
PLATEAU
13th Annual Workshop at the
Intersection of PL and HCI

Organizers:
Sarah Chasins, Elena
Glassman, and Joshua
Sunshine

This work is licensed under a
Creative Commons Attribution
4.0 International License.

Towards Reactive Synthesis as a Programming
Paradigm
Leyi Cui ∗ � †1, Raven Rothkopf ∗ � ‡1 and Mark Santolucito � §1

1Barnard College, Columbia University, New York, USA

Abstract
Reactive program synthesis from logical speci昀椀cations has yet to match the user-friendly approach of example-
based programming for spreadsheets, despite its success in speci昀椀c domains. A main challenge hindering the
broader adoption of reactive synthesis is in the complexity of speci昀椀cation engineering in temporal logics. We
map out challenges and tools that arise as users write temporal logic speci昀椀cations in Temporal Stream Logic.
Our goal is to provide a roadmap for future usability work that can elevate temporal speci昀椀cation engineering
for synthesis to match the usability support available for software engineering. By generalizing these concepts,
we can gain a deeper insight into the challenges people face when reasoning about the temporal behavior of
their systems.

1 Introduction
FlashFill [1] is a notable success in program synthesis, allowing users to generate Excel data manipulation
programs from simple examples. For example, given a column of names ex.AngelCui , FlashFill
can generate a program to extract the initials ex.AC from each entry. This approach, known as
programming-by-example, is just one approach within program synthesis. For cases where examples
are impractical, formal logic-based synthesis o昀昀ers a viable alternative. This is particularly true for
reactive systems operating on in昀椀nite input and output streams, where examples can be limiting.
These systems are typically instead de昀椀ned using temporal logic, with reactive synthesis creating a
controller that ensures correct interaction between the system and environment, responding aptly to
all input scenarios. A simple example of this is the synthesis of a reactive 3D animation. The small
speci昀椀cation in Table 1 synthesizes a concrete implementation of a controller for a reactive, animated
cube. The cube reacts to the left and right arrow key presses, spinning about the y-axis depending on
the key pressed. Detailed walkthroughs of this example speci昀椀cation can be found in Sec. 2.4. The
synthesis of the AMBA bus protocol from Linear Temporal Logic exempli昀椀es the success of formal
logic-based synthesis [2]. Recent advancements extend reactive synthesis to educational programs [3],
FPGA game development [4], musical interfaces [5], and interactive animation creation [6].

Despite temporal logic speci昀椀cations’ wide array of application domains and substantial research
progress, they remain unfamiliar and challenging to software developers to write. Recent work has
explored these challenges [3], [7], yet solutions remain unclear. Unlike software engineering, which has
a wealth of debugging techniques, speci昀椀cation engineering for temporal logics lacks similar resources.
This work aims to de昀椀ne reactive synthesis challenges in Temporal Stream Logic speci昀椀cation writing,
suggests tools that would aid with the development and debugging of Temporal Stream Logic, and
highlights areas needing further research.

We focus on Temporal Stream Logic (TSL) [8]–a high-level, temporal logic speci昀椀cation language
used in reactive synthesis. It extends Linear Temporal Logic (LTL) [9] with updates and predicates
over arbitrary function terms. The synthesis of a TSL speci昀椀cation yields concrete program code
corresponding to the reactive system by capturing both reactive properties and data manipulations.
TSL has shown promising initial results that could introduce reactive synthesis as a path towards more
expressive low/no-code platforms, which currently su昀昀er from limitations in language expressivity [10].
The use of TSL has extended reactive synthesis to new application domains including music [5], video
games [11], mobile apps [8], animation [6], and autonomous vehicle controllers [8]. Whether with TSL,
LTL, or any other reactive logic [12], [13], there is a critical need for a structured framework for the
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development of temporal logic speci昀椀cation engineering support tools.
In this work, we present the following key contributions:

1. Based on anecdotal 昀椀rst-hand experience, we outline common challenges users have about reactive
synthesis when writing speci昀椀cations in Temporal Stream Logic (TSL).

2. We outline a list of tools that assist in the development and debugging of reactive synthesis.
3. We propose a mapping between the challenges and tools to de昀椀ne the space for future work in the

usability of reactive synthesis.
4. To provide motivation, we explore the real-world repercussions of TSL challenges using a benchmark

speci昀椀cation from a recently published paper. We then highlight the tools that would have prevented
those challenges.

2 Preliminaries
To make this work self-contained, we formally de昀椀ne some technical terms that are referenced later
in our descriptions of the challenges and tools. Note that understanding the formal de昀椀nitions of
Temporal Stream Logic is not critical to understanding the main contributions of this work. However,
it provides extra context for the origin of the challenges and the technical challenges of the tools. For
a full exposition of TSL’s formal background, we refer the reader to prior work [8].

2.1 TSL
Temporal Stream Logic (TSL) [8] is a high-level, logical speci昀椀cation language that describes the
behavior of a reactive system over discrete time. TSL extends Linear Temporal Logic (LTL) [9] with
updates and predicates over arbitrary function terms. With TSL, one can specify a reactive system
that reacts to an in昀椀nite stream of inputs to produce an in昀椀nite stream of outputs. TSL speci昀椀cation
can synthesize implementable reactive programs written in JavaScript or Python.

TSL uses the usual LTL operators: next and until U . Additionally, the syntax of TSL contains
predicate terms τP , function terms τF , and update terms τU , as de昀椀ned in the following grammar:

ϕ := τ ∈ TP ∪ TU | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ

τF := s | f(τ0F , τ1F , . . . , τn−1F
)

τP := p(τ0F , τ1F , . . . , τn−1F
)

τU := [s� τF ]

TSL also uses the standard derived operators, such as always ϕ ≡ ⊥Rϕ, eventually ϕ ≡ true U ϕ,
weak until ϕW ψ ≡ (ϕU ψ) ∨ ( ϕ), and release ϕRψ ≡ ¬(¬ϕU ¬ψ).

TSL speci昀椀es the behavior of a reactive system by utilizing signals, indicated as s, which contain
data values of arbitrary type. Through a TSL speci昀椀cation, it is possible to describe how functions
are applied to these signals over time. Signals can either be pure outputs or cells that memorize
data values so that the outputs of a speci昀椀c time t are provided as inputs for time t + 1. These
characteristics establish the semantics of TSL, which follow the conventional LTL semantics while
integrating predicate evaluations, function evaluations, and update terms. A formal de昀椀nition of TSL
semantics is given in [8].

TSL synthesis can be modelled as a two-player game between the system (choosing moves in the
form of outputs O) and the environment (choosing moves in the form of inputs I). A winning strategy
of the system in this game will be a 昀椀nite automaton that can produce output values that satisfy ϕ in
reaction to all possible inputs from the environment. Likewise, a winning strategy of the environment
is a 昀椀nite automaton which provides a sequence of inputs that no system can satisfy.

With TSL, the user may provide constraints on the system and the environment players. Constraints
on the environment restrict the possible inputs given to the system and are called assumptions.
Assumptions are speci昀椀ed in TSL’s assume block. Guarantees are speci昀椀ed in TSL’s guarantee block,
which are speci昀椀ed by the constraints on the system. These two blocks are desugared into a single
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TSL formula of the form assume ⇒ guarantee. Notice that if an assumption is violated, the formula
becomes ⊥ ⇒ guarantee, and so the guarantees are trivially satis昀椀ed. Thus, the environment cannot
violate an assumption and still win the game.

2.2 TSL Synthesis
The realizability problem of TSL is stated as: given a TSL formula ϕ, is there a strategy σ ∈ I+ → O
mapping a 昀椀nite input steam (since the beginning of time) to an output (at each particular timestep),
such that for any input stream ι ∈ Iω, and every possible function interpretation (some concrete
implementation) 〈·〉 : F→ F , the execution of that strategy over the input σ o ι satis昀椀es ϕ, i.e.,

∃σ ∈ I+ → O. ∀ι ∈ Iω. ∀〈·〉 : F→ F . σ o ι, ι �〈·〉 ϕ

If such a strategy σ exists, we say that σ realizes ϕ.
The synthesis problem of TSL asks for a concrete implementation of σ. In TSL synthesis, this

model σ can be turned into a Control Flow Model (CFM), an abstract representation of the system
that covers all possible behaviors, which can then be represented as program code. A formal de昀椀nition
of the TSL realizability and synthesis is available in a previous work [8].

Note here that our synthesis procedures asks for one such strategy σ - depending on the speci昀椀cation,
there may be many such strategies that will satisfy ϕ. It is the task of the synthesis engine to choose
one among these solutions (typically, the minimal solution is chosen, especially when using bounded
synthesis [14]).

2.3 TSL Counter Strategies
A counter strategy for reactive synthesis is a strategy that the environment can use to falsify the system
no matter the moves the system makes. This strategy can only be generated from an unrealizable
TSL formula. For the reactive synthesis problem, a counter strategy can be formally de昀椀ned as the
strategy σC that satis昀椀es the TSL formula ¬ϕ, where IC = O and OC = I are the inputs and outputs
for σC , generated by the system and the environment.

2.4 TSL Example
We demonstrate the advantages of TSL as a speci昀椀cation language for real-world development using
the example application of 3D animation. The small speci昀椀cation depicted in Table 1 synthesizes
a concrete implementation of a controller for a reactive, animated cube. In this speci昀椀cation, the
cube reacts to the left and right arrow key presses, spinning about the y-axis depending on the
key pressed. The arrow key values, pressLeft(e) and pressRight(e), are delivered as Boolean
input streams to the system: true while the arrow key is pressed and false otherwise. The cube’s
rotation, cube.rotation, is emitted from the system as an integer output stream. Finally, we have
one additional signal, an internal signal, or cell, x. x is an integer output value that appears as an
input in the next time step.

We have several requirements for our system to control the cube movements depending on the
left and right arrow keys. First, the system can never receive two input signals at the same time.
The mutual exclusion of inputs from the environment, !(pressLeft(e) && pressRight(e)), is
speci昀椀ed in the assume block. Second, once an arrow key is pressed we want the cube to continuously
spin in the direction speci昀椀ed by the input until the complementary key is pressed. To satisfy this
behavior, we use the weak until operator, ϕW ψ, which states that either ϕ is true until ψ is true,
or ϕ is true forever. The line of the plaintext TSL formula, pressLeft(e) -> ([x <- x + 1] W
pressRight(e)), speci昀椀es that when the system receives the input pressLeft(e), the cell x will be
continuously incremented until the system receives the input pressRight(e). In the same time step,
cube.rotation is updated with the value of x that depends on the input, consequently spinning the
cube to either the left or the right. By the semantics of TSL, it is already ensured that assignments to
the same cell are mutually exclusive, i.e., x can never be incremented and decremented at the same
time, further enforced by the mutual exclusion of the system inputs.
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TSL JavaScript

always assume {
!(pressR(e) && pressL(e));

}
always guarantee {

pressR(e) −> ([x <− x + 1] W pressL(e));
pressL(e) −> ([x <− x − 1] W pressR(e));
[cube.rotation <− x];

}

if (pressL(e) && pressR(e)) {
currentState = 0

} else if (!pressL(e)) {
x = x + 1
cube.rotation = x
currentState = 0

} else if (pressL(e) && !pressR(e)) {
x = x − 1
cube.rotation = x
currentState = 1

}
} else if (currentState === 1) {

if (pressL(e) && pressR(e)) {
currentState = 0

} else if (!pressL(e) && pressR(e)) {
x = x + 1
cube.rotation = x
currentState = 0

}
}

Table 1. The following example shows a TSL spec and a section of its synthesized JavaScript code.

When the speci昀椀cation is synthesized using our TSL synthesis tool [15], the result is an automatically
generated CFM that satis昀椀es the speci昀椀ed control behavior or the reactive rotation of the 3D cube.
This CFM is then used to generate the system’s implementation in program code shown in the second
column of Table 1.

3 TSL Challenges
We summarize key challenges and challenges faced by developers in writing TSL. We derived these
categories from our personal experience of writing TSL speci昀椀cations. Identifying what makes TSL
hard to write further de昀椀nes the problem space for future work on improving the learnability and
usability of TSL.

3.1 Non-well Separation
The basic form of a reactive speci昀椀cation is separated into two kinds of speci昀椀cation: assumptions
in the assume block and guarantees in the guarantee block. Conceptually, assumptions impose
restrictions on the inputs to the system from its environment and guarantees provide speci昀椀cations for
how the system should react to those inputs and behave in the environment.

Reactive synthesis studies [3] have shown that the task of knowing what to specify in each block is
error-prone. Users often struggle with di昀昀erentiating between variables managed by the environment
and variables managed by the system. Knowing which properties to specify in the assume block is
particularly challenging. These conceptual hurdles often lead to non-well-separation [16]. A non-well-
separated speci昀椀cation is one in which the system can avoid satisfying its guarantees by preventing the
environment from being able to satisfy its assumptions. Although a non-well-separated speci昀椀cation is
realizable in the sense that there exists a system that satis昀椀es the speci昀椀cation, the system does not
behave as the user intended.

A common mistake in TSL that leads to a non-well-separated speci昀椀cation is putting system
updates on the right side of an implication in the assume block. Such a speci昀椀cation would allow
the system to choose a set of updates that violates the assumptions of the speci昀椀cation, and since
these blocks are desugared into the form assume ⇒ guarantee, the predicate evaluates to false,
meaning that any consequent will yield true for the entire formula (false implies anything). Take the
speci昀椀cation ¬[x � y ]⇒ (z ∧ ¬z) as a concrete example. The guarantee is impossible to satisfy
on its own, but if the system choose to always update [x � y ], the speci昀椀cation is ⊥ ⇒ (z ∧ ¬z),
which is trivially satis昀椀able.
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3.2 Temporal Operator Semantics
In order to use TSL to generate reactive systems, developers must 昀椀rst understand the logic they are
writing. This process of understanding can be challenging because writing temporal logic requires a
shift in mindset from the process of writing code [3]. If a user holds a challenge about the semantics
of temporal logic operators, it can quickly lead to unrealizable speci昀椀cations or realizable speci昀椀cations
that do not have the intended behavior. Furthermore, there are no precautions that address these
challenges. The synthesis tool will blindly apply properties and check or generate the requested behavior,
whether it is the desired one or not. Therefore, it is critical to help users accurately understand TSL.

We outline three concrete challenges about the semantics of TSL’s temporal operators, built upon
our own experiences and the results of recent work.

Negation refers to a challenge in the understanding of the ! operator. Observed from our previous
experience with TSL, a user confused ! F(x) with F(! x). The 昀椀rst speci昀椀cation guarantees that
x will never be true, while the second speci昀椀cation guarantees that x will not be true for at least
one time-step. The syntactic similarity makes it di昀케cult for new users to understand the signi昀椀cant
semantic di昀昀erence.

WeakU [7] refers to a challenge that confuses the U operator with its weak variant, W. U
guarantees that its second subterm will eventually hold, while W does not. As an example, take the
TSL speci昀椀cation from Table 1, but with one minor change. In this speci昀椀cation, shown in Figure 1,

always assume {
! ( pressR(e) && pressL(e) );

}
always guarantee {

pressR(e) −> ( [x <− x + 1] U pressL(e) );
pressL(e) −> ( [x <− x − 1] U pressR(e) );
[cube.rotation <− x];

}

Figure 1. Modi昀椀ed speci昀椀cation from Table 1, demonstrating a WeakU challenge.

we have replaced W with U on lines 5 and 6. This speci昀椀cation is now unrealizable–or has no solution
to the synthesis problem–because U guarantees that once the 昀椀rst subterm is true, the second subterm
must eventually be true. Our speci昀椀cation has no assumption on the environment’s inputs that ful昀椀ll
the guarantee of the U operator. We explore how to debug this class of challenge in Sec. 4.9.

Prior work [7] explores other semantic challenges such as BadStateQuanti昀椀cation. As with any
logic, complex combinations of operators can always lead to confusion, especially for novice users.

3.3 (Non) Reactive Systems
The power of TSL is best utilized when synthesizing reactive, multi-state systems. When looking only
at a TSL formula, it can be di昀케cult to determine if a system is indeed reactive. A non-reactive system
written in TSL is one without inputs from the environment - the system cannot “react” without a stream
of inputs from the environment. While the speci昀椀cation may be realizable, likely, the speci昀椀cation
does not capture the user’s intentions. Both TSL formulas written for other publications [17] (cf.
our Case Study in Sec. 6) and formulas written by members of our lab have unintentionally speci昀椀ed
non-reactive systems.

3.4 Precedence and Syntactic Challenges
Although the semantic complexity of temporal logic is the most signi昀椀cant hurdle to overcome in the
development process, TSL’s syntactic complexity can also be non-trivial, especially for novices. Users
have to deal with the new language paradigm of TSL with its unfamiliar operators and structural
form. Syntactic challenges and even simple typos can inhibit developers from focusing on the semantic
complexity of their speci昀椀cations.

Prior work has shown that one of the key syntactic challenges developers have when working with
reactive synthesis is precedence [7]. An operator precedence challenge is de昀椀ned as a speci昀椀cation that
is correct up until missing parentheses. We have found in our experience that other syntactic issues
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that arise in software engineering also arise in temporal logic speci昀椀cation engineering. As another
example, variable shadowing can easily turn input signals into cell signals, as illustrated in our Case
Study in Sec. 6.

3.5 Unrealizability
Initial attempts of users to write a temporal logic speci昀椀cation are often unrealizable, meaning no
system implements the speci昀椀cation. Debugging unrealizable speci昀椀cations is challenging because they
cannot be executed or simulated (similar to code that does not compile or has a runtime error). A
common reason for unrealizability is that assumptions about the environment are incomplete. While
unrealizability is not a challenge, many challenges lead to unrealizable speci昀椀cations. Unrealizability is
a well-studied phenomenon [18]–[20], and recent work has begun to investigate how unrealizability
impacts users in their speci昀椀cation development process [3]. Just as software engineers have tools to
debug code that does not fully compile or run (type errors, unit test, break points, etc.), so too is
there a need for techniques for 昀椀xing unrealizable speci昀椀cations.

3.6 Underspeci昀椀cation
Even in the case where the user has provided a realizable speci昀椀cation, and every part of that
speci昀椀cation correctly matches the users intentions, there is still room for error. In particular, the goal
of synthesis is that the user may leave some part of the problem unspeci昀椀ed and the synthesis engine
will complete that part of the solution automatically. The goal is that the user speci昀椀es all the parts
of the problem they care about and leaves other parts unspeci昀椀ed. However, if a user had in mind
some constraint on the system and did not include that constraint as part of the speci昀椀cation, one
of two things might happen. Either the synthesis engine will 昀椀nd a solution that matches the users
intentions (either by luck or some intention inference), or the synthesis engine will 昀椀nd a solution that
does not match the users missing part of the speci昀椀cation.

As users develop expertise in reactive synthesis, we have noticed they are often able to correctly
guess the behavior of the synthesis engine and strategically omit parts of the speci昀椀cation that can be
handled well by the tool. However, novice user do not have this expertise and need ways to inspect
the output of the tool to con昀椀rm that they did not miss some part of the speci昀椀cation.

4 TSL Tools
We outline a list of tools that aid in the reactive synthesis development and debugging process. We
then explain the motivation behind the mapping from challenges to the proposed tools.

4.1 Syntax Highlighting/Warnings
Similar to syntax highlighting in an IDE for software development, we can also use syntax highlighting
for TSL. This can be used to help users recognize particular syntactic constructions in TSL, as well as
to alert users to potential semantic issues. As a prototype of such a tool, we built a VSCode extension
for TSL. This extension does basic syntax highlighting, and is also capable of alerting users to potential
semantic errors. For example, issues with the construction of assumptions, as described in Sec. 3.1,
would appear as shown in the screenshot of our tool shown in Fig. 2.

Figure 2. The TSL speci昀椀cation from Table 1 demonstrates a non-well-separation challenge, and can be aided
by syntax highlighting and error checking.
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4.2 Block-based Editors
Block-based structure editors, such as Scratch [21], have become widely accepted as tools for learning
programming. These tools lighten the cognitive load experienced when programming by guarding
against syntactic mistakes. Anecdotally, we noticed that when writing TSL, novice users experience a
similar distracting cognitive load of worrying about syntax. When writing temporal logic, users must
recall the syntactic and grammatical structure of the new language paradigm of TSL. This reliance on
recall inhibits users from focusing on the semantics of their speci昀椀cations. Displaying all operators
and terms in a syntactically correct format enables users to recognize what they need to use in their
speci昀椀cations instead of remembering it, shifting the working mental model from recall to recognition.

Figure 3. The TSL speci昀椀cation from Table 1 built with the tslBlocks structure editor.

Recent work has proposed a block-based structure editor for TSL, tslBlocks [6]. In the speci昀椀cation
editor, users can drag and drop temporal logic operators, update terms and predicates into locations
that are restricted by the grammar of TSL. Fig. 3 demonstrates an example of a speci昀椀cation built in
the tslBlocks editor. In Fig. 3, temporal operators, update terms, input/output signals, domain-speci昀椀c
functions, and mathematical operators are all distinguished by color and shape. This tool is well suited
to tackle the syntactic challenges from Sec. 3.4, as well as any syntactic mistakes.

4.3 State Machine Visualization
We propose the ability to interactively test a synthesized solution while visualizing the generated Mealy
machine as another tool. This tool is well suited to tackle the Temporal Operator Semantics (3.2) and
Underspeci昀椀cation (3.6) challenges. This is particularly helpful to identify speci昀椀cations that result in
fewer states than expected. We built a prototype of a tool that automatically generates an interactive
state machine during the synthesis process, as shown in Fig. 4.

Figure 4. A visualization of the synthesized automaton from the speci昀椀cation in Table 1.

4.4 Reactive System Visualizer
Understanding the inputs, outputs, and cells of a reactive system is a critical part of building a TSL
speci昀椀cation. We built a reactive system visualizer to illustrate the behavior of reactive systems that
visualizes input, output, and cell values from the TSL speci昀椀cation. While the state machine tool
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described in Sec. 4.3 aims to provide an understanding of the 昀椀ne-grained behavior of a synthesized
system, the reactive system visualization speci昀椀cally aims to act as a sanity check for ensuring the
overall structure of the reactive system matches the user’s intention.

4.5 Minimal Assumption Cores
In reactive synthesis, assumptions are constraints put on the environment of the reactive system.
Assumptions restrict the possible inputs that the environment can provide to the system. These
assumptions are provided by the user, but certain assumptions may not be necessary to realize a
speci昀椀cation. Similar to a warning about unused library imports, identifying a minimal assumption core
can help prune extraneous assumptions. However, the use case is slightly more subtle–if an assumption
is not necessary for realizability there is no guarantee that it will have an impact on the synthesis
result. As such, extraneous assumptions may indicate as challenge the user has with another part of
the speci昀椀cation.

4.6 Code Pruning
Optimizing the synthesized code from a TSL speci昀椀cation itself would aid in the development and
debugging of TSL. With readable code, users can map changes in their speci昀椀cations to changes in
the synthesized code and debug their speci昀椀cations. This mental mapping could allow users better
understand the semantics of temporal operators as they observe how changing operations impact the
synthesized code.

Pruning invalid transitions generated from violated assumptions is one area of potential optimization
of the synthesized code. TSL synthesis generates code to handle violations of assumptions because
the synthesized controller must be a system that can handle any stream of input, no matter if that
input violates an assumption of the environment or not. This behavior is due to the hardware synthesis
roots of reactive synthesis, where the system (a circuit) will continue to operate no matter the given
inputs. In the software setting, we now face the question of how to handle invalid transitions.

The generated Mealy machine contains transitions telling the system what to do with inputs that
violate the assumptions of the environment (from the guarantee block of the TSL speci昀椀cation).
These transitions are invalid in the sense that they violate user-speci昀椀ed assumptions. Consequently,
this leads to substantial portions of non-executable and perplexing code, particularly in complex
systems with numerous states and assumptions. One solution to achieve readable and more optimized
synthesized code is to prune the code results so that repetitive states and transitions or those that
violate the assumptions of the speci昀椀cation are removed from the output [6].

This tool is well suited to tackle the Temporal Operator Semantics (3.2) challenge.

4.7 Source Mapping
To better understand the semantics of a temporal logic formula in relation to the synthesized output,
we propose source mapping between the speci昀椀cation and the generated code. Similar to the way
source mapping can be used to explore code generation through compiler passes [22], this tool might
be used to better understand the synthesis process. For a compiler, source mapping is a one-to-many
mapping–a single line of code may generate multiple lines in the compiled target language. However,
a key challenge of source mapping in reactive synthesis is that, unlike code compilation, the mapping
from speci昀椀cation to target is many-to-many. That is, not only does a single line of the speci昀椀cation
have an impact on many lines of code, a single line of generated code can be attributed to many
(non-contiguous) lines of the speci昀椀cation. An e昀昀ective source mapping algorithm for Temporal Stream
Logic synthesis is still an open problem.

4.8 Unrealizable Cores
Another tool used in reactive synthesis to debug unrealizable speci昀椀cations is the generation of
unrealizable cores [23]. Unrealizable cores can be viewed as a fault-localization problem. The core
of an unrealizable spec is the minimal set of guarantees–or constraints on the system–that render
the synthesis problem unrealizable. After obtaining this minimal set, users have more information
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about what is causing their speci昀椀cations to be unrealizable. This tool is well suited to tackle the
Unrealizability (3.5) challenge.

4.9 Counter Strategies
One of the main challenges of reactive synthesis is dealing with unrealizable speci昀椀cations or spec-
i昀椀cations of systems that have no correct controller implementation. After writing a speci昀椀cation,
attempting synthesis, and getting that the speci昀椀cation is unrealizable, users may not know where
to begin to debug their spec. As a result, substantial tooling has been developed to combat the
problem of unrealizability [24], [19], including the generation of counter-strategies speci昀椀cally for
reactive systems [25]. A counter-strategy in program synthesis is a strategy the environment can use
to falsify the speci昀椀cation no matter how the system moves. For developers debugging an unrealizable
speci昀椀cation, a counter-strategy can provide information about the inputs from the environment that
can cause the system to fail and what areas of the speci昀椀cation must be re昀椀ned.

If a challenge about a temporal operator leads to an unrealizable speci昀椀cation, localizing the fault
may lead to a correction in the understanding of temporal operator semantics. This tool is well suited
to tackle the Temporal Operator Semantics (3.2) and Unrealizability (3.5) challenges. The debugging
process outlined above may not have been possible without that use of a counter strategy. However,
how to best present counter strategies to users is still an open question.

Challenges

Temporal Operator Semantics

Underspeci昀椀cation

Unrealizability

(Non) Reactive Systems

Non-well-separation

Precedence and Syntax Errors

Tools

Code Pruning

Source Mapping

State Machine Visualization

Counter Strategies

Unrealizable Cores

Reactive System Visualizer

Minimal Assumption Cores

Syntax Highlighting & Warnings

Block-based Editors
Table 2. This table proposes a mapping between common challenges that developers have in their understanding
of TSL and current tools that can be utilized to combat those challenges.

5 Mapping TSL Challenges to Tools
To summarize, we propose a map, Table 2, between common challenges with Temporal Stream Logic
and tools to address those challenges. This map can serve as a space for future work in the 昀椀eld of
advancing the learnability and usability of reactive synthesis and temporal logic speci昀椀cation languages
in practice.

6 Case Study
To further demonstrate the repercussions of TSL challenges in reactive synthesis, we provide a practical
example taken from a recently published paper [17]. As commented in their benchmark GitHub
repository [26], the TSL speci昀椀cation, shown in Fig. 5, aims to specify “a ‘bidirectional’ (i.e. ‘full
duplex’) escalator capable of moving up or down. Its direction is controlled by the number of people
waiting to take the escalator; when there are none, the escalator stops.” As we will show below,
this natural language speci昀椀cation does not match the TSL speci昀椀cation. Using our framework of
challenges and tools, we identify the challenges that cause the mismatch between the natural language
speci昀椀cation and the TSL speci昀椀cation, as well as the tools that could have helped to correct this
speci昀椀cation.
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//#LIA#
always assume {

[steps <− bottom()] <−> ![bottom <− add bottom c1()];
[steps <− up()] <−> ![top <− add top c1()];

}

always guarantee {
// Bottom movements
[bottom <− add bottom c1()] && [top <− top] <−> [ users <− add users c1() ];
[bottom <− bottom] && [top <− sub top c1()] <−> [ users <− sub users c1() ];

// Top movements
[bottom <− bottom] && [top <− add top c1()] <−> [ users <− add users c1() ];
[bottom <− sub bottom c1()] && [top <− top] <−> [ users <− sub users c1() ];

// Directional components
eq users c0() && eq bottom c0() && eq top c0() −> [steps <− stop()];
eq users c0() && gt bottom top −> [steps <− up()];
eq users c0() && !(gt bottom top) −> [steps <− down];

}

Figure 5. The faulty TSL speci昀椀cation for an escalator from a recent paper [17].

Recall that the always assume block speci昀椀es constraints on the input the system gets from the
environment. Here, the spec restricts people from entering the bottom of the escalator when the
escalator is moving down, and vice versa. Recall that the always guarantee block describes the
system’s response to input values. Lines 9-12 aim to describe the movement of the escalator from
the bottom to the top. Lines 9 and 10 aim to describe that if one person enters the bottom of the
escalator, the number of people on the bottom will increase by one and the number of people on
the escalator will also increase by one. At the same time, the number of people on the top of the
escalator remains the same. Lines 11 and 12 aim to describe that if one person exits the top of the
escalator, the number of people on the top will decrease by one, the number of people on the escalator
will decrease by one, and the number of people on the bottom of the escalator remains the same.
Lines 15-18 follow the same pattern for when the escalator moves up. Lines 21-24 aim to describe the
directional components of the escalator. If the number of users on the escalator, the number of users
at the bottom, and the number of users on top are all equal to 0, the escalator will stop. Otherwise, if
there are more users waiting at the bottom than the top, the escalator will go up, and vice versa.

While this speci昀椀cation is realizable, three conceptual challenges lead to a mismatch the natural
language speci昀椀cation and the TSL speci昀椀cation.

Challenge: (Non) Reactive Systems. A (Non) Reactive Systems challenge refers to confusion
about the optimal use of TSL (Sec. 3.3). Synthesizing non-reactive systems may not make a
speci昀椀cation unrealizable, but poses risks of misalignment with user intentions. For instance, the
escalator speci昀椀cation results in a non-reactive system as it does not incorporate environmental inputs.
This challenge, mainly due to modeling issues, arises because top and bottom are treated as cells
instead of inputs, as well as the fact that there are no temporal operators in the speci昀椀cation.

Challenge: Non-well-separation. In TSL, non-well-separation can occur when there is confusion
about content allocation between the assume and guarantee blocks (Sec. 3.1). Here, lines 3 and 4
with system updates speci昀椀ed on the right side of an implication are in fact controlled by the system.

Challenge: Syntactic Problem. In line 24, there is a missing set of parenthesis after down, which
makes it an input signal rather than a constant function. In this speci昀椀cation, top and bottom should
be inputs, and up() and down() should be function terms that control the movement of the escalator.
Similarly, in line 3 there is a syntactic mistake–[steps <- bottom()] should instead be [steps <-
down()] in order to update the steps with the down() command.

7 Related Work
There have been other e昀昀orts to develop tools for logical speci昀椀cation engineering, including a block-
based visual programming language for Linear Temporal Logic (LTL) [27] and IDE support for Property
Speci昀椀cation Language (PSL) [28]. The Spectra Language has also integrated support for speci昀椀cation
engineering, including tools for debugging unrealizable speci昀椀cations and non-well-separation [29].
Recent work [7] focused on identifying and categorizing common challenges about Linear Temporal
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Logic for reactive synthesis. Building upon this, we focus on Temporal Stream Logic, and construct
more generalized challenges that can be addressed through concrete tools in the form of developer
support tools. There is an increasing awareness of the need to address the user experience of temporal
logic speci昀椀cation engineering [3], [6], including using natural language and large language models to
generate temporal logic speci昀椀cations [30], [31]. This will potentially have an outsize impact on the
viability of teaching temporal logic in classroom settings.

8 Conclusion and Future Work
Our goal with this work is to give an initial accounting of the various challenges and opportunities facing
the synthesis community as we seek to give speci昀椀cation engineering the same 昀椀rst-class treatment as
software engineering. We leave for future work a full user study to properly evaluate each of these
tools and verify the claims made in Table 2. Additionally, we have focused our work on speci昀椀cations
in TSL, in the belief that many of these concepts will generalize to other temporal logics. There
are however temporal logics that are more expressive than TSL. For example, TSL is a fragment of
Temporal Stream Logic Modulo Theories (TSL-MT) [17]. We hypothesize that when working with
richer temporal logic languages, there may be further challenges and tools–one example is the issue of
type safety that arises in TSL-MT.
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