A MORAWETZ INEQUALITY FOR WATER WAVES
THOMAS ALAZARD, MIHAELA IFRIM AND DANIEL TATARU

ABSTRACT. We consider gravity water waves in two space dimen-
sions, with finite or infinite depth. Assuming some uniform scale
invariant Sobolev bounds for the solutions, we prove local energy
decay (Morawetz) estimates globally in time. Our result is uniform
in the infinite depth limit.

1. INTRODUCTION

Our aim in this paper is to initiate the study of Morawetz inequalities
for water waves. The water-wave equations describe the dynamics of
the interface separating air from a perfect fluid. This is a system of
two coupled equations: the incompressible Euler equation inside the
fluid domain, and a kinematic equation describing the evolution of the
interface. Assuming that the flow is irrotational, we thus have two
unknowns: the velocity potential ¢, whose gradient gives the velocity,
and the free surface elevation 7, whose graph is the free surface.

We consider the 2D-gravity equations, without surface tension, and
assume that the fluid domain has a flat bottom. Then, at time ¢, the
fluid domain is of the form

Q) ={(z,y) e RxR : —h <y <n(tx)},

where h > () is the depth. Given a compactly supported bump function
= x(x), we want to estimate the local energy

n(t,x)
// v—x0)n*(t, ) dedt+= /// X(x—20) |Vayo(t, 2, 9)|* dydadt,

uniformly in time 7" and space location x.

In the infinite depth case (h = c0), neglecting all nonlinearities, the
gravity water-wave equations can be written as a fractional Schrodinger
equation

Ou+i|DyPu=0, with w=n-+ilD|?¢

For this equation, one can obtain a Morawetz inequality by using some
standard dispersive tools. The first goal of this paper is to extend
this linear analysis to the finite depth case, and prove an estimate

which is uniform with respect to A > 1. This problem exhibits some
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very interesting difficulties at low frequencies, whose analysis requires
a careful study of harmonic functions in a strip.

The second and main task of this paper is to obtain a Morawetz
inequality for the nonlinear equations. Our main result extends the
linear inequality; it holds provided that some scale invariant norms re-
main small enough uniformly in time. Our nonlinear analysis is highly
non-perturbative, since it is a very delicate problem to estimate the
nonlinearities by scale invariant norms (this can be seen by recalling
that one does not even know the existence of weak-solutions in such
scale invariant spaces).

The proofs combine multiple methods and ideas in a novel way: 1)
local conservation laws for the momentum conservation (inspired by
Morawetz, and introducing a new momentum density for the water
waves equations); i7) a systematic use of conformal transformations,
i1i) appropriate Littlewood-Paley decompositions and multilinear esti-
mates to analyze the low-frequency component, iv) a fully nonlinear
normal form type modification of the momentum density to handle the
worst nonlinearities.

In the Appendix, we also complement this analysis by showing a
Morawetz inequality for possibly large solutions, but at the expense
of loosing the uniformity in the depth as well as the control of the
low-frequency component of the velocity potential.

1.1. Morawetz estimates. Also known as local energy decay, they
were originally introduced in Morawetz’s paper [35]. In their original
form they assert that, for solutions to the linear wave equation, the
local energy of the solutions is bounded, globally in time, by the initial
energy. One may view this as a statement about the local decay of
solutions which is invariant with respect to time translations.

Another interesting example is the Schrodinger equation. Unlike the
wave equation, where one has a finite speed of propagation, in this
case the group velocity increases to infinity in the high frequency limit.
Because of this, the natural local energy measures a higher regularity
(1/2 derivative more to be precise) than the initial data energy of the
solutions; for this reason the Morawetz estimates for the Schrodinger
equation have been originally called local smoothing, see [18], [40].

Up to the present time, the Morawetz estimates have had a rich and
complex history, which is too extensive to try to describe here. For
further references we direct the reader to [33] for the wave equation,
[32] for the Schrodinger equation and [37] for other models. Morawetz
estimates have been proved for linear and nonlinear models, and have

been used as a key ingredient in many results concerning the long time
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behavior of solutions in nonlinear dispersive flows. One other key devel-
opment was the introduction of interaction Morawetz estimates in [17],
which has played a major role in the study of nonlinear Schrodinger
equations.

We turn our attention now to Morawetz estimates for water waves.
Here additional challenges arise due to the fact that the equations are
not only fully nonlinear, but also nonlocal. Another striking difference
is due to the fact that in the high frequency limit the dispersive part
of the group velocity goes to zero. Because of this, here we have the
opposite phenomena to local smoothing, namely a loss of 1/4 deriv-
ative in the local energy. Combined with the nonlinear and nonlocal
character of the equations, this brings substantial difficulties in the low
frequency analysis.

1.2. The water wave equations. Consider the incompressible Euler
equations for a potential flow in a 2D-domain located between with a
free surface and a flat bottom. At time ¢ the fluid domain is of the
form

Q) ={(z,y) ERxR : —h <y <n(tz)}

where h > 0 is the depth and 7, the free surface elevation, is an un-
known function. The velocity field is the gradient of a harmonic po-
tential function ¢ = ¢(t, x,y), satisfying the Bernoulli equation,

Ay y¢ =0 in Q(t)

1 .
O+ 5 [Vayd + P +gy =0 in Q1) (1.1)
¢y =0 ony=—h,
where g > 0 is the acceleration of gravity, P: {2 — R is the pressure,
Vay = (0r,0,) and A, = 024 02. Partial differentiations in space are
denoted by suffixes so that ¢, = 0,¢ and ¢, = 0,¢.
The water-wave equations are given by two boundary conditions on

the free surface: firstly an equation describing the deformations of the
domain,

Oim = 1+ 02 bnly=n = ¢y (t, 2, 0(t, ) =1 (L, 2) 0 (L, 2,9 (t, 7)), (1.2)

and secondly an equation expressing the balance of forces at the free
surface. In the present article we consider pure gravity waves, so that
this balance of forces reads

Ply—, = 0. (1.3)

One can give more explicit evolution equations by introducing the
trace of the velocity potential at the free surface,

w(t7 m) = (b(ta xz, 77(t> SL‘)),
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as well as the Dirichlet to Neumann operator associated to the fluid
domain €(t), defined by

G(U)w =V 1 =+ 77:12: ¢n|y=7] = (¢y - nx(bz)b:n'

Then (see [46]), with the above notations, the water-wave system reads

Om = G(n)y
G )2 1.4
8t¢+gn+%¢§—%( (77)1%0++nz¢) =0. (14)

1.3. Symmetries and conservation laws. Introduce the energy H,

defined by
g 1 77(@95) 9
H= —/n2d$+—// V| dydx. (1.5)
2 Jr 2JrJ ’

The energy is conserved. Furthermore, it is known since Zakharov
([46]) that the water-wave system is Hamiltonian. Precisely, we have

on oM oY oH
o o’ o oy’

A second conservation law arises by Noether’s theorem from the
invariance with respect to horizontal translations. This is the horizontal

momentum, which has the form

M Z/Rm/)xdm. (1.6)

Together with the energy, this will play a key role in what follows.
Another symmetry is given by the scaling invariance which holds in

the infinite depth case (that is when h = o). If ¥ and 7 are solutions

of the gravity water waves equations (1.4), then ¢, and n, defined by

Oa(t,z) = X320 (VA ML), At ) = AN 'n(VAE, Ax),

solve the same system of equations. The (homogeneous) Sobolev spaces

invariant by this scaling correspond to 1 in H 3/2(]R) and ¢ in H 2(]R).

1.4. The Cauchy problem. The energy, the momentum and the
scale invariant norms are super-critical for the current local well-posedness
results about the Cauchy problem. One does not even know the exis-
tence of weak-solutions for initial data such that these three quantities
are finite.

The local well-posedness for the Cauchy problem with initial data
in Sobolev spaces has been extensively studied; we refer the reader to
36, 41, 42, 16, 30, 19, 28, 38, 4, 25, 29, 5, 1]. The water wave equations
are now known to be locally well-posed in suitable function spaces
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which are 1/2-derivative' more regular than the scaling invariance, e.g.
when initially

ne HS(R)’ w - T¢y|y:n77 = HS+% (R>7 s> 27

where T,b is the paraproduct decomposition of the product of two
functions a and b; it represents the portion which favours the “low-
high” interaction when a low-frequency component of a is multiplied
with a high-frequency component of b. Here the expression ¢ —Ty | _ 7
represents the so called good unknown of Alinhac ([10, 9, 28, 8]), and
is imposed by the non-diagonal quasilinear structure of the equations.
Alternatively, one can re-express the second condition in terms of the
gradient of the velocity potential, namely by requiring that V¢l,—,
belongs to H*~ 2 (R).

Since we are interested in uniform in time estimates, let us recall
that much less is known concerning the long time dynamics. For data
of size € it is known that solutions persist for at least a cubic lifespan
O(e72), see” [6, 25] for the deep water case and [24] for the finite depth
case (see also [45] for the 3D problem). For longer times it is not at
all clear what happens to the solutions, and the blow-up scenario in
particular has not been excluded (see [15, 20] for large data blow-up).
An exception to this is the case when the initial data is not only small
but also localized, where there solutions are known to be global, see
[43, 27, 7, 25, 26] and also similar results in three dimensions [22, 44].

Rather than trying to study the size of the solutions for longer time,
in the present article we take a different track, and assume that we
have a solution which stays bounded (small) in a reasonable Sobolev
norm on a time interval [0, 7], with no a-priori bound on 7', and ask
what can be said about the dispersive properties of the solutions. More
precisely, our goal here is to initiate the study of Morawetz inequalities
for water waves. We consider the case of gravity waves in the present
article, and the case of gravity-capillary waves in a second article.

1.5. Function spaces. In this paragraph we introduce three spaces:
a space E° associated to the energy, a space E7 associated to the
momentum, and a uniform in time control norm ||-||, which respects
the scaling invariance.

The above energy H (Hamiltonian) corresponds to the energy space

for (n,v),
E° =g 2 L*(R) x H} (R),

'Even slightly below that, see [5, 1].
2As a historical note, the question of obtaining cubic lifespan bounds first arose
in the work of Zakharov [46] in the context of the NLS approximation for deep
water waves; see also [39] for more recent results in this direction.
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1
with the depth dependent H;? (R) space defined as

1

f2(R) = H*(R) + h 3 H'(R).

Similarly, in order to measure the momentum, we use the space E%,
which is the h-adapted linear Hi-type norm for (1,1) (which corre-
sponds to the momentum),

with

HA(R) := H*(R) N hiL*(R), Hz (R) = H%(R) +hiH (R).

IS

For our uniform a-priori bounds for the solutions, ideally one would like
to use a scale invariant norm, which would correspond to the following
Sobolev bounds:

ne€H;R), Vol € Hy(R).

Our uniform control norm, denoted by X, nearly matches the above
ideal scenario. Precisely, we define the homogeneous norm X, by

3
Xo:=L¥H? x g 2 L°H}.,
and then set
1, ) lx = 1Panr (0, Volym) iy + D 1P Voly=y)lxo-
h—1<\e2Z

Here we use a standard Littlewood-Paley decomposition beginning at
frequency 1/h,

l=Pam+ Z P.

1/h<Ae2%

Based on the expression (1.5) for the energy, we introduce the fol-
lowing notations for the local energy. Fix an arbitrary compactly sup-
ported nonnegative function x. Then, the local energy centered around
a point xg is

T T n(t,x)
[0, =9 [ [ xaappdvdes [ [ [0 \aman) [9200] dydo it
0o JR 0 JrRJ-h
It is also of interest to take the supremum over x,

1. O)Ze = sup (0, 9) I, -

roER
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1.6. Main result. Our main result for gravity water waves is as fol-
lows:

Theorem 1.1 (Local energy decay for gravity waves). Let s > 5/2.
There exist g and Cy such that the following result holds. For all T €
(0,400), all g € (0,400), all h € [1,400) and all solutions (n,v) €
C°([0,T]; H*(R) x H*(R)) of the water-wave system (1.4) satisfying

1(n, %)l x < € (1.7)
the following estimate holds

1, e < Collon )OIy + 1, YD) ) (1.8)

We continue with several remarks concerning the choices of param-
eters/norms in the theorem.

Remark 1.2. One key feature of our result is that it is global in time
(uniform in 7') and uniform in A > 1. In particular our estimate is
uniform in the infinite depth limit.

Remark 1.3. Another feature of our result is that the statement of
Theorem 1.1 is invariant with respect to the following scaling law (time
associated scaling)

(n(t, z),9(t, ) = (n(At, z), Mp(At, z))
(g, h) = (Mg, h).

This implies that the value of g is not important. By scaling one could
simply set it to 1 in all the proofs. We do not do that in order to
improve the readability of the article.

Remark 1.4. As already explained, the uniform control norms in (1.7)
are below the current local well-posedness threshold for this problem,
and are instead what one might view as the critical, scale invariant
norms for this problem. The dependence on h is natural as spatial
scaling will also alter the depth h. In the infinite depth limit one
recovers exactly the homogeneous Sobolev norms. We also note that,
by Sobolev embeddings, our smallness assumption guarantees that

In| < eoh, 1| S €o-

Remark 1.5. The constraint A > 1 is due to the window size of 1
in the local energy norm. Of course, once a local energy estimate is
obtained for a window size, the similar bound for all larger window
sizes also follow. Then bounds for h < 1 or for smaller window sizes
can also be achieved by scaling; however, the uniformity in h will be

lost.
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Remark 1.6. In Appendix A, we complement this result by showing
a similar estimate for possibly large solutions (satisfying a smallness
assumption which is milder than (1.7)), but at the expense of loosing
the uniformity in the depth as well as the control of the low-frequency
component of the velocity potential.

As in Morawetz’ s original paper ([35]), we will obtain these results
by using the multiplier method, based on the momentum conservation
law. When doing this, we encounter two difficulties:

e High frequency issues which are due to the fact that our
equations are quasilinear.

e Low frequency issues which are due both to the fact that
the equations are nonlocal, and that they have quadratic non-
linearities.

Of these, the low frequency issues are far more delicate. To approach
them we use both the Eulerian coordinates and the holomorphic coor-
dinates. The latter will provide a better setting to understand the fine
bilinear and multilinear structure of the equations.

1.7. Plan of the paper. In the next section, we review density flux
pairs for the momentum. The density 71, implicit in (1.6) only allows
one to control the local potential energy, while for the local kinetic
energy we introduce an alternate density and the associated flux.

To exploit the density flux identities we need a good understand-
ing of the Dirichlet problem in a strip, which in turn leads us to the
holomorphic coordinates. This is discussed in the following section,
which also provides the formulation of the equations in holomorphic
coordinates and reviews the correspondence between the two settings.

In Section 4 we use the quadratic versions of the above density flux
pairs in order to prove the local energy bounds for the corresponding
linear flow. This will be later used to handle the leading, quadratic
part of the nonlinear identities.

Finally, in the last sections we use the nonlinear density flux pairs to
prove the local energy decay bounds in the theorem. Here we use the
linear analysis for the main quadratic terms, and the bulk of the work
is devoted to estimates for the cubic and higher terms. It is there that
a delicate analysis is required in order to handle both the low and high
frequency contributions. In particular, the worst such contribution
turns out to be unbounded. However, we discovered that this error
term can be balanced using a carefully chosen nonlinear normal form
type correction to the momentum density.

Acknowledgements. This research was initiated at THES in the spring

2016 during a Trimester on nonlinear waves. The authors thank the
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2. CONSERVATION OF MOMENTUM AND LOCAL CONSERVATION
LAWS

This section contains several formal identities related to the conser-
vation of momentum (these formal computations will be made rigorous
later on). We prove that there are certain momentum densities that
one can use in defining the horizontal momentum. Clever manipula-
tions of such quantities will lead to control of the kinetic and potential
components of the local energy.

The fact that the momentum is a conserved quantity comes from the
fact that the problem is invariant with respect to horizontal translation
(see Benjamin and Olver [13] for studies of the invariants and symme-
tries of the water-wave equations). To exploit the conservation of the
momentum we will use density flux pairs (/,S) which by definition
must satisfy

M = /Idm, (2.1)

and also the conservation law
Ol + 0,5 = 0. (2.2)
In what follows m(z) is a positive increasing function. Multiplying

the identity (2.2) by m = m(x), integrating over [0,7] x R and then
integrating by parts yields

// S(t, z)m, dzdt = /m T.rd:v—/m dx.
[0,T]x

Since m, is nonnegative, the above identity is favorable provided that
S is also nonnegative.
We begin by writing the momentum as an integral over the whole

water domain
n(t,z)
:// Gu(t, 2, y) dydz.
RJ—h

The next lemma shows that the momentum is an invariant. As already

mentioned, this is a well-known result. For the sake of completeness, we
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give, following Longuet-Higgins [31], a formal computational proof of
the conservation of momentum which is linked to other computations
made below. We also give three different expressions for a possible
choice of the momentum density.

Lemma 2.1. We have

%M_O

Proof. Set Q(t) = {(z,y) : —h <y <n(t,z)}. To prove this result we
first check that, for any function f = f(¢,z,y), one has

/ ft,x,y) dyda:—/ (O +Vauyo- Vi) f dydx.
Q)
Indeed,

[ (@a)stt..n)yde = [ @007ty T+ da

R

_ /a o Va0 o
_ / / div,, (Vo 0) dyde

// Viy® Vo, fdydx.

By applying the previous identity with f = ¢,, we deduce that

d
Ly / / (O + Va6 - Vo) dyd,
SO

d 1
—M = // 0r (O + = |Vx7ygb|2) dydx = —/ 0, P dydzx.
dt Q) 2 Q)

Now, we have

n(t,x)
/ 0, P dydx = / 8x</ de) dx — /nxP|yn dr =0,
Q) R —h

where we used the boundary condition P|,—, = 0. This gives the
wanted result. U

In addition to the conservation of momentum, one has local con-
servation laws of the form (2.2), which imply the conservation of mo-
mentum. The study of these conservation laws for water waves was
initiated by Benjamin and we refer to his broad survey paper about
impulse conservation in [12]. Here we discuss density-flux pairs (7, 5)
for the momentum. These are not unique, and in effect there are three

such pairs that play a role in our work. The first two pairs are well
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known in fluid mechanics, but the third one is new to the best of our
knowledge.

Lemma 2.2. The expression

n(t,x)
[1(t7x) = / ¢x(taxay> dyv

—h
is a density for the momentum, with associated density flux

77(15:90) g 9 1 77(15@) 9 9
Sita) == [ aedy= G5 [ -

Proof. This result follows from the study by Benjamin in [12]. We give
here another proof. _

From now on, given a function f = f(¢,z,y), we denote by f the
function

f(t, "L‘) = f(t’ Z, n(t’ :L‘))
With this notation, one has

n _— n
Ty = 0, / body = (Om) s + / Drhy dy.
—h —h

Using the equations for 1 and the velocity ¢, this gives that

oty = (6, = 9,16~ [

—h

n

1
0, (5 Va0l + P) dy.
We deduce that
~ 1 ) 1 —2 ~ K 1 2
81‘,[1 = ¢y¢z + §nx¢y — §nm¢z + 77xP - aa: 5 |vﬂc,y¢| + P dy
—h

Using the two equations for the pressure (in the fluid domain and at
the free surface), we conclude that

e 1~ 1 2 n
Ody = 6,6+ y1ay — s’ +0, [ (@104 gu) d.
—h

Since 8, [7, gy dy = 0,(gn*/2), to conclude the proof, it remains only
to check that

>~ 1 ~ 1 ~2 1 "y 9
Oy + _nm¢y — NPz = 50: (¢y — ¢,) dy.
2 2 2 _h
This can be verified by a direct computation, noticing that

n n U —
—h —h —h
where we used the equations for ¢ to get ¢, = —¢y,, and ¢, (¢, x, —h) =
0. ]
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Lemma 2.3. The expression

]2(t7 *T) = TI(ta Jf)%(ta CL’)
1s a density for the momentum, with associated density flux
g, 1" 2
S2(t7 I) = _th -3t 5 <¢x - ¢y) dy
2 2 ),
Proof. We write that
n(t,z) n(t,x)
11:/ cbx(t,x,y)dy:@x/ ¢ dy — 121
—h

—h

n(t,x)
= dy —
8x</h ¢ dy n¢>+n¢x
n(t,x)
— dy — .
am(/h ¢ dy m/)>+12

This immediately implies that M = [ I dz = [ I, dx and

n(t,x) n(t,x)
Ol — 0L —0, / Dby — i | = —0, [ S1 + / by — iy |,
—h —h

so that the wanted expression for Sy can be deduced from the previous
lemma. U

To define the third pair we introduce two auxiliary functions as fol-
lows (we shall later rigorously justify that these functions are well-
defined). The function ¢, defined inside the fluid domain, is the stream
function, or the harmonic conjugate of ¢, and satisfies

QZ:_¢y7 in _h<y<7](tax>)
qy = Gu, in —h<y<n(t), (2.3)
q(t,x,—h) =0.
The function 6 is the harmonic extension of n with Dirichlet boundary
condition on the bottom:
A, ,0=0 in —h<y<n(tx),
0t x,n(t, x)) = n(t, z), (2.4)
O(t,z,—h) = 0.
Now the following lemma states that there is another natural den-
sity /flux pair for the momentum.

Lemma 2.4. The expression

n
Iy(t,x) = / VO(t,x.y) - Vot z,y) dy
—h
12



is a density for the momentum, with associated density flux

g, n(t,z) n(te) ) )
Sultia) ==t = [ ooy [ (562 =)+ 00,)

Proof. We write
VO -Vq=0,(0q)+ ayw%)a

and integrate in ¥,

n(w,t) n(w,t)
/ VO -Vqdy = / (ax<HQ:E) + ayw%)) dy

—h —h

n(z,t) — —
=0, / 0q. dy | — n.0q, + 0qy,
—h

where we recall that, given f = f(¢,x,y), weset f(t,z) = f(t,z,n(t, x)).
Now we notice that

—Ux@:‘*'qu :nx¢y+¢x = x¢:¢xa

so, recalling that 6= 1, we conclude that

Is =1, + 3:1:/9%: dy.

Hence I3 is also a momentum density. Further, its flux is

n(t,z)
Si=S-0 [ ta.dy
—h
We further expand the last time derivative,

n(t.x) — n(t.x)
o [ vwdy) =nbn+ [ (=00, + b04) dy

—h —h

- n(t,x)
= —mngy + / (— 0,0y — 00y) dy
—h

~ ~ n(t.z)
= =Py — NPt + / ( — 010, + 9y¢t) dy
—h
n(tx)
— it [ (=00, + ,00) dy
—h
The conclusion of the lemma easily follows. O

2.1. The expressions ¢; and 6;,. Here we provide a better descrip-
tion of the functions #; and ¢, arising in the last momentum flux Sj.
For that we introduce two bounded operators, Hp and Hy, which act
on functions on the top and produce their harmonic extension within
the fluid domain with zero Dirichlet, respectively Neumann boundary
condition on the bottom (we shall explain later on that these operators

are defined on a space large enough to contain all the functions that
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we shall encounter, namely they are well defined on uniformly local L?
spaces). As an example of the usage of these notations, we have

GZHD(H)’ ¢:HN(’¢)7

which means that

A=0 in —h<y<n, Ap=0 in —h<y<n,
6‘y=?7 =1, ¢|y:n =1,
0ly=n =0, OyPly=n = 0.

Recall that, given a function f = f(¢,z,y), weset f(t,x) := f(t,z,n(t, x)).

Lemma 2.5. The function ¢, is harmonic in the fluid domain, with
homogeneous Neumann boundary condition on the bottom, and can be
represented as

o = —gHy(n) — Hy (V9P (25)

The function 0y is harmonic in the fluid domain, with homogeneous
Dirichlet boundary condition on the bottom, and can be represented as

0, = ¢, — Hp (Vmgﬁ) . (2.6)

Proof. The equation for ¢ follows directly from the Bernoulli equation.
To compute the equation for 0, we write that, on the top {y = n(t, x)},

b=m(1-6,), 6. =n(1-9,).
Then we deduce that
Or = &y = —1atba (1 = 0,) — &0y = —0.6, — 0,0, = —V0 - V. (2.7)

Since 0, — ¢, vanishes on the bottom {y = —h}, this implies that 6, — ¢,
is the harmonic extension with the Dirichlet boundary condition of

Vo -Veo. U

3. HOLOMORPHIC COORDINATES

3.1. Harmonic functions in the canonical domain. Here we dis-
cuss two classes of harmonic functions in the horizontal strip S =
R x (=h,0).

We start by considering solutions to the homogeneous Laplace equa-
tion with homogeneous Neumann boundary condition on the bottom,

Au =0 in S
u(a,0) = f (3.1)



The solution may be written in the form

u(a, B) = Py(B. D) f(a) == — / P (€. B) ()i d.

27
where the Fourier multiplier symbol py is given by
_ cosh((5 + h)§)
pN(gﬂg) - COSh(hf) .

We are also interested in the Dirichlet to Neumann map Dy defined
by

This is closely related to the Tilbert transform, defined by the formula
1
Tnf(a) = ~5 13&} . cosech (;—h(a — o/)) fa)do', (3.2

or equivalently, given by the Fourier multiplier
Tr, = —itanh(hD).

We remark that it takes real-valued functions to real-valued functions.
We denote the inverse Tilbert transform by 7, '; a-priori this is only
defined modulo constants.
With this notation the Dirichlet to Neumann map for the problem
(3.1) is given by
Dy f = ThOuf

We will also need to consider to similar problem with the Dirichlet
boundary condition on the bottom

Av =0 in S
o(@,0) = g (33)
v(a, —h) = 0.

The solution may be written in the form

v@m:%wwmw:i/m@mww%m

2
where the Fourier multiplier symbol pp is given by
_ sinh((8 + h)¢)

The Dirichlet to Neumann map Dp for this problem is given by
vs(a,0) = Dpg = —T, ' 0ug.

The solutions to the two problems (3.1) and (3.3) can be related via

harmonic conjugates. Precisely, given a real-valued solution u to (3.1),
15



there exists a unique solution v to (3.3), which is harmonic conjugate
to wu, i.e., satisfying the Cauchy-Riemmann equations

Uy = —Ug
Up = Vg
Jsu(a, —h) = 0.

The Dirichlet data g for v on the top is determined by the Dirichlet
data f for u on the top via the relation

9=—Thf

Conversely, given v we could seek a corresponding harmonic conjugate
u. The difference in this case is that u will only be uniquely determined
modulo real constants.

3.2. A parabolic estimate for harmonic functions. We are inter-
ested in estimates of harmonic functions on vertical lines in terms of
the Dirichlet data on the top. These are parabolic type estimates for
solutions of these elliptic equations. To introduce these estimates, let
us consider the Laplace equation in the half space:

Av=01in <0, v|g=0=g.
By considering the Fourier transform in «, one obtains that

%o —|¢lPo =0,
SO
b= A(f)eﬁm + B(é)efﬁ\ﬁll
Since # < 0, one has necessarily B(£) = 0 so we deduce that v solves a
parabolic equation (we see  as a time variable)
0sv — |Dplv=0 in <0, vlgeo=g.

This is a backward parabolic equation. Namely, the function w(a, ) =
v(a, =) satisfies dgw + |Dy|w = 0. Now, if we perform a standard
energy estimate, multiplying the equation by v, one obtains that

0
2 1/2 2 2
[oC, B)I Lz +2/5 [1Dal" v (, 8|} dB" = llgll7s -
By letting 8 go to —oo, we conclude that
2 2
2ol 3 < ol

The following lemma improves this inequality in several directions: it

. 1/2 .
allows to control the L*-norm instead of the H / -norm, it allows to
consider initial data in H*, and it gives a result that is uniform with

respect to the depth. Our main estimate is as follows
16



Proposition 3.1. i) Let s € (—oo,%). Then the solutions to the

equation (3.3) satisfy the following bound:
187 v(e, B)lrzree < Mlgllmg- (3.4)

i1) The same result also holds for the equation (3.1).

This will transfer easily later on to a similar bound for the Laplace
equation in the fluid domain.

Proof. As already mentioned, the solution to (3.3) is of the form

o) = 5 [ po€ i€ de,
where h(( + W)E)
sin +
pD(€7ﬁ) - Slnh(hg) .

Notice that |pp(&, B)| < el for some positive constant c.
We now consider a Littlewood-Paley decomposition of g,

9=9g<ynt Z 9x-
1/h<)e2Z

By the triangle inequality and Bernstein’s inequality applied to each
corresponding dyadic piece of v we obtain

_1 1.
lo(B)llzze S P2 llg<ymlle + D Aze™galle.
A>1/h

1
For s < = the functions 3~%¢“** are easily seen to be almost orthogonal
in L?(—h,0). Then it follows that

1870l S > Ng<iplliz + D2 A llgallZs,
A>1/h

which completes the proof of 7).

To prove ii), we remark that we above we have only used the fact
that |pp(&, B)| is bounded from above by e®l€l. Since the symbol py
satisfies the same bound, the same conclusion holds for the solution to
(3.1). O

3.3. Holomorphic functions in the canonical domain. Here we
consider holomorphic functions w in the canonical domain S := {«a +
i a€R, —h < p <0}, which are real on the bottom {R — ih}.
These functions form a real algebra. Such functions are uniquely de-
termined by their values on the real line {5 = 0}, and can be expressed
as
w=u+ v,
17



where u and v are harmonic conjugate functions which solve the equa-
tions (3.1), respectively (3.3).

By extension we will call functions on the real line holomorphic if
they are the restriction on the real line of holomorphic functions in
the strip and satisfy the above boundary condition on the bottom.
This consists of functions w: R — C so that there is an holomorphic
function, still denoted by w: S — C, which satisfies

Imw = -7, Rew

on the top.
The complex conjugates of holomorphic functions are called anti-
holomorphic.

3.4. Holomorphic coordinates and water waves. Given the fluid
domain €2 at some time ¢ we introduce holomorphic coordinates z =
a + i, via conformal maps

7Z: S — Qt),

which associate the top to the top, and the bottom to the bottom.
These maps are uniquely defined up to horizontal translations in
S. Restricted to the real axis this provides a parametrization for the
water surface I'. Because of the boundary condition on the bottom of
the fluid domain the function W is holomorphic when a € R.
Such a conformal transformation exists by the Riemann mapping
theorem, and can be constructed as follows:

e construct the harmonic function f in the fluid domain, which
takes values 0 on the top, and —h on the bottom.

e construct the function « in the fluid domain as a harmonic con-
jugate of 5. This is uniquely determined modulo real constants.

e invert the holomorphic map x + iy — « + i to obtain the
desired conformal map Z.

Given such a map Z, we denote by
W :=27—-aq,

where W = 0 if the fluid surface is flat i.e., n = 0.

Turning our attention to the velocity potential ¢, we consider its
harmonic conjugate ¢ and then the function () := ¢ + iq taken in
conformal coordinates is the holomorphic counterpart of ¢. Here ¢ is
exactly the stream function also used in the previous section.

One can model the water wave equations in holomorphic coordinates
as an evolution for (W, Q) within the space of holomorphic functions
defined on the surface. This is described in detail in the papers [25] for
the infinite depth case, respectively [24] for the finite depth case (see

also [21]). We recall the equations:
18



W+ F1+W,)=0

2 3.5
@+ FQu - gTiW]+ Py |45 o, .
where _
J=[1+ W, F=P, [@} |

Here Py, represents the orthogonal projection on the space of holomor-
phic functions with respect with the inner product in the Hilbert space
9, introduced in [24]. This has the form

(u,v)g, = /(ﬁReu-ﬁRev%—Imulmv) da,

and coincides with the L? inner product in the infinite depth case.
Written in terms of the real and imaginary parts of u, the projection
P;, takes the form

Py — % [(1— i) Rew+ i(1 +iT, ) Im] . (3.6)

Since all the functions in the system (3.5) are holomorphic, it follows
that these relations also hold in the full strip S for the holomorphic
extensions of each term.

We also remark that in the finite depth case there is an additional
gauge freedom in the above form of the equations, in that Re F' is a-
priori only uniquely determined up to constants. This corresponds to
the similar degree of freedom in the choice of the conformal coordinates,
and will be discussed in the last subsection.

A very useful function in the holomorphic setting is

_ Qa

1+ W’
which represents the “good variable” in this setting, and corresponds
to the Eulerian function

R = ¢m+i¢y-

We also remark that the function # introduced in the previous section
is described in holomorphic coordinates by

0 =ImW.
Also related to W, we will use the auxiliary holomorphic function
Y= JVrV L
Another important auxiliary function here is the advection velocity
b=RePF,

19



which represents the velocity of the particles on the fluid surface in the
holomorphic setting.

It is also interesting to provide the form of the conservation laws
in holomorphic coordinates. We begin with the energy (Hamiltonian),
which has the form

1 _
H= 3 [ VR Re W) da = Q.7 (Qul
The momentum on the other has the form

j\/l:%(I/I/,’];L_lQa>5h:/ﬁReW-ReQada:/ImW-ReQada.
R R

3.5. Uniform bounds for the conformal map. In order to freely
switch computations between the Fulerian and holomorphic setting it
is very useful to verify that our Eulerian uniform smallness assumption
also has an identical interpretation in the holomorphic setting.

To account for the uniformity in time in the X norm it is very conve-
nient to use the language of frequency envelopes. We define a frequency
envelope for (n, V,—,) in X to be any positive sequence

{c)\; Rl < \e QZ}
with the following two properties:

(1) Dyadic bound from above,

HP/\(% v‘bly:n)HXo < ¢y
(2) Slowly varying,

sem G0}

Here 6 < 1 is a small universal constant. Among all such frequency
envelopes there exists a minimal frequency envelope. In particular, this
envelope has the property that

17 V61— lx & el

This will play an important role in our analysis:

Definition 3.2. By {c\}a>1/n we denote the minimal frequency enve-
lope for (n,Vl,—,) in Xo. We call{c,} the control frequency envelope.

Since in solving the Laplace equation on the strip, solutions at depth
3 are localized at frequencies < A where A = |3]~1, we will also use the
notation
cg = Cy, A |87
This uniquely determines cs up to a small multiplicative constant,

which suffices for our purposes.
20



We now use the control envelope to transfer the control norm bound
for (n, Vojy=,) to their counterpart (Im W, R) in the holomorphic co-
ordinates.

Proposition 3.3. Assume the smallness condition (1.7), and let {c\}
be the control envelope as above. Then we have

||P)\(III1W, R)HXO ,S C).- (37)

Remark 3.4. We remark that this in particular implies the X bound
[(Im W, R)[|x < €, (3.8)

and also, by Bernstein’s inequality, the pointwise bound
[Wallre < €o- (3.9)

This in turn implies that the Jacobian matrix for the change of co-
ordinates stays close to the identity.

Proof. By a continuity argument, it suffices to prove the desired bounds
under the additional bootstrap assumption

H(Im W, R)HX S €1, KK 1. (310)

We caution the reader that the two X norms and their associated
frequency envelopes for (1, Vj,—,), respectively (Im W, R) are relative
to different coordinate systems, Eulerian vs. holomorphic.

To prove the proposition we first compare the regularity of Im W
with the regularity of 7, since (either of) these functions determine the
conformal map. Let {c\}, {d\} be minimal frequency envelopes for
(0, Vo|y—y), respectively (Im W, R) in X, so that we have

Hd”gl S €1.
Then we will show that for each A > 1/h we have the equivalence
C\ ~ d)\. (311)

Our bootstrap assumption insures that Re W, is pointwise small,
which implies that the change of coordinates ©+ = o + ReW(a) is
biLipschitz, so we easily have the norm equivalence

Ifllzz = (1 fllzzs Il = (] (3.12)

The L? bound allows us to easily compare the L? norms of  and Im W,
which accounts for the case A = 1/h, namely

3 3
I Tm Weinllz2 S h2eiym, 722 < h2dyn.
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For higher frequencies, it remains to compare minimal frequency en-

1
velopes for their derivatives 7, and Im W, in H;, which are also com-
parable to cy, respectively d,. Here we also need bounds for

ReW, = —T, 0, Im W.

But it is easily seen that d) is also an envelope for Re W,, in H é :

To begin with, we note that by interpolation, the bound (3.12) in-
sures the equivalence of all intermediate (?( H;) norms and envelopes for
all1 <p<ooand0 < s < 1, with uniform freiquency envelope bounds.

We will use this property for the norm (' H?, in order to harmlessly
switch the function 7, to holomorphic coordinates. Hence it remains to
1

compare the H? frequency envelopes for the functions 7, and W, both
measured in the holomorphic coordinates. This is convenient since by
chain rule we have the relation

_ ImW,

14+ ReW,’

To deal with the nonlinear expression we use the algebra property of

Nz

1
(*H?, expressed in a frequency envelope fashion. For convenience, we
state this as

1 r
Lemma 3.5. a) The space (* H? is an algebra®. Furthermore, if u,v €

1
(*H? have frequency envelopes ¢y, &5 then an envelope for uv is given
by
&’ = allele + Xlle? e

1
b) Let u € L* and v € (*H? have frequency envelopes ¢y, ¢{ then an
envelope for uv in L? is given by

c(A) = &l

The proof of the lemma is relatively simple and is omitted.

The smallness of €; in our bootstrap assumption allows us to use the
lemma in order to estimate the difference
Im W, - ReW,

1+ ReW,

Precisely, a frequency envelope for 7, — Im W, will be given by €;d,.
Then, by the triangle inequality for minimal frequency envelopes, we
must have

Ny —ImW, = —

|C>\ — d>\| 5 Eld,\.

3This property suffices in the present paper since W, is small in L*>°. However,

even if W, were large, then bounds as in the lemma would still be valid. However,
1

proving that would require corresponding Moser estimates in (*H?. For that we

refer the reader to the similar analysis in [25].
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Since €; < 1, this implies that ¢, ~ d). This concludes the proof of
(3.11) restricted to the n and Im W components.

Next we consider the equivalence of the frequency envelopes for
V ¢jy—y respectively R = (¢, + idy)y—, in Hi. These are one and the
same function, and the only difficulty is that the H} norms and fre-
quency envelopes are measured in different frames, Eulerian vs. holo-
morphic. The L? part of the H} norm is easily dealt with using (3.12),
so it remains to compare the frequency envelopes for their derivatives
in L2

As before, we compute using the chain rule

Rq

9 = 0u(@0 + iy jy=y = 1t ReW.

Using part (b) of the last lemma, it is easily seen that in holomorphic
coordinates the function g has a minimal frequency envelope compara-
ble to that of R,. Thus it only remains to see that the function g has
equivalent L? minimal frequency envelopes in Eulerian and holomor-
phic coordinates.

This follows if we show the following off-diagonal decay:

A
I1PE Pl < {25} (3.13)

where PF and P, are Littlewood-Paley projectors in the Eulerian, re-
spectively holomorphic frame.
To prove (3.13) we consider two cases:

a) A > p. Then we write
1PC Puglle S A7 HI0:Puglle S A7 H10aPugllze S 1/ A

b) A < u. Then we use duality to interchange the two projections,
and then argue exactly in the same way.
The proof of the Proposition 3.3 is complete. O

As a consequence of the last proposition we can further extend the
range of our frequency envelope estimates:

Remark 3.6. The previous proposition and its proof show that {c,}
is also a frequency envelope for

o ImW,R) in Xj.
o W, in Hé and L°°.
oY inH E .
Here the last property is a direct consequence of Lemma 3.5.
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3.6. Vertical strips in Eulerian vs holomorphic coordinates.
In our main result, we define local energy functionals using vertical
strips in Eulerian coordinates. On the other hand, for the multilinear
analysis in our error estimates in the last two sections, we would like
to use vertical strips in holomorphic coordinates. Of course these two
types of vertical strips do not perfectly match. To switch from one
to the other we need to estimate the horizontal drift between the two
strips in depth.

As the conformal map is biLipschitz, it suffices to compare the cen-
ters of the two strips. It is more convenient to do this in the reverse
order, and compare the Eulerian image of the holomorphic vertical
section with the Eulerian vertical section:

Proposition 3.7. Let (zg,n(z0)) = Z(,0), respectively (c,0) be
the coordinates of a point on the free surface in Fulerian, respectively
holomorphic coordinates. Assume that (1.7) holds, and let {c\} be the
control frequency envelope in Definition 5.2. Then we have the uniform
bounds:

|Re Z(a, B) — xo + BIm W, (ap, B)| < ey, 1B~ A7t (3.14)

As a corollary, we see that the distance between the two strip centers
grows at most linearly:

Corollary 3.8. Under the same assumptions as in the above proposi-
tion we have

|Re Z(aw, B) — xo| < €olBl- (3.15)

Proof. We consider the expression
D =Re Z(«, B)—xo+L Im W, (ap, ) = Re W (e, B)—Re W(a, 0)+8 Im W, (ayg, 5).
We can express this in terms of Im W on the top as follows:

D = (Py(D,B) —1)ReW(a,0) + B0, Pp(D, ) Im W(«, 0)

= (7, (Pn(D, B) = 1) = iBDPp(D, 8)) Im W (e, 0).
The symbol for the multiplier
M(D,B) =T, "(Px(D,B) — 1) —iBDPp(D, B)

is
m(e. B) = icosh ((B :;n}g(%g; cosh(h§) B¢ Sl;};}(lgi;)_ h)¢)

_ 2sinh (8€/2) sinh (b + 8/2)€) — B sinh (8 + h)¢)
sinh(h&) .

This is easily seen to be smooth and satisfy the bound

m(&, 8| S giin{l, B¢}




Given this symbol bound, the conclusion of the proposition follows by
applying Bernstein’s inequality for each dyadic frequency, and then
summing up. U

3.7. The horizontal gauge invariance. Here we briefly discuss the
gauge freedom due to the fact that Re F' is a-priori only uniquely de-
termined up to constants. In the infinite depth case this gauge free-
dom is removed by making the assumption F' € L2, In the finite
depth case (see [24]) instead this is more arbitrarily removed by set-
ting F(a = —o0) = 0.

In the present paper no choice is necessary for our main result, as
well as for most of the proof. However, in the choice of the normal
form momentum density correction in Section 5 it is convenient to
make such a choice, which is discussed next. This choice is used in the
very last step in Section 7.

Assume first that we have a finite depth. We start with a point
ro € R where our local energy estimate is centered. Then we resolve
the gauge invariance with respect to horizontal translations by setting
a(xy) = g, which corresponds to setting Re W (zy) = 0. In dynamical
terms, this implies that the real part of F' is uniquely determined by

0 = Re Wy (o) = Re(F (1 + W,))(xo),
which yields

Im W, ()

Re F(x) :ImF(x,0)1+ReW o)

In the infinite depth case, the canonical choice for F'is the one vanish-
ing at infinity. This corresponds to a moving location in the « variable.
We can still rectify this following the finite depth model, at the expense
of introducing a constant component in both Re W and in F. We will
follow this convention in the paper, in order to insure that our infinite
depth computation is an exact limit of the finite depth case.

4. LOCAL ENERGY DECAY FOR LINEAR GRAVITY WAVES

4.1. Linearized equations in Eulerian coordinates. In Eulerian
coordinates the linearized equations around the zero solution are

atn = DNQ/J
{ o = —gn, (41)

where Dy is the Dirichlet to Neumann map associated to depth h > 0,
given by

DNw = ay(b\top = 72311/1,
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where recall that 7}, is the Tilbert operator given by (3.2) and ¢ is the
harmonic extension of 1 in the flat strip S = {(z,y) € R* : —h <y <
0}, so that

Ap=0 in S,

¢|y:0 = ’QZ},
9yoly——n = 0.

For such 1 and ¢ we define the (conserved) energy as

g

1
Eiin(n, ) = 5“””%2 + §<7713x¢,¢>-

We can express the energy in a more symmetric fashion by using the
harmonic extension ¢ of ¥ in the strip S with Neumann boundary
condition on the bottom. Then

g 1
Bion(, ) = 21l + 51V 615

We also introduce higher energies
1-2s

—2s
s g — s g — s
Ein(n,0) i= S (00l + (T30, Vollags)

These are homogeneous norms in the infinite depth case, but the ho-
mogeneity is broken in the finite depth case.
The local energy for the linearized equation is given by

13 = Il 60 + IV0IP, ).

where
T
Illieo = sup Inllees, [l = / / V(& — a0 de dt

ToER 0 0

while
T

o 2 _ _ 2

V6l = s IVl oy 19612y = [ [ [ xa-rorvo drdyar.

With these notations, the local energy decay estimate for the linearized
equation is as follows:

Theorem 4.1. There exists a constant C' such that, for all h € [1,+00)
and all T € (0,+00), solutions (n,1) to the above system (4.1) satisfy
the local energy bound

.91 < € (IO + 0Dy ). @2
lin lin

The rest of the section is devoted to the proof of the theorem. By

scaling we can and will assume without any loss of generality that

h > 1. Precisely, in the following proof h will play the role of an

(inverse) semiclassical parameter.
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The proof is based on Morawetz’ identities starting from the momen-
tum conservation, and more precisely from the linear counterparts of
the momentum densities I, and I3 in section 2. We define the momen-
tum as

M—/n%dx

with Iy(z) = ni, as the first momentum density.
For this proof, given a function f = f(¢,z,y) with (z,y) € S, we set

F(t.x) = f(t,2,0).

Now, using the equations for 7, ¢, given a bounded increasing function
m, we compute

8t/m(m)lg(t,x) dr = /mgywm dw—/gmm]m dzx.

The second term in the right-hand side gives

g/mznZ dx.

The first term can be written as
[miinds = [ [ mo 0,00 dys
=[] 6+ 0y00,) i
— [[m(=besta+ 6,00 dy
- / ma (62 — 62) dyda.

Thus we conclude that
1
ék/mIQ dx = g/mxnz dx + 5/ mg (93 — ¢) dyda. (4.3)

The first term on the right is a component of the local energy, whereas
the second is nonnegative when m, is replaced by 1 (see Lemma A.3
in the appendix, applied with w = 1 and = 0).

We now continue by using a second momentum density I3, which in
addition to the functions 1, 1) and ¢, depends on the functions # and
q introduced in the previous sections (see (2.3) and (2.4)):

e 0 is the harmonic extension of n with Dirichlet boundary con-
dition on the bottom;
e ¢ is the harmonic conjugate of ¢ with Dirichlet boundary con-

dition on the bottom.
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With these notations, one has

0
M—/Igdx with Ig—/ Vo -Vqdy.
—h

Although it is natural to define I3 in terms of (6,q), for the com-
putations it is convenient to express I3 in terms of (0, ¢). It follows
immediately from the equations ¢, = —¢, and ¢, = ¢, that

0
Lit,x) = / (6,60 — 6:0,) dy.

—h
Notice that
3,:9 - ¢y

(this is the simplified version of (2.6) for the linearized equation). As
a result, we get for any weight m,

i / iy de == / / (b2 byuty) dyda-+ / / (0,002 —0.010,) dyd.
(4.4)

Since ¢y, = —@ga, integrating by parts, the first term gives the expres-
sion

~ [ [ (. = 0yu) dude = 5 [ [ a1V aya,

which is the second part of the local energy. Our second observation
is that the second term depends only on m and n. To see this, we use
the operator Hp (respectively Hy) introduced in the previous section,
which maps a function f = f(x) to its harmonic extension in the strip
S with Dirchlet (respectively Neumann) boundary condition on the
bottom. Then, by definition, one has § = Hp(n). On the other hand,
since Opply—0 = —gn, it follows that 0;¢ = —gHx(n). Consequently,
one has

/ / m(0,0:6, — 0,0,0,) dydx = gQun(n),

where

Q) = / / m(Hx(n)yHp(n)s — Hy(m)eHp(n),) dyde.  (4.5)

Thus, we conclude that

° / miydr = / / Vol dyds + g / mQu(n) dydz.  (4.6)

Notice that in the infinite depth case, one has Hy(n) = Hp(n) so
Qm(n) = 0, which greatly simplifies the proof of the theorem. To prove

a result that holds uniformly in the finite depth case, the idea here is
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now to try to combine the two local energies in a more balanced way.
Given a parameter o € [0, 1], we define

7 (t) =0 | mlydx + (1 —o0) /m]3 dx.
Then we have the following:

Proposition 4.2. Let h > 1. Then
a) For each o € [0,1] we have

Z5OFS NI, - (4.7)
lin
b) There ezist o < % close to % and c < 1 independent of h so that
I (T) = Z7.(0) > | (0. )L,y — €l ¥) L (4.8)
holds for all solutions (n,v) of the equation (4.1).
The conclusion of the theorem follows by taking supremum over all
translates of (4.8). The remainder of the section is devoted to the proof
of the proposition.

We begin with part (a). We need to consider the the two momentum
densities I and I3. The contribution of I has the form

/ mn, dz.
We estimate this as follows

/ mn, dx

and conclude using the fact that m is a bounded multiplication operator
1

: 1
in H,',

< ol el -y
h

ol g S llmelleslinll 3 (4.9)

h
Now we consider the contribution of I3. To do so, we integrate by

parts to arrive at

L= [ / m(O,6x 0.6, dyds = [ / (00,) — 0,(06,)) dydz
_ / mly da — / Mg, dyds.
S

It remains to estimate the second part for which we will use the z-
localized L? bounds for harmonic extensions in Proposition 3.1. This
yields

iy <7700 sy < Il 1

_1
ly b

and similarly
1
I oulzas) S lovbeol, 1
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Since m, is a positive function with integral 1, we conclude that

< (/mxdm>||y_‘119||Lgo(L5)Hy+‘1‘¢y||Lgo(L§)

< il 311,

‘ / mg0¢, dydx
S

Since ¢, |,—0 = D, this gives the wanted estimate (4.7).
We now prove part (b). We have

I2(T) — I5,(0) = LE, + LE,, (4.10)

where

LE,; = / ' / / (1 Soma| Vo[ + Tma (62 — ¢2) ) dydudt,

and

gg g 2 !
LE, = 5/ mgen” dedt + (1 — 0)g ; Qm(n) dt,

where Q,,(n) is defined by (4.5). We first observe that the second
term in LE, is clearly positive if o < % So, to conclude the proof,
it is sufficient to prove that the LF, component controls the potential
energy. This in turn is straightforward in the infinite depth case, since
then, @, (n) = 0. Hence from here on we focus on the finite depth case
where the challenge is in part to gain the uniformity as h — oc.

So the goal is to prove that for some o € (0,1/2), the expression LE,
is positive definite, either directly or after taking a supremum over all

translations of m. For that we need to write it in terms of n and m,.

Notation 4.3. Given a complex-valued function b = b(;, &), we de-
fine the bilinear Fourier multiplier B with symbol b by

Blf)a) = 5= [ e, 7€) s dee

T or

Lemma 4.4. The bilinear form Q,, admits the representation

Qi) = / me B (n, ) dz,

where B"(n,n) is a bilinear Fourier multiplier with symbol

&C cosh 2h& — cosh 2h(¢

bh(f: Q)= sinh26hsinh2¢h (£+¢)(§ — ()

Proof. Recall that

H/D(\n)(f,y) = %ﬁ(f), resp. H/(\n)(fay) - COS(}:IO(S&?(ZS)O
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Consequently,
(Hx (e — Hy(n)oHp (1)) (t, 2, y)
// OBy, €, Qi(t, it ) de da,

where

bo(y, €, ¢) = i&¢ (

sinh{(y + h) sinh ((y +h)  cosh§(y + h) cosh ((y + h))

sinh A cosh Ch sinh £h cosh Ch
_ —i5¢
= b éhcoshon O+ R(E=C)).
Integrate in y to get
—i&C sinh h(§ — ()
/_ b (4.€..C) dy " sinhéhcoshCh  €—C

Notice that for any bilinear Fourier multiplier B with symbol b, one
has

BULS) =B (£ ) with b7(6,6) = S(0(61,&) +b(E, &),

By so doing, we obtain that

[ vty o). = HistoHoln)) ) o = Bl o),

where B is the bilinear Fourier multiplier with symbol

—2i&¢ sinh A(§ + ¢) sinh h(€ — ()
sinh 2€ sinh 2Ch 2(¢ - () ’

Integrating by parts we obtain

/m(fv)B?(n, n)dx = /mz(fv)Bh(n, n) dz,
where the symbol of B" is given by

h Y 2£6 sinh (€ + ¢) sinh A(§ — ()
BE.0) = f—f—(b 160 = sinh 2£h sinh 2¢h 26+ —¢) ’

which gives the desired result. O

& ¢) =

To conclude the proof of (4.8), in light of (4.10) and the previous
lemma, it remains only to prove the following result.

Proposition 4.5. For the bilinear form B" above there exists ¢ < %

2
so that we have

T
/ /mth n,n) dxdt > —c sup/ /mz(m — xo)n? dxdt.  (4.11)

zo€ER JO
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This concludes the proof of the Proposition 4.2. It now remains to
prove this proposition. We remark that we have written this proposi-
tion as a separate result in order to be able to apply it directly also for
the nonlinear problem.

Our first task is to understand the properties of the symbols B" and
of their kernels K”. The first observation concerning the symbols b" is
that they are all obtained by scaling from a single symbol

b, ¢) = 2£¢ sinh(¢ + ¢) sinh(¢ — ()
">/ sinh 2€ cosh 2¢ E+OE <) ’

as follows,
b (&, ¢) = b(hg, he).
Then the kernels K" are related to the kernel K of B by
Ki(z1,29) = h 2K (h™'wy, h ™ as).
Concerning the symbol b, one easily sees that it has the following
properties:

e [t is real, even and symmetric.
e [t is uniformly smooth.
e [t decays exponentially away from the axes £ =0, ( =0,

1 .
b ———a LA N
6.0l < T
e Near ¢ = 0 it has the expansion
L 2¢ _
HEQ) = 1 gne T O =

and symmetrically near { = 0.

Next, we consider the kernel K of B, which is the inverse Fourier
transform of the symbol b(§ C):

Koo = 5 / / emEHny (¢ () de da

From the above properties of b we the corresponding properties of K,
which for later reference are collected in the following lemma:

Lemma 4.6. The kernel K has the following properties:

(1) K is real, even in each variable and symmetric.

(2) K is smooth and rapidly decreasing away from the axes 1 = 0,
To = 0.

(3) Near the azes ©1 =0, xo = 0 we can expand

K(z1,29) = —In|x1| sech® zy — In |xy| sech® 1 + K% (21, x5)

where K% s C' and decays rapidly, together with its deriva-

tives.
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We now use these properties to carry out a preliminary step in the
proof of the Proposition. This is based on the observation that B" is
primarily localized at frequency 1/h, which should allow us to discard
the high frequencies of 7 from B"(n,n). Here to fix the meaning of
“high frequencies” we need to choose a frequency threshold Ay so that
1/h < A\g < 1. Then we seek to replace n with n<), = P<x,7.

Here rather than choosing a sharp frequency localization operator
P.,,, we instead choose a localization operator with a nonnegative
kernel; the price to pay for this is to allow harmless rapidly decreasing
tails at higher frequency. Then we claim that

Lemma 4.7. If 1/h < Ay < 1 then

T T
1
| [meBt ot = [ [ maBt o nes,) duder Ol o
0 0

Proof. Indeed, consider two dyadic frequencies h™! < u < XA < 1. We
will estimate the contribution of B(ny,7,) in terms of the local energy
of . For [¢| = X and [(| &~ pu we have

1
1+ hA

with matching regularity on the same dyadic scale. Then we have

—chp

(&)l < e

—chp 2
1+h)\€ ||77||LE0

Then the conclusion of the lemma follows after summation over p >
1/h, X > Ao.

T
1 —c
| [mesoemydedt) S s ol S

g

The last Lemma allows us to localize 1 to low frequencies on the left
in (4.11). We now investigate the effect of such a change on the right
in (4.11). The idea here is that averaging n over a large scale allows us
to replace the local L? norm in x by the L™ norm. Precisely, we have

Lemma 4.8. For A\g < 1 we have

1n<ro ez < (14 Co) 01 po-

Proof. Here we take advantage of the fact that the kernel of Pc,, is
nonnegative and has integral 1. Then by the triangle inequality we
have

m<xollzEo < |7l LE0-

On the other hand differentiating yields another Ay factor,

10en<xollLE0 S Xollnl L0
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Then by the fundamental theorem of calculus and by the Cauchy-
Schwarz’s inequality, we compute

T T
/ i (o, 8) d — / / (@), (1) dzdt| < nenll o |Bencns o,
0 0

which implies that

T
| ot < ncsu gy + sl oo 0mes o
0

< (14 CXo)Inll7 g0
as needed. [l
As a consequence of the last two lemmas, by choosing 1/h < Ay < 1

and using the fact that [ m,dz =1, we can replace the bound (4.11)
with
T 1
| [ B ool i el 0<c<y
0

Now we discard the frequency localization; then h becomes a scaling
parameter and we can freely set it to 1. Hence, we have reduced Propo-
sition 4.5 to the following:

Proposition 4.9. The following bound holds:
T
1
/ /3(77,77) dedt > —c|n||3wp2, 0<c< >
0 x t

1
We first observe that B(0,0) = 3 This implies that

1
/K(ZEl,l‘Q) dl’ldIQ = 5

The key step in the proof of the proposition is the following
Lemma 4.10. The kernel K 1is positive.

Before proving this result, let us explain how to conclude the proof
of Proposition 4.9 with this lemma. Firstly, notice that if K is nonneg-
ative, then

1

/]K(a:l,azg)\ dridxy = 2

and then it is obvious that the proposition holds with ¢ = % But if
K is actually positive, there is a little trick to get a small extra gain.

Precisely, we can write
K(l’l, .%'2) = Kl(.fEl, .I'Q) -+ L(x1>L<£C2),

where L is nonnegative and K is still positive. Then the contribution

of the L term is nonnegative, while K; has integral ¢ < % Then the
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FIGURE 1. Integration regions for K

conclusion of the proposition follows for this ¢. We now have to prove
the lemma.

Proof of Lemma 4.10. By the symmetries of K, it is sufficient to con-
sider the case 0 < x < y (shaded region in the picture). To compute
K we view the symbol b as a product of

C} = coth 2€ csch 2¢ — csch 2€ coth 2¢,

and

D, = € .

(2 — g2
The Fourier transforms of coth £ and csch ¢ are F' = coth x respectively
G = tanh, so the Fourier transform of C} is (up to positive constants)

Fx)G(y) — G(x)F(y).

On the other hand for the Fourier transform of D; we use the backward
fundamental solution for the wave equation, and then differentiate it
in z and y. We get

am5y—|—|x|:07

which is supported on a 7/2 degree angle downward from 0. Taking
the convolution of the two we get

Kaw = [ @@re) - F@6w)

where the region of integration @U@ is the upward 7/2 degree angle
from (xg,yo). (see picture). Here F' is singular at x = 0, so the second

term is interpreted in the principal value sense.
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Based on previous computations, we know that K blows up logarith-
mically on the axes and decays exponentially on the diagonals. Then
the positivity of K would be a consequence of the bounds

(ay — 81>K > 0, 0 < xo < o, (412)
within the shaded area of the picture, respectively
(ay + OI)K < 0, 0<zg= Yo. (413)

Indeed, we can compute
(8, = ) K (0, yo) = /@ Fl(y)G (@) — G (y)F(x) da.
respectively
(0~ 0K (30, 30) = /® F)C'(x) ~ G () (x) dr.

Here the first integrand is nonsingular, but the second is again inter-
preted in the principal value sense at x = 0.
We remark that G’ > 0, F' < 0 and

()
G'(x)

= — coth?(z),

which immediately shows that the above integral over @ is positive
and thus (4.12) holds. Then it remains to establish (4.13) over the
positive half-line zy = yo. While the integrand over @ is also positive
pointwise, it has the distributional =2 type singularity at + = 0, which
we expect makes the outcome negative !

To summarize, we need to prove that the following integral is nega-
tive,

I(z) = / Y PG @) — G F (@) e,y = 20 — 1

—00

We separate the analysis into three cases:

i) Large xg, xy > 5. There y > 5, so it is natural to expand
in powers of e7¥. Since F'(y),G'(y) ~ e %, the leading term in the
integrand is e~*° (here we take zy = ).

For F’ and G’ we have the asymptotic expressions at infinity

1 4e—2w
F/ — - %_4 —2x_8—4x
(@) sinh? x (1 —e27)2 ‘ <

1 e~ 2
G'(x) = = ~~ de 2 — 8e42,
(z) cosh?z (1 + e 2%)2
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Then for our integral we have the expansion up to e 8% terms

Yo (4 —2(2yo—z) __ 8 —4(2yo—x) 4 —2(2yo—=x) 8 —4(2yo—x)
Iz/ (4e - 26 )_(e —26 )da:
oo sinh” x cos? &
Yo 1 1 Yo 1 1
= — 46_4y0/ e - dr — 86_8y0/ et + dzx.
oo (coshza; sinh2x) oo (coshza: sinh2x)

By direct computation the first integral gives zero when taken all the
way to +o00. Thus, we get

o 1 1 vo 1 1
I = 4e w0 / e — dz—8e ™50 / el + dz+O0(e ).
" (cosh2 z  sinh? a:) o (cosh2 x  sinh’ 93) ( )

Now in both integrals the leading contribution comes from x = 1, and
has size e7%%. To compute it we write

00 1 Yo
I =— e 0 / e ———————dx — 16e % / 4e** dx + O(e ™)
% cosh” z sinh” x —o
00 1 Yo
— — 4e~tw0 / 16e > ———————dx — 16 / 4> dx + O(e™*)
" cosh” x sinh” x o

= — 32¢%% — 32e7%0 4 O(e*0) = —6de~ ™ + O ™).
i) Small zg, o < 0.1. In this range we have

dz 4+ O(1)

. /“0 1 L]
). sinh®(2z9 —2z)  sinh’z

1
1
= —2/ ——5—dx + O(1) = —2cothzy + O(1),

o Sinh”z

as desired. Here in the first line the expression ——— is interpreted
sinh” z
as the distributional derivative 0, (p.v. cosech x).

i) Medium zy, 0.1 < g < 5. For the intermediate range we do
not have an algebraic proof, but a direct MATLAB computation easily
confirms the result. O

5. LOCAL ENERGY DECAY FOR GRAVITY WAVES

In this section we prove our main result in Theorem 1.1. We begin
by emulating the computation in the previous section for the linear
case. We define the functional

7 (t) = /m(x)(alg(a:, t)+ (1 —o0)l3(x,t))de.
Using the density-flux pairs for the momentum, we have

07 (t) = /mx(aSg(:v,t) + (1 —0)S3(z,t)) dz.
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Hence, in order to prove the theorem we need to establish the following
bounds:

(i): Fixed time bounds,

< 1 1 .
[ <l bl (5.1)
< 1. .
[t <l g1l (52
(ii): Time integrated bound; for some o € (0,1) and ¢ < 1, we

have
/0 / ma(0Sa(t) + (1 — 0)S5(8)) dadt 2 LEo(n, ) — cLE(n, ). (5.3)

5.1. Fixed time bounds. The bound for the contribution of I is
identical to the one in the linear model. For the contribution of I3
there is a slight difference, which is due to the fact that the domain
of integration is no longer a strip. Hence in order to apply Propo-
sition 3.1 we need to switch to holomorphic coordinates, and to use
Proposition 3.7 in order to relate vertical strips in holomorphic vs.
euclidean coordinates.

5.2. Time integrated bounds. As before, here we take o < %, but
close to % Using the expressions in Lemmas 2.3, 2.4 as well as the
relations (2.5) and (2.6) we write the integral in (5.3) as a combination
of two leading order terms plus error terms

T

/ /mm(USQ(t)—i—(l—U)Sg(t)) dxdt = LEy+gLE,+Erri+gErro+Errs,
0

where

T
LBy =5 [ [ [ malo(et = 6)+ (1 = o) Vof) dudya

T
LE, = / %/mlﬂf dr — (1 — 0)/ ma0,(0 — Hy(n)) dedydt,
0

and finally

T
Erry = 0/ /mxn/\/(n)w dxdt,
0

l1—0

T
Erry = 5 //mIGyHN(\VMQ)dxdydt,
0

1—0
2

T
Errs = / / m. 0, Hp(VOV§) dedydt.

0
Our strategy in what follows will be to peel off a leading quadratic

part, which we interpret using our bounds for the linear equation. The
38



remaining cubic and higher order expressions will be viewed as error
terms. All but one of the the cubic error terms will be estimated
perturbatively.

Finally, the last error term turns out to be unbounded both due to
low and to high high frequencies. For this term we instead apply a
partial normal form correction, which replaces it with bounded terms,
both time integrated, and at the endpoints of the time intervals. The
latter correspond to a nonlinear normal form modification of the mo-
mentum density.

For many of the nonlinear estimates it is useful to switch to holomor-
phic coordinates. That greatly facilitates multilinear analysis. There
is a price to pay for that, as our m, cutoff is vertical in the Eulerian
frame, but not in the holomorphic frame.

For the remainder of this section we reduce the nonlinear estimate
to the linear estimates in Section 4, plus a number of error terms,
which need to be estimated perturbatively. The last two sections are
devoted to the proof of the error estimates. In Section 6 we show that
the Eulerian local energy norms admit equivalent counterparts in the
holomorphic setting, and use this equivalence and multilinear analysis
to estimate some of the error terms. Finally, in Section 7 we deal with
the more difficult error terms which involve the function F', and arise
out of the normal form analysis.

5.3. The LE, term. Here we need to compare the contribution of
Hy(n)

n= /0 ) [ttt 0y dody = [ [ mat00 - Hytw), dodyat,

Tri
/ / —myn?® dxdt
0 2

from the first term in LEj.

We remark that Hy(n) and 6 solve the same equation and have the
same boundary condition on the top, but different boundary conditions
on the bottom (Dirichlet, respectively Neumann). Thus they cancel in
the infinite depth case, but not in the finite depth case.

To estimate this we move to conformal coordinates z = o+ i3. This
does not change the equations for Hy(n) and 6. Precisely, if oy is
the image of x4 in the conformal setting, then we seek to compare the
integral [; with its conformal counterpart

with the expression

T
I = / J[mata- j;ww — Hy(n))s dadat.



We will view the difference between the two integrals as an error term,
Erry =1, — 1"

to be estimated later.
The expression 17! can be rewritten as

[hol — / ' / 1o 0(0 — Hy(n))s dadBat
= /O / mO,(Hn(n) —0)s +mO(Hn(n) — 0)ap dadBdt
= [ ][ mouttnn) = 03 = mo5(21 () = 0), dedd

= [ [ mieutisans ~ opristn) dadsa

Recalling that 6 = Hp(n), the above integral becomes

1l = / / mHp(1)aHy ()5 — Hp(n)sHy (1)) dadgdt,

which is identical to the corresponding expression obtained in the anal-
ysis of the linearized problem in Section 4. Hence, as there, it can be
further represented as

T
Il = / /ma(a — o) B"(n, n) dadt.
0

On the other hand, as a consequence of the bound |W,| < € we
obtain the relation

T 1 T 1
/ /—mdea::/ /—manQdadt—i—O(e)HnH%E.
0 2 0 2

Combining the two terms, we have established that

T, T
LEy—Erry :/ E/m(m2 da—(l—a)/ /ma(a—ao)Bg(n,n) dadt—{—O(e)HnHQLE.
0 0

We conclude the argument here by showing that for o > % close to %
we have the bound

1
LEy = Errs 2 5lnlzs,, —clnlie, (5.4)
where ¢ < % is a universal constant. This in turn is a consequence of

Proposition 5.1. For the bilinear form B above there exists ¢ < %
so that we have

T T
/ /ma(a — ag)BY(n,n) dadt > —cg sup / /ma(a — ay)n* dadt.
0 0

r1ER
(5.5)
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This is a direct counterpart of Proposition 4.5 from the linear analy-
sis. The only difference is that on the right, o is not constant in time
but instead we have that a; = ay(t,z1). Because of this we cannot
directly cite Proposition 4.5 here. However, it will be easy to reduce
the above proposition to Proposition 4.5.

Proof. To reduce to Proposition 4.5 we simply change coordinates back
into Eulerian coordinates. The Jacobian is 1 +Re W, =1+ O(e) so it
only yields negligible O(¢) errors. The same applies for the changes in
the argument of m,

ma(a — ag) = mg(x — z0) + O(€).

It remains to consider the change in the operator B”. We consider this
at the level of the kernel K" of B". Referring back to Section 4, the
kernel of K" in the holomorphic coordinates is

Kh(ozl,o@;oz) _ K(Ckl — & (2 _Oé>

h " h

After the change of coordinates this becomes

) ~ o) ofen) —afo.t)
h ’ h '

We would like to replace this with K"(zy, x5, x) at the expense of O(e)

errors. For this we use the relations

a(x;,t) — a(x,t) = (z; — 2)(1 4+ O(e).

f(h(xl,xg;a:) = K(

Then we compute using the properties of K in Lemma 4.6:
K (21, 205 ) — KB (g, @0, 2)| S eh™2(1+ 7 (|o — | + |2 — 22)) 7).

This easily gives O(e) errors, and finally allows us to reduce the propo-
sition to Proposition 4.5. O

5.4. The error terms. At this point we have four error terms to deal
with, Erry, Erry, Errg and Erry. Three of them will be directly
estimated in a perturbative fashion:

Proposition 5.2. We have the following estimates:
|Erri| + |Errs| + [Brry| S ell(n.9) | e (5.6)

This proposition is proved in the following section.

The difficult term is Errs, which turns out to be unbounded both be-
cause of low frequency contributions and high frequency contributions.
We will address this difficulty in two steps. The first is to switch to the
holomorphic coordinates counterpart of Errs. The second is to apply

a nonlinear normal form type correction to the momentum density.
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For the first step, the holomorphic counterpart of Errs is

T
Errhe ::/0 / ma (o — )y, Hp(VOV @) dadfdt.

On the top we have ¢, = Im R, while for VOV ¢ we compute its value
as

Wa
1+ W,

VOV = J (Vi0V,0) = J 7 Im(W Q) = Im( R).

Therefore we obtain

T B
E'r’réwl :/ / ma(a — ap) Im RHp (1 _Ii/;/ R) dadfdt.

«

The transition between Errs and Errh"l is harmless:

Proposition 5.3. We have the following estimate:
|Errs — Errd| < €|(n,¥)|| e (5.7)

Next we turn our attention to the remaining unbounded error term
Errhel. Here we will borrow an idea from normal forms, and rectify
this error via a normal form type correction. Since we are trying to
address both low and high frequencies, our correction will be genuinely
nonlinear as opposed to the traditional cubic one, which would only
address the low frequencies.

Our correction is based on the following computation, which uses the
equations (3.5):

%(ImWReWa) Oo(Im W Re W;) + Im(W, W)
= Op(Im W Re W;) — Im(F (1 + W,)W,)

( )
( )
= 0,(ImW ReW,) — Im F|W,|* — Im(FW )
( ) —
( )

= 0u(Im W Re W,) — Im F(|W,|* + 2Re W,,) + Im(FW,)
= 0,(Im W Re W,) — Im Qo (|Wa|? + 2Re W,) + Im(FW,,)
Wa
= Oa(ImW Re W;) — Im (Rl n Wa> — Im(RW,,) + Im(FW,,)
= O0y(ImWReW;) —Im ( R Wa +Im((F — R)W,)
— Va t 1+Wa a):

Wa
This allows us to express Im( TN R) on the top as

W d
2Im(1 W R) = —a(ImWReW )+0,(Im W Re W) +Im((F—R)W,,).

The first expression on the right will correspond to our (partial) normal

form correction to the Morawetz ’s identity. The second has an «
42



derivative, and thus better low frequency decay. Finally, the third
is the imaginary part of a holomorphic function, so it has a trivial
holomorphic extension.

Correspondingly, we can write Erri° in the form
T
2Bt = / me Im RHp (ImW ReW,,) dadB| + Errs + Errg + Erry,
0

(5.8)

where

T

Errs .= / / meIm Ry Hp (Im W Re W,,) dadpdt,
0
T

Errg ::/ / me Im R Im((F — R)W,,) dadpdt,
0

Err; = /T/ meIm RO, Hp (Im W ReW,;)) dadfdt.
0
The first term in (5.8) can be estimated directly using Proposition 3.1,
'/ me Tm R Hy (Tm W Re W) dadﬁ' SIRI, | m W Re W,
SR, W[,y S B3,

1
since ReW,, € I'H?, due to the multiplicative estimate

1791+ S 171 4 llgl

1.
h & h

Then it remains to estimate the error terms:
Proposition 5.4. We have the following estimates:
|Errs| + | Errg| + |Brre| S ell(n, )75 (5.9)

All of these errors involve the expression F', since in the fluid domain
we have

Wt — F(l + Wa)a
for W, respectively

1
Rt = 1+ Wa (Qat - RWozt>
_ 1 o 2
BT (=FQa)a + R(F(14+Wa))a + 9T Wa + P[|R|"])
— _FR,+ (—9gTWa + P[IR*])

1+ W,

for R. Corresponding to the last relation, we split

Errs = Errg + Erri + Erry.
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Thus, we have proved Theorem 1.1 modulo the results in Proposi-
tions 5.2, 5.3 and 5.4.

6. LOCAL ENERGY BOUNDS IN HOLOMORPHIC COORDINATES

As a first step in the proof of the error estimates needed for our main
theorem, in this section we seek to understand how to transfer the local
energy bounds to the holomorphic setting. Then we will also consider
some bilinear expressions, and use them to estimate the simpler error
terms.

6.1. Notations. Our starting point here is represented by the local
energy norms in the Eulerian setting, which, are equivalently defined
as

[, V)lle = lInlleee + VOl -1,
where

1nlleee == sup [|nll2s@oy, VO, -1 = sup [Vl r2(s(ao)-
ro€ER zoER

Here S(xg), respectively S(zg) represent the Eulerian strips
S(wo) :={[0,T]x[wo—1,z0+1]},  S(xo) := {[0, T]x[wo—1, zo+1]x[—h, 0]}

Our first objective will be to prove that these norms are equivalent
to their counterparts in the holomorphic setting. In holomorphic coor-
dinates the functions 7 and V¢ are represented by Im W and R. Thus
we will seek to replace the above local energy norm with

W, B)l[ee = ([ Tm W[ Lpo + [|RI| -4

where

|| Im WHLE‘O = sup || Im W”LQ(Sh(gEO)), ||RHLE_% = sup HRHLZ(Sh(mo))'
roER zoER

Here Sy, (zq), respectively Sp,(xg), represent the holomorphic strips
Sn(xg) == {(t,a) : t € [0,T], a € [p—1, ap+1]}, Sh(xo) := S(xo)x[—h, 0],

where ap = ap(t,zo) represents the holomorphic coordinate of zg,
which in general will depend on ¢.

We remark that while the strips Sy, (xo) on the top roughly correspond
to the image of S(xy) in holomorphic coordinates, this is no longer
the case for the strips Sp(zo) relative to S(xg). While these are well
matched on the top, in depth there may be a horizontal drift, which
has been estimated in Proposition 3.7.

The first main outcome of this section will be the equivalence

Proposition 6.1. Assuming the uniform bound (1.7), we have the
equivalence:

1, ¥)lle = [[(W, R)|e. (6.1)
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Here the correspondance between the LE® norms of n and Im W is
straightforward due to the bilipschitz property of the conformal map.
However, the correspondence between the LE~% norms of V¢ and R
is less obvious, and is proved in Proposition 6.9 below.

One difference between the norms for Im W and for R is that they are
expressed in terms of the size of the function on the top, respectively in
depth. For the purpose of multilinear estimates later on we will need
access to both types of norms for both ImW and for R. Since the
local energy norms are defined using the unit spatial scale, in order to
describe the behavior of functions in these spaces we will differentiate
between high frequencies and low frequencies. We begin with functions
on the top:

a) High frequency characterization on top. Here we will use
local norms on the top, for which we will use the abbreviated notation

[ullzzmg, = sup [[ull Lz ms (ao-1,a0+1);
roER

where again ag = ag(zo, t).

b) Low frequency characterization on top. Here we will use
local norms on the top to describe the frequency A or < A part of
functions, where A < 1 is a dyadic frequency. By the uncertainty
principle such bounds should be uniform on the A\~! spatial scale. Then
it is natural to use the following norms:

loc

||UHL§L°<> (By) = Sup ||u||Lng°(B)\(x0))7
zo€ER

where
Bi(zo) ={a €R: |a—ag] S}

We remark that the local norms in @) correspond exactly to the B) ()
norms with A = 1.

Next we consider functions in the strip which are harmonic exten-
sions of functions on the top.

al) High frequency characterization in strip. Here we will use
local norms on regions with depth at most 1, for which we will use the
abbreviated notation

HuHLleoc(Al) = :;16]% HUHL§X(A1(:¢O)),

where X will represent various Sobolev norms and

Ay(zo) == {(e, ) 1 [B] £ 1, |a — | S 1}
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bl) Low frequency characterization in strip. Here a frequency
A < 1 is associated with depths |3| &~ A~!. Thus, we define the regions

An(@o) = {(a, B) : [Bl = A7, Ja—aol SAT'}, A<,
and in these regions we use the uniform norms,

HuHLfL;’gC(AA) = f;le]% "u”LfLZ‘jB(A,\(:cO))-

We will also denote
Bl(xO) = {(avﬁ)7 ‘Oé — O‘O| S 17 ﬁ € [_170]}7
BM(zo) = {(o, B); o —ag| <A™, B € [-A7,0]}, for A< 1.

To simplify the notations in the following analysis, we will also denote

1, OMlee =M, ([, ¥)]|x =€ < e < 1. (6.2)

Given the equivalence of the X norms in Proposition 3.8, as well as
the equivalence of the LE norms in the next subsection, these bounds
also transfer to the holomorphic setting as follows:

[ W, R)||e S M, [[(Im W, R)||lx S e< L. (6.3)

Furthermore, we recall that the frequency envelopes {c,} for (n,) in
X also transfer to (Im W, R) in X.

6.2. Multipliers and Bernstein’s inequality in uniform norms.
Here we aim to understand how multipliers act on the uniform spaces
defined above.

We will work with a multiplier My, (D) associated to a dyadic fre-
quency Ag. In order to be able to use the bounds in several cir-
cumstances, we make a weak assumption on their (Lipschitz) symbols

M, (5)

()] S (L +ATMEDT, and 95 ma, ()] S e €751+ AFTEN T
(6.4)
Examples of such symbols include

e Littlewood-Paley localization operators Py,, P<,.
e The multipliers pp(8, D) and px(5, D) in subsection 3.1 with
18~ A"
We will separately consider high frequencies, where we work with
the spaces LZL? . and low frequencies, where we work with the spaces

loc?

L2LIP (B,) associated with a dyadic frequency 1/h < X < 1.

loc

A. High frequencies. Here we consider a dyadic high frequency
1/h < Xy <1, and seek to understand how multipliers M), (D) associ-

ated to frequency Ay act on the spaces L7LY .
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Lemma 6.2. Let 1/h < A, o <1 and1<p<q<oo. Then

11

My, (D)2 e S A5 . (6.5)

B. Low frequencies. Here we consider two dyadic low frequencies
1/h < A, A2 < 1, and seek to understand how multipliers M)y, (D)
associated to frequency A, act on the spaces LIL! (B,,). For such
multipliers we have:

Lemma 6.3. Let 1/h < A, s <1 and1<p<gq<o0.
a) Assume that \y < Xg. Then

1Mo (D)l 2222, (8, 1202 (By) S A5 7 (6.6)
b) Assume that Ao < \1. Then
”M)\z(D)||L%Lfoc(B)\1)—>L§L;106(B)\2) S >\1E)\2—E- (6~7)

We remark that part (a) is nothing but the classical Bernstein’s
inequality in disguise, as the multiplier M), does not mix A; ' intervals.
Part (b) is the more interesting one, where the A\ intervals are mixed.

Proof of Lemmas 6.2,6.5. We first note that Lemma 6.2 can be viewed
a a particular case of Lemma 6.3 (a) with A; = 1. So in what follows
we will only prove Lemma 6.3.

A direct consequence of the symbol bounds (6.4) is the fact that the
kernel K, of M,,(D) satisfies the bound

A2

1+ A\a?
We will show that (6.8) yields the conclusion of the Lemma.

a) We fix 2y € R and seek to estimate

|K>\2(Oé>| 5 (68)

HMAQ(D)UHLfL“ (By, (z0))"

loc

For that we cover S x [0, 7] with width A\;* strips,

S x [O,T] = U S)\l(l'() +j/\1_1)

JEZ
For (t,a) € Sy, (x) we write
)\2 >\2
| M, (D)u(t, )| < |ul = T+ a2 S Z(lsh(xo+j)\;1)|u|) *TE
j

Now we consider two cases. If |j| < 2 then we simply use Young’s
inequality. This no longer suffices for all 7 because of the need for

summation in j. However, for such j we can use the kernel decay
instead. If (t,a;) € Sy, (w0 + jA; ") then

lo — aq| =~ AT
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Therefore
A2
14+ M(a— aq)?
Using Young’s inequality yields

X =
|| (15/\1 (a:g—i—j)\;l)luD*T)\%aQ||L?LQ(B)\1 (z0)) 5 /\2

~ A TN

2
L ||1 1 uH 2 oy —1
A%jQ S)\l(x()'f'])\l ) LtLP(B/\l(ccg—i-j)\l )

Now the j summation is straightforward.
b) It suffices to consider the case ¢ = oo, and then use Holder’s
inequality. Here we seek to estimate

loc

HMAz(D)UHLfL‘I (B, (x0))"
We use the same covering as above, and for (t,a) € Sy, (xg) we write

A A
| My, (D)u(t, a)| S |ul * T+ 22 S ;(1&\1(960-&-]')\—1)‘“’) * T4 22a2

This time Hoélder’s inequality yields

1
Az A A
”(1SA1(IO+j)\;1)|U|)*T>\%()[2||L%LOO(B>\2(IO)) 5 mH15,\1(oco—i-j)\;l)UHLpr(B,\l(xo-i-j/\;l)’

and the result follows again after ;7 summation. O

6.3. Switching strips. At several points in our analysis we need to
switch local energy type integrals from the Euclidean to the holomor-
phic setting. Here we compute this transition systematically, establish-
ing bounds that will be repeatedly used in the sequel.

The set-up is as follows. We consider some smooth function ¥ in
the fluid domain, which can be viewed either in the Eulerian or the
holomorphic coordinates. For such a function, we seek to compare the
following two integrals:

T
Ip = / // m/(z — x0)V(x,y) dydadt,
0 Q)

Iy = /OT //Q(t) m/(a — ap)¥(a, §) dBdadt.

To fix the notations, the Eulerian strip is centered at x = xo, which
on the top corresponds to a = ay. However, in depth the line x = x
corresponds to a curve a = ag(t, 5). We will need to account for this

difference. Our result is as follows:
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Proposition 6.4. We have

T
T — Tu| < / / / (Wl [ReW e ) — Re W (,0)) (e, )] ddt

T
S G s W) s (Bl dr
0 BE€[—h,—1] |a—ap] la—ap|<|B|
(6.9)

Proof. We switch Zg to holomorphic coordinates by changing variables.
This yields

T
Ip = /o /Q(t) Jm'(x — zo)W(a, B) dBdadt.

Since |J — 1| < |W,|, we can harmlessly replace J by 1, and then we
are left with the difference

/OT //Q(t) (' (& — o) — (& — a0))¥(a, B) dBdat

Here we have
r—x9=0a—ay+ ReW(a, ) — Re W(ay,0).

The function m' is supported in the unit interval, and W has an € small
Lipschitz constant (e is the control norm defined in the Introduction).
Then, within the support of m/(z — xy) we must have

la — ap| Self| + 1. (6.10)

We now divide the analysis in two cases depending on the size of .

a) Small depth, —1 < 8 < 0. Here we simply use the Lipschitz
property of m’ to get

|m/(x — x9) — m/(a — )| < |Re W (e, B) — Re W (g, 0)].

b) Large depth, —h < 8 < —1. Here we continuously switch
between the two bumps m’(x — zq) and m/(«a — ap). Denoting

d(k,a) == a —ag+ k(ReW(a, 5) — Re W(ay, 0)),

we consider the family of bump functions m/(d(k,«)) with k& € [0, 1].
Within the support of these bump functions we still have |a—ag| < |5],
therefore, using also Proposition 3.7

|ReW(a, ) — Re W (ap,0)| < |B|(cs + | suF . |W,l). (6.11)
a—ap|<
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Using the functions m’(d(k, «)) we have

m/(z — xo) —m/(a — ap) = /0 d%}m/(d(k, «)) dk

— /0 m"(d(k,a))(Re W (a, ) — Re W (ay, 0)) dk

! , Re W («, B) — Re W (v, 0)
= [ttt ) S d.

Hence, integrating by parts we get
D(B,t) := /(m'(x —x0) —m'(a — ap))¥(a, B) da

_ _/0 /m,<d(k’a))aa [ReW(a,lﬁJz}—{eP;eflﬂ/(ao,O)@(a’m o

Here m/ is a bump function with unit integral, so taking absolute values
we get

IDB,OIS  sup  [Wa|[¥[+|Re W (a, B)—Re W (ag, 0)|(|Wa|+[Waal[¥]).

la—ao|<|B]

In this context we have
Waal < €l

so the conclusion follows from (6.11).
U

6.4. Bounds for n = Im W. Here we have the straightforward equiv-
alence

7l zmo ~ ([ Tm W || L go (6.12)
as 1 and Im ¥ are one and the same function up to a biLipschitz change

of coordinates. Our first aim will be to understand the bounds for the
low frequencies of Im W on the top:

Lemma 6.5. For each dyadic frequency A < 1 we have
T Werllzzee 8, S 1 Tm Wl zpo. (6.13)

loc

Proof. Since LE® = L?L% (B;), this bound is a direct application of

Lemma 6.3 (b). 0

On the other hand, for nonlinear estimates, we also need bounds in
depth, precisely over the regions Ay (zg). There we have

Lemma 6.6. For each dyadic frequency A < 1 we have

1T W gz (ay) + A IWall 2z (4 S T Wlppo.  (6.14)
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Proof. We start by recalling that Im W is harmonic in the strip with
Dirichlet boundary condition on the bottom. Then Im W («, /3) is given
by

Im W (B) = Pp(5, D) Im W(0),
where the symbol pp (€, B) of the multiplier Pp(f) is

ot = SLE )

For |3] ~ A~! these symbols satisfy uniformly the condition (6.4) with

= A1. Then the kernel bound (6.8) also holds uniformly, and the
conclusion of Lemma 6.3 applies also uniformly. This yields the bound
for the first term on the left. The bound for the second term on the left
is similar, by applying the same argument to the operators A™19, Pp(/3)
and A\~'93 Pp(B) uniformly in || ~ A~1.

Alternatively, we note that one can obtain the bound for W, or
equivalently for VIm W by elliptic regularity. We have already ob-
tained estimates for Im W in the region Ay(zg), which has size A1,
and so using the elliptic regularity we can estimate the derivatives of

a harmonic function in a domain in terms of the solution on a larger
domain:

[Va,s Im W (a, B)|| oo (s o)) S AO(, B)l|Loo(car@oys ¢ > 1.
]

Also connected to € = Im W, we need to estimate the difference
0 — Hx(n). Here we are comparing two harmonic functions with same
Dirichlet data on the top, but with homogeneous Dirichlet vs. Neu-
mann boundary condition the bottom. The regions over which we
compare the difference are of size h:

By () :={(a, B) : B €[-h,0], [ —ag| S h}.
We have

Lemma 6.7. For the difference 0 — Hy(n) have
1990 — Ha(m) 20 oy 1T Wlpo,  5=0,1,2 (6.15)

loc

Proof. We first compute
(6 — Hy(n))(B) = C(B, D)n,

where

_ sinh ((h+B)§)  cosh((h+B)§)  2sinh(BE)

C(B,€) = sinh (h¢) cosh(h€)  sinh (2h€)

has size 1 for |£] < A~ and decays exponentially for larger £. Thus

these kernels satisfy uniformly the condition (6.4) with Ay = 1/h.
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Hence the bound for InW — Hy (Im W) follows by Lemma 6.3 (b)
with )\1 =1 and )\2 = 1/h
We now turn our attention to the j = 1 case, namely the map

n— V(0 — Hy(n))(a, B).

Differentiating the previous symbol in either o or § yields another
factor of £, namely leads to the symbols

¢ -sinh(£B) § - cosh(£P)
sinh(2h€) sinh(2h€)

Both are bump functions on the h~! scale, but now their size is im-
proved to h~!. Thus both operators equal h~! times an averaging
operator on the h scale. Hence Lemma 6.3(b) again applies, but yields
another h~! factor. The same argument applies as well for the second
order derivatives of § — Hy(n).

O
Now we are already able to estimate the easiest of the error terms:

Proof of the Err, bound. We estimate the difference between the
two integrals I; and I7°! using Proposition 6.4 with ¥ = (6 — Hy(n))s.
We also need to account for the difference

0(60 — Hy(n))y — 060 — Hn(n))s,

which, by chain rule, is readily estimated by

1600 — Hn(n))y — 60(0 — Hy(n))sl < 101[Va,s(0 — Hy(n))|[Wal.
Combining this with Proposition 6.4 and using |W,| < €, we obtain

T
-1l < e / / / 0/[V(0 — Ha(n)] dfdadt
0 Al(oc())

+€/0 /_ sup  |0]|V(8 — Hy(n)| + 8118(6(8 — Hx(n))s)| dBdt.

h |a—aol<|B|
It remains to bound the two integrals by ||n||2;, both of which are
straightforward in view of Lemma 6.6 and Lemma 6.7. U

6.5. Estimates for Y. Here we prove a local energy bound for the
auxiliary holomorphic function

Y = .
14+ W,

Lemma 6.8. a) For A > 1 we have
IYallzzrz, S AM. (6.16)
b) For A <1 we have

||Y>\||L?Lg°(B)\(rg)) S AM. (6.17)
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We note that both estimates follow directly from Lemma 6.6 if Y is
replaced by W,. However to switch to Y one would seem to need some
Moser type inequalities, which unfortunately do not work in negative
Sobolev spaces. The key observation is that in both of these estimates
it is critical that W, is holomorphic, and Y is an analytic function of
W,.

Proof. We will bound Y on the top using bounds for its holomorphic
extension. Based on the bounds for W in (6.12) and (6.14), this satisfies
estimates as follows:

A. If —1 < 8 < 0 then on each unit strip S we have
”aiy(‘vﬁ)”Lng(Bl(xo) SIBTM. (6.18)
B. If —h < 8 < —1 then on each || strip we have
102Y (., —B) 203 (Bs (20)) S 18|71 M. (6.19)

We use the following representation of Y on the top,
0

Y(e,0) = Y(a,—h) +i/ Yo (o, B)dp

—h
0
=Y(«a,—h)+ihY,(a,—h) + / BYpa(cr, B) dp.
—h

The function Y («v, —h) is at frequency 1/h, and obeys the bounds (6.19)
therefore the first two terms above easily satisfy the bounds in the
lemma.

It remains to consider the integral term, where we treat the integrand
differently depending on § and on A.

Case I: A\ > 1. Here we are only interested in unit strips, and use
L? bounds. Depending on 3, we differentiate as follows:

Case I.a: Small 3, —\~! < 8 < 0. There we use (6.18) to estimate
IPORY (- B)llzzrz, S NIV (o B)leerz, S 1BI7IAM,

loc

which suffices for the £ integration.

Case I.b: Large 3, —h < 3 < A~!. There depending on the size
of 5 we use either (6.18) or (6.19) to estimate
IPORY (- B)llnzez, < 1817°M,

loc

which again suffices for the g integration.

Case II: )\ > 1. Here we are only interested in strips of width A7*,

and use L*™ bounds. Depending on (3, we differentiate as follows:
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Case I.a: Very small 5, —1 < 3 < 0. Here we cover the A\~! strip
with unit strips, use Holder’s inequality, then Bernstein’s inequality to
get
5 _
1PAOZY (-, B)le2ree 5y S M2 IY ( B)llz2rz sy S MY B)lle2rz. S1BITIAPM,

loc loc loc

which is enough.

Case IL.b: Small 3, —\~! < 8 < —1. Here we cover the A\~ strip
with |3]|7! strips, use Holder inequality, then Bernstein’s inequality to
get

s _1
IPAORY (5 B)llczrzs, ) S A2 IV Blzzez, sy S X872V (5 B)llizez, ()
S )‘QHY(';ﬂ)HLng By S 1871 A2 M,

loc

which is enough.

Case Il.c: Large 3, —h < 8 < A~'. There we use (6.19) to
estimate

IPAOY (-, B) 212 (my) S 1817°M,

which again suffices for the § integration.
O

6.6. Bounds for 0¢ = R. This is not as easy as for n = Im W, because
the strips in the FEulerian and holomorphic setting do not agree, and
can in effect be quite different. Nevertheless, we will still prove

Proposition 6.9. Assume (1.7) holds. Then we have
10l -y = BN, -y (mod e Im W| Lgo). (6.20)
Here the equivalence should be interpreted as the double inequality

100, -t SHRI g el T Wilgo, RN oy S I, g +ell Tm W[ po.

2 2

Proof. We recall that |[V¢|? = |R|?, so all we need is to transfer the L?
local bound from unit strips in the Eulerian setting to unit strips in
the holomorphic setting.

To switch from one strip to another we will critically use the bound in
Proposition 6.4, which uses the fact that in depth the distance between
the two strips is smaller than €|f|. Because of this, we start with a
preliminary result, which is more easily proved:

Lemma 6.10. For each dyadic A < 1 we have
1Bl iz A2 IV Rl i SMIRIE . (620

Proof. From the definition of the local energy functional associated to
R we know that we have L? control over R inside every vertical strip
of width 1. However, initially we do not have any information on the

top or on the bottom of the strip. As a consequence we first prove the
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desired bound in a region Ay(x¢) that avoids the case |3| ~ h. In order
to use the control we have on R we split the region 2A4,(z¢) in strips
of width 1 and then add the A~! bounds on strips to obtain

IRI 7204, (ro)) < )\_IHR“LE—%-
Then the bound in the lemma follows by elliptic regularity.
Finally, if |5| ~ h we use the homogeneous boundary conditions
Dirichlet or Neumann for Re R and Im R to separately mirror them
in a symmetric domain below the bottom via reflection principle, and

then proceed as above.
O

We now return to the proof of the Proposition 6.9. For this we need
to compare the integrals

T T
IE:/ / my(z—10)|VO|* dudydt, IH:/ / mg(a—ap)|R|* dudydt,
0 0
and show that
Zo—Tul S IRIE,_y + IW[Eg0):

Since |V¢|? = R?, we can apply directly Proposition 6.4. This yields

T
|Zp — Zy| < e/ // |R|?* dBdadt
0 A1 (zo)

T
—|—/ / (cg+ sup |Wa|) sup |R|*+ |RR,|d3dt.
o Jon

la—ao|<B la—ao|<p
The first integral is directly estimated by ||R|]iE7 1 For the contribu-

tion of cg we use the dyadic summability of cg along with Lemma 6.10.
Hence we are left with

T 1
/ / sup |Wo| sup |R|* + |RR,|dBdt.
0 —h la—ap|<B la—ap|<B

To bound this last integral we switch roles and use the local energy
norm for W, via Lemma 6.5 and for R via Lemma 6.10, while for R,
we use the control norm and Bernstein’s inequality to get the bound
|Ro| < ’B’%CB. This yields the fixed $ bound

cslBI IR, ooy I1Tm Wl o

Finally we integrate with respect to 8 € [—h, —1] to obtain
eHRHLE,% | Tm W|| . go.

1
LE™ 2

g

The local energy norm for R measures the function inside the entire

strip. However, we also need to estimate it on the top:
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Lemma 6.11. For R € LE~% we have the following high frequency
bound on the top:

120, -0 S RN -3 (6.22)
respectively the low frequency bound
1
Bl L2roe 3y S AZIR, -1 A< (6.23)

Proof. The first part follows from the trace theorem, as R € L?L2 (A;)
is a harmonic function. The second part is more delicate, but we can
use the same argument as in Lemma 6.8. Precisely, we write

0

R(«,0) = R(a, —h) —|—/ iR (a, B) dp.

—h
For the first term we can use Lemma 6.10. For the second term we
split the integral into

0

21
R = /_ CiRi(0.B)dB. R / iRu(a, B) dB.

_Afl
For R; we use the gradient bound in Lemma 6.10, to compute

IRl g

loc

21
_3 1
(BA)S/ 1814 dB < A,
—h

and the spectral projector Py is harmless.
For R, on the other hand we use the spectral projector for Bernstein’s
inequality in Lemma 6.3, and then to eliminate the derivative

1
HP>\R2”LEL;>§C(BA) S Az HP)\R2||L?LZ20€(B)\)

0
| mapis

S MBIl 2z sy -

~PE

L{LZ(B»)

where at the last step we have used Hélder’s inequality in 8. To esti-
mate R over a square By(xg) of width A™!, we cover the square with
A7 strips S(zo + ) with [j] < A1, and then use Holder’s inequality
again to get

[PAR2 |25

loc

50 S MR,

E_,

g

6.7. Bilinear estimates for |V¢|? = |R|* and its harmonic exten-
sion. Here we will prove the following bound:

Lemma 6.12. a) The function |V¢|? = |R|* restricted to the top sat-
i1sfies the following estimate:

IR Lo < eM. (6.24)
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b) Its low frequency part satisfies
HPA‘R|2HL§L°° (Ba(wo)) S OM. (6.25)

loc

c) In addition, for each A < 1 there is a decomposition

where
Sgp HG%\HLlLOO(B,\(:cO)) S AM?, (6.26)
while
||G§\||L2L°°(BA(330)) S eM. (6.27)
Proof. a) We restate this as a bound for R,
IR e S IR, - 1 Blle s mp (6.28)

where the /! summability is measured using the control frequency en-
velope {c,}. For this we use a Littlewood-Paley decomposition

RR = Z(R<)\R)\R)\R<)\) + Z R)\R)\,
A A

and analyze each component separately. We discuss two cases: first
when A > 1 and the second is when A < 1. For now we discuss the first
case, i.e., A > 1. To bound R we will use either the control norm X, or
the local energy norm LE™ 3. Correspondingly, we have the following
bounds for the dyadic pieces

1 1
”R<>\HL?LZQOC S AZ[|Ran|l 1 S AZM,

2=
Lt Hh,loc

respectively
[RAll o2 < A7H[RAlloory S A e,

We begin with the low-high frequency term where we compute using
Bernstein’s inequality in Lemma 6.2

[RaRanllrzrz, S A2||BaRaxllzzry . S A2 [[Ballpzerz || Ranllrzrz, S exM.

Here we can sum up with respect to dyadic A\ as needed.

For ), R\ R, we perform a similar analysis, and consider the prod-
uct’s output at frequency v, where v < A. Here, v can be > 1 or < 1.
We assume first that v > 1, and return to the other case later in the
proof. From Bernstein’s inequality in Lemma 6.3

1P, (BaR) 2z S v3IIP (RARY) e

loc

and further, by Cauchy’s inequality, we get

loc loc

= 1 = 14 % - 14 %
1P (RaR) iz, S VA IRz, IRl S (5) IR,y IR ey S (5) en.

The A summation is again straightforward.
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Therefore (6.28) holds for the high frequency (> 1) part of the out-
put. The remaining case in (6.28) corresponds to low frequency output
and will follow from the proof of part (b) below.

b) The goal here is to prove the following estimate

Z ||P/\|R|2||L§L°° (By) S ||R||LE7% ||R||£1L§’°H}1la (6-29)

loc
A<l

which in particular suffices to finish the proof of part a) of the propo-
sition. Again we use the control frequency envelope {c\} to measure
the ¢* summation in the second factor on the right, and will show that

||PA|R|2||L§L°° (By) 5 exM. (6-30)

loc

We need to consider the expressions Py (R,,RM) , where by Littlewood-
Paley trichotomy, we have several cases to discuss:

i.) Case v~ pu, > X and p > 1.

In this case both input frequencies are comparable and larger than 1
but the output frequency is A < 1. We use Bernstein’s inequality and
Holder’s inequality in both space and time to obtain

||P>\ (RuRu) ||L2L°° (By) S )‘HRMRMHL?U (By) 5 )‘HRMHL2L2 (B)\)HRHHLS’OLQ'

t ~loc t ~loc t ~loc

Since the input frequencies are higher than 1, we estimate the first fac-
tor using Lemma (6.12) adapted for the dyadic pieces, together with
the fact that in an interval of size A™! we have about A\~! size 1 subin-
tervals. For the second factor we use the control envelope c). This
yields
= 1 1
MBullzzez, o lBullgerzm S A2 A2 (R, g ([ Rullgerz

loc
t""loc

SRRy

< A%u’%cMM.

| Ryl oo

Now the p summation is straightforward due to the off-diagonal decay.

ii.) Case v~ u, p> X and u < 1.

This case is a harder one because we deal with different scale localiza-

tions. More explicitly the input frequencies are on the scale ;~! which

is less than the output frequency which lives on the scale A=!. Thus,

we first use Bernstein’s inequality in Lemma 6.3, followed by Holder’s
inequality in both space and time:

||P/\ (RHR“) ||L§L°° (By) 5 /\||RuRu||L§L1 (By) 5 /\||Ru||L§°L2 (BA)HR;LHLfL? (By)s

loc loc loc loc

(6.31)
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and then we use the control envelope ¢, to arrive to

)‘HRM’|L§’°L2 (BA)HRMHLfLQ (By) 5 )\/leRuHLfoHl (BA)HR/LHLfLQ (By)

loc loc h,loc loc

< MRl iz, )

loc
(6.32)
In the second term on the right we switch from A\~! width strips to
p~ ! wide strips using Holder’s inequality, followed by Holder’s inequal-
ity again and then Lemma (6.10) to obtain

1 1
= PNz - Bz B 2
1Bz, S (5) 1BulEesz im0 S Srl Rullons s < (5) M

loc

(6.33)
Using this in (6.32) we have proved that
- 11
1P (RuRu> HL%L%’C(BA) S Az e M. (6.34)

The 1 summation is again straightforward.

iii.) Case v < A and p =~ A.

Here we observe that we can drop the projection Py, and then we can
use Lemma 6.10 for the first factor and Bernstein’s inequality for the
second one

— 11
IRy Ryl r2ree 8y S 1Rullzzrpe sl Rullzgers S vip~2e, M. (6.35)

loc loc

We do have off-diagonal decay since v < p, and summing over such v
yields a bound of ¢\ M as desired.

c¢) We observe that we only need to place low-low interactions in G'
and high-high interactions in G2. In this context by low-low we mean
that both input frequencies are smaller than A, and then their output is
also smaller than A\, and by high-high interaction we refer to larger than
A input frequencies that give rise to a smaller than A\ output frequency.

We begin with the input frequencies p and v both smaller than A,
and by Holder’s inequality in time we get that

||RuRV||Lt1Lf§C(BX) S HR,MHL?L;’;’C(B)\)||RVHL,?LZO§C(BA)'

Since both p and v are smaller than A we can apply Lemma 6.10 and
get

11
||Ru||L§L°° (B,\)HRVHL%LOO (By) S peve ||R||iE_%-

loc loc

Summing over both p, v < A we get that indeed
SRR psis ) S MBIy
A

which finishes the proof of (6.26).
For the high-high case the analysis in part (i) and (ii) applies together

with the summation over A and u. The bound for G4 follows.
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Using the |R|?> bound, we are able to estimate two more of the error
terms:

The estimate for Err; in Proposition 5.2. We recall that

T
Erry ::/ /amm/\f(n)w dxdt.
0

Since N'(n)y = |V¢|* on the top, this is a direct consequence of
Lemma 6.12 (a).

i

Proof of the Err, estimate. We recall that the expression for Erry
is given by

T
Erry ::/ / my(r — 20)0, Hy (|V¢|?) dzdydt.
0

We first recast it in holomorphic coordinates,

T
Erry = / / mg(z — 20)(Re Wy + |[Wo?)Hy(|R|?) dadfBdt.
0

To estimate it we will combine the bounds in Lemma 6.6 with those in
Lemma 6.12. We exploit these bound in two steps.

1. High frequency bounds. Here we consider the contributions where
at least one of the W, and Hy(|R|?) factors is at high frequency (> 1).
In this case the corresponding harmonic extension decays exponentially
in £ on the unit scale, therefore the bound for the corresponding part
of Erry is localized both in o and in  on the unit scale. On this scale,
by elliptic regularity, we have local bounds

_1 1
W, € Lf(L%Ha ) loes Hy(|R|?) € Lf(L%HO%)lOC

in terms of the LE® norms for § and |R|* on the top. These are dual
spaces. Furthermore, the remaining W, factors are harmless since from
the X bound we have

W, € LELY (0" HZ).

2. Low frequency bounds. Here we use the decomposition in part (c)
of the last lemma, where A is matched to the depth || ~ A7

For G} we combine (6.26) with the trivial L> bound for W,, derived
fom the X norm, where the latter comes with ¢! summability.

For G, instead we combine (6.26) with the bound (6.6) for W,. O
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6.8. Bilinear estimates for Im W - ReW, and its harmonic ex-
tension. This expression appears in the normal form correction part
of the proof of our nonlinear Morawetz inequality. Here we will prove
the following bound:

Lemma 6.13. a) The function Im W - Re W,, restricted to the top sat-
i1sfies the following high frequency estimate:
| Im W - Re Wy ||Lgo < €| Im W[ go. (6.36)
b) Its low frequencies satisfy the additional bound
I W - ReWollz2ros ooy S el I Wiliomo,  (637)

loc

c¢) In addition, for each A < 1 there is a decomposition
Px(ImW - ReW,) = G} + G5,

where
SlAlp ||G§||L}L°° (B (z0)) 5 )\M2, (6-38)

loc

while
“GinL%L‘x’ (Ba(20)) 5 M. (639)

loc

Proof. a) Here we use the fact that W, is bounded in L
|| ImW - Re W(XHLEO = || ImW - Re WO‘HL%L?OC(BA@O))
Re W, ||7°

5 || IInVV”L%L2 (B)\(.ZO))|

loc

S EH ImWHLEO

b) The proof is exactly as in Lemma (6.12) with the corresponding
adjustments that come from the fact that Im W and Re W,, are differ-
ently balanced in comparison with R: one is 1/2 derivative less than
R and one is 1/2 derivative above R, respectively.

The only slight technical difference that arises, is when one considers
the case of low-high interactions, with the high frequency on Re W,.
In this case, instead of looking separately at the norms

| Im W, - Re Wu,aHL%Lw (Bx(z0))> v<psl,

loc

and then sum over v with v < u, we group terms and analyze directly

|| Im W<M -Re Wu,a”LgLo" B (z0))*

loc
By doing so we avoid the potentially troublesome v summation.
Thus, we proceed as follows

[(Im W) <p-(Re Wa)uHL?ijc(Bu) S [l(Im W)<MHL§L;>§C(BH)H(RG Wa)ulloe S e,
where for the first factor we have used Lemma 6.5, while the dyadic
bound for Re W, follows from Proposition 3.3. This suffices for both
parts (b) and (c) of the lemma.
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Proof of the Err? estimate. Here we consider the bound for the sec-
ond term in Errs, namely

T 1
Err? = I ) Hp(Im W Re W,,) dadf3dt.
s g/o //m(1+WaTW> p(Im W Re W) dadfs

The same proof as for Erry applies, using Lemma 6.6, which now is
combined with Lemma 6.13 instead of Lemma 6.12. Il

Proof of the Err? estimate. Here we consider the third term in Errs,
namely

T
1
Err3=/ // Im P[|R|*]a Hp(Im W - Re W,,) dadBdt.
5 0 1+Wa “ ’] D )

This is again the same proof as for Erry, using Lemma 6.12 and
Lemma 6.13. U

7. BOUNDS INVOLVING F

The aim of this section is to prove the error estimates involving F'.
These are all tied to the normal form correction we use to deal with
the unbounded error term Errs. We recall that
2iIm Q)

F=P
&

} =R+ P[2iIm (RY)] := R+ F,
where we have separated the linear part F' and the quadratic and higher
order part FI?. The imaginary part of F is explicit on the top:
Im F® = Im (RY).
Thus in the fluid domain we can write
Im £l = Hp, (Im (RY)) .

In Eulerian coordinates, the expression Hp (Im (RY)) arises as the
nonlinear component of #;, see (2.6). Indeed, in holomorphic coordi-
nates, we compute on the top

W, o
ngV@ZJ:Im(Rl_i_W):Im(F—lQ ):Im(F—R).

Understanding Re FI?, on the other hand, is a slightly more delicate

matter, since a-priori it is only determined modulo constants. In our
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setting, the constant in Re F' is determined by

Im FIm W,
Re Fa0.0) = () et~ ReR) (00.0) -
Im(RY) Im W,, '
= —ReR 0).
( JA+ReW,) ) (20, 0)
We will not use the full expression in the sequel, but merely the bound
|Re F (g, 0)| < |R(ap,0)]. (7.2)

In what follows we will first establish direct bounds for Im F?, which
has a bilinear structure as described above. The real part will satisfy
similar bounds except at very low frequencies < 1/h.

7.1. Bilinear estimate for Im ) = Hp(V¢V1). For this expres-
sion we will prove the following bounds, which are needed in order to
switch from Errs to Erri and prove Proposition 5.3:

Lemma 7.1. a) The function F'? restricted to the top satisfies the
following high frequency estimate with X > 1.

IPFP e S AveM,  A>1. (7.3)

b) It also satisfies the low frequency bound
IPAF®| 200 () S AZeM,  1/h<A<1. (7.4)

¢) Finally, at very low frequencies we have:
| P<1/n Im FMHL%Lﬁj’C(Bl/h) S h73eM. (7.5)

We also list some straightforward consequences of the above Lemma:

Corollary 7.2. The low frequency part of Im F¥ satisfies on the top

| P<y I FP|p < M. (7.6)
Its harmonic extension satisfies the bound
IHp(VOVO) || 12000 (ay) S AZ€M. (7.7)

The estimates in part a) are not entirely satisfactory because the
¢! summation with respect to \ is missing for A > 1. Similarly the ¢!
summation with respect to A < 1 is missing in part (b). To compensate
for that, we complement the above result as follows:

Lemma 7.3. a) The function F,EQ] = Fg restricted to the top admits
the following high frequency decomposition

F;EQ] _ F}EQ],l +F;£2]’17
where the dyadic pieces of F,?]’l satisfy
1B, -3 < Mex, (7.8)



while the dyadic pieces of F,EQ]’Q satisfy
12| it S ecn. (7.9)

As a consequence of the previous lemma and interpolation (or by a
similar direct proof), we have

Corollary 7.4. The function F,EQ]’Q in the last lemma also satisfies the
interpolated bounds

IE | e S €77 M, (7.10)
where
1 1—3s
2 <p < oo, - = .
P 3

Similarly, to account for the lack of summability in the low frequency
bound (7.4), we have the following:

Lemma 7.5. We can decompose Flm = F[[12/]h,1} into
2 2,1 2],2
Fz[]:FlH "‘Fz[] :
where the dyadic pieces of Fl[z]’1 satisfy the dyadic bounds
_1
A2 HF)[?]’IHL,?L;"‘;C(BA) S oM, (7.11)

while the dyadic pieces of Flm satisfy the weaker bound

loc

_1 2],
Sup A IE | 20 () S €M, (7.12)

as well as the uniform bound
A7 || FP? e < cre (7.13)

The bounds in Lemma 7.1 will be used in order to estimate trilinear
terms. For quartic terms on one hand we have more flexibility, and
Lemmas 7.3, 7.5 are more useful.

We now successively prove the above lemmas.

Proof of Lemmas 7.1, 7.5, 7.5. Here we use the dyadic local energy
bounds for R in Lemma 6.10 as well as the local energy bounds for
Y in Lemma 6.8. On the other hand, in terms of the control norm, we
have the bounds:

- _1
IRAll2 S A lea, IYalle S A 2cy.
As usual we consider the Littlewood-Paley decomposition of F /{2],

FY = Plm(R,\Y <) + Im(Roy V)] + P Py Im(R,Y ).
u=A
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The first two terms in this decomposition, namely the high-low and
the low-high interaction, are estimated in the same manner as in Lem-
mas 6.12,6.13 to obtain the high frequency bounds

_ - 1
P Im(R\Y o)l r2r2 + [P Im(RYN)]ll1202 S exMAZ,
respectively the low frequency bounds
_ - 1
P Im(R)\Y<>\)||L?L;’:C(B>\) + [P Im<R<>\Y)\)]HL%L?§c(B)\) S aMAz.

These both suffice for Lemma 7.1, and show that these contributions

can be placed in F; ,[Lz}’l for Lemma 7.3, respectively in Flm’1 for Lemma 7.5.
Thus it remains to consider the case of high-high interactions, Py Im(R,Y ).

Here we separate the analysis into low and high frequencies.

A. High frequencies 1 < A\ < u. Here we estimate again as in
Lemmas 6.12,6.13,

IPAIm(RY ez, S AN Im(RLY ) llery, S A2 1Rullczre 1Y ullzzre S A2euM.

loc
This suffices for the p summation, which yields the conclusion of Lemma 7.1(a),
but yields no A summation due to a lack of off-diagonal decay. Because
of this, for Lemma 7.3 we place this term in F,?]’Q and estimate it by

_ 1 _ 1 1 _3
[P IM(R,Y )l ez S A2 Tm(RLY ) [|ngert S A2 (| Rull 2l Vallogere S A2p2 e,
where we have off-diagonal decay,
Y P Im(R,Y )2 S A e,
B>
as desired.
B. Low frequencies 1 < A < u. Here we should also consider two

cases, 4 < 1 and p > 1. The latter case is similar but simpler, so it is
omitted. Assuming A < pu < 1 we compute

[| P Im(RMYH)HL?LOO (By) S A Im(RuYu)HLle (By) N )\HRuHLgL? (BA)HYHHL?OLQ

loc loc loc

1.1 = 1
SN[ Rullpzre gollY ulloers S A2, M.

loc

This is again good enough for Lemma 7.1(c), but there is no A sum-
.2

mation. Hence, for Lemma 7.5 we place these contributions in F/{z
and estimate them exactly as in the high frequency case. U
The bound for Errs — Errt®: proof of Proposition 5.3. The ex-
pression Errs is given by

T
Errs = / / mg(x — x9) Im R Hp(VOV ¢) dxdydt,
0

while its holomorphic counterpart is

T
Erréwl = / / me (o — ag) Im R Hp(VOV ¢) dzdydt.
0
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In their difference we obtain errors due to (i) Jacobian terms and (ii)
the switch between Eulerian vertical strips and the vertical strips in
holomorphic coordinates. We estimate the difference using Proposi-
tion 6.4, which yields

|ETT3 — ETTQOZ‘ 5 D1 + DQ,

where

T
Dy = /0 //Al(W“H' Re W ( — Re W (a, 0)])| R|| Hp(VOV$)| dadBdt.

T -1
Doi= [ [ et swp (Wi sup |RIHp(V0VO)+[5]10u RHD(VOV )| dBit

la—ao|<|B] la—ao|<| 8]

A. The estimate for D;,. Here we use the decomposition in
Lemma 7.3. The harmonic extension of (the high frequencies of) F; ,E2]’1
belongs to L?L? . by elliptic regularity, which is combined with the
similar bound for R, and suffices. To deal with F; }EZ]’Z we imbalance a
bit the scales using Corollary 7.4. Working with s € (—1, ) we obtain
that its harmonic extension satisfies

2 9.2 3 2 1
IHNE ey, S MPET2, 2<q<o0, S =2= s,
Consider first the W, term, which we also imbalance, interpolating

in a similar manner between the energy and the local energy bound.
This yields

1oq_1
||Wa||Lf1Lf(}cSM”1€1 P, 2< q < o0, I —

We choose exponents appropriately so that
1 1 1 1 1
+

p opm 1 a2
Then we multiply, combining with the L? local energy bound for R and
using Holder’s inequality.
Next we consider the | Re W («, 8) — Re W(ay, 0)| term. To argue as
for the previous difference we simply estimate it by the Fundamental
Theorem of Calculus

[Re W (e, 3) — Re W (a, O)HLflL?jc S ||Wa||LflL;1§ca
and conclude in the same manner.

B. The estimate for D,. Consider a dyadic frequency A < 1. Then
in the corresponding regions A, we have by (7.4)

< \! < 3
t A) Y t )~
[Hp(VONO) 210004y SATIVHD(VOVO) | L2100(ay) S eMAZ.
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Combined with the bound for R in Lemma 6.10 this suffices for the cg
term. It remains to consider the W, term. For that it suffices to match
the above bound with a corresponding bound for RW,,

| sup |R| sup [Wal[l 2 S exMAZ. (7.14)
Ay Ay

It remains to prove (7.14). Harmlessly neglecting the exponentially
decaying tails at higher frequencies, we write in A

R=Y R, Wa=)» W
p<A v<A

For p < v we write

1
I sup B 50p [ Woal 17 5 | Bullizaze o) [Woalle 150 S sibes M.
A A

loc
while for v < 1 we have

_1
[I'sup |Ry.[sup [Woalll 2 S HRMHLfOLE"HWV,a”LfL%’C By S K 2ve,M,
Ay Ay
and (7.14) follows in both cases after y, v summation.
The proof of Proposition 5.3 is concluded.
0

7.2. Estimates involving F'. There are three error terms which in-
volve the full F', namely Errs, Errg and Err;. In this section we
will estimate these terms. We need to deal with F' in the following
combinations:

(1) The harmonic function

Gy :=Im(FR,). (7.15)
(2) The harmonic function
Gy = Im(FEW,). (7.16)

(3) The harmonic extension
Gy := Hp(Im W Re F(1 + W,,)). (7.17)

We will state our main bounds directly in terms of these expressions,
rather than in terms of F. This is because the bounds for G, G5 and
G5 are better viewed as trilinear bounds, rather than more directly as
iterated bilinear bounds. We begin with GG; and G5, where the results
are easier to state:

Proposition 7.6. a) High frequency bounds. The functions Gy, and
Gy have the following reqularity in the fluid domain:

G| S eM, (7.18)

_1
L7L%He * (Al (20))
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HG2HL§L2(A1(%)) S M. (7-19)

b) Low frequency bounds:
||G1||L?LW(AA(xO)) S AaM, (7.20)
GallL2ree (ar (o)) S AZAM. (7.21)

We postpone the proof of the proposition, in order to complete the
proof of the Erri and Errg bounds.

Proof of the bound for Erri. We recall that
T
Err} ::/ / me Im(FR,)Hp (Im W Re W,,) dadpdt.
0

At high frequency this is estimated combining (7.18) and (6.36). At
low frequency instead we combine (7.20) and (6.37). O

Proof of the bound for Errg. We recall that
T
Errg :/ / me Im RIm((F — R)W,,) dadfdt.
0

This we can estimate using Lemma 6.10 for R, and (7.19), (7.21) for
the second factor. O

Next we consider the bounds for G3, which are summarized in the
following;:

Proposition 7.7. For each 1/h < p < 1, the function G5 admits a
decomposition
Gy =Gy + Gy,
where the two components satisfy estimates as follows:
a) High frequency bounds.

_1
‘|aaG§71|’L%L2(A1(o¢o)) S./ 1% ZCMM> (7'22)
_1
sup 2 ||8QG§’2||L1L2(A1(QO)) 5 M?2. (7.23)
o
b) Low frequency bounds:
1 1
1121]0aG5 | L2 Lo (A (a0)) S €M, (7.24)
respectively
_1
SUp 112 |0aGY || £ poo (4, (a0)) S M. (7.25)
o

We now use this Proposition to estimate the remaining error:

68



Proof of the bound for Err;. We recall that

T
Err; ::/ / meq Im RO,G3 dadfdt.
0

We first estimate the bound for R>;, using the decomposition above
with © = 1. The Gzl,”l contribution is easy to bound using the local
energy for R. The Gé’z contribution is also easy to bound using the
uniform H} control norm for R.

Then we estimate the contribution of R,, where we use the above
decomposition associated exactly to the frequency p. Precisely, we
match the G%§ ! bound with the local energy estimate for 12, while on
the other hand we match the G4 bound with the uniform bound for

R using the control norm. O

The remainder of the section is devoted to the proof of Proposi-
tions 7.6,7.7. In estimating the contributions of F' we will separately
consider three regimes:

I. High frequencies: > 1. Here the real and imaginary part of
F' satisty similar estimates.

I1. Low frequencies: € [h™!,1]. Again the real and imaginary
part of F' satisfy similar estimates. We also include here the
very low frequencies of Im F' and R.

II1. Very low frequencies: < h~! for Re(F —R). It is here that
the difference between Re F' and Im F' comes into play, along
with the assignment of constants as discussed in the beginning
of the section.

I. The high frequencies of F'. For the R, component of F}, we
simply use Lemma 6.10. For the high frequencies F ,[12] of FI? we instead
rely on Lemmas 7.1, 7.3. Only in a few cases we need to backtrack
further and use the structure of F,?]’l and F}gz},z.

I.a. The contribution of F}, to G;. We use the bilinear Littlewood-
Paley expansion

P\(FyRo) = FupRona + FuaxBaa + > PA(FLR,0). (7.26)

n>A
For Fj, we use the expansion
Fu= Ryt P4 B2

where the last two terms are as in Lemma 7.3. We successively consider

the three terms in (7.26).
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For the first term in (7.26) it is easy to bound the output of the F' A[Q]’Q
component. Indeed, using the local energy norm for R and Lemma 6.11,
we have

which can be in turn easily combined with (7.9).
The output of the Ry+ F /{2}’1 component is more difficult to estimate.

We recall that F' )[\2}’1 arises from unbalanced frequency interactions, so
we expand it as

FP = Pllm(RA(Y ox +2)) + Im(R, V).

Multiplying this by R, we obtain a trilinear form, for which we need
to balance the three input frequencies. There are two terms to consider,
and we only consider the worst one,

P(YAR<\)Rox o

This is estimated using Holder’s inequality and Bernstein’s inequality
as follows:

||P(YAR<)\)R</\,a | L2H; ! S A I Y/\R<>\R</\,a ||L?L2

t “loc
SAT Yol peo 2| Reall p2 poo [ Renall e oo
_ 1 1
SA 1HY/\||L§°L2 A2 HR<>\||L§L2 A2 ”R<)\,aHLt°°L2

S I 1B, 3 [[Rall e re

L H? L?H, 2
< exMe.

Here the three factors on the right are estimated using the uniform
control norm, local energy, respectively the uniform control norm.
For the second term in (7.26) it is easy to bound the output of the
R and the FI?'' component, using the uniform control norm for R.
We are left with the F1?»? component, which arises from balanced in-
teractions of R and Y. Thus we obtain again a trilinear form. Precisely,

we need to bound in L;’OL?OC

Z Pu1<R#Yu)R>\,a = Z(Ruyu)R/\,a + Z P<>\(RHY#)R)\,OW

B1S A <A u>A

the expression

Here for the first sum where 1 < A we use Holder’s inequality followed
by Bernstein’s inequality and arrive at the bound

IR ) Bral gy S IR, 3 1Y orl Raalliere S pexeM,

L%Hloc%
(7.27)
which suffices after 1 summation. Here we used the local energy for R

and the uniform control norm for the remaining factors.
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On the other hand for the second sum which corresponds to the
range (it > A we estimate

L A e L P g P TN ST T

T (7.28)
which again suffices. This corresponds to using local energy for R, and
the uniform control norm for the remaining factors.

Finally, the third term in (7.26) is negligible since we are multiplying
two holomorphic functions, so the output at low frequency is exponen-
tially small.

I.b. The contribution of F} to G5. This is given by F,EQ] W,. We
use again the Littlewood-Paley trichotomy;,

PA(FEW,) = FAWara + B2 Waa + > PAFELW,a).  (7.29)

B>

The first term is easy for the F}?m component, where we use the local
energy norm for Im WW.

For the F; ,EQ]’I component we again expand F; ,52}’1 as a bilinear form in
R and Y which contains only high-low interactions, obtaining a trilinear
form. As before we have two contributions, of which we describe the

worst, namely

Z P(RAY\)Wena-
A>1
This is estimated by
HP((R<AYA)W<A,aHL2H 35 HRHL2H Wl [Wallpere S exeM.

(7.30)
Consider now the second term in (7.29). The bound is easy for the

F, [2].1 component. For the F,[Lz]’2 component we need to consider the

sum
Z a A= Z(R/x?u)Wa,)\ + Z P<)\(RHYM)W0¢,)\
r1<p,A H<A A<p
Again we estimate the two terms differently. For the first sum where
1 < A we compute by Holder and Bernstein’s inequalities at fixed time
< AR

~Y

1 L2H, p
-2
L?‘Hloc

Z R/LYMW&,)\ < )\’%/ﬁc)\eM,

1<pu<

Y g [Waell
L*H

1
2
h

using the local energy bound for R and the uniform control norm for
the other two factors. Similarly, for the second sum, where yu 2> X, we
have the fixed time bound

HP<)\<RMY ) aA” -3 N

loc

SuTleeM,

loc
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which again suffices.
Finally, the third term in (7.29) is negligible as the two factors are
holomorphic.

I.c. The contribution of F}, to GG3. Here we will estimate directly
the product Fj Im W, as F}, W, is easily seen to satisfy the same bounds
as Fj,. We use again the Littlewood-Paley trichotomy,

PA(FyW) = FyaImWey + Fr oxWy + Y PA(Fp, W), (7.31)

>

_1
The contribution of R to the first term is easy to bound in L?H, 2,
and so can be included in G3*. Consider now the expression

SRR Im W,

A>1

Here it is easy to estimate the contribution of F,[l2]’2, using the local
energy bound for Im W. Hence we consider the contribution of F }?Ll,
which contains the high-low interactions of R and Y in FI? . We expand
this as a trilinear form, obtaining two terms depending on whether R

or Y is at high frequency. The better term is
R\Y Wy,

where the second factor is harmless so this is no different than the
corresponding contribution of R.
The worst term is
Y)\R<)\ Im W<)\.

To bound it we consider several cases depending on the frequencies of
R and Im W:

(i) Both frequencies > 1. Then we have the fixed time estimate

YRy B Wiyl S A

loc

loc

L}
< eneM,

where we balance norms depending on which of the frequencies of R
and W is larger. This contribution is included in G5

(ii) One frequency > 1, and one < 1. Here the same argument
as above applies, where we bound the low frequency factor in L?L5°..
Again here we use Gy

(iii) Both frequencies < 1. This is the more difficult term, where
we need the parameter p and the G%? component. This is where we
differentiate depending on the frequency of R. If the frequency of R

is less than p then we use the local energy bound for R, and add that
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contribution to G 2 If the frequency of R is larger than 1 then we use
the energy bound for R, and add that contribution to G%§ 1,

The low-high case, i.e. the second term in (7.31), is similar to the
like one for G, and goes into G5

Unlike in the case of G; or G, here the high-high to low case is also
nontrivial. We consider it next. For the two components of F}[LQ] we
estimate for 1 < A < p

IPA(E2 T W) | < Mpie,

1 1 2],1
o SN ETHIES Ly W

3
2
t""loc t""loc t Hh

respectively

<Az | EP

2],2
| PAEL W),

t"“loc

11
pem [[TmW|p2re S A2p"2e,M,

both of which suffice after u summation. Both of these components go
into G'y".

The same estimates also apply for A = 1 when P is replaced by P<;.
This addresses the low frequency bounds < 1 in Gy .

I1. The low frequencies of F'. Here we consider the low frequencies
E = F[h—l,l}-

Our main tool will be the decomposition for Flm provided by Lemma 7.5.
One consequence of Lemma 7.5 is the bound

[ Fill z2ree. S M, (7.32)

which will be used to handle with the contribution of F; to the high
frequencies of G, G5 and Gjs.

II.a. The contribution of F; to ;. The contribution of R is
easy to estimate using Lemma 6.10. The high frequencies > 1 are in
turn directly estimated using (7.32).

Here it remains to bound the expression

2
> B

A1,A2<1

in L2152 (Ay). Restricting to Ay limits the frequencies A1, g to [1/h, A]
with only exponentially decaying tails at higher frequencies. We con-
sider two cases:
If Ay < Ay then we can use (7.11) and (7.12), and combine this with
the uniform control bound for R and Bernstein’s inequality,
1EB, Rouallzzizs o S IEB ez el Rrsallzzre S MAder M
AL ALy (Ax) ~ LA INLELYS (Ax) A2, a[I L7 LG ~5 AL A2 At

loc loc

which suffices after A;, Ao summation.
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If Ay > A2 we can still estimate the contribution of Flm’2 using (7.13)
combined with the pointwise bound for R), , derived from local energy
in Lemma 6.10,

2 2 _1 3
IES Ry alliz e (an) SIEE e re | Rovallziee 4y S A 2A3en M.

t ~loc t “loc

This leaves us only with the contribution of Flm’l7 which we expand
to a trilinear expression, arriving at an expression of the form

Z R)\g Y)\l R)\Q,a + R)\ly)\g R)\2,a'

A2,A3<A1 <A

Here we apply the local energy bound for the factor with the lowest
frequency Anin, and use the uniform control norm for the two highest
frequencies. Estimating as above this yields a bound

1 1
HRMYMR)Q,OA + RMYASRM@”L%L;’&(AA) SA; )‘12 C/\1M7

~ “‘min
where we have off-diagonal decay for the summation.

II.b. The contribution of F; to (G;. The contribution of R is
easy to estimate using Lemma 6.10. The high frequencies > 1 are in
turn directly estimated using (7.32).

It remains to estimate the low frequency contribution of Flm, for
which we consider the decomposition in Lemma 7.5. This time the

contribution of FFL1 is easy to bound, using the pointwise estimate for
Wa,
IEP Wyl S AT M
LV <xallLzne(ay) ~ A2CIM.

This leaves us with the contribution of Fl[2]’2, i.e., with terms of the

form
Z Fl[i]fWAz,Oé'
AL A2 <A
Here we consider two cases.

a) If A < Ay then we use (7.12) for the first factor combined with the
pointwise bound derived from the control norm for the second, which
yields

1
H‘Fl[,%\]fWM,OZHLngo(AA) S Afeen, M,
with off-diagonal decay which insures the summation with respect to
AL, Ao < A

b) If A\; > Ay then we use (7.13) for the first factor combined with
local energy for the second, which yields

2,2 -1
IE* Wagall 2rse () S A1 2 Aeeer, M.

This again suffices.
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II.c. The contribution of F; to G3. For all terms except a single
one, it suffices to use only G&"'. We consider first the contribution of
R, which is

Hp(ImW - Re Ry).
Here we use the Littlewood-Paley trichotomy, combining a local en-
ergy bound for the low frequency factor with the uniform control norm
bound for the high frequency factor. The estimates follow from Holder’s
and Bernstein’s inequalities. We briefly describe the estimates:

a) In the high-low case A > p we have

1.
T Wi Re Ryl r2ree (5,) S 1T Willzgere (s 1 Re Ryl rz e (5, S w2 A exM.

loc

b) In the low-high case we have

_1
[ Im WeonRe Ryl 2o (8,) S IWearllzzzge syl Re Ballzzerze(sy) S A 2eaM.

loc

¢) In the high-high case we have
[PA(Im W), Re R,,) ||L§Ll°§C(B,\) S A Im W, Re RuHLfL}OC(Bn
S AT Wl [ Re Ryl 222 (5,
< /\%M_ICHM.

Next we consider the contribution of Fl[z] using the Littlewood-Paley
trichotomy:

a) The expression W ,\Fl[i] This is the most delicate case. We can
easily dispense with Fl[f\]’Q via (7.13) combined with the local energy
bound for W in Lemma 6.6. It remains to consider the contribution of
Fl[f\]’l, which, we recall, is produced from unbalanced interactions of R
and Y. Then we are left with trilinear expressions of two types.

a.1) The trilinear form
W R\ .

Here we use local energy for W and the uniform control norm for the
remaining two factors; this is identical to case (b) before since Y is
bounded.

a.2) The trilinear form
WARGY 5,

where using one local energy bound does not seem to suffice. It is only
here that the decomposition G4 + G4 is needed. We consider three
cases depending on how the two low frequencies \;, Ay compare with

1L
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a.2.1) A1, A2 < p. Then we group terms as
R<MW</LY/>\a

and use the pointwise bound derived from local energy for the first two
factors to obtain

||R<MW<,LLY>\ ||Lt1L;’§C(B>\) < ptMey.

This term is placed in G4,
a.2.ii) Ay > p. Then also A > u. We group terms as

R>\1 W<>\Y)\-
Then we use the local energy bound for W and the control norm for R
to get a bound of
_ _1
”RA1W<AYAHL3L°° (By) S AL Ceen, M,

loc
where we use the summation for both A\; and A. This term is placed in

w1
aht

a.2.iii) A\; < g < Ag. Now we switch roles and use local energy for R
and the control norm for W. The estimate is similar to the previous
case but better. This term is also placed in G4

b) The expression W,\Fl[zi y- This is easier, using the control norm
for Wy and local energy (7.11) (7.12) for FI2.

c¢) The expression PA(WVE{?,]) is similar to the above, using either
local energy or the control norm for W corresponding to the two com-
ponents of FII. This term is also placed in Gy

III. The very low frequencies of F. Here we consider the very
low frequencies
Fvl = Re(F — R)<%
We freely omit the imaginary part of F', as well as R, which fit within
the purview of the analysis in the low frequency case.
The size of F,; depends on the choice of the constants, but its deriv-
ative does not, so we estimate that first:

Lemma 7.8. The function V F,; satisfies the bound
_3
IVFullzrpe a,,) S h™ 2 Me. (7.33)

This is an immediate consequence of Lemma 7.5 and the proof is
omitted. This estimate allows us to estimate the contribution of F,; —
F,i(ap) to Proposition 7.6. By direct integration, this function satisfies

[Fu(z) = Fa(ao)l S g(t)z = aol,  llgllz Sh™2Me.  (7.34)

We now consider its effect on Propositions 7.6, 7.7.
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IIl.a. The contribution of F,; to G;. This is easily estimated
combining the pointwise estimate (7.34) with the pointwise bound for
R,, derived from the control norm.

II1.b. The contribution of F,; to GG5. This is also straightforward
using the pointwise estimate (7.34) together with the pointwise bound
for W, derived from the control norm.

III.c. The contribution of F,; to (G3. Here we need to consider
the expression

G3,vl = (FUZ(Oé) — Fvl(ao)) Im W(l + Wa).

To estimate G5 at frequency A we use Bernstein’s inequality to bound
Im W and W, in L* in terms of the control norm. To do this we take
into account the fact that the lowest frequency must be at least A1,
the highest frequency must be at least A, as well as the fact that from
(7.34) we get a factor of A" A2 in the region B (zo). The worst case
scenario is when v < X\ and we estimate in A, ()

[PA[(Fu(er) = Fu(ao) Im W, Wi a)]| S FONh2p" S f(OA2,

with trivial £ summation. Thus this contribution is directly placed in
Gi.

Here p is limited below by 1/h because we use the inhomogeneous
norms in X.

IV. The constant in F'. We denote the constant by ¢(t) which we
will simply estimate via (7.2), which we recall here:

|c(®)] S [R(w)]-
To evaluate the contribution of ¢ we will use the following

Lemma 7.9. For each A > h™! we have a decomposition

c= c}\ + c?\,
where
lehllzz S A2 M, (7.35)
respectively
Xl S PRETN (7.36)

with additional £ summability at low frequency in the last bound.

Proof. This corresponds to the decomposition
R = Rc) + R>»,

where for the first term we use the local energy bounds and for the

second the X bound. O
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We now evaluate the effect of ¢ in Propositions 7.6, 7.7.

IV.ab. The contribution of F,; to GG;,G5. For G; and G5 we
use the above decomposition to estimate F'R), respectively F'W) ,. For
the ¢} term we use the control norm for its co-factor, and for the ¢}
term we use local energy for its co-factor.

IV.c. The contribution of F,, to Gi,G5. The same idea as
above applies the cIm W component of 3. Finally, for the term

clmW - W,

we apply a similar argument, but splitting ¢ depending on the lowest
of the two frequencies.

APPENDIX A. NONLINEAR COMPUTATIONS

In this appendix, we prove another Morawetz’s inequality which
holds under a very mild smallness assumption on the free surface ele-
vation 7 (and without restriction on ). The proof is entirely different.
It exploits the positivity of the pressure to deduce through a virial
type argument a control of the kinetic energy. As a result, we obtain
a bound of the local energy, which is a quadratic quantity, in terms of
the momentum density [;, which contains a linear term. However, by
so doing, we loose the uniformity in the depth h as well as the control
of the low-frequency component of the velocity potential.

Theorem A.1. Let g € (0,+00). Let s > 5/2 and T be an arbitrary
positive real number. Consider any solution (n,) € C°([0,T]; H*(R) x
H*(R)) of the water-wave system (1.4). Given e >0 and r > 1/2, set

m<x>:/ox(1+i—‘;02y,

Assume that

h

' inf tx) > ——

(4) (t,@éfS,T]xR"( T) 2~

.. 1

(“) sup |77z(ta$)| S 57
(t,2)€[0,T]xR

1
<1
i) er(h+ il ) < 55
Then there holds

/ {/m‘r 2(t,x d:c+/ M (1) | Veyo(t, 2, 9)|? dyd:c}dt
Q(t)

<14/m ]1(tx)da: +2/m Ig(tm)c(lzl)

I

‘ T
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where

n(t,z)
nm@:/’ bult,y) dy,  Ln(t,) = n(t, 2)alt, @),

~h
T
and where we used the notation [ f(t,x)dx ‘ = [ f(T,z)dx— [ f(0,z)dx.
0

Proof. The proof is in two different steps. We first estimate the local
kinetic energy by using the momentum density /; and the positivity of
the pressure. Then we estimate the local potential energy by using the
momentum density of Is.

Step 1: kinetic energy. We begin by proving that

T
/ // mz(2) ]V%ygé(t,x,y)ﬁ dydrdt < 7/ m(z) 11 (t, z) d:c‘
0 Q(t) .

(A.2)
To do so we use the local conservation law 0,17 + 0,57 = 0 where recall
that

T
0

n(t.) o
Site)i=— [ @orandy+y [ @2y

By multiplying the equation 9,1y + 9,51 = 0 by m = m(z) and inte-
grating by parts, one obtains that

T
// Si(t, z)m, dxdt = /mh dx ‘ ,
Qr 0

where Qr = [0,7] x R. We will prove a stronger result than (A.2).
Namely, we will prove that

1 T
/ Sy(t, x)m, dedt > / / My |Vayod| dydadt
Qr 4Jo JJaw

T
+ / / m, P dydxdt (A.3)
0 Q)

h T
+ 5/ /mmd)i(x, —h) dxdt.
0

This will imply (A.2) since the third term in the right-hand side of
(A.3) is obviously positive and since the second one also since P > 0
(this classical result follows from the maximum principle, the fact that
P is sub-harmonic and the boundary condition on the bottom; see
Lannes [28]).

To obtain (A.3), we start from

1
D + 3 Vaeyo + P+ gy =0,
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which allows us to write S; under the form

1 77(1‘/:93) 9 1 W(tvff) 9 9
Sita) =5 [ (Vo +P)dusg [ @ =a)ay

Then, to obtain (A.3), the key point is to prove that

// (¢? — ¢°) dydz

can be written as the sum of a positive term and a remainder term.
This will be deduced from the following identity.

Notation A.2. From now on we use the shorthand notations

/ fdxdt:/QT F(t, ) dzdt, // fdydxdt:/oT/Q(t)f(t,x,y) dydzdt.

Lemma A.3. For any function w = w(x) we have

[ wtei =6 dyiz = [wins mie,-n)da
=2 [ [ wnbsoy dyds 42 [ [ .ty = mosoy dyde. (a0)

Proof. This identity is proved in [2] when w = 1. The time variable is
seen as a parameter and we skip it. Set

u(z,y) = —w(x)(y — n(x))d,(z,y)*.

Then u(xz,n(z)) = 0 and u(z,—h) = 0 so fﬁ,(f) dyudy = 0. On the
other hand
ayu = _Qw(y - 77)¢y¢yy - w¢§7

so integrating on y € [—h,n(z)] and then on x we obtain, remembering
that ¢,y = —@us,

0—//uy——//w¢§+2//w(y—n)¢y¢m.

Since ¢, = 0 on y = —h, by integrating by parts we infer that

~ [ wi- [ wt-no,ze2 [ [ wno.o,-2 [[wt-nons,

Thus
et [t
+//w¢§+2//wm¢x¢y —2//wz(y—n)¢x¢y~

/ / wly = m)o?) dydo = [ wlh+n)od(e,~h) s

R
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this proves the desired result. Il

Set

1 1
S i [[[ Vool dwdzas 5 [[ [ (o = 62) dydar

It follows from the previous lemma that ¥ = ¥; + ¥, with

m,
¥ = /// (7 — MMy + My (y — n)) V.yo|” dydudt,

Yo = / my(h +n)¢2(z, —h) drdt.

Now we assume that 7 > —h/2. Then

h
Yo > 5/ My @2 (x, —h) dzdt.

Now recall that by definition,

"= [

with r > 1/2 and where € has to be chosen. Then

2e%x ex

mm(x) = —TW = 5C(€,x)mm(x) with C(E,I’) = —2’/"m

Since |C'(e, x)| < r, we obtain that |m,,(z)| < erm,(z). As a result,

mae(y —m)| < er(h+ |l oo )

Since, on the other hand, one has |7, | < % by assumption, we conclude
that

My 1
= mans 4 ma(y =) = (5 = e+ Il ) )

Then, assuming that

h oo) <.
er(h+ =) < 75

we conclude that

1
Sz [ malVal dydzar

which completes the proof of (A.3) and hence the proof of (A.2).
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Step 2: estimate of the potential energy. In light of (A.2), to
prove Theorem A.1, it is sufficient to prove the following estimate about
the potential energy:

/ /gmx 2(t,z) dr dt < // My (2) |Vayd(t, z,y)| dydedt
ot

)
T
+2 [ m(x)lo(t,z)dx |
0

(A.5)
where recall that Ir(t,z) = n(t, x).(t, x).
We now work with the density momentum I, and the associated flux
force S5. Recall that

S::—W¢r——n + 5 l/‘Gﬁ-—¢)d%

Again, it follows from the local conservation law 0,15 + 0,5, = 0 that,
for any weight m = m(z) and any time 7', one has

// So(t, z)m, dxdt = /m Ingdx—/m )15(0,x)d
T

@@
where Qr = [0,7] x R.
Let us introduce a notation. Set

N( )w_ _wQ _( ( )1¢++nm¢x)

)

so that the Bernouilli equation reads

b+ gn+ N(n)y = 0.

We begin by reporting the expression for d;1 given by (1.4) to obtain
g 1) 2 2
So= BN+ g [ (62 - )y
2 2 ).,
Let us recall a lemma from [2] which allows to handle the integral
involving N ().

Lemma A.4. For any function pu = p(z) there holds

[uv@ude == [[ noso,dyts+ 5 [ uetlyde.

Proof. One can check that
Nmv=N| _,
with

1 1
N = _(bi - igbz + 7795%%

2
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The proof then relies on the following identity
ay (QZ)?] - gbi) + Zax (¢x¢y) = 2¢yAx,y¢7
which implies that, since ¢ is harmonic and d,pu = 0,

Oy (12 — %) + 20, (Hdaty) = 2taduty.
We deduce that the vector field X : @ — R? defined by X = (—pud,¢y; 52—

L2) satisfies divy,y, (X) = — 20, Since V¢ belongs to C*(Q) and
since one has the boundary conditions

¢y|y=—h =0,

an application of the divergence theorem gives that

_ // oz Py dydz = // div,, X dydx
Q Q

1
= X~nd0://LN‘y:ndx—§/H¢3;’y:hdx.
o0

This completes the proof. O

By combining this result with Lemma A .3, we conclude that

// Mg Sy dxdt = // %man dxdt
h 2
+ ma | 5 + 1) ¢5ly=—n dzdt

" /// (Mazy — 20y — 2men,) Gy dydadt.
(A.8)

Now, by assumptions, one has

h 1
54'77207 (Mge| < er|myg|, sup]nmlgg

Consequently,

2
iy = 2 = 2] < (er(h o) + 225 e+ 5 ) o

2
< (3ot Il 43 ) o

So, (A.8) implies that

1
/ / gman dwdt < / / m, Sy dadt + / / M |Vayd|? dydudt.

The desired result (A.5) then follows from (A.2) and (A.6).

This completes the proof of Theorem A.1. U
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