2)

where K lip is C1 and decays rapidly, together with its deriva-
tives.
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We now use these properties to carry out a preliminary step in the
proof of the Proposition. This is based on the observation that Bh is
primarily localized at frequency 1/h, which should allow us to discard
the high frequencies of η from Bh(η, η). Here to fix the meaning of
“high frequencies” we need to choose a frequency threshold λ0 so that
1/h≪ λ0 ≪ 1. Then we seek to replace η with η≤λ0 = P≤λ0η.
Here rather than choosing a sharp frequency localization operator

P≤λ0 , we instead choose a localization operator with a nonnegative
kernel; the price to pay for this is to allow harmless rapidly decreasing
tails at higher frequency. Then we claim that

Lemma 4.7. If 1/h≪ λ0 ≪ 1 then∫︂ T

0

∫︂
mxB

h(η, η) dxdt =

∫︂ T

0

∫︂
mxB

h(η≤λ0 , η≤λ0) dxdt+O(
1

λ0h
)∥η∥2LE0 .

Proof. Indeed, consider two dyadic frequencies h−1 ≤ µ ≤ λ ≲ 1. We
will estimate the contribution of B(ηλ, ηµ) in terms of the local energy
of η. For |ξ| ≈ λ and |ζ| ≈ µ we have

|bh(ξ, η)| ≲ 1

1 + hλ
e−chµ

with matching regularity on the same dyadic scale. Then we have⃓⃓⃓⃓∫︂ T

0

∫︂
mxB

h(ηµ, ηλ) dxdt

⃓⃓⃓⃓
≲

1

1 + hλ
e−chµ∥ηµ∥LE0∥ηλ∥LE0 ≲

1

1 + hλ
e−chµ∥η∥2LE0 .

Then the conclusion of the lemma follows after summation over µ >
1/h, λ > λ0.

□

The last Lemma allows us to localize η to low frequencies on the left
in (4.11). We now investigate the effect of such a change on the right
in (4.11). The idea here is that averaging η over a large scale allows us
to replace the local L2 norm in x by the L∞ norm. Precisely, we have

Lemma 4.8. For λ0 ≤ 1 we have

∥η≤λ0∥2L∞
x L2

t
≤ (1 + Cλ0)∥η∥2LE0 .

Proof. Here we take advantage of the fact that the kernel of P≤λ0 is
nonnegative and has integral 1. Then by the triangle inequality we
have

∥η≤λ0∥LE0 ≤ ∥η∥LE0 .

On the other hand differentiating yields another λ0 factor,

∥∂xη≤λ0∥LE0 ≲ λ0∥η∥LE0 .
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Then by the fundamental theorem of calculus and by the Cauchy-
Schwarz’s inequality, we compute⃓⃓⃓⃓∫︂ T

0

η2≤λ0(x, t) dt−
∫︂ T

0

∫︂
mx(x)η

2
≤λ0(x, t) dxdt

⃓⃓⃓⃓
≲ ∥η≤λ0∥LE0∥∂xη≤λ0∥LE0 ,

which implies that∫︂ T

0

η2≤λ0(x, t)dt ≤ ∥η≤λ0∥2LE0
0
+ ∥η≤λ0∥LE0∥∂xη≤λ0∥LE0

≤ (1 + Cλ0)∥η∥2LE0

as needed. □

As a consequence of the last two lemmas, by choosing 1/h≪ λ0 ≪ 1
and using the fact that

∫︁
mx dx = 1, we can replace the bound (4.11)

with∫︂ T

0

∫︂
Bh(η<λ0 , η<λ0)(0) dt ≥ −cg∥η<λ0∥2L∞

x L2
t
, 0 < c <

1

2
.

Now we discard the frequency localization; then h becomes a scaling
parameter and we can freely set it to 1. Hence, we have reduced Propo-
sition 4.5 to the following:

Proposition 4.9. The following bound holds:∫︂ T

0

∫︂
B(η, η) dxdt ≥ −c∥η∥2L∞

x L2
t
, 0 < c <

1

2
.

We first observe that B(0, 0) =
1

2
. This implies that∫︂

K(x1, x2) dx1dx2 =
1

2
.

The key step in the proof of the proposition is the following

Lemma 4.10. The kernel K is positive.

Before proving this result, let us explain how to conclude the proof
of Proposition 4.9 with this lemma. Firstly, notice that if K is nonneg-
ative, then ∫︂

|K(x1, x2)| dx1dx2 =
1

2
,

and then it is obvious that the proposition holds with c = 1
2
. But if

K is actually positive, there is a little trick to get a small extra gain.
Precisely, we can write

K(x1, x2) = K1(x1, x2) + L(x1)L(x2),

where L is nonnegative and K1 is still positive. Then the contribution
of the L term is nonnegative, while K1 has integral c < 1

2
. Then the
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Figure 1. Integration regions for K

conclusion of the proposition follows for this c. We now have to prove
the lemma.

Proof of Lemma 4.10. By the symmetries of K, it is sufficient to con-
sider the case 0 < x ≤ y (shaded region in the picture). To compute
K we view the symbol b as a product of

C1 = coth 2ξ csch 2ζ − csch 2ξ coth 2ζ,

and

D1 =
ζξ

ζ2 − ξ2
.

The Fourier transforms of coth ξ and csch ξ are F = cothx respectively
G = tanh, so the Fourier transform of C1 is (up to positive constants)

F (x)G(y)−G(x)F (y).

On the other hand for the Fourier transform of D1 we use the backward
fundamental solution for the wave equation, and then differentiate it
in x and y. We get

∂xδy+|x|=0,

which is supported on a π/2 degree angle downward from 0. Taking
the convolution of the two we get

K(x0, y0) =

∫︂
y−y0=|x−x0|

G′(x)F (y)− F ′(x)G(y) dx,

where the region of integration 1 ∪ 2 is the upward π/2 degree angle
from (x0, y0). (see picture). Here F is singular at x = 0, so the second
term is interpreted in the principal value sense.
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Based on previous computations, we know that K blows up logarith-
mically on the axes and decays exponentially on the diagonals. Then
the positivity of K would be a consequence of the bounds

(∂y − ∂x)K > 0, 0 < x0 ≤ y0, (4.12)

within the shaded area of the picture, respectively

(∂y + ∂x)K < 0, 0 < x0 = y0. (4.13)

Indeed, we can compute

(∂y − ∂x)K(x0, y0) =

∫︂
2
F ′(y)G′(x)−G′(y)F ′(x) dx,

respectively

(∂y − ∂x)K(x0, y0) =

∫︂
1
F ′(y)G′(x)−G′(y)F ′(x) dx.

Here the first integrand is nonsingular, but the second is again inter-
preted in the principal value sense at x = 0.

We remark that G′ > 0, F ′ < 0 and

F ′(x)

G′(x)
= − coth2(x),

which immediately shows that the above integral over 2 is positive
and thus (4.12) holds. Then it remains to establish (4.13) over the

positive half-line x0 = y0. While the integrand over 1 is also positive
pointwise, it has the distributional x−2 type singularity at x = 0, which
we expect makes the outcome negative !

To summarize, we need to prove that the following integral is nega-
tive,

I(x0) =

∫︂ x0

−∞
F ′(y)G′(x)−G′(y)F ′(x) dx, y = 2x0 − x.

We separate the analysis into three cases:

i) Large x0, x0 > 5. There y > 5, so it is natural to expand
in powers of e−y. Since F ′(y), G′(y) ≈ e−2y, the leading term in the
integrand is e−4y0 (here we take x0 = y0).

For F ′ and G′ we have the asymptotic expressions at infinity

F ′(x) = − 1

sinh2 x
= − 4e−2x

(1− e−2x)2
≈ −4e−2x − 8e−4x,

G′(x) =
1

cosh2 x
=

4e−2x

(1 + e−2x)2
≈ 4e−2x − 8e−4x.
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Then for our integral we have the expansion up to e−8y0 terms

I ≈
∫︂ y0

−∞

(4e−2(2y0−x) − 8e−4(2y0−x))

sinh2 x
− (4e−2(2y0−x) + 8e−4(2y0−x))

cos2 x
dx

= − 4e−4y0

∫︂ y0

−∞
e2x(

1

cosh2 x
− 1

sinh2 x
) dx− 8e−8y0

∫︂ y0

−∞
e4x(

1

cosh2 x
+

1

sinh2 x
) dx.

By direct computation the first integral gives zero when taken all the
way to +∞. Thus, we get

I = 4e−4y0

∫︂ ∞

y0

e2x(
1

cosh2 x
− 1

sinh2 x
) dx−8e−8y0

∫︂ y0

−∞
e4x(

1

cosh2 x
+

1

sinh2 x
) dx+O(e−8y0).

Now in both integrals the leading contribution comes from x = y0, and
has size e−6y0 . To compute it we write

I =− 4e−4y0

∫︂ ∞

y0

e2x
1

cosh2 x sinh2 x
dx− 16e−8y0

∫︂ y0

−∞
4e2x dx+O(e−8y0)

=− 4e−4y0

∫︂ ∞

y0

16e−2x 1

cosh2 x sinh2 x
dx− 16e−8y0

∫︂ y0

−∞
4e2x dx+O(e−8y0)

=− 32e−6y0 − 32e−6y0 +O(e−8y0) = −64e−6y0 +O(e−8y0).

i) Small x0, x0 < 0.1. In this range we have

I =

∫︂ x0

−1

− 1

sinh2(2x0 − x)
+

1

sinh2 x
dx+O(1)

= − 2

∫︂ 1

x0

1

sinh2 x
dx+O(1) = −2 cothx0 +O(1),

as desired. Here in the first line the expression
1

sinh2 x
is interpreted

as the distributional derivative ∂x(p.v. cosechx).

i) Medium x0, 0.1 < x0 < 5. For the intermediate range we do
not have an algebraic proof, but a direct MATLAB computation easily
confirms the result. □

5. Local energy decay for gravity waves

In this section we prove our main result in Theorem 1.1. We begin
by emulating the computation in the previous section for the linear
case. We define the functional

Iσm(t) =
∫︂
m(x)(σI2(x, t) + (1− σ)I3(x, t)) dx.

Using the density-flux pairs for the momentum, we have

∂tIσm(t) =
∫︂
mx(σS2(x, t) + (1− σ)S3(x, t)) dx.
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Hence, in order to prove the theorem we need to establish the following
bounds:

(i): Fixed time bounds,⃓⃓⃓⃓∫︂
m(x)I2 dx

⃓⃓⃓⃓
≲ ∥η∥

H
1
4
h

∥ψx∥
H

− 1
4

h

, (5.1)⃓⃓⃓⃓∫︂
m(x)I3 dx

⃓⃓⃓⃓
≲ ∥η∥

H
1
4
h

∥ψx∥
H

− 1
4

h

. (5.2)

(ii): Time integrated bound; for some σ ∈ (0, 1) and c < 1, we
have∫︂ T

0

∫︂
mx(σS2(t)+ (1−σ)S3(t)) dxdt ≳ LE0(η, ψ)− cLE(η, ψ). (5.3)

5.1. Fixed time bounds. The bound for the contribution of I2 is
identical to the one in the linear model. For the contribution of I3
there is a slight difference, which is due to the fact that the domain
of integration is no longer a strip. Hence in order to apply Propo-
sition 3.1 we need to switch to holomorphic coordinates, and to use
Proposition 3.7 in order to relate vertical strips in holomorphic vs.
euclidean coordinates.

5.2. Time integrated bounds. As before, here we take σ < 1
2
, but

close to 1
2
. Using the expressions in Lemmas 2.3, 2.4 as well as the

relations (2.5) and (2.6) we write the integral in (5.3) as a combination
of two leading order terms plus error terms∫︂ T

0

∫︂
mx(σS2(t)+(1−σ)S3(t)) dxdt = LEψ+gLEη+Err1+gErr2+Err3,

where

LEψ :=
1

2

∫︂ T

0

∫︂∫︂
mx[σ(ϕ

2
x − ϕ2

y) + (1− σ)|∇ϕ|2] dxdydt

LEη :=

∫︂ T

0

σ

2

∫︂
mxη

2 dx− (1− σ)

∫︂∫︂
mxθy(θ −HN(η)) dxdydt,

and finally

Err1 := σ

∫︂ T

0

∫︂
mxηN (η)ψ dxdt,

Err2 :=
1− σ

2

∫︂ T

0

∫︂∫︂
mxθyHN(|∇ϕ|2) dxdydt,

Err3 :=
1− σ

2

∫︂ T

0

∫︂∫︂
mxϕyHD(∇θ∇ϕ) dxdydt.

Our strategy in what follows will be to peel off a leading quadratic
part, which we interpret using our bounds for the linear equation. The
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remaining cubic and higher order expressions will be viewed as error
terms. All but one of the the cubic error terms will be estimated
perturbatively.

Finally, the last error term turns out to be unbounded both due to
low and to high high frequencies. For this term we instead apply a
partial normal form correction, which replaces it with bounded terms,
both time integrated, and at the endpoints of the time intervals. The
latter correspond to a nonlinear normal form modification of the mo-
mentum density.

For many of the nonlinear estimates it is useful to switch to holomor-
phic coordinates. That greatly facilitates multilinear analysis. There
is a price to pay for that, as our mx cutoff is vertical in the Eulerian
frame, but not in the holomorphic frame.

For the remainder of this section we reduce the nonlinear estimate
to the linear estimates in Section 4, plus a number of error terms,
which need to be estimated perturbatively. The last two sections are
devoted to the proof of the error estimates. In Section 6 we show that
the Eulerian local energy norms admit equivalent counterparts in the
holomorphic setting, and use this equivalence and multilinear analysis
to estimate some of the error terms. Finally, in Section 7 we deal with
the more difficult error terms which involve the function F , and arise
out of the normal form analysis.

5.3. The LEθ term. Here we need to compare the contribution of
HN(η),

I1 =

∫︂ T

0

∫︂∫︂
mxθy(HN(η)− θ) dxdy =

∫︂∫︂
mxθ(θ −HN(η))y dxdydt,

with the expression ∫︂ T

0

∫︂
1

2
mxη

2 dxdt

from the first term in LEθ.
We remark that HN(η) and θ solve the same equation and have the

same boundary condition on the top, but different boundary conditions
on the bottom (Dirichlet, respectively Neumann). Thus they cancel in
the infinite depth case, but not in the finite depth case.

To estimate this we move to conformal coordinates z = α+ iβ. This
does not change the equations for HN(η) and θ. Precisely, if α0 is
the image of x0 in the conformal setting, then we seek to compare the
integral I1 with its conformal counterpart

Ihol1 =

∫︂ T

0

∫︂∫︂
mα (α− α0)θ(θ −HN(η))β dαdβdt.
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We will view the difference between the two integrals as an error term,

Err4 = I1 − Ihol1

to be estimated later.
The expression Ihol1 can be rewritten as

Ihol1 =

∫︂ T

0

∫︂∫︂
mα θ(θ −HN(η))β dαdβdt

=

∫︂ T

0

∫︂∫︂
mθα(HN(η)− θ)β +mθ(HN(η)− θ)αβ dαdβdt

=

∫︂ T

0

∫︂∫︂
mθα(HN(η)− θ)β −mθβ(HN(η)− θ)α dαdβ

=

∫︂ T

0

∫︂∫︂
m (θαHN(η)β − θβHN(η)α) dαdβdt.

Recalling that θ = HD(η), the above integral becomes

Ihol1 =

∫︂ T

0

∫︂∫︂
mHD(η)αHN(η)β −HD(η)βHN(η)α) dαdβdt,

which is identical to the corresponding expression obtained in the anal-
ysis of the linearized problem in Section 4. Hence, as there, it can be
further represented as

Ihol1 =

∫︂ T

0

∫︂
mα(α− α0)B

h(η, η) dαdt.

On the other hand, as a consequence of the bound |Wα| ≲ ϵ we
obtain the relation∫︂ T

0

∫︂
1

2
mxη

2 dx =

∫︂ T

0

∫︂
1

2
mαη

2 dαdt+O(ϵ)∥η∥2LE.

Combining the two terms, we have established that

LEθ−Err4 =
∫︂ T

0

σ

2

∫︂
mαη

2 dα−(1−σ)
∫︂ T

0

∫︂
mα(α−α0)B

h
2 (η, η) dαdt+O(ϵ)∥η∥2LE.

We conclude the argument here by showing that for σ > 1
2
close to 1

2

we have the bound

LEθ − Err4 ≳
1

2
∥η∥2LEx0

− c∥η∥2LE, (5.4)

where c < 1
2
is a universal constant. This in turn is a consequence of

Proposition 5.1. For the bilinear form Bh
2 above there exists c < 1

2

so that we have∫︂ T

0

∫︂
mα(α− α0)B

h
2 (η, η) dαdt ≥ −cg sup

x1∈R

∫︂ T

0

∫︂
mα(α− α1)η

2 dαdt.

(5.5)
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This is a direct counterpart of Proposition 4.5 from the linear analy-
sis. The only difference is that on the right, α1 is not constant in time
but instead we have that α1 = α1(t, x1). Because of this we cannot
directly cite Proposition 4.5 here. However, it will be easy to reduce
the above proposition to Proposition 4.5.

Proof. To reduce to Proposition 4.5 we simply change coordinates back
into Eulerian coordinates. The Jacobian is 1 + ReWα = 1+O(ϵ) so it
only yields negligible O(ϵ) errors. The same applies for the changes in
the argument of m,

mα(α− α0) = mx(x− x0) +O(ϵ).

It remains to consider the change in the operator Bh. We consider this
at the level of the kernel Kh of Bh. Referring back to Section 4, the
kernel of Kh in the holomorphic coordinates is

Kh(α1, α2;α) = K
(︂α1 − α

h
,
α2 − α

h

)︂
.

After the change of coordinates this becomes

K̃h(x1, x2;x) := K
(︂α(x1, t)− α(x, t)

h
,
α(x2, t)− α(x, t)

h

)︂
.

We would like to replace this with Kh(x1, x2, x) at the expense of O(ϵ)
errors. For this we use the relations

α(xi, t)− α(x, t) = (xi − x)(1 +O(ϵ).

Then we compute using the properties of K in Lemma 4.6:

|K̃h(x1, x2;x)−Kh
2 (x1, x2, x)| ≲ ϵh−2(1 + h−1(|x− x1|+ |x− x2|)−N).

This easily gives O(ϵ) errors, and finally allows us to reduce the propo-
sition to Proposition 4.5. □

5.4. The error terms. At this point we have four error terms to deal
with, Err1, Err2, Err3 and Err4. Three of them will be directly
estimated in a perturbative fashion:

Proposition 5.2. We have the following estimates:

|Err1|+ |Err2|+ |Err4| ≲ ϵ∥(η, ψ)∥2LE. (5.6)

This proposition is proved in the following section.
The difficult term is Err3, which turns out to be unbounded both be-

cause of low frequency contributions and high frequency contributions.
We will address this difficulty in two steps. The first is to switch to the
holomorphic coordinates counterpart of Err3. The second is to apply
a nonlinear normal form type correction to the momentum density.
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For the first step, the holomorphic counterpart of Err3 is

Errhol3 :=

∫︂ T

0

∫︂∫︂
mα(α− α0)ϕyHD(∇θ∇ϕ) dαdβdt.

On the top we have ϕy = ImR, while for ∇θ∇ϕ we compute its value
as

∇θ∇ϕ = J−1(∇hθ∇hϕ) = J−1 Im(W̄αQα) = Im(
W̄α

1 + W̄α

R).

Therefore we obtain

Errhol3 =

∫︂ T

0

∫︂∫︂
mα(α− α0) ImRHD

(︃
W̄α

1 + W̄α

R

)︃
dαdβdt.

The transition between Err3 and Errhol3 is harmless:

Proposition 5.3. We have the following estimate:

|Err3 − Errhol3 | ≲ ϵ∥(η, ψ)∥LE. (5.7)

Next we turn our attention to the remaining unbounded error term
Errhol3 . Here we will borrow an idea from normal forms, and rectify
this error via a normal form type correction. Since we are trying to
address both low and high frequencies, our correction will be genuinely
nonlinear as opposed to the traditional cubic one, which would only
address the low frequencies.

Our correction is based on the following computation, which uses the
equations (3.5):

d

dt
(ImW ReWα) = ∂α(ImW ReWt) + Im(WtW̄α)

= ∂α(ImW ReWt)− Im(F (1 +Wα)W̄α)

= ∂α(ImW ReWt)− ImF |Wα|2 − Im(FW̄α)

= ∂α(ImW ReWt)− ImF (|Wα|2 + 2ReWα) + Im(FWα)

= ∂α(ImW ReWt)− ImQαJ
−1(|Wα|2 + 2ReWα) + Im(FWα)

= ∂α(ImW ReWt)− Im

(︃
R

W̄α

1 + W̄α

)︃
− Im(RWα) + Im(FWα)

= ∂α(ImW ReWt)− Im

(︃
R

W̄α

1 + W̄α

)︃
+ Im((F −R)Wα).

This allows us to express Im(
W̄α

1 + W̄α

R) on the top as

2 Im(
W̄α

1 + W̄α

R) = − d

dt
(ImW ReWα)+∂α(ImW ReWt)+Im((F−R)Wα).

The first expression on the right will correspond to our (partial) normal
form correction to the Morawetz ’s identity. The second has an α
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derivative, and thus better low frequency decay. Finally, the third
is the imaginary part of a holomorphic function, so it has a trivial
holomorphic extension.

Correspondingly, we can write Errhol3 in the form

2Errhol3 =

∫︂∫︂
mα ImRHD (ImW ReWα) dαdβ

⃓⃓⃓⃓T
0

+ Err5 + Err6 + Err7,

(5.8)

where

Err5 :=

∫︂ T

0

∫︂∫︂
mα ImRtHD (ImW ReWα) dαdβdt,

Err6 :=

∫︂ T

0

∫︂∫︂
mα ImR Im((F −R)Wα) dαdβdt,

Err7 :=

∫︂ T

0

∫︂∫︂
mα ImR∂αHD (ImW ReWt)) dαdβdt.

The first term in (5.8) can be estimated directly using Proposition 3.1,⃓⃓⃓⃓∫︂∫︂
mα ImRHD (ImW ReWα) dαdβ

⃓⃓⃓⃓
≲ ∥R∥

H− 1
4
∥ ImW ReWα∥H 1

4

≲ ∥R∥
H− 1

4
∥ ImW∥

H
1
4
≲ E

1
4 ,

since ReWα ∈ l1H
1
2
h , due to the multiplicative estimate

∥fg∥
H

1
4
h

≲ ∥f∥
H

1
4
h

∥g∥
l1H

1
2
h

.

Then it remains to estimate the error terms:

Proposition 5.4. We have the following estimates:

|Err5|+ |Err6|+ |Err7| ≲ ϵ∥(η, ψ)∥2LE. (5.9)

All of these errors involve the expression F , since in the fluid domain
we have

Wt = F (1 +Wα),

for W , respectively

Rt =
1

1 +Wα

(Qαt −RWαt)

=
1

1 +Wα

((−FQα)α +R(F (1 +Wα))α + gTWα + P [|R|2]α)

= − FRα +
1

1 +Wα

(−gTWα + P [|R|2]α)

for R. Corresponding to the last relation, we split

Err5 = Err15 + Err25 + Err35.
43



Thus, we have proved Theorem 1.1 modulo the results in Proposi-
tions 5.2, 5.3 and 5.4.

6. Local energy bounds in holomorphic coordinates

As a first step in the proof of the error estimates needed for our main
theorem, in this section we seek to understand how to transfer the local
energy bounds to the holomorphic setting. Then we will also consider
some bilinear expressions, and use them to estimate the simpler error
terms.

6.1. Notations. Our starting point here is represented by the local
energy norms in the Eulerian setting, which, are equivalently defined
as

∥(η, ψ)∥LE = ∥η∥LE0 + ∥∇ϕ∥
LE− 1

2
,

where

∥η∥LE0 := sup
x0∈R

∥η∥L2(S(x0)), ∥∇ϕ∥
LE− 1

2
:= sup

x0∈R
∥∇ϕ∥L2(S(x0)).

Here S(x0), respectively S(x0) represent the Eulerian strips

S(x0) := {[0, T ]×[x0−1, x0+1]}, S(x0) := {[0, T ]×[x0−1, x0+1]×[−h, 0]}.
Our first objective will be to prove that these norms are equivalent

to their counterparts in the holomorphic setting. In holomorphic coor-
dinates the functions η and ∇ϕ are represented by ImW and R. Thus
we will seek to replace the above local energy norm with

∥(W,R)∥LE := ∥ ImW∥LE0 + ∥R∥
LE− 1

2
,

where

∥ ImW∥LE0 := sup
x0∈R

∥ ImW∥L2(Sh(x0)), ∥R∥
LE− 1

2
:= sup

x0∈R
∥R∥L2(Sh(x0)).

Here Sh(x0), respectively Sh(x0), represent the holomorphic strips

Sh(x0) := {(t, α) : t ∈ [0, T ], α ∈ [α0−1, α0+1]}, Sh(x0) := S(x0)×[−h, 0],
where α0 = α0(t, x0) represents the holomorphic coordinate of x0,
which in general will depend on t.
We remark that while the strips Sh(x0) on the top roughly correspond

to the image of S(x0) in holomorphic coordinates, this is no longer
the case for the strips Sh(x0) relative to S(x0). While these are well
matched on the top, in depth there may be a horizontal drift, which
has been estimated in Proposition 3.7.

The first main outcome of this section will be the equivalence

Proposition 6.1. Assuming the uniform bound (1.7), we have the
equivalence:

∥(η, ψ)∥LE ≈ ∥(W,R)∥LE. (6.1)
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Here the correspondance between the LE0 norms of η and ImW is
straightforward due to the bilipschitz property of the conformal map.
However, the correspondence between the LE− 1

2 norms of ∇ϕ and R
is less obvious, and is proved in Proposition 6.9 below.

One difference between the norms for ImW and for R is that they are
expressed in terms of the size of the function on the top, respectively in
depth. For the purpose of multilinear estimates later on we will need
access to both types of norms for both ImW and for R. Since the
local energy norms are defined using the unit spatial scale, in order to
describe the behavior of functions in these spaces we will differentiate
between high frequencies and low frequencies. We begin with functions
on the top:

a) High frequency characterization on top. Here we will use
local norms on the top, for which we will use the abbreviated notation

∥u∥L2
tH

s
loc

:= sup
x0∈R

∥u∥L2
tH

s
α([α0−1,α0+1]),

where again α0 = α0(x0, t).

b) Low frequency characterization on top. Here we will use
local norms on the top to describe the frequency λ or ≤ λ part of
functions, where λ < 1 is a dyadic frequency. By the uncertainty
principle such bounds should be uniform on the λ−1 spatial scale. Then
it is natural to use the following norms:

∥u∥L2
tL

∞
loc(Bλ) := sup

x0∈R
∥u∥L2

tL
∞
α (Bλ(x0)),

where

Bλ(x0) := {α ∈ R : |α− α0| ≲ λ−1}.

We remark that the local norms in a) correspond exactly to the Bλ(x0)
norms with λ = 1.

Next we consider functions in the strip which are harmonic exten-
sions of functions on the top.

a1) High frequency characterization in strip. Here we will use
local norms on regions with depth at most 1, for which we will use the
abbreviated notation

∥u∥L2
tXloc(A1) := sup

x0∈R
∥u∥L2

tX(A1(x0)),

where X will represent various Sobolev norms and

A1(x0) := {(α, β) : |β| ≲ 1, |α− α0| ≲ 1}.
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b1) Low frequency characterization in strip. Here a frequency
λ < 1 is associated with depths |β| ≈ λ−1. Thus, we define the regions

Aλ(x0) = {(α, β) : |β| ≈ λ−1, |α− α0| ≲ λ−1}, λ < 1,

and in these regions we use the uniform norms,

∥u∥L2
tL

∞
loc(Aλ) := sup

x0∈R
∥u∥L2

tL
∞
α,β(Aλ(x0)).

We will also denote

B1(x0) := {(α, β); |α− α0| ≤ 1, β ∈ [−1, 0]},
Bλ(x0) := {(α, β); |α− α0| ≤ λ−1, β ∈ [−λ−1, 0]}, for λ < 1.

To simplify the notations in the following analysis, we will also denote

∥(η, ψ)∥LE :=M, ∥(η, ψ)∥X := ϵ ≤ ϵ0 ≪ 1. (6.2)

Given the equivalence of the X norms in Proposition 3.8, as well as
the equivalence of the LE norms in the next subsection, these bounds
also transfer to the holomorphic setting as follows:

∥(ImW,R)∥LE ≲M, ∥(ImW,R)∥X ≲ ϵ≪ 1. (6.3)

Furthermore, we recall that the frequency envelopes {cλ} for (η, ψ) in
X also transfer to (ImW,R) in X.

6.2. Multipliers and Bernstein’s inequality in uniform norms.
Here we aim to understand how multipliers act on the uniform spaces
defined above.

We will work with a multiplier Mλ2(D) associated to a dyadic fre-
quency λ2. In order to be able to use the bounds in several cir-
cumstances, we make a weak assumption on their (Lipschitz) symbols
mλ2(ξ):

|mλ2(ξ)| ≲ (1 + λ−1
2 |ξ|)−3, and |∂k+1

ξ mλ2(ξ)| ≲ ck |ξ|−k(1 + λ−1
2 |ξ|)−4.

(6.4)
Examples of such symbols include

• Littlewood-Paley localization operators Pλ2 , P≤λ2 .
• The multipliers pD(β,D) and pN(β,D) in subsection 3.1 with
|β| ≈ λ−1

2 .

We will separately consider high frequencies, where we work with
the spaces L2

tL
p
loc, and low frequencies, where we work with the spaces

L2
tL

p
loc(Bλ) associated with a dyadic frequency 1/h ≤ λ ≤ 1.

A. High frequencies. Here we consider a dyadic high frequency
1/h ≤ λ2 ≤ 1, and seek to understand how multipliers Mλ2(D) associ-
ated to frequency λ2 act on the spaces L2

tL
p
loc.
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Lemma 6.2. Let 1/h ≤ λ1, λ2 ≤ 1 and 1 ≤ p ≤ q ≤ ∞. Then

∥Mλ2(D)∥L2
tL

p
loc→L2

tL
q
loc

≲ λ
1
p
− 1

q

2 . (6.5)

B. Low frequencies. Here we consider two dyadic low frequencies
1/h ≤ λ1, λ2 ≤ 1, and seek to understand how multipliers Mλ2(D)
associated to frequency λ2 act on the spaces L2

tL
p
loc(Bλ1). For such

multipliers we have:

Lemma 6.3. Let 1/h ≤ λ1, λ2 ≤ 1 and 1 ≤ p ≤ q ≤ ∞.
a) Assume that λ1 ≤ λ2. Then

∥Mλ2(D)∥L2
tL

p
loc(Bλ1

)→L2
tL

q
loc(Bλ1

) ≲ λ
1
p
− 1

q

2 . (6.6)

b) Assume that λ2 ≤ λ1. Then

∥Mλ2(D)∥L2
tL

p
loc(Bλ1

)→L2
tL

q
loc(Bλ2

) ≲ λ
1
p

1 λ
− 1

q

2 . (6.7)

We remark that part (a) is nothing but the classical Bernstein’s
inequality in disguise, as the multiplierMλ2 does not mix λ−1

1 intervals.
Part (b) is the more interesting one, where the λ−1

1 intervals are mixed.

Proof of Lemmas 6.2,6.3. We first note that Lemma 6.2 can be viewed
a a particular case of Lemma 6.3 (a) with λ1 = 1. So in what follows
we will only prove Lemma 6.3.

A direct consequence of the symbol bounds (6.4) is the fact that the
kernel Kλ2 of Mλ2(D) satisfies the bound

|Kλ2(α)| ≲
λ2

1 + λ22α
2
. (6.8)

We will show that (6.8) yields the conclusion of the Lemma.
a) We fix x0 ∈ R and seek to estimate

∥Mλ2(D)u∥L2
tL

q
loc(Bλ1

(x0)).

For that we cover S × [0, T ] with width λ−1
1 strips,

S × [0, T ] =
⋃︂
j∈Z

Sλ1(x0 + jλ−1
1 ).

For (t, α) ∈ Sλ1(x0) we write

|Mλ2(D)u(t, α)| ≲ |u| ∗ λ2
1 + λ22α

2
≲
∑︂
j

(1Sλ1
(x0+jλ

−1
1 )|u|) ∗

λ2
1 + λ22α

2
.

Now we consider two cases. If |j| ≤ 2 then we simply use Young’s
inequality. This no longer suffices for all j because of the need for
summation in j. However, for such j we can use the kernel decay
instead. If (t, α1) ∈ Sλ1(x0 + jλ−1

1 ) then

|α− α1| ≈ jλ−1
1 .
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Therefore
λ2

1 + λ22(α− α1)2
≈ λ−1

2 j−2λ21.

Using Young’s inequality yields

∥(1Sλ1
(x0+jλ

−1
1 )|u|)∗

λ2
1 + λ22α

2
∥L2

tL
q(Bλ1

(x0)) ≲ λ
1
p
− 1

q

2

λ21
λ22j

2
∥1Sλ1

(x0+jλ
−1
1 )u∥L2

tL
p(Bλ1

(x0+jλ
−1
1 ).

Now the j summation is straightforward.
b) It suffices to consider the case q = ∞, and then use Hölder’s

inequality. Here we seek to estimate

∥Mλ2(D)u∥L2
tL

q
loc(Bλ2

(x0)).

We use the same covering as above, and for (t, α) ∈ Sλ1(x0) we write

|Mλ2(D)u(t, α)| ≲ |u| ∗ λ2
1 + λ22α

2
≲
∑︂
j

(1Sλ1
(x0+jλ−1)|u|) ∗

λ2
1 + λ22α

2
.

This time Hölder’s inequality yields

∥(1Sλ1
(x0+jλ

−1
1 )|u|)∗

λ2
1 + λ22α

2
∥L2

tL
∞(Bλ2

(x0)) ≲
λ

1
p
−1

1 λ2

1 + λ22λ
−2
1 j2

∥1Sλ1
(x0+jλ

−1
1 )u∥L2

tL
p(Bλ1

(x0+jλ
−1
1 ),

and the result follows again after j summation. □

6.3. Switching strips. At several points in our analysis we need to
switch local energy type integrals from the Euclidean to the holomor-
phic setting. Here we compute this transition systematically, establish-
ing bounds that will be repeatedly used in the sequel.

The set-up is as follows. We consider some smooth function Ψ in
the fluid domain, which can be viewed either in the Eulerian or the
holomorphic coordinates. For such a function, we seek to compare the
following two integrals:

IE :=

∫︂ T

0

∫︂∫︂
Ω(t)

m′(x− x0)Ψ(x, y) dydxdt,

respectively

IH :=

∫︂ T

0

∫︂∫︂
Ω(t)

m′(α− α0)Ψ(α, β) dβdαdt.

To fix the notations, the Eulerian strip is centered at x = x0, which
on the top corresponds to α = α0. However, in depth the line x = x0
corresponds to a curve α = α0(t, β). We will need to account for this
difference. Our result is as follows:
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Proposition 6.4. We have

|IE − IH | ≲
∫︂ T

0

∫︂∫︂
A1(x0)

(|Wα|+ |ReW (α, β)− ReW (α0, 0)|) |Ψ(α, β)| dβdαdt

+

∫︂ T

0

∫︂
β∈[−h,−1]

(cβ + sup
|α−α0|

|Wα|) sup
|α−α0|<|β|

(|Ψ|+ |β||Ψα|) dβdt,

(6.9)

Proof. We switch IE to holomorphic coordinates by changing variables.
This yields

IE =

∫︂ T

0

∫︂∫︂
Ω(t)

Jm′(x− x0)Ψ(α, β) dβdαdt.

Since |J − 1| ≲ |Wα|, we can harmlessly replace J by 1, and then we
are left with the difference∫︂ T

0

∫︂∫︂
Ω(t)

(m′(x− x0)−m′(α− α0))Ψ(α, β) dβdαdt.

Here we have

x− x0 = α− α0 +ReW (α, β)− ReW (α0, 0).

The function m′ is supported in the unit interval, andW has an ϵ small
Lipschitz constant (ϵ is the control norm defined in the Introduction).
Then, within the support of m′(x− x0) we must have

|α− α0| ≲ ϵ|β|+ 1. (6.10)

We now divide the analysis in two cases depending on the size of β.

a) Small depth, −1 < β < 0. Here we simply use the Lipschitz
property of m′ to get

|m′(x− x0)−m′(α− α0)| ≲ |ReW (α, β)− ReW (α0, 0)|.

b) Large depth, −h < β < −1. Here we continuously switch
between the two bumps m′(x− x0) and m

′(α− α0). Denoting

d(k, α) := α− α0 + k(ReW (α, β)− ReW (α0, 0)),

we consider the family of bump functions m′(d(k, α)) with k ∈ [0, 1].
Within the support of these bump functions we still have |α−α0| ≤ |β|,
therefore, using also Proposition 3.7

|ReW (α, β)− ReW (α0, 0)| ≲ |β|(cβ + sup
|α−α0|≤|β|

|Wα|). (6.11)
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Using the functions m′(d(k, α)) we have

m′(x− x0)−m′(α− α0) =

∫︂ 1

0

d

dk
m′(d(k, α)) dk

=

∫︂ 1

0

m′′(d(k, α))(ReW (α, β)− ReW (α0, 0)) dk

=

∫︂ 1

0

∂αm
′(d(k, α))

ReW (α, β)− ReW (α0, 0)

1 + ReWα

dk.

Hence, integrating by parts we get

D(β, t) :=

∫︂
(m′(x− x0)−m′(α− α0))Ψ(α, β) dα

= −
∫︂ 1

0

∫︂
m′(d(k, α))∂α

[︃
ReW (α, β)− ReW (α0, 0)

1 + ReWα

Ψ(α, β)

]︃
dαdk.

Herem′ is a bump function with unit integral, so taking absolute values
we get

|D(β, t)| ≲ sup
|α−α0|<|β|

|Wα||Ψ|+|ReW (α, β)−ReW (α0, 0)|(|Ψα|+|Wαα||Ψ|).

In this context we have

|Wαα| ≲ ϵ|β|−1,

so the conclusion follows from (6.11).
□

6.4. Bounds for η = ImW . Here we have the straightforward equiv-
alence

∥η∥LE0 ≈ ∥ ImW∥LE0 (6.12)

as η and ImW are one and the same function up to a biLipschitz change
of coordinates. Our first aim will be to understand the bounds for the
low frequencies of ImW on the top:

Lemma 6.5. For each dyadic frequency λ < 1 we have

∥ ImW≤λ∥L2
tL

∞
loc(Bλ) ≲ ∥ ImW∥LE0 . (6.13)

Proof. Since LE0 = L2
tL

2
loc(B1), this bound is a direct application of

Lemma 6.3 (b). □

On the other hand, for nonlinear estimates, we also need bounds in
depth, precisely over the regions Aλ(x0). There we have

Lemma 6.6. For each dyadic frequency λ < 1 we have

∥ ImW∥L2
tL

∞
loc(Aλ) + λ−1∥Wα∥L2

tL
∞
loc(Aλ) ≲ ∥ ImW∥LE0 . (6.14)
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Proof. We start by recalling that ImW is harmonic in the strip with
Dirichlet boundary condition on the bottom. Then ImW (α, β) is given
by

ImW (β) = PD(β,D) ImW (0),

where the symbol pD(ξ, β) of the multiplier PD(β) is

pD(ξ, β) =
sinh (ξ(β + h))

sinh(ξh)
.

For |β| ≈ λ−1 these symbols satisfy uniformly the condition (6.4) with
λ = λ1. Then the kernel bound (6.8) also holds uniformly, and the
conclusion of Lemma 6.3 applies also uniformly. This yields the bound
for the first term on the left. The bound for the second term on the left
is similar, by applying the same argument to the operators λ−1∂αPD(β)
and λ−1∂βPD(β) uniformly in |β| ≈ λ−1.

Alternatively, we note that one can obtain the bound for Wα or
equivalently for ∇ ImW by elliptic regularity. We have already ob-
tained estimates for ImW in the region Aλ(x0), which has size λ−1,
and so using the elliptic regularity we can estimate the derivatives of
a harmonic function in a domain in terms of the solution on a larger
domain:

∥∇α,β ImW (α, β)∥L∞(Aλ(x0)) ≲ λ∥θ(α, β)∥L∞(cAλ(x0)), c > 1.

□

Also connected to θ = ImW , we need to estimate the difference
θ −HN(η). Here we are comparing two harmonic functions with same
Dirichlet data on the top, but with homogeneous Dirichlet vs. Neu-
mann boundary condition the bottom. The regions over which we
compare the difference are of size h:

Bh(x0) := {(α, β) : β ∈ [−h, 0], |α− α0| ≲ h}.

We have

Lemma 6.7. For the difference θ −HN(η) have

∥hj∇j(θ −HN(η))∥L2
tL

∞
loc(Bh) ≲ ∥ ImW∥LE0 , j = 0, 1, 2. (6.15)

Proof. We first compute

(θ −HN(η))(β) = C(β,D)η,

where

C(β, ξ) :=
sinh ((h+ β)ξ)

sinh (hξ)
− cosh ((h+ β)ξ)

cosh(hξ)
=

2 sinh(βξ)

sinh (2hξ)

has size 1 for |ξ| < h−1 and decays exponentially for larger ξ. Thus
these kernels satisfy uniformly the condition (6.4) with λ2 = 1/h.
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Hence the bound for ImW − HN (ImW ) follows by Lemma 6.3 (b)
with λ1 = 1 and λ2 = 1/h.

We now turn our attention to the j = 1 case, namely the map

η → ∇(θ −HN(η))(α, β).

Differentiating the previous symbol in either α or β yields another
factor of ξ, namely leads to the symbols

ξ · sinh(ξβ)
sinh(2hξ)

,
ξ · cosh(ξβ)
sinh(2hξ)

.

Both are bump functions on the h−1 scale, but now their size is im-
proved to h−1. Thus both operators equal h−1 times an averaging
operator on the h scale. Hence Lemma 6.3(b) again applies, but yields
another h−1 factor. The same argument applies as well for the second
order derivatives of θ −HN(η).

□

Now we are already able to estimate the easiest of the error terms:

Proof of the Err4 bound. We estimate the difference between the
two integrals I1 and I

hol
1 using Proposition 6.4 with Ψ = θ(θ−HN(η))β.

We also need to account for the difference

θ(θ −HN(η))y − θ(θ −HN(η))β,

which, by chain rule, is readily estimated by

|θ(θ −HN(η))y − θ(θ −HN(η))β| ≲ |θ||∇α,β(θ −HN(η))||Wα|.
Combining this with Proposition 6.4 and using |Wα| < ϵ, we obtain

|I1 − Ihol1 | ≲ ϵ

∫︂ T

0

∫︂∫︂
A1(α0)

|θ||∇(θ −HN(η))| dβdαdt

+ ϵ

∫︂ T

0

∫︂ −1

−h
sup

|α−α0|<|β|
|θ||∇(θ −HN(η))|+ |β||∂α(θ(θ −HN(η))β)| dβdt.

It remains to bound the two integrals by ∥η∥2LE, both of which are
straightforward in view of Lemma 6.6 and Lemma 6.7. □

6.5. Estimates for Y . Here we prove a local energy bound for the
auxiliary holomorphic function

Y =
Wα

1 +Wα

.

Lemma 6.8. a) For λ > 1 we have

∥Yλ∥L2
tL

2
loc

≲ λM. (6.16)

b) For λ ≤ 1 we have

∥Yλ∥L2
tL

∞
α (Bλ(x0)) ≲ λM. (6.17)
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We note that both estimates follow directly from Lemma 6.6 if Y is
replaced by Wα. However to switch to Y one would seem to need some
Moser type inequalities, which unfortunately do not work in negative
Sobolev spaces. The key observation is that in both of these estimates
it is critical that Wα is holomorphic, and Y is an analytic function of
Wα.

Proof. We will bound Y on the top using bounds for its holomorphic
extension. Based on the bounds forW in (6.12) and (6.14), this satisfies
estimates as follows:

A. If −1 < β < 0 then on each unit strip S we have

∥∂jαY (·, β)∥L2
tL

2
α(B1(x0) ≲ |β|−1−jM. (6.18)

B. If −h < β < −1 then on each |β| strip we have

∥∂jαY (·,−β)∥L2
tL

∞
α (Bβ(x0)) ≲ |β|−1−jM. (6.19)

We use the following representation of Y on the top,

Y (α, 0) = Y (α,−h) + i

∫︂ 0

−h
Yα(α, β) dβ

= Y (α,−h) + ihYα(α,−h) +
∫︂ 0

−h
βYαα(α, β) dβ.

The function Y (α,−h) is at frequency 1/h, and obeys the bounds (6.19)
therefore the first two terms above easily satisfy the bounds in the
lemma.

It remains to consider the integral term, where we treat the integrand
differently depending on β and on λ.

Case I: λ > 1. Here we are only interested in unit strips, and use
L2 bounds. Depending on β, we differentiate as follows:

Case I.a: Small β, −λ−1 < β < 0. There we use (6.18) to estimate

∥Pλ∂2αY (·, β)∥L2
tL

2
loc

≲ λ2∥Y (·, β)∥L2
tL

2
loc

≲ |β|−1λ2M,

which suffices for the β integration.

Case I.b: Large β, −h < β < λ−1. There depending on the size
of β we use either (6.18) or (6.19) to estimate

∥Pλ∂2αY (·, β)∥L2
tL

2
loc

≲ |β|−3M,

which again suffices for the β integration.

Case II: λ > 1. Here we are only interested in strips of width λ−1,
and use L∞ bounds. Depending on β, we differentiate as follows:
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Case II.a: Very small β, −1 < β < 0. Here we cover the λ−1 strip
with unit strips, use Hölder’s inequality, then Bernstein’s inequality to
get

∥Pλ∂2αY (·, β)∥L2
tL

∞
loc(Bλ) ≲ λ

5
2∥Y (·, β)∥L2

tL
2
loc(Bλ) ≲ λ2∥Y (·, β)∥L2

tL
2
loc

≲ |β|−1λ2M,

which is enough.

Case II.b: Small β, −λ−1 < β < −1. Here we cover the λ−1 strip
with |β|−1 strips, use Hölder inequality, then Bernstein’s inequality to
get

∥Pλ∂2αY (·, β)∥L2
tL

∞
loc(Bλ) ≲ λ

5
2∥Y (·, β)∥L2

tL
2
loc(Bλ) ≲ λ2β− 1

2∥Y (·, β)∥L2
tL

2
loc(Bβ)

≲ λ2∥Y (·, β)∥L2
tL

∞
loc(Bβ) ≲ |β|−1λ2M,

which is enough.

Case II.c: Large β, −h < β < λ−1. There we use (6.19) to
estimate

∥Pλ∂2αY (·, β)∥L2
tL

2
loc(Bλ) ≲ |β|−3M,

which again suffices for the β integration.
□

6.6. Bounds for ∂ϕ = R. This is not as easy as for η = ImW , because
the strips in the Eulerian and holomorphic setting do not agree, and
can in effect be quite different. Nevertheless, we will still prove

Proposition 6.9. Assume (1.7) holds. Then we have

∥ψ∥
LE− 1

2
≈ ∥R∥

LE− 1
2

(mod ϵ∥ ImW∥LE0). (6.20)

Here the equivalence should be interpreted as the double inequality

∥ψ∥
LE− 1

2
≲ ∥R∥

LE− 1
2
+ϵ∥ ImW∥LE0 , ∥R∥

LE− 1
2
≲ ∥ψ∥

LE− 1
2
+ϵ∥ ImW∥LE0 .

Proof. We recall that |∇ϕ|2 = |R|2, so all we need is to transfer the L2

local bound from unit strips in the Eulerian setting to unit strips in
the holomorphic setting.

To switch from one strip to another we will critically use the bound in
Proposition 6.4, which uses the fact that in depth the distance between
the two strips is smaller than ϵ|β|. Because of this, we start with a
preliminary result, which is more easily proved:

Lemma 6.10. For each dyadic λ < 1 we have

∥R∥L2
tL

∞
loc(Aλ) + λ−2∥∇R∥L2

tL
∞
loc(Aλ) ≲ λ∥R∥2

LE− 1
2
. (6.21)

Proof. From the definition of the local energy functional associated to
R we know that we have L2 control over R inside every vertical strip
of width 1. However, initially we do not have any information on the
top or on the bottom of the strip. As a consequence we first prove the
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desired bound in a region Aλ(x0) that avoids the case |β| ≈ h. In order
to use the control we have on R we split the region 2Aλ(x0) in strips
of width 1 and then add the λ−1 bounds on strips to obtain

∥R∥2L2(2Aλ(x0))
≤ λ−1∥R∥

LE− 1
2
.

Then the bound in the lemma follows by elliptic regularity.
Finally, if |β| ≈ h we use the homogeneous boundary conditions

Dirichlet or Neumann for ReR and ImR to separately mirror them
in a symmetric domain below the bottom via reflection principle, and
then proceed as above.

□

We now return to the proof of the Proposition 6.9. For this we need
to compare the integrals

IE =

∫︂ T

0

∫︂∫︂
mx(x−x0)|∇ϕ|2 dxdydt, IH =

∫︂ T

0

∫︂∫︂
mx(α−α0)|R|2 dxdydt,

and show that

|IE − IH | ≲ ϵ(∥R∥2
LE− 1

2
+ ∥W∥2LE0).

Since |∇ϕ|2 = R2, we can apply directly Proposition 6.4. This yields

|IE − IH | ≲ ϵ

∫︂ T

0

∫︂∫︂
A1(x0)

|R|2 dβdαdt

+

∫︂ T

0

∫︂ 1

−h
(cβ + sup

|α−α0|<β
|Wα|) sup

|α−α0|<β
|R|2 + |RRα| dβdt.

The first integral is directly estimated by ∥R∥2
LE− 1

2
. For the contribu-

tion of cβ we use the dyadic summability of cβ along with Lemma 6.10.
Hence we are left with∫︂ T

0

∫︂ 1

−h
sup

|α−α0|<β
|Wα| sup

|α−α0|<β
|R|2 + |RRα| dβdt.

To bound this last integral we switch roles and use the local energy
norm for Wα via Lemma 6.5 and for R via Lemma 6.10, while for Rα

we use the control norm and Bernstein’s inequality to get the bound
|Rα| ≲ |β| 12 cβ. This yields the fixed β bound

cβ|β|−1∥R∥
LE− 1

2
∥ ImW∥LE0 .

Finally we integrate with respect to β ∈ [−h,−1] to obtain

ϵ∥R∥
LE− 1

2
∥ ImW∥LE0 .

□

The local energy norm for R measures the function inside the entire
strip. However, we also need to estimate it on the top:
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Lemma 6.11. For R ∈ LE− 1
2 we have the following high frequency

bound on the top:

∥R∥
L2
tH

− 1
2

loc

≲ ∥R∥
LE− 1

2
, (6.22)

respectively the low frequency bound

∥Rλ∥L2
tL

∞(Bλ) ≲ λ
1
2∥R∥

LE− 1
2
, λ ≤ 1. (6.23)

Proof. The first part follows from the trace theorem, as R ∈ L2
tL

2
loc(A1)

is a harmonic function. The second part is more delicate, but we can
use the same argument as in Lemma 6.8. Precisely, we write

R(α, 0) = R(α,−h) +
∫︂ 0

−h
iRα(α, β) dβ.

For the first term we can use Lemma 6.10. For the second term we
split the integral into

R1 =

∫︂ −λ−1

−h
iRα(α, β) dβ, R2 =

∫︂ 0

−λ−1

iRα(α, β) dβ.

For R1 we use the gradient bound in Lemma 6.10, to compute

∥R1∥L2
tL

∞
loc(Bλ) ≲

∫︂ −λ−1

−h
|β|−

3
2 dβ ≲ λ

1
2M,

and the spectral projector Pλ is harmless.
For R2 on the other hand we use the spectral projector for Bernstein’s

inequality in Lemma 6.3, and then to eliminate the derivative

∥PλR2∥L2
tL

∞
loc(Bλ) ≲ λ

1
2∥PλR2∥L2

tL
2
loc(Bλ)

≲ λ
3
2

⃦⃦⃦⃦∫︂ 0

−λ−1

R(α, β) dβ

⃦⃦⃦⃦
L2
tL

2
α(Bλ)

≲ λ ∥R∥L2
tL

2
α(Bλ)

,

where at the last step we have used Hölder’s inequality in β. To esti-
mate R over a square Bλ(x0) of width λ

−1, we cover the square with
λ−1 strips S(x0 + j) with |j| ≲ λ−1, and then use Holder’s inequality
again to get

∥PλR2∥L2
tL

∞
loc(Bλ) ≲ λ

1
2∥R∥

LE− 1
2
.

□

6.7. Bilinear estimates for |∇ϕ|2 = |R|2 and its harmonic exten-
sion. Here we will prove the following bound:

Lemma 6.12. a) The function |∇ϕ|2 = |R|2 restricted to the top sat-
isfies the following estimate:

∥|R|2∥LE0 ≲ ϵM. (6.24)
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b) Its low frequency part satisfies

∥Pλ|R|2∥L2
tL

∞
loc(Bλ(x0)) ≲ cλM. (6.25)

c) In addition, for each λ < 1 there is a decomposition

P<λ|R|2 = G1
λ +G2

λ,

where

sup
λ

∥G1
λ∥L1L∞(Bλ(x0)) ≲ λM2, (6.26)

while

∥G2
λ∥L2L∞(Bλ(x0)) ≲ cλM. (6.27)

Proof. a) We restate this as a bound for R,

∥|R|2∥LE0 ≲ ∥R∥
LE− 1

2
∥R∥ℓ1L∞

t H1
h
, (6.28)

where the ℓ1 summability is measured using the control frequency en-
velope {cλ}. For this we use a Littlewood-Paley decomposition

RR̄ =
∑︂
λ

(R<λR̄λRλR̄<λ) +
∑︂
λ

RλR̄λ,

and analyze each component separately. We discuss two cases: first
when λ ≥ 1 and the second is when λ < 1. For now we discuss the first
case, i.e., λ ≥ 1. To bound R we will use either the control norm X, or
the local energy norm LE− 1

2 . Correspondingly, we have the following
bounds for the dyadic pieces

∥R<λ∥L2
tL

2
loc

≲ λ
1
2∥R<λ∥

L2
tH

− 1
2

h,loc

≲ λ
1
2M,

respectively

∥Rλ∥L∞L2 ≤ λ−1∥Rλ∥L∞H1
h
≲ λ−1cλ.

We begin with the low-high frequency term where we compute using
Bernstein’s inequality in Lemma 6.2

∥RλR̄<λ∥L2
tL

2
loc

≲ λ
1
2∥RλR̄<λ∥L2

tL
1
loc

≲ λ
1
2∥Rλ∥L∞

t L2∥R̄<λ∥L2
tL

2
loc

≲ cλM.

Here we can sum up with respect to dyadic λ as needed.
For

∑︁
λRλR̄λ we perform a similar analysis, and consider the prod-

uct’s output at frequency ν, where ν ≲ λ. Here, ν can be ≥ 1 or < 1.
We assume first that ν ≥ 1, and return to the other case later in the
proof. From Bernstein’s inequality in Lemma 6.3

∥Pν
(︁
RλR̄λ

)︁
∥L2

tL
2
loc

≲ ν
1
2∥Pν

(︁
RλR̄λ

)︁
∥L2

tL
1
loc
,

and further, by Cauchy’s inequality, we get

∥Pν
(︁
RλR̄λ

)︁
∥L2

tL
2
loc

≲ ν
1
2∥Rλ∥L2

tL
2
loc
∥R̄λ∥L2

tL
2 ≲

(︂ν
λ

)︂ 1
2 ∥Rλ∥

L2
tH

− 1
2

h,loc

∥R̄λ∥L∞
t H1

h
≲
(︂ν
λ

)︂ 1
2
cλM.

The λ summation is again straightforward.
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Therefore (6.28) holds for the high frequency (≥ 1) part of the out-
put. The remaining case in (6.28) corresponds to low frequency output
and will follow from the proof of part (b) below.

b) The goal here is to prove the following estimate∑︂
λ<1

∥Pλ|R|2∥L2
tL

∞
loc(Bλ) ≲ ∥R∥

LE− 1
2
∥R∥ℓ1L∞

t H1
h
, (6.29)

which in particular suffices to finish the proof of part a) of the propo-
sition. Again we use the control frequency envelope {cλ} to measure
the ℓ1 summation in the second factor on the right, and will show that

∥Pλ|R|2∥L2
tL

∞
loc(Bλ) ≲ cλM. (6.30)

We need to consider the expressions Pλ
(︁
RνR̄µ

)︁
, where by Littlewood-

Paley trichotomy, we have several cases to discuss:

i.) Case ν ≈ µ, µ > λ and µ > 1.

In this case both input frequencies are comparable and larger than 1
but the output frequency is λ < 1. We use Bernstein’s inequality and
Hölder’s inequality in both space and time to obtain

∥Pλ
(︁
RµR̄µ

)︁
∥L2

tL
∞
loc(Bλ) ≲ λ∥RµR̄µ∥L2

tL
1
loc(Bλ) ≲ λ∥Rµ∥L2

tL
2
loc(Bλ)∥R̄µ∥L∞

t L2 .

Since the input frequencies are higher than 1, we estimate the first fac-
tor using Lemma (6.12) adapted for the dyadic pieces, together with
the fact that in an interval of size λ−1 we have about λ−1 size 1 subin-
tervals. For the second factor we use the control envelope cλ. This
yields

λ∥Rµ∥L2
tL

2
loc(Bλ)∥R̄µ∥L∞

t L2(Bλ) ≲ λµ
1
2λ−

1
2∥Rµ∥

L2
tH

− 1
2

loc

∥Rµ∥L∞
t L2

α

≲ λ
1
2µ− 1

2∥R∥
LE− 1

2
∥Rµ∥L∞

t H1
α

≲ λ
1
2µ− 1

2 cµM.

Now the µ summation is straightforward due to the off-diagonal decay.

ii.) Case ν ≈ µ, µ > λ and µ < 1.

This case is a harder one because we deal with different scale localiza-
tions. More explicitly the input frequencies are on the scale µ−1 which
is less than the output frequency which lives on the scale λ−1. Thus,
we first use Bernstein’s inequality in Lemma 6.3, followed by Hölder’s
inequality in both space and time:

∥Pλ
(︁
RµR̄µ

)︁
∥L2

tL
∞
loc(Bλ) ≲ λ∥RµR̄µ∥L2

tL
1
loc(Bλ) ≲ λ∥Rµ∥L∞

t L2
loc(Bλ)∥R̄µ∥L2

tL
2
loc(Bλ),

(6.31)
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and then we use the control envelope cµ to arrive to

λ∥Rµ∥L∞
t L2

loc(Bλ)∥R̄µ∥L2
tL

2
loc(Bλ) ≲ λµ−1∥Rµ∥L∞

t H1
h,loc(Bλ)∥R̄µ∥L2

tL
2
loc(Bλ)

≲ λµ−1cµ∥R̄µ∥L2
tL

2
loc(Bλ).

(6.32)

In the second term on the right we switch from λ−1 width strips to
µ−1 wide strips using Holder’s inequality, followed by Hölder’s inequal-
ity again and then Lemma (6.10) to obtain

∥R̄µ∥2L2
tL

2
loc(Bλ)

≲
(︂µ
λ

)︂ 1
2 ∥R̄µ∥2L2

tL
2
loc(Bµ)

≲
µ

λ
1
2

∥R̄µ∥2L2
tL

∞
loc(Bµ)

≲
(︂µ
λ

)︂ 1
2
M.

(6.33)
Using this in (6.32) we have proved that

∥Pλ
(︁
RµR̄µ

)︁
∥L2

tL
∞
loc(Bλ) ≲ λ

1
2µ− 1

2 cµM. (6.34)

The µ summation is again straightforward.

iii.) Case ν < λ and µ ≈ λ.

Here we observe that we can drop the projection Pλ, and then we can
use Lemma 6.10 for the first factor and Bernstein’s inequality for the
second one

∥RνR̄µ∥L2
tL

∞
loc(Bλ) ≲ ∥Rν∥L2

tL
∞
loc(Bλ)∥Rµ∥L∞

t L2
α
≲ ν

1
2µ− 1

2 cµM. (6.35)

We do have off-diagonal decay since ν < µ, and summing over such ν
yields a bound of cλM as desired.

c) We observe that we only need to place low-low interactions in G1

and high-high interactions in G2. In this context by low-low we mean
that both input frequencies are smaller than λ, and then their output is
also smaller than λ, and by high-high interaction we refer to larger than
λ input frequencies that give rise to a smaller than λ output frequency.

We begin with the input frequencies µ and ν both smaller than λ,
and by Hölder’s inequality in time we get that

∥RµRν∥L1
tL

∞
loc(Bλ) ≲ ∥Rµ∥L2

tL
∞
loc(Bλ)∥Rν∥L2

tL
∞
loc(Bλ).

Since both µ and ν are smaller than λ we can apply Lemma 6.10 and
get

∥Rµ∥L2
tL

∞
loc(Bλ)∥Rν∥L2

tL
∞
loc(Bλ) ≲ µ

1
2ν

1
2∥R∥2

LE− 1
2
.

Summing over both µ, ν < λ we get that indeed∑︂
λ

∥RµRν∥L1
tL

∞
loc(Bλ) ≲ λ∥R∥2

LE− 1
2
,

which finishes the proof of (6.26).
For the high-high case the analysis in part (i) and (ii) applies together

with the summation over λ and µ. The bound for G2 follows.
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□

Using the |R|2 bound, we are able to estimate two more of the error
terms:

The estimate for Err1 in Proposition 5.2. We recall that

Err1 :=

∫︂ T

0

∫︂
σmxηN (η)ψ dxdt.

Since N (η)ψ = |∇ϕ|2 on the top, this is a direct consequence of
Lemma 6.12 (a).

□

Proof of the Err2 estimate. We recall that the expression for Err2
is given by

Err2 :=

∫︂ T

0

∫︂∫︂
mx(x− x0)θyHN(|∇ϕ|2) dxdydt.

We first recast it in holomorphic coordinates,

Err2 =

∫︂ T

0

∫︂∫︂
mx(x− x0)(ReWα + |Wα|2)HN(|R|2) dαdβdt.

To estimate it we will combine the bounds in Lemma 6.6 with those in
Lemma 6.12. We exploit these bound in two steps.

1. High frequency bounds. Here we consider the contributions where
at least one of the Wα and HN(|R|2) factors is at high frequency (≥ 1).
In this case the corresponding harmonic extension decays exponentially
in β on the unit scale, therefore the bound for the corresponding part
of Err2 is localized both in α and in β on the unit scale. On this scale,
by elliptic regularity, we have local bounds

Wα ∈ L2
t (L

2
βH

− 1
2

α )loc, HN(|R|2) ∈ L2
t (L

2
βH

1
2
α )loc

in terms of the LE0 norms for θ and |R|2 on the top. These are dual
spaces. Furthermore, the remainingWα factors are harmless since from
the X bound we have

Wα ∈ L∞
t L

∞
β (ℓ1H

1
2
α ).

2. Low frequency bounds. Here we use the decomposition in part (c)
of the last lemma, where λ is matched to the depth |β| ≈ λ−1.

For G1
λ we combine (6.26) with the trivial L∞ bound for Wα derived

fom the X norm, where the latter comes with ℓ1 summability.
For G1

λ instead we combine (6.26) with the bound (6.6) for Wα. □
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6.8. Bilinear estimates for ImW · ReWα and its harmonic ex-
tension. This expression appears in the normal form correction part
of the proof of our nonlinear Morawetz inequality. Here we will prove
the following bound:

Lemma 6.13. a) The function ImW ·ReWα restricted to the top sat-
isfies the following high frequency estimate:

∥ ImW · ReWα∥LE0 ≲ ϵ∥ ImW∥LE0 . (6.36)

b) Its low frequencies satisfy the additional bound

∥Pλ(ImW · ReWα)∥L2
tL

∞
loc(Bλ(x0)) ≲ cλ∥ ImW∥LE0 . (6.37)

c) In addition, for each λ < 1 there is a decomposition

P<λ(ImW · ReWα) = G1
λ +G2

λ,

where

sup
λ

∥G1
λ∥L1

tL
∞
loc(Bλ(x0)) ≲ λM2, (6.38)

while

∥G2
λ∥L2

tL
∞
loc(Bλ(x0)) ≲ cλM. (6.39)

Proof. a) Here we use the fact that Wα is bounded in L∞

∥ ImW · ReWα∥LE0 = ∥ ImW · ReWα∥L2
tL

2
loc(Bλ(x0))

≲ ∥ ImW∥L2
tL

2
loc(Bλ(x0))∥ReWα∥∞L

≲ ϵ∥ ImW∥LE0 .

b) The proof is exactly as in Lemma (6.12) with the corresponding
adjustments that come from the fact that ImW and ReWα are differ-
ently balanced in comparison with R: one is 1/2 derivative less than
R and one is 1/2 derivative above R, respectively.

The only slight technical difference that arises, is when one considers
the case of low-high interactions, with the high frequency on ReWα.
In this case, instead of looking separately at the norms

∥ ImWν · ReWµ,α∥L2
tL

∞
loc(Bλ(x0)), ν < µ ≲ 1,

and then sum over ν with ν < µ, we group terms and analyze directly

∥ ImW<µ · ReWµ,α∥L2
tL

∞
loc(Bλ(x0)).

By doing so we avoid the potentially troublesome ν summation.
Thus, we proceed as follows

∥(ImW )<µ·(ReWα)µ∥L2
tL

∞
loc(Bµ) ≲ ∥(ImW )<µ∥L2

tL
∞
loc(Bµ)∥(ReWα)µ∥L∞ ≲ cµM,

where for the first factor we have used Lemma 6.5, while the dyadic
bound for ReWα follows from Proposition 3.3. This suffices for both
parts (b) and (c) of the lemma.
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□

Proof of the Err25 estimate. Here we consider the bound for the sec-
ond term in Err5, namely

Err25 := g

∫︂ T

0

∫︂∫︂
Im

(︃
1

1 +Wα

TWα

)︃
HD(ImW ReWα) dαdβdt.

The same proof as for Err2 applies, using Lemma 6.6, which now is
combined with Lemma 6.13 instead of Lemma 6.12. □

Proof of the Err35 estimate. Here we consider the third term inErr5,
namely

Err35 =

∫︂ T

0

∫︂∫︂
1

1 +Wα

ImP [|R|2]αHD(ImW · ReWα) dαdβdt.

This is again the same proof as for Err2, using Lemma 6.12 and
Lemma 6.13. □

7. Bounds involving F

The aim of this section is to prove the error estimates involving F .
These are all tied to the normal form correction we use to deal with
the unbounded error term Err3. We recall that

F = P

[︃
2i ImQα

J

]︃
= R + P

[︁
2i Im

(︁
RȲ
)︁]︁

:= R + F [2],

where we have separated the linear part F and the quadratic and higher
order part F [2]. The imaginary part of F [2] is explicit on the top:

ImF [2] = Im
(︁
RȲ
)︁
.

Thus in the fluid domain we can write

ImF [2] = HD

(︁
Im
(︁
RȲ
)︁)︁
.

In Eulerian coordinates, the expression HD

(︁
Im
(︁
RȲ
)︁)︁

arises as the
nonlinear component of θt, see (2.6). Indeed, in holomorphic coordi-
nates, we compute on the top

∇ϕ∇ψ = Im

(︃
R

W̄α

1 + W̄α

)︃
= Im

(︃
F − Qα

1 +Wα

)︃
= Im(F −R).

Understanding ReF [2], on the other hand, is a slightly more delicate
matter, since a-priori it is only determined modulo constants. In our
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setting, the constant in ReF is determined by

ReF [2](α0, 0) =

(︃
ImF ImWα

1 + ReWα

− ReR

)︃
(α0, 0)

=

(︃
Im(RȲ ) ImWα

J(1 + ReWα)
− ReR

)︃
(α0, 0).

(7.1)

We will not use the full expression in the sequel, but merely the bound

|ReF [2](α0, 0)| ≲ |R(α0, 0)|. (7.2)

In what follows we will first establish direct bounds for ImF [2], which
has a bilinear structure as described above. The real part will satisfy
similar bounds except at very low frequencies ≤ 1/h.

7.1. Bilinear estimate for ImF [2] = HD(∇ϕ∇ψ). For this expres-
sion we will prove the following bounds, which are needed in order to
switch from Err3 to Errhol3 and prove Proposition 5.3:

Lemma 7.1. a) The function F [2] restricted to the top satisfies the
following high frequency estimate with λ ≥ 1.

∥PλF [2]∥LE ≲ λ
1
2 ϵM, λ ≥ 1. (7.3)

b) It also satisfies the low frequency bound

∥PλF [2]∥L2
tL

∞
loc(Bλ) ≲ λ

1
2 ϵM, 1/h < λ < 1. (7.4)

c) Finally, at very low frequencies we have:

∥P<1/h ImF [2]∥L2
tL

∞
loc(B1/h)

≲ h−
1
2 ϵM. (7.5)

We also list some straightforward consequences of the above Lemma:

Corollary 7.2. The low frequency part of ImF [2] satisfies on the top

∥P≤1 ImF [2]∥LE ≲ ϵM. (7.6)

Its harmonic extension satisfies the bound

∥HD(∇θ∇ϕ)∥L2
tL

∞(Aλ) ≲ λ
1
2 ϵM. (7.7)

The estimates in part a) are not entirely satisfactory because the
ℓ1 summation with respect to λ is missing for λ > 1. Similarly the ℓ1

summation with respect to λ < 1 is missing in part (b). To compensate
for that, we complement the above result as follows:

Lemma 7.3. a) The function F
[2]
h = F

[2]
≥1 restricted to the top admits

the following high frequency decomposition

F
[2]
h = F

[2],1
h + F

[2],1
h ,

where the dyadic pieces of F
[2],1
h satisfy

∥F [2],1
λ ∥

L2
tH

− 1
2

loc

≲Mcλ, (7.8)
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while the dyadic pieces of F
[2],2
h satisfy

∥F [2],2
λ ∥L∞

t H1 ≲ ϵcλ. (7.9)

As a consequence of the previous lemma and interpolation (or by a
similar direct proof), we have

Corollary 7.4. The function F
[2],2
h in the last lemma also satisfies the

interpolated bounds

∥F [2],2
h ∥Lp

tH
s
loc

≲ ϵ2−
2
pM

2
p , (7.10)

where

2 < p <∞,
1

p
=

1− s

3
.

Similarly, to account for the lack of summability in the low frequency
bound (7.4), we have the following:

Lemma 7.5. We can decompose F
[2]
l := F

[2]
[1/h,1] into

F
[2]
l = F

[2],1
l + F

[2],2
l ,

where the dyadic pieces of F
[2],1
l satisfy the dyadic bounds

λ−
1
2∥F [2],1

λ ∥L2
tL

∞
loc(Bλ) ≲ cλM, (7.11)

while the dyadic pieces of F
[2]
l satisfy the weaker bound

sup
λ
λ−

1
2∥F [2],1

λ ∥L2
tL

∞
loc(Bλ) ≲ ϵM, (7.12)

as well as the uniform bound

λ
1
2∥F [2],2

λ ∥L∞ ≲ cλϵ. (7.13)

The bounds in Lemma 7.1 will be used in order to estimate trilinear
terms. For quartic terms on one hand we have more flexibility, and
Lemmas 7.3, 7.5 are more useful.

We now successively prove the above lemmas.

Proof of Lemmas 7.1, 7.3, 7.5. Here we use the dyadic local energy
bounds for R in Lemma 6.10 as well as the local energy bounds for
Y in Lemma 6.8. On the other hand, in terms of the control norm, we
have the bounds:

∥Rλ∥L2 ≲ λ−1cλ, ∥Yλ∥L2 ≲ λ−
1
2 cλ.

As usual we consider the Littlewood-Paley decomposition of F
[2]
λ ,

F
[2]
λ = P[Im(RλȲ <λ) + Im(R<λȲ λ)] +P

∑︂
µ≥λ

Pλ Im(RµȲ µ).
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The first two terms in this decomposition, namely the high-low and
the low-high interaction, are estimated in the same manner as in Lem-
mas 6.12,6.13 to obtain the high frequency bounds

∥P Im(RλȲ <λ)∥L2
tL

2
loc

+ ∥P Im(R<λȲ λ)]∥L2
tL

2
loc

≲ cλMλ
1
2 ,

respectively the low frequency bounds

∥P Im(RλȲ <λ)∥L2
tL

∞
loc(Bλ) + ∥P Im(R<λȲ λ)]∥L2

tL
∞
loc(Bλ) ≲ cλMλ

1
2 .

These both suffice for Lemma 7.1, and show that these contributions

can be placed in F
[2],1
h for Lemma 7.3, respectively in F

[2],1
l for Lemma 7.5.

Thus it remains to consider the case of high-high interactions, Pλ Im(RµȲ µ).
Here we separate the analysis into low and high frequencies.

A. High frequencies 1 ≤ λ ≤ µ. Here we estimate again as in
Lemmas 6.12,6.13,

∥Pλ Im(RµȲ µ)∥L2
tL

2
loc

≲ λ
1
2∥ Im(RµȲ µ)∥L2

tL
1
loc

≲ λ
1
2∥Rµ∥L2

tL
2
loc
∥Ȳ µ∥L2

tL
2 ≲ λ

1
2 cµM.

This suffices for the µ summation, which yields the conclusion of Lemma 7.1(a),
but yields no λ summation due to a lack of off-diagonal decay. Because

of this, for Lemma 7.3 we place this term in F
[2],2
h and estimate it by

∥Pλ Im(RµȲ µ)∥L∞
t L2 ≲ λ

1
2∥ Im(RµȲ µ)∥L∞

t L1 ≲ λ
1
2∥Rµ∥L∞L2∥Yµ∥L∞

t L2 ≲ λ
1
2µ− 3

2 c2µ,

where we have off-diagonal decay,∑︂
µ>λ

∥Pλ Im(RµȲ µ)∥L∞
t L2 ≲ λ−1cλ,

as desired.

B. Low frequencies 1 ≤ λ ≤ µ. Here we should also consider two
cases, µ ≤ 1 and µ > 1. The latter case is similar but simpler, so it is
omitted. Assuming λ ≤ µ ≤ 1 we compute

∥Pλ Im(RµȲ µ)∥L2
tL

∞
loc(Bλ) ≲ λ∥ Im(RµȲ µ)∥L2

tL
1
loc(Bλ) ≲ λ∥Rµ∥L2

tL
2
loc(Bλ)∥Ȳ µ∥L∞

t L2

≲ µ
1
2λ

1
2∥Rµ∥L2

tL
2
loc(Bµ)∥Ȳ µ∥L∞

t L2 ≲ λ
1
2 cµM.

This is again good enough for Lemma 7.1(c), but there is no λ sum-

mation. Hence, for Lemma 7.5 we place these contributions in F
[2],2
λ ,

and estimate them exactly as in the high frequency case. □

The bound for Err3 − Errhol3 : proof of Proposition 5.3. The ex-
pression Err3 is given by

Err3 =

∫︂ T

0

∫︂∫︂
mx(x− x0) ImRHD(∇θ∇ϕ) dxdydt,

while its holomorphic counterpart is

Errhol3 =

∫︂ T

0

∫︂∫︂
mα(α− α0) ImRHD(∇θ∇ϕ) dxdydt.
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In their difference we obtain errors due to (i) Jacobian terms and (ii)
the switch between Eulerian vertical strips and the vertical strips in
holomorphic coordinates. We estimate the difference using Proposi-
tion 6.4, which yields

|Err3 − Errhol3 | ≲ D1 +D2,

where

D1 :=

∫︂ T

0

∫︂∫︂
A1

(|Wα|+|ReW (−ReW (α0, 0)|)|R||HD(∇θ∇ϕ)| dαdβdt.

D2 :=

∫︂ T

0

∫︂ −1

−h
(cβ+ sup

|α−α0|<|β|
|Wα|) sup

|α−α0|<|β|
|R||HD(∇θ∇ϕ)|+|β||∂α[RHD(∇θ∇ϕ)]| dβdt.

A. The estimate for D1. Here we use the decomposition in

Lemma 7.3. The harmonic extension of (the high frequencies of) F
[2],1
h

belongs to L2
tL

2
loc by elliptic regularity, which is combined with the

similar bound for R, and suffices. To deal with F
[2],2
h we imbalance a

bit the scales using Corollary 7.4. Working with s ∈ (−1
2
, 1
2
) we obtain

that its harmonic extension satisfies

∥HN(F
[2],2
h )∥Lp

tL
q
loc

≲M
2
p ϵ2−

2
p , 2 < q <∞,

3

p
− 2

q
=

1

2
.

Consider first the Wα term, which we also imbalance, interpolating
in a similar manner between the energy and the local energy bound.
This yields

∥Wα∥Lp1
t L

q1
loc

≲M
1
p1 ϵ

1− 1
p1 , 2 ≤ q1 ≤ ∞,

3

p1
− 2

q1
= 0.

We choose exponents appropriately so that

1

p
+

1

p1
=

1

1
+

1

q1
=

1

2
.

Then we multiply, combining with the L2 local energy bound for R and
using Hölder’s inequality.

Next we consider the |ReW (α, β)−ReW (α0, 0)| term. To argue as
for the previous difference we simply estimate it by the Fundamental
Theorem of Calculus

∥ReW (α, β)− ReW (α0, 0)∥Lp1
t L

q1
loc

≲ ∥Wα∥Lp1
t L

q1
loc
,

and conclude in the same manner.

B. The estimate for D2. Consider a dyadic frequency λ < 1. Then
in the corresponding regions Aλ we have by (7.4)

∥HD(∇θ∇ϕ)∥L2
tL

∞(Aλ) ≲ λ−1∥∇HD(∇θ∇ϕ)∥L2
tL

∞(Aλ) ≲ ϵMλ
1
2 .
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Combined with the bound for R in Lemma 6.10 this suffices for the cβ
term. It remains to consider theWα term. For that it suffices to match
the above bound with a corresponding bound for RWα,

∥ sup
Aλ

|R| sup
Aλ

|Wα|∥L2
t
≲ cλMλ

1
2 . (7.14)

It remains to prove (7.14). Harmlessly neglecting the exponentially
decaying tails at higher frequencies, we write in Aλ

R =
∑︂
µ≤λ

Rµ, Wα =
∑︂
ν≤λ

Wν,α.

For µ < ν we write

∥ sup
Aλ

|Rµ| sup
Aλ

|Wν,α|∥L2
t
≲ ∥Rµ∥L2

tL
∞
loc(Bλ)∥Wν,α∥L∞

t L∞
α
≲ µ

1
2 cνM,

while for ν < µ we have

∥ sup
Aλ

|Rµ| sup
Aλ

|Wν,α|∥L2
t
≲ ∥Rµ∥L∞

t L∞
α
∥Wν,α∥L2

tL
∞
loc(Bλ) ≲ µ− 1

2νcνM,

and (7.14) follows in both cases after µ, ν summation.
The proof of Proposition 5.3 is concluded.

□

7.2. Estimates involving F . There are three error terms which in-
volve the full F , namely Err5, Err6 and Err7. In this section we
will estimate these terms. We need to deal with F in the following
combinations:

(1) The harmonic function

G1 := Im(FRα). (7.15)

(2) The harmonic function

G2 := Im(F [2]Wα). (7.16)

(3) The harmonic extension

G3 := HD(ImW ReF (1 +Wα)). (7.17)

We will state our main bounds directly in terms of these expressions,
rather than in terms of F . This is because the bounds for G1, G2 and
G3 are better viewed as trilinear bounds, rather than more directly as
iterated bilinear bounds. We begin with G1 and G2, where the results
are easier to state:

Proposition 7.6. a) High frequency bounds. The functions G1, and
G2 have the following regularity in the fluid domain:

∥G1∥
L2
tL

2
βH

− 1
2

α (A1(x0))
≲ ϵM, (7.18)
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∥G2∥L2
tL

2(A1(x0)) ≲ ϵ2M. (7.19)

.
b) Low frequency bounds:

∥G1∥L2
tL

∞(Aλ(x0)) ≲ λcλM, (7.20)

∥|G2∥L2
tL

∞
α (Aλ(x0)) ≲ λ

1
2 cλM. (7.21)

We postpone the proof of the proposition, in order to complete the
proof of the Err15 and Err6 bounds.

Proof of the bound for Err15. We recall that

Err15 :=

∫︂ T

0

∫︂∫︂
mα Im(FRα)HD (ImW ReWα) dαdβdt.

At high frequency this is estimated combining (7.18) and (6.36). At
low frequency instead we combine (7.20) and (6.37). □

Proof of the bound for Err6. We recall that

Err6 =

∫︂ T

0

∫︂∫︂
mα ImR Im((F −R)Wα) dαdβdt.

This we can estimate using Lemma 6.10 for R, and (7.19), (7.21) for
the second factor. □

Next we consider the bounds for G3, which are summarized in the
following:

Proposition 7.7. For each 1/h < µ < 1, the function G3 admits a
decomposition

G3 = Gµ,1
3 +Gµ,2

3 ,

where the two components satisfy estimates as follows:
a) High frequency bounds.

∥∂αGµ,1
3 ∥L2

tL
2(A1(α0)) ≲ µ− 1

2 cµM, (7.22)

sup
µ
µ− 1

2∥∂αGµ,2
3 ∥L1L2(A1(α0)) ≲M2. (7.23)

b) Low frequency bounds:

µ
1
2∥∂αGµ,1

3 ∥L2
tL

∞(Aµ(α0)) ≲ cµM, (7.24)

respectively

sup
µ
µ− 1

2∥∂αGµ,2
3 ∥L1

tL
∞(Aµ(α0)) ≲M2. (7.25)

We now use this Proposition to estimate the remaining error:
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Proof of the bound for Err7. We recall that

Err7 :=

∫︂ T

0

∫︂∫︂
mα ImR∂αG3 dαdβdt.

We first estimate the bound for R≥1, using the decomposition above
with µ = 1. The G1,1

3 contribution is easy to bound using the local
energy for R. The G1,2

3 contribution is also easy to bound using the
uniform H1

h control norm for R.
Then we estimate the contribution of Rµ, where we use the above

decomposition associated exactly to the frequency µ. Precisely, we
match the Gµ,1

3 bound with the local energy estimate for Rµ, while on

the other hand we match the Gµ,2
3 bound with the uniform bound for

R using the control norm. □

The remainder of the section is devoted to the proof of Proposi-
tions 7.6,7.7. In estimating the contributions of F we will separately
consider three regimes:

I. High frequencies: ≥ 1. Here the real and imaginary part of
F satisfy similar estimates.

II. Low frequencies: ∈ [h−1, 1]. Again the real and imaginary
part of F satisfy similar estimates. We also include here the
very low frequencies of ImF and R.

III. Very low frequencies: ≤ h−1 for Re(F−R). It is here that
the difference between ReF and ImF comes into play, along
with the assignment of constants as discussed in the beginning
of the section.

I. The high frequencies of F . For the Rh component of Fh we

simply use Lemma 6.10. For the high frequencies F
[2]
h of F [2] we instead

rely on Lemmas 7.1, 7.3. Only in a few cases we need to backtrack

further and use the structure of F
[2],1
h and F

[2],2
h .

I.a. The contribution of Fh to G1. We use the bilinear Littlewood-
Paley expansion

Pλ(FhRα) = Fh,λR<λ,α + Fh,<λRλ,α +
∑︂
µ≥λ

Pλ(FµRµ,α). (7.26)

For Fh we use the expansion

Fh = Rh + F
[2],1
h + F

[2],2
h ,

where the last two terms are as in Lemma 7.3. We successively consider
the three terms in (7.26).
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For the first term in (7.26) it is easy to bound the output of the F
[2],2
λ

component. Indeed, using the local energy norm forR and Lemma 6.11,
we have

∥Rα∥
L2
tH

− 3
2

loc

≲M,

which can be in turn easily combined with (7.9).

The output of the Rλ+F
[2],1
λ component is more difficult to estimate.

We recall that F
[2],1
λ arises from unbalanced frequency interactions, so

we expand it as

F
[2],1
λ = P[Im(Rλ(Ȳ <λ + 2)) + Im(R<λȲ λ)].

Multiplying this by R<λ,α we obtain a trilinear form, for which we need
to balance the three input frequencies. There are two terms to consider,
and we only consider the worst one,

P(YλR̄<λ)R<λ,α.

This is estimated using Hölder’s inequality and Bernstein’s inequality
as follows:

∥P(YλR̄<λ)R<λ,α∥L2
tH

−1
loc

≲ λ−1∥YλR̄<λR<λ,α∥L2
tL

2
loc

≲ λ−1∥Yλ∥L∞
t L2∥R̄<λ∥L2

tL
∞∥R<λ,α∥L∞

t L∞

≲ λ−1∥Yλ∥L∞
t L2 λ

1
2 ∥R̄<λ∥L2

tL
2 λ

1
2 ∥R<λ,α∥L∞

t L2

≲ ∥Yλ∥
L∞
t Ḣ

1
2
∥R∥

L2
tH

− 1
2

loc

∥Rα∥L∞
t L2

≲ cλMϵ.

Here the three factors on the right are estimated using the uniform
control norm, local energy, respectively the uniform control norm.

For the second term in (7.26) it is easy to bound the output of the
R and the F [2],1 component, using the uniform control norm for R.

We are left with the F [2],2 component, which arises from balanced in-
teractions of R and Y . Thus we obtain again a trilinear form. Precisely,
we need to bound in L∞

t L
2
loc the expression∑︂

µ1≲µ,λ

Pµ1(RµȲ µ)Rλ,α =
∑︂
µ<λ

(RµȲ µ)Rλ,α +
∑︂
µ≥λ

P<λ(RµȲ µ)Rλ,α.

Here for the first sum where µ < λ we use Hölder’s inequality followed
by Bernstein’s inequality and arrive at the bound⃦⃦

(RµȲ µ)Rλ,α

⃦⃦
L2
tH

−1
loc

≲ µ∥R∥
L2
tH

− 1
2

loc

∥Y ∥L∞
t L∞∥Rλ,α∥L∞L2 ≲ µcλϵM,

(7.27)
which suffices after µ summation. Here we used the local energy for R
and the uniform control norm for the remaining factors.
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On the other hand for the second sum which corresponds to the
range µ ≥ λ we estimate⃦⃦
(RµȲ µ)Rλ,α

⃦⃦
L2
tH

−1
loc

≲ λ2µ−1∥Rµ∥L∞
t H1∥Y ∥L∞

t L∞∥Rα∥
L2
tH

− 3
2

loc

≲ µ−1λ2cµϵM,

(7.28)
which again suffices. This corresponds to using local energy for Rα and
the uniform control norm for the remaining factors.

Finally, the third term in (7.26) is negligible since we are multiplying
two holomorphic functions, so the output at low frequency is exponen-
tially small.

I.b. The contribution of Fh to G2. This is given by F
[2]
h Wα. We

use again the Littlewood-Paley trichotomy,

Pλ(F
[2]
h Wα) = F

[2]
h,λW<λ,α + F

[2]
h,<λWλ,α +

∑︂
µ>λ

Pλ(F
[2]
h,µWµ,α). (7.29)

The first term is easy for the F
[2],2
h component, where we use the local

energy norm for ImW .

For the F
[2],1
h component we again expand F

[2],1
h as a bilinear form in

R and Y which contains only high-low interactions, obtaining a trilinear
form. As before we have two contributions, of which we describe the
worst, namely ∑︂

λ>1

P(R̄<λYλ)W<λ,α.

This is estimated by⃦⃦
P((R̄<λYλ)W<λ,α

⃦⃦
L2
tH

− 1
2

loc

≲ ∥R∥
L2
tH

− 1
2

loc

∥Yλ∥L∞
t L∞

α
∥Wα∥L∞

t L∞
α
≲ cλϵM.

(7.30)
Consider now the second term in (7.29). The bound is easy for the

F
[2],1
h component. For the F

[2],2
h component we need to consider the

sum∑︂
µ1<µ,λ

Pµ1(RµȲ µ)Wα,λ =
∑︂
µ<λ

(RµȲ µ)Wα,λ +
∑︂
λ≤µ

P<λ(RµȲ µ)Wα,λ.

Again we estimate the two terms differently. For the first sum where
µ < λ we compute by Hölder and Bernstein’s inequalities at fixed time⃦⃦⃦⃦
⃦ ∑︂
1≤µ<λ

RµȲ µWα,λ

⃦⃦⃦⃦
⃦
L2
tH

− 1
2

loc

≲ λ−
1
2µ

1
2∥R∥

L2
t Ḣ

− 1
2

loc

∥Y ∥L∞
t L∞

α
∥Wλ,α∥

L∞
t H

1
2
h

≲ λ−
1
2µ

1
2 cλϵM,

using the local energy bound for R and the uniform control norm for
the other two factors. Similarly, for the second sum, where µ ≳ λ, we
have the fixed time bound⃦⃦
P<λ(RµȲ µ)Wα,λ

⃦⃦
L2
tH

− 1
2

loc

≲ λµ−1∥Rµ∥L∞
t H1

h
∥Y ∥L∞

t L∞
α
∥W∥L2

tL
2
loc

≲ λµ−1cµϵM,
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which again suffices.
Finally, the third term in (7.29) is negligible as the two factors are

holomorphic.

I.c. The contribution of Fh to G3. Here we will estimate directly
the product Fh ImW , as FhWα is easily seen to satisfy the same bounds
as Fh. We use again the Littlewood-Paley trichotomy,

Pλ(FhW ) = Fh,λ ImW<λ + Fh,<λWλ +
∑︂
µ>λ

Pλ(Fh,µWµ). (7.31)

The contribution of R to the first term is easy to bound in L2
tH

− 1
2

loc ,

and so can be included in G1,1
3 . Consider now the expression∑︂

λ≥1

F
[2]
h,λ ImW<λ.

Here it is easy to estimate the contribution of F
[2],2
h , using the local

energy bound for ImW . Hence we consider the contribution of F
[2],1
h ,

which contains the high-low interactions ofR and Y in F [2] . We expand
this as a trilinear form, obtaining two terms depending on whether R
or Y is at high frequency. The better term is

RλY<λW<λ,

where the second factor is harmless so this is no different than the
corresponding contribution of R.
The worst term is

YλR̄<λ ImW<λ.

To bound it we consider several cases depending on the frequencies of
R and ImW :

(i) Both frequencies ≥ 1. Then we have the fixed time estimate

∥YλR̄[1,λ) ImW[1,λ)∥
L2
tH

1
2
loc

≲ ∥Yλ∥
L∞
t H

1
2
h

(∥R∥
L∞
t Ḣ

1
h
∥ ImW∥L2

tL
2
loc

+ ∥R∥
L2
tH

− 1
2

loc

∥ ImW∥
L∞
t H

3
2
α

)

≲ cλϵM,

where we balance norms depending on which of the frequencies of R
and W is larger. This contribution is included in G1,1

3 .

(ii) One frequency ≥ 1, and one ≤ 1. Here the same argument
as above applies, where we bound the low frequency factor in L2

tL
∞
loc.

Again here we use G1,1
3 .

(iii) Both frequencies ≤ 1. This is the more difficult term, where
we need the parameter µ and the Gµ,2

3 component. This is where we
differentiate depending on the frequency of R. If the frequency of R
is less than µ then we use the local energy bound for R, and add that

72



contribution to Gµ,2
3 , If the frequency of R is larger than µ then we use

the energy bound for R, and add that contribution to Gµ,1
3 .

The low-high case, i.e. the second term in (7.31), is similar to the
like one for G1, and goes into G1,1

3 .
Unlike in the case of G1 or G2, here the high-high to low case is also

nontrivial. We consider it next. For the two components of F
[2]
h we

estimate for 1 < λ ≲ µ

∥Pλ(F [2],1
h,µ ImWµ)∥

L2
tH

1
2
loc

≲ λ
1
2µ− 1

2∥F [2],1
h,µ ∥

L2
tH

− 1
2

loc

∥ ImWµ∥
L∞
t H

3
2
h

≲ λ
1
2µ− 1

2 cµM,

respectively

∥Pλ(F [2],2
h,µ ImWµ)∥

L2
tH

1
2
loc

≲ λ
1
2µ− 1

2∥F [2],2
h,µ ∥L∞

t H1
h
∥ ImW∥L2

tL
2
loc

≲ λ
1
2µ− 1

2 cµM,

both of which suffice after µ summation. Both of these components go
into G1,1

3 .
The same estimates also apply for λ = 1 when P1 is replaced by P≤1.

This addresses the low frequency bounds ≤ 1 in G1,1
3 .

II. The low frequencies of F . Here we consider the low frequencies

Fl := F[h−1,1].

Our main tool will be the decomposition for F
[2]
l provided by Lemma 7.5.

One consequence of Lemma 7.5 is the bound

∥Fl∥L2
tL

∞
loc

≲M, (7.32)

which will be used to handle with the contribution of Fl to the high
frequencies of G1, G2 and G3.

II.a. The contribution of Fl to G1. The contribution of R is
easy to estimate using Lemma 6.10. The high frequencies ≥ 1 are in
turn directly estimated using (7.32).

Here it remains to bound the expression∑︂
λ1,λ2≤1

F
[2]
l,λ1
Rλ2,α

in L2
tL

∞
loc(Aλ). Restricting to Aλ limits the frequencies λ1, λ2 to [1/h, λ]

with only exponentially decaying tails at higher frequencies. We con-
sider two cases:

If λ1 ≤ λ2 then we can use (7.11) and (7.12), and combine this with
the uniform control bound for R and Bernstein’s inequality,

∥F [2]
l,λ1
Rλ2,α∥L2

tL
∞
loc(Aλ) ≲ ∥F [2]

l,λ1
∥L2

tL
∞
loc(Aλ)∥Rλ2,α∥L∞

t L∞
α
≲ λ

1
2
1 λ

1
2
2 cλ2M,

which suffices after λ1, λ2 summation.
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If λ1 > λ2 we can still estimate the contribution of F
[2],2
l using (7.13)

combined with the pointwise bound for Rλ2,α derived from local energy
in Lemma 6.10,

∥F [2]
l,λ1
Rλ2,α∥L2

tL
∞
loc(Aλ) ≲ ∥F [2]

l,λ1
∥L∞

t L∞
α
∥Rλ2,α∥L2

tL
∞
loc(Aλ) ≲ λ

− 1
2

1 λ
3
2
2 cλ1M.

This leaves us only with the contribution of F
[2],1
l , which we expand

to a trilinear expression, arriving at an expression of the form∑︂
λ2,λ3≤λ1≤λ

Rλ3Yλ1Rλ2,α +Rλ1Yλ3Rλ2,α.

Here we apply the local energy bound for the factor with the lowest
frequency λmin, and use the uniform control norm for the two highest
frequencies. Estimating as above this yields a bound

∥Rλ3Yλ1Rλ2,α +Rλ1Yλ3Rλ2,α∥L2
tL

∞
loc(Aλ) ≲ λ

1
2
minλ

1
2
1 cλ1M,

where we have off-diagonal decay for the summation.

II.b. The contribution of Fl to G2. The contribution of R is
easy to estimate using Lemma 6.10. The high frequencies ≥ 1 are in
turn directly estimated using (7.32).

It remains to estimate the low frequency contribution of F
[2]
l , for

which we consider the decomposition in Lemma 7.5. This time the

contribution of F
[2],1
l is easy to bound, using the pointwise estimate for

Wα,

∥F [2],1
l,<λW<λ,α∥L2

tL
∞(Aλ) ≲ λ

1
2 cλM.

This leaves us with the contribution of F
[2],2
l , i.e., with terms of the

form ∑︂
λ1,λ2<λ

F
[2],2
l,λ1

Wλ2,α.

Here we consider two cases.

a) If λ1 < λ2 then we use (7.12) for the first factor combined with the
pointwise bound derived from the control norm for the second, which
yields

∥F [2],2
l,λ1

Wλ2,α∥L2
tL

∞
α (Aλ) ≲ λ

1
2
1 ϵcλ2M,

with off-diagonal decay which insures the summation with respect to
λ1, λ2 < λ.

b) If λ1 ≥ λ2 then we use (7.13) for the first factor combined with
local energy for the second, which yields

∥F [2],2
λ1

Wλ2,α∥L2
tL

∞
α (Aλ) ≲ λ

− 1
2

1 λ2ϵcλ1M.

This again suffices.
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II.c. The contribution of Fl to G3. For all terms except a single
one, it suffices to use only G1,1

3 . We consider first the contribution of
R, which is

HD(ImW · ReRl).

Here we use the Littlewood-Paley trichotomy, combining a local en-
ergy bound for the low frequency factor with the uniform control norm
bound for the high frequency factor. The estimates follow from Hölder’s
and Bernstein’s inequalities. We briefly describe the estimates:

a) In the high-low case λ > µ we have

∥ ImWλReRµ∥L2
tL

∞
loc(Bλ) ≲ ∥ ImWλ∥L∞

t L∞
α (Bλ)∥ReRµ∥L2

tL
∞
loc(Bλ) ≲ µ

1
2λ−1cλM.

b) In the low-high case we have

∥ ImW<λReRλ∥L2
tL

∞
loc(Bλ) ≲ ∥W<λ∥L2

tL
∞
α (Bλ)∥ReRλ∥L∞

t L∞
α (Bλ) ≲ λ−

1
2 cλM.

c) In the high-high case we have

∥Pλ(ImWµReRµ)∥L2
tL

∞
loc(Bλ) ≲ λ∥ ImWµReRµ∥L2

tL
1
loc(Bλ)

≲ λ∥ ImWµ∥L∞
t L2

α
∥ReRµ∥L2

tL
2
loc(Bλ)

≲ λ
1
2µ−1cµM.

Next we consider the contribution of F
[2]
l using the Littlewood-Paley

trichotomy:

a) The expression W<λF
[2]
l,λ . This is the most delicate case. We can

easily dispense with F
[2],2
l,λ via (7.13) combined with the local energy

bound for W in Lemma 6.6. It remains to consider the contribution of
F

[2],1
l,λ , which, we recall, is produced from unbalanced interactions of R

and Y . Then we are left with trilinear expressions of two types.

a.1) The trilinear form

W<λRλȲ <λ.

Here we use local energy for W and the uniform control norm for the
remaining two factors; this is identical to case (b) before since Y is
bounded.

a.2) The trilinear form

W<λR<λȲ λ,

where using one local energy bound does not seem to suffice. It is only
here that the decomposition Gµ,1

3 + Gµ,2
3 is needed. We consider three

cases depending on how the two low frequencies λ1, λ2 compare with
µ.
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a.2.i) λ1, λ2 < µ. Then we group terms as

R<µW<µȲ λ,

and use the pointwise bound derived from local energy for the first two
factors to obtain

∥R<µW<µȲ λ∥L1
tL

∞
loc(Bλ) ≲ µ−1M2cλ.

This term is placed in Gµ,2
3 .

a.2.ii) λ1 > µ. Then also λ > µ. We group terms as

Rλ1W<λȲ λ.

Then we use the local energy bound for W and the control norm for R
to get a bound of

∥Rλ1W<λȲ λ∥L2
tL

∞
loc(Bλ) ≲ λ

− 1
2

1 cλcλ1M,

where we use the summation for both λ1 and λ. This term is placed in
Gµ,1

3 .

a.2.iii) λ1 < µ < λ2. Now we switch roles and use local energy for R
and the control norm for W . The estimate is similar to the previous
case but better. This term is also placed in Gµ,1

3 .

b) The expression WλF
[2]
l,<λ. This is easier, using the control norm

for Wλ and local energy (7.11) (7.12) for F [2].

c) The expression Pλ(WνF
[2]
l,ν ) is similar to the above, using either

local energy or the control norm for W corresponding to the two com-
ponents of F [2]. This term is also placed in G1,1

3 .

III. The very low frequencies of F . Here we consider the very
low frequencies

Fvl = Re(F −R)< 1
h
.

We freely omit the imaginary part of F , as well as R, which fit within
the purview of the analysis in the low frequency case.

The size of Fvl depends on the choice of the constants, but its deriv-
ative does not, so we estimate that first:

Lemma 7.8. The function ∇Fvl satisfies the bound

∥∇Fvl∥L2
tL

∞
loc(A1/h)

≲ h−
3
2Mϵ. (7.33)

This is an immediate consequence of Lemma 7.5 and the proof is
omitted. This estimate allows us to estimate the contribution of Fvl −
Fvl(α0) to Proposition 7.6. By direct integration, this function satisfies

|Fvl(z)− Fvl(α0)| ≲ g(t)|z − α0|, ∥g∥L2
t
≲ h−

3
2Mϵ. (7.34)

We now consider its effect on Propositions 7.6, 7.7.
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III.a. The contribution of Fvl to G1. This is easily estimated
combining the pointwise estimate (7.34) with the pointwise bound for
Rα derived from the control norm.

III.b. The contribution of Fvl to G2. This is also straightforward
using the pointwise estimate (7.34) together with the pointwise bound
for Wα derived from the control norm.

III.c. The contribution of Fvl to G3. Here we need to consider
the expression

G3,vl = (Fvl(α)− Fvl(α0)) ImW (1 +Wα).

To estimate G3 at frequency λ we use Bernstein’s inequality to bound
ImW and Wα in L∞ in terms of the control norm. To do this we take
into account the fact that the lowest frequency must be at least h−1,
the highest frequency must be at least λ, as well as the fact that from
(7.34) we get a factor of λ−1h−

3
2 in the region Bλ(x0). The worst case

scenario is when ν < λ and we estimate in Aλ(α0)

|Pλ[(Fvl(α)− Fvl(α0)) ImWνWλ,α)]| ≲ f(t)λ−1h−
3
2µ−1 ≲ f(t)λ−

1
2 ,

with trivial ℓ1 summation. Thus this contribution is directly placed in
G1

3.
Here µ is limited below by 1/h because we use the inhomogeneous

norms in X.

IV. The constant in F . We denote the constant by c(t) which we
will simply estimate via (7.2), which we recall here:

|c(t)| ≲ |R(α0)|.

To evaluate the contribution of c we will use the following

Lemma 7.9. For each λ > h−1 we have a decomposition

c = c1λ + c2λ,

where

∥c1λ∥L2
t
≲ λ

1
2M, (7.35)

respectively

∥c2λ∥L∞
t
≲ λ−

1
2 cλ, (7.36)

with additional ℓ1 summability at low frequency in the last bound.

Proof. This corresponds to the decomposition

R = R≤λ +R≥λ,

where for the first term we use the local energy bounds and for the
second the X bound. □
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We now evaluate the effect of c in Propositions 7.6, 7.7.

IV.ab. The contribution of Fvl to G1, G2. For G1 and G2 we
use the above decomposition to estimate FRλ, respectively FWλ,α. For
the c1λ term we use the control norm for its co-factor, and for the c1λ
term we use local energy for its co-factor.

IV.c. The contribution of Fvl to G1, G2. The same idea as
above applies the c ImW component of G3. Finally, for the term

c ImW ·Wα

we apply a similar argument, but splitting c depending on the lowest
of the two frequencies.

Appendix A. Nonlinear computations

In this appendix, we prove another Morawetz’s inequality which
holds under a very mild smallness assumption on the free surface ele-
vation η (and without restriction on ψ). The proof is entirely different.
It exploits the positivity of the pressure to deduce through a virial
type argument a control of the kinetic energy. As a result, we obtain
a bound of the local energy, which is a quadratic quantity, in terms of
the momentum density I1, which contains a linear term. However, by
so doing, we loose the uniformity in the depth h as well as the control
of the low-frequency component of the velocity potential.

Theorem A.1. Let g ∈ (0,+∞). Let s > 5/2 and T be an arbitrary
positive real number. Consider any solution (η, ψ) ∈ C0([0, T ];Hs(R)×
Hs(R)) of the water-wave system (1.4). Given ε > 0 and r > 1/2, set

m(x) =

∫︂ x

0

dσ

(1 + ε2σ2)r
.

Assume that

(i) inf
(t,x)∈[0,T ]×R

η(t, x) ≥ −h
2
,

(ii) sup
(t,x)∈[0,T ]×R

|ηx(t, x)| ≤
1

3
,

(iii) εr
(︂
h+ ∥η∥L∞

)︂
≤ 1

42
.

Then there holds∫︂ T

0

{︃∫︂
mx(x)η

2(t, x) dx+

∫︂∫︂
Ω(t)

mx(x) |∇x,yϕ(t, x, y)|2 dydx
}︃
dt

≤ 14

∫︂
R
m(x)I1(t, x) dx

⏐⏐⏐T
0
+ 2

∫︂
m(x)I2(t, x) dx

⏐⏐⏐T
0
,

(A.1)
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where

I1(t, x) =

∫︂ η(t,x)

−h
ϕx(t, y) dy, I2(t, x) = η(t, x)ψx(t, x),

and where we used the notation
∫︁
f(t, x) dx

⏐⏐⏐T
0
=
∫︁
f(T, x) dx−

∫︁
f(0, x) dx.

Proof. The proof is in two different steps. We first estimate the local
kinetic energy by using the momentum density I1 and the positivity of
the pressure. Then we estimate the local potential energy by using the
momentum density of I2.
Step 1: kinetic energy. We begin by proving that∫︂ T

0

∫︂∫︂
Ω(t)

mx(x) |∇x,yϕ(t, x, y)|2 dydxdt ≤ 7

∫︂
R
m(x)I1(t, x) dx

⏐⏐⏐T
0
.

(A.2)
To do so we use the local conservation law ∂tI1+∂xS1 = 0 where recall
that

S1(t, x) := −
∫︂ η(t,x)

−h
(∂tϕ+ gy) dy +

1

2

∫︂ η(t,x)

−h

(︁
ϕ2
x − ϕ2

y

)︁
dy.

By multiplying the equation ∂tI1 + ∂xS1 = 0 by m = m(x) and inte-
grating by parts, one obtains that∫︂∫︂

QT

S1(t, x)mx dxdt =

∫︂
mI1 dx

⏐⏐⏐T
0
,

where QT = [0, T ] × R. We will prove a stronger result than (A.2).
Namely, we will prove that∫︂∫︂

QT

S1(t, x)mx dxdt ≥
1

4

∫︂ T

0

∫︂∫︂
Ω(t)

mx |∇x,yϕ|2 dydxdt

+

∫︂ T

0

∫︂∫︂
Ω(t)

mxP dydxdt

+
h

2

∫︂ T

0

∫︂
mxϕ

2
x(x,−h) dxdt.

(A.3)

This will imply (A.2) since the third term in the right-hand side of
(A.3) is obviously positive and since the second one also since P ≥ 0
(this classical result follows from the maximum principle, the fact that
P is sub-harmonic and the boundary condition on the bottom; see
Lannes [28]).

To obtain (A.3), we start from

∂tϕ+
1

2
|∇x,yϕ|2 + P + gy = 0,
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which allows us to write S1 under the form

S1(t, x) :=
1

2

∫︂ η(t,x)

−h

(︂
|∇x,yϕ|2 + P

)︂
dy +

1

2

∫︂ η(t,x)

−h
(ϕ2

x − ϕ2
y) dy.

Then, to obtain (A.3), the key point is to prove that∫︂∫︂
Ω(t)

(ϕ2
x − ϕ2

y) dydx

can be written as the sum of a positive term and a remainder term.
This will be deduced from the following identity.

Notation A.2. From now on we use the shorthand notations∫︂∫︂
f dx dt =

∫︂∫︂
QT

f(t, x) dxdt,

∫︂∫︂∫︂
f dy dx dt =

∫︂ T

0

∫︂∫︂
Ω(t)

f(t, x, y) dydxdt.

Lemma A.3. For any function w = w(x) we have∫︂∫︂
w(ϕ2

x − ϕ2
y) dydx =

∫︂
w(h+ η)ϕ2

x(x,−h) dx

− 2

∫︂∫︂
wηxϕxϕy dydx+ 2

∫︂∫︂
wx(y − η)ϕxϕy dydx. (A.4)

Proof. This identity is proved in [2] when w = 1. The time variable is
seen as a parameter and we skip it. Set

u(x, y) = −w(x)(y − η(x))ϕy(x, y)
2.

Then u(x, η(x)) = 0 and u(x,−h) = 0 so
∫︁ η(x)
−h ∂yu dy = 0. On the

other hand

∂yu = −2w(y − η)ϕyϕyy − wϕ2
y,

so integrating on y ∈ [−h, η(x)] and then on x we obtain, remembering
that ϕyy = −ϕxx,

0 =

∫︂∫︂
uy = −

∫︂∫︂
wϕ2

y + 2

∫︂∫︂
w(y − η)ϕyϕxx.

Since ϕy = 0 on y = −h, by integrating by parts we infer that

0 = −
∫︂∫︂

wϕ2
y−
∫︂∫︂

w(y−η)∂yϕ2
x+2

∫︂∫︂
wηxϕxϕy−2

∫︂∫︂
wx(y−η)ϕxϕy.

Thus

0 = −
∫︂∫︂

wϕ2
y −

∫︂∫︂
∂y
(︁
w(y − η)ϕ2

x

)︁
+

∫︂∫︂
wϕ2

x + 2

∫︂∫︂
wηxϕxϕy − 2

∫︂∫︂
wx(y − η)ϕxϕy.

Since ∫︂
R

∫︂ η

−h
∂y
(︁
w(y − η)ϕ2

x

)︁
dy dx =

∫︂
R
w(h+ η)ϕ2

x(x,−h) dx,
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this proves the desired result. □

Set

Σ :=
1

2

∫︂∫︂∫︂
mx |∇x,yϕ|2 dy dx dt+

1

2

∫︂∫︂∫︂
mx

(︁
ϕ2
x − ϕ2

y

)︁
dydxdt.

It follows from the previous lemma that Σ = Σ1 + Σ2 with

Σ1 =

∫︂∫︂∫︂ (︂mx

2
−mxηx +mxx(y − η)

)︂
|∇x,yϕ|2 dydxdt,

Σ2 =

∫︂∫︂
mx(h+ η)ϕ2

x(x,−h) dxdt.

Now we assume that η ≥ −h/2. Then

Σ2 ≥
h

2

∫︂∫︂
mxϕ

2
x(x,−h) dxdt.

Now recall that by definition,

m(x) =

∫︂ x

0

dσ

(1 + ε2σ2)r
,

with r > 1/2 and where ε has to be chosen. Then

mxx(x) = −r 2ε2x

(1 + ε2x2)r+1
= εC(ε, x)mx(x) with C(ε, x) = −2r

εx

1 + ε2x2
.

Since |C(ε, x)| ≤ r, we obtain that |mxx(x)| ≤ εrmx(x). As a result,

|mxx(y − η)| ≤ εr(h+ ∥η∥L∞)mx.

Since, on the other hand, one has |ηx| ≤ 1
3
by assumption, we conclude

that

mx

2
−mxηx +mxx(y − η) ≥

(︂1
6
− εr(h+ ∥η∥L∞)

)︂
mx.

Then, assuming that

εr
(︂
h+ ∥η∥L∞

)︂
≤ 1

42
,

we conclude that

Σ1 ≥
1

7

∫︂∫︂∫︂
mx |∇x,yϕ|2 dy dx dt,

which completes the proof of (A.3) and hence the proof of (A.2).
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Step 2: estimate of the potential energy. In light of (A.2), to
prove Theorem A.1, it is sufficient to prove the following estimate about
the potential energy:∫︂ T

0

∫︂
gmx(x)η

2(t, x) dx dt ≤
∫︂∫︂

Ω(t)

mx(x) |∇x,yϕ(t, x, y)|2 dydxdt

+ 2

∫︂
m(x)I2(t, x) dx

⏐⏐⏐T
0
,

(A.5)
where recall that I2(t, x) = η(t, x)ψx(t, x).

We now work with the density momentum I2 and the associated flux
force S2. Recall that

S2 = −ηψt −
g

2
η2 +

1

2

∫︂ η

−h
(ϕ2

x − ϕ2
y) dy,

Again, it follows from the local conservation law ∂tI2 + ∂xS2 = 0 that,
for any weight m = m(x) and any time T , one has∫︂∫︂

QT

S2(t, x)mx dxdt =

∫︂
R
m(x)I2(T, x) dx−

∫︂
R
m(x)I2(0, x) dx,

(A.6)
where QT = [0, T ]× R.
Let us introduce a notation. Set

N(η)ψ =
1

2
ψ2
x −

1

2

(G(η)ψ + ηxψx)
2

1 + η2x
,

so that the Bernouilli equation reads

∂tψ + gη +N(η)ψ = 0.

We begin by reporting the expression for ∂tψ given by (1.4) to obtain

S2 =
g

2
η2 + ηN(η)ψ +

1

2

∫︂ η(t,x)

−h
(ϕ2

x − ϕ2
y) dy.

Let us recall a lemma from [2] which allows to handle the integral
involving N(η)ψ.

Lemma A.4. For any function µ = µ(x) there holds∫︂
R
µN(η)ψ dx = −

∫︂∫︂
Ω

µxϕxϕy dydx+
1

2

∫︂
µϕ2

x|y=−h dx. (A.7)

Proof. One can check that

N(η)ψ = N
⏐⏐
y=η

with

N =
1

2
ϕ2
x −

1

2
ϕ2
y + ηxϕxϕy.
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The proof then relies on the following identity

∂y
(︁
ϕ2
y − ϕ2

x

)︁
+ 2∂x

(︁
ϕxϕy

)︁
= 2ϕy∆x,yϕ,

which implies that, since ϕ is harmonic and ∂yµ = 0,

∂y
(︁
µϕ2

y − µϕ2
x

)︁
+ 2∂x

(︁
µϕxϕy

)︁
= 2µxϕxϕy.

We deduce that the vector fieldX : Ω → R2 defined byX = (−µϕxϕy; µ2ϕ
2
x−

µ
2
ϕ2
y) satisfies divx,y

(︁
X
)︁
= −µxϕxϕy. Since∇x,yϕ belongs to C1(Ω) and

since one has the boundary conditions

ϕy|y=−h = 0,

an application of the divergence theorem gives that

−
∫︂∫︂

Ω

µxϕxϕy dydx =

∫︂∫︂
Ω

divx,yX dydx

=

∫︂
∂Ω

X · n dσ =

∫︂
µN
⏐⏐
y=η

dx− 1

2

∫︂
µϕ2

x|y=−h dx.

This completes the proof. □

By combining this result with Lemma A.3, we conclude that∫︂∫︂
mxS2 dxdt =

∫︂∫︂
g

2
mxη

2 dxdt

+

∫︂∫︂
mx

(︃
h

2
+ η

)︃
ϕ2
x|y=−h dxdt

+

∫︂∫︂∫︂
(mxxy − 2ηmxx − 2mxηx)ϕxϕy dydxdt.

(A.8)
Now, by assumptions, one has

h

2
+ η ≥ 0, |mxx| ≤ εr |mx| , sup |ηx| ≤

1

3
.

Consequently,

|mxxy − 2ηmxx − 2mxηx| ≤
(︃
εr(h+ ∥η∥L∞) + 2εr ∥η∥L∞ +

2

3

)︃
|mx|

≤
(︃
3εr(h+ ∥η∥L∞) +

2

3

)︃
|mx|

≤
(︃

3

42
+

2

3

)︃
|mx| ≤ |mx| .

So, (A.8) implies that∫︂∫︂
g

2
mxη

2 dxdt ≤
∫︂∫︂

mxS2 dxdt+
1

2

∫︂∫︂∫︂
mx |∇x,yϕ|2 dydxdt.

The desired result (A.5) then follows from (A.2) and (A.6).
This completes the proof of Theorem A.1. □
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