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Abstract

This study introduces hybrid TPMS-based architectured materials (HTAM), achieved by
superimposing several triply periodic bicontinuous structures (TPBSs). This approach allows
for the creation of structures that were previously unattainable using conventional designs. We
investigate the optimization of these architectured materials to enhance mechanical stiffness
while reducing weight. To explore this expanded design space and identify optimal designs,
we employed multi-objective Bayesian optimization (MBO) integrated with Gaussian process
regression (GPR). By utilizing both the probability of hypervolume improvement (PHVI) and
expected hypervolume improvement (EHVI) acquisition functions in parallel during the
optimization process, we improved the efficiency of time and data usage. This facilitated the
development of HTAM that form a Pareto front, pushing the upper bound in the relative density
and relative stiffness space. The optimized HTAM exhibited markedly higher specific Young's
modulus across various relative densities compared to conventional structures. Following
optimization and manufacturability considerations, selected HTAM designs were fabricated
using selective laser sintering (SLS) at the macro scale and two-photon polymerization (2PP)
at the micro scale. Compression tests confirmed the superior stiffness and exceptional yield
strength of the HTAM structure, validating their potential for advanced engineering
applications.



1. Introduction

The quest for materials with exceptional mechanical properties has been a central focus
in materials science and engineering. Traditional materials, constrained by their atomic
composition and structure, often fail to meet the growing demands of modern industries.
Structural engineering offers a promising solution by manipulating material architecture at the
continuum scale to achieve superior properties. Notable examples include structural
composites [1-4], and porous materials [5-7] , which exhibit novel behaviors through controlled

structural arrangements.

However, the complexity of these advanced structures often poses significant
challenges for traditional manufacturing methods like machining, casting, and molding.
Although various advanced techniques have been proposed for creating porous structures [8-
10], precise control over pore characteristics (shape, size, and connectivity) remains difficult.
This limitation restricts design flexibility and hinders the practical application of these
materials [11-13]. Additive manufacturing has emerged as a transformative solution, offering
the precision and scalability necessary to fabricate intricate structures and utilize the full
potential of advanced structures.

Architectured materials with precisely controlled structural features have gained
significant attention for their exceptional mechanical properties [14-16]. Their superior
mechanical characteristics make them particularly valuable in industries such as aerospace,
defense, automotive, and biomedical engineering [17-23]. Among these materials, shell-based
triply periodic bicontinuous structures (TPBS) are notable for their high specific stiffness and
strength, derived from minimized stress concentrations due to their smooth geometries [24-27],
which contrasts with other types such as strut-based and plate-based structures [28-33].
Although previous research has focused on optimizing basic TPBS parameters like density and
thickness, these efforts have typically been confined to a narrow design space, highlighting the
need for more sophisticated approaches [24-27].

To overcome this limitation, we propose hybrid TPMS-based architectured materials
(HTAM), structures that are achieved by the superposition of two or more TPBS equations.
This approach significantly expands the design space. To efficiently explore this space and
identify optimal HTAM designs with high stiffness and low density, we employ multi-objective
Bayesian optimization (MBO) with Gaussian process regression (GPR). Unlike previous
methods that rely solely on either the probability of hypervolume improvement (PHVI) or
expected hypervolume improvement (EHVI), our optimization process leverages both
simultaneously. This approach allows for a balanced combination of exploration (reducing
uncertainty of the surrogate model) and exploitation (identifying optimal design), thereby

enhancing data efficiency. Additionally, using both acquisition functions in parallel improves



computational efficiency by enabling the simultaneous sampling of multiple data points in each

iteration.

Using the optimization results, we selected candidate HTAM designs for fabrication,
taking manufacturability into account. The structures were then fabricated at different scales
(macro/micro) using selective laser sintering (SLS) and two-photon polymerization (2PP)
additive manufacturing. Compression testing confirmed the superior stiffness of HTAM, both

in the elastic region and beyond.



2. Method

In this study, we developed HTAM by leveraging data-driven design. HTAM are
derived from TPBS, which are mathematically defined volumetric structure using level-set
equations extended from TPMS — a surface geometry, as shown in Figure 1(a). Building on
this concept, HTAM were generated through the linear combination of two or more TPMS
level-set equations, thereby expanding design space to achieve previously unattainable 3D
architectures as depicted in Figure 1(b). To efficiently navigate this expanded design space and
identify optimized structures with high elastic modulus, generative design strategies known as
MBO with GPR were used. Unlike previous studies that typically rely on a single acquisition
function, we simultaneously utilized multiple acquisition functions, including PHVI and EHVI
to improve optimization efficiency and design space exploration. Following computational
optimization, we fabricated the selected HTAM and control structures using two advanced
additive manufacturing techniques: SLS for macro-scale production and 2PP for micro-scale
fabrication. Finally, compression tests were conducted to evaluate the stiffness of the structures
and validate the effectiveness of our optimization approach and designs. By integrating data-
driven design algorithm, high-precision manufacturing, and experimental validation, this
method provides a comprehensive pathway for developing high-performance architectured
materials across multiple scales.

2.1 Data Generation and Automation

To define a single HTAM, the proportion (ry, 1y, ..., 17,) of each TPMS level-set
equation and the bounds (t;, t,) for the structure were determined using the following

expression:
—t, <nfi+rfat o+ riofio <ty

where f; is i-th TPMS level-set equation. In this study, 10 well-known TPMS were utilized
(listed in Table 1). To efficiently organize the values of input features, the level-set equations
were scaled to have a range between -1 and 1. The proportions (r;,i = 1,2, ..., 10) and bounds
t; and t, were used as input features for our data-driven optimization model, with their

values set between 0 and 1.

The volume and mechanical properties of the generated structures were evaluated for
using Finite Element Analysis (FEA). Volume was obtained by summing all the element
volumes. The effective Young’s modulus was calculated via the homogenization method, and
obtaining the structure's effective stiffness matrix. These were then converted into relative
density and relative Young’s modulus, to allow comparison across different structures and
materials. The relative properties were calculated through comparison with the properties of

the constituent material, using the formula C = Cypycture/Cintrinsic- These were defined as



objective functions for optimization. The entire process, from HTAM generation to mechanical
property evaluation, was automated using MATLAB, Python, and ABAQUS, streamlining data
generation and optimization. Initial data was generated as shown in Figure S1. Conventional
TPBSs with densities of 20%, 40%, 60%, and 80% were generated. Then, using the concept of
HTAM, 20 HTAM structures were created using simple random sampling (SRS) of input
features. By leveraging the data from conventional TPBS and SRS-generated HTAM, the
optimization model was provided with boundary information from the former and well-
distributed data within the design space from the latter.

2.2 Data-Driven Optimization

To efficiently explore the design space and identify optimal structures, generative
design strategies, specifically MBO with GPR were employed. Initially, the data collected from
initial evaluations was used to fit the GPR surrogate model for each of the two optimization
objectives, as shown in Figure S2(a). To refine the model, we introduced Hybrid Monte Carlo,
a sampling method derived from Markov Chain Monte Carlo (MCMC) techniques, to tune the
GPR hyperparameters. These tunable hyperparameters included likelihood variance, kernel
variance, and kernel length scale. The kernel length scale was uniformly configured across all
input variables to ensure that the model consistently evaluated interactions between variables,
providing a balanced interpretation of the design space. 5000 samplings were conducted and
the hyperparameter values corresponding to the peak of Gaussian kernel density estimation
were selected as optimal hyperparameters. This method allowed for a more thorough
exploration of the parameter space, ultimately improving the accuracy of the surrogate model
and the convergence of the optimization process.

Once the GPR model was trained, it was used to differentiate between non-dominated
and dominated data points, enabling the establishment of a Pareto front and the analysis of the
corresponding hypervolume, as shown in Figure S2(b). This analysis provided insight into the
trade-offs between the competing objectives, guiding the optimization process. Based on the
Pareto front analyses, acquisition functions were computed to identify regions in the design
space where improvements were expected, focusing on areas with the highest acquisition
function values. In this study, we adopted a strategy of simultaneously utilizing multiple
acquisition functions, specifically PHVI and EHVI. This approach enabled us to strike a
balance between exploration, which focuses on reducing the uncertainty of the surrogate
model, and exploitation, which targets identifying the optimal design. By employing both
acquisition functions concurrently, data efficiency was enhanced, allowing multiple data points
to be sampled in each iteration, thus improving overall time efficiency. After each iteration,
the two newly suggested structures (one from EHVI and one from PHVI) were generated and
evaluated for density and mechanical properties using the automated process outlined in
Section 2.1. These results were then incorporated into the existing dataset, allowing the model



to continually learn and refine its predictions. This iterative process continued until an
additional 200 data points were generated, as illustrated in Figure 2(c). Through this approach,
we were able to thoroughly explore the design space and identify HTAM designs that exhibit

superior mechanical performance.

2.3 3D Printing and Compression Testing

To validate the optimization results, optimized HTAM were fabricated using additive
manufacturing and tested in compressions. Compression testing was chosen over tensile testing
for several reasons. First, the optimization process focused on the linear elastic region, where
compression tests are highly effective for evaluating stiffness and load-bearing capacity.
Secondly, compression tests are experimentally simpler to conduct, especially for architectured

materials.

The selected HTAM structures were open-cell structures to ensure fabrication
feasibility. The optimized HTAM, I-WP, and CFCC were chosen, as I-WP exhibited the
highest stiffness among TPBS structures, and CFCC demonstrated the highest stiffness among
strut-based structures. 3x3x3 unit cell structures were fabricated at relative densities of 0.41
and 0.50.

The structures were fabricated with dimensions of 60mm X 60mm X 60mm using
the Fuse 1+ SLS printer by FORMLABS. The SLS printer was chosen due to its powder-based
printing technique, which eliminates the need for support structures and is ideal for fabricating
complex geometries with internal voids. After fabrication, the structures were subjected to
compression testing using a universal testing machine with a compression jig from
SHIMADZU. To ensure consistent and accurate results, the compression rate was set precisely
at 0.01 mm/s.

At the micro scale, polymeric microlattices with a 30 pm side length were fabricated
on ITO-coated glass cover slips via two-photon-polymerization direct laser writing (TPP-DLW)
with the Photonic Professional GT (Nanoscribe GmbH), in dip-in laser lithography (DiLL)
mode using a 63x objective lens. IP-Dip photoresist was used with a scanning speed of 10,000
um/s and laser power of 17.5 mW, and hatching and slicing spacings of 0.1 um. The
microlattice samples were developed in Su-8 developer for 30 minutes and isopropyl alcohol
for 5 minutes. Then, uniaxial mechanical compression tests were conducted using the iMicro
Indentation System (Nanomechanics, Inc.) at a strain rate of 20 nm/s witha55 pm diamond
flat punch tip. Load-displacement curves were collected and converted to engineering stress-
strain curves using the cross-sectional footprint area and initial height of the lattice structures,
as measured from high-resolution SEM images using an Apreo S LoVac Scanning Electron
Microscope (Thermo Fisher Scientific Inc.). From each engineering stress-strain curve, the
Young’s modulus was measured from the slope of the linear elastic loading regime, and the



yield strength was measured using the 0.2% offset strain method. Each test for a given relative
density and lattice architecture was repeated on three samples, and the resulting values were
averaged.

3. Result

3.1 Optimization Result

Tuning the hyperparameters of a Gaussian Process Regression (GPR) model is crucial
for improving its predictive accuracy and uncertainty estimation, thereby ensuring robust and
reliable performance in the optimization process. In this study, Hybrid Monte Carlo (HMC)
was employed to tune the hyperparameters of the GPR model for both optimization
objectives—relative density and relative Young’s modulus—as shown in Figure 3(a, b). The
concentration of sampling points around specific values indicates a robust hyperparameter
tuning process, instilling confidence in the accuracy of the fitted GPR model.

The theoretical upper bound in Figure 3(e-g) was determined using the Gibson-Ashby
model (E = p"), assuming the Voigt upper bound with n = 1. The structures with high
relative density on the Pareto front are characterized by central voids within their unit cells. In
the Figure 3(e), it is clearly demonstrated that there were no significant improvements in the
low relative density region (p < 0.4). The structures that exhibited slight improvements were
those with offsets in thickness from the conventional I-WP structure (type 5). This phenomenon
arises due to the characteristic nature of the level-set equation, which induces significant
changes in the structure as the thickness decreases, thereby increasing the chance to produce a
"floating" structure appearance, as shown in Figure S3. Consequently, the design space
includes infeasible structures, especially prevalent in low-density regions.

3.2 Effectiveness of Multiple Acquisition Functions

To evaluate the effectiveness of using multiple acquisition functions (MULTI;
employing EHVI and PHVI simultaneously), we compared this approach with MBO using
either EHVI or PHVI alone. For a fair comparison, each algorithm generated 200 data points
starting from the same initial dataset. The distinctive behaviors of these approaches are
depicted in Figure 3(e-g). PHVI primarily facilitated exploitation by aggressively pursuing the
construction of a Pareto front. However, it often converged to local optima rather than the true
global Pareto front, highlighting a limitation in achieving global optimality. On the other hand,
EHVI balanced exploration and exploitation, sampling a diverse range of data with varying
objective values, which reduced the uncertainty of the surrogate model while also yielding
structures near the upper bound.



The use of multiple acquisition functions combined the strengths of both EHVI and
PHVI, allowing for a more balanced approach. This resulted in the sampling of data that
spanned a broad range of objective values while also identifying designs near Pareto optimality.
As a result, the MULTI approach closely approximated the theoretical bound, demonstrating
its effectiveness. This trend is further illustrated in Figure 3(c), where the hypervolume
indicator—measuring the volume of the objective space dominated by the Pareto front—shows
a rapid increase when applying MULTTI approach. It converged at the highest value, whereas
PHVI converged at a lower value despite a similarly rapid initial increase. EHVI, while slowly
increasing the hypervolume indicator, did not fully realize its potential improvement within the

limited number of iterations.

Moreover, the MULTI approach demonstrated significant time efficiency. To compare
the time performance, we analyzed the average elapsed time per sample until the first 50 data
points were generated (Figure 3(d)). The time required for mechanical property evaluation via
finite element analysis (FEA) was excluded from this analysis, as the number of elements
varied with the sampled structure's shape, potentially introducing bias. The MULTI approach
allowed for parallel sampling of two data points per iteration, reducing the required time by
32%. In contrast, PHVI and EHVI, which sampled one data point per iteration, required more
processing time. This time difference arose from fewer GPR fittings required in the MULTI
approach. Although the computational complexity of EHVI was higher, PHVI exhibited longer
processing times and greater variance due to its strong focus on exploitation, which increased

the number of non-dominated data points over iterations and extended the processing time.

To more precisely compare the performance of each algorithm, we quantified their
effectiveness using Sampling Error (SE) and Distribution Metric (DM), with detailed
descriptions provided in the supplementary material. SE measures how close the sampled data
are to the true Pareto front, while DM quantifies the uniformity of the sampling distribution
within the objective space. As shown in Figure S4, EHVI achieved the lowest mean SE,
reflecting its tendency to explore boundaries and reduce GPR uncertainty. This often resulted
in designs with relative densities of 0 or 1, which are part of the true Pareto front, thus yielding
lower SE. However, EHVI performed poorly in terms of DM, indicating uneven sampling
distribution. In contrast, the MULTI approach showed lower SE, indicating effective
exploration, and lower DM, signifying well-distributed sampling. This combination proved to
be the most efficient optimization strategy, balancing both exploration and exploitation, and
resulted in a Pareto front that was both close to the theoretical bound and well-distributed across

the design space.

3.3 Validation of Mechanical Properties

FEA was used to further validate the properties of optimal HTAM, and compare the
properties to I-WP and CFCC, as depicted in Figure 4(a-d). For structures with 41% density,



FEA confirmed the relative Young’s modulus of these structures as 0.255, 0.240, and 0.150,
respectively. For the 50% density structures, the relative Young’s modulus was found to be
0.336, 0.271, and 0.209, respectively. These results confirm HTAM's superior mechanical
properties within the linear elastic range. These results indicate that HTAM maintain higher
stiffness-to-density ratios compared to other configurations, which is critical for applications

requiring lightweight yet strong materials.

The stress distribution within the optimized HTAM was compared to I-WP and CFCC,
as shown in Figure 4(e). The analysis of the stress distribution is essential to understanding the
durability and failure modes of the structures. The CFCC structure exhibited high stress
concentrations at many joints. The HTAM and I-WP structures exhibited high stress
concentrations at fewer locations. This indicates a more uniform distribution of stress across
the structure, reducing the likelihood of localized failure and improving overall mechanical

performance as shown in Figure 4(f).

3.4 Experimental Validation of Optimization Result

To validate the optimization results, structures with relative densities of 0.41 and 0.5
were modeled and printed using an SLS printer, as shown in Figure 5(a, b). The results of the
SLS printing demonstrated that the fabricated structures closely resembled the modeled
designs. This outcome validated the precision of the SLS technique, which is known for its
ability to produce complex geometries with high fidelity. The strain-stress curve for these
structures was obtained through compression testing, as depicted in Figure 5(c, d). The results
indicated that the effective stiffness is highest for the HTAM structure, followed by I-WP, and
then CFCC. This trend in effective stiffness agrees with computational simulation.

This trend was also observed in structures fabricated using 2PP. Figure 6(a, b) shows
scanning electron microscope images of HTAM, I-WP, and CFCC microlattices with p =
0.41 and 0.5. For both relative densities, engineering stress-strain curves (Figure 6(c, d))
reveal that the HTAM microlattices have the stiffest linear elastic loading response and the
greatest initial strain hardening, followed by the I-WP structure and finally the CFCC structure.
At strains around ¢ = 0.4, the HTAM lattice exhibits softening up to eventual densification
(for p = 0.41) or failure (for p = 0.50). Comparatively, the I-WP and CFCC lattices exhibit
minimal softening before densification. Figure 6(e, f) show the Young’s modulus and yield
strength values measured from engineering stress-strain curves. As expected, the HTAM
lattices exhibit the highest elastic moduli and yield strengths at both relative densities, followed
by the I-WP and finally the CFCC lattices.

These results indicate that the optimized HTAM has the highest stiffness regardless of
the scale of the 3D printed structure. Additionally, beyond elastic region, HTAM exhibited the
highest effective yield strength, followed by I-WP, and then CFCC. The higher effective



stiffness of HTAM indicates a greater resistance to applied forces, meaning the structure can
distribute stress more evenly under load. This uniform stress distribution is a key factor
contributing to the increased effective yield strength, as it delays the onset of plastic
deformation, given that the material is the same across all structures. After the yield point,
distinct behaviors were observed in the SLS and 2PP structures. In the SLS structures,
catastrophic failure occurred shortly after the yield point. In contrast, the 2PP structures
exhibited densification after yielding, a phenomenon where the structure compacts rather than
fractures. This difference is explained by the materials used: the material in the 2PP process is
relatively more ductile compared to the brittle material used in SLS printing, leading to the
observed differences in post-yield behavior.



4. Conclusion

The optimized HTAM structure marks a significant advancement in the development
of architectured materials. We demonstrate a novel approach to customizing material
properties. By combining multiple TPMS level-set equations, HTAM opens up a vast design
space previously inaccessible with singular TPMS structures. The use of MBO with multiple
acquisition functions proved to be an effective method for exploring and optimizing HTAM
configurations. This approach facilitated simultaneous optimization of various objectives,
constructing Pareto fronts characterized by trade-offs between stiffness and weight, ultimately
leading to the discovery of superior HTAM designs with higher specific Young's modulus
compared to conventional TPMS and strut-based structures.

The feasibility of fabricating these complex HTAM was successfully demonstrated
through 3D printing techniques at both macro and micro scales, utilizing SLS and 2PP. The
printed structures closely matched the initial computational models, confirming the accuracy
and reliability of the fabrication processes. Compression testing validated the exceptional
mechanical performance of HTAM, with higher stiffness and yield strength observed compared
to traditional TPMS and strut-based counterparts. A similar level of performance was observed
in macro and microscale structures, which underscores the robustness of the design and
optimization approach.

This study demonstrates that the integration of advanced generative design strategies
with precise manufacturing techniques can lead to significant improvements in material
performance. These findings highlight the potential of HTAM to meet the growing demands
for strong, lightweight materials, particularly in industries where material efficiency is critical,
such as aerospace, automotive, and biomedical engineering. Additionally, the post-yield
behavior differences observed between macro and micro scales emphasize the importance of
material selection in determining the mechanical performance of architectured materials.
Further exploration of these behaviors could open new avenues for tailoring material properties
to specific applications.
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Figure 1. Hybrid TPMS-based Architectured Material (HTAM), multi-objective
Bayesian optimization, and validation through additive manufacturing. (a) Illustration of
process for defining HTAM: contour map of the level-set equation, structures constructed
based on the volume corresponding to the level-set values, 10 well-known TPBS (I-WP,
Neovius, Schwarz P, Schwarz D, Fisher-Koch Y, F-RD, Fisher-Koch C(S), Gyroid, Fisher-
Koch S, Fisher-Koch C(Y)) used as reference structures, and randomly generated HTAMs. (b)
Schematic of the multi-objective Bayesian optimization process. (c) Additive manufacturing
technologies for micro-scale and macro-scale fabrication, and compression testing.
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Regression (GPR) Schematic Diagrams. Workflow chart of the multi-objective Bayesian
optimization framework with multiple acquisition functions, detailing the steps from the

preparation of initial data, through the optimization process, to the validation process.
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Figure 3. Hyperparameter Tuning and Comparison of Optimization Performance (a, b)

Results of Hybrid Monte Carlo, with the red point indicating the tuned hyperparameter:

l(kernel length scale), of(kernel variance), and o (likelihood variance). (¢) Hypervolume
indicator for Multi, PHVI, and EHVI as a function of iteration. (d) Comparison of the elapsed
time for sampling until 50 points are obtained using Multi, PHVI, and EHVI. (e-g) Scatter plot
and Pareto front for Multi, PHVI, and EHVI data for relative density and relative Young’s

modulus, compared with the initial data and lattice structure (CFCC).
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Figure 4. Comparison between HTAM, I-WP (a TPBS structure), and Strut-Based
Structure (CFCC). (a, ¢) Structures with relative densities of 0.41 and 0.50. (b, d) Relative
Young’s modulus with relative densities of 0.41 and 0.50. (e¢) Volume distribution plot of

normalized Von Mises stress in structures with a relative density of 0.41. (f) FEA compression
of HTAM and I-WP with a relative density of 0.41.
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Figure 5. SLS Printing and Compression Testing. (a, b) Structures modeled with unit cells
arranged in a 3x3x3 configuration and relative densities of 0.41 and 0.50, along with their SLS
printed products. (c, d) Compressive strain-stress curves for structures with relative densities

of 0.41 and 0.50, respectively.
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Figure 6. 2PP Printing and Compression Testing. (a-b) Scanning electron microscope
images of polymeric microlattices, with HTAM, I-WP, and CFCC architectures, fabricated at
a relative density of 0.41 and 0.50, respectively. (c, d) Compressive stress-strain curves for
polymeric microlattices at relative densities of 0.41 and 0.50, respectively. Insets show the
same engineering stress-strain curves up to strains of € = 0.3. (e, f) Measured Young’s
modulus values and yield strengths for the three microlattice architectures at a relative density
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Table 1. List of TPMS level-set equations used in defining HTAM.

TPMS

Level-set equation, /; = 0

Schwarz P
Schwarz D
Gyroid
Neovius
I-WP

F-RD
Fisher-Koch §

Fisher-Koch C(S)

Fisher-Koch Y

Fisher-Koch C(Y)

f1 = cos(x) + cos(y) + cos(z) = 0

f2 = sin(x)sin(y)sin(z) + sin(x)cos(y)cos(z) + cos(x)sin(y)cos(z) + cos(x)cos(y)sin(z) = 0

fs = cos(x)sin(y) + cos(y)sin(z) + cos(2)sin(x) = 0

fa = 3(cos(x) + cos(y) + cos(z)) + 4cos(x)cos(y)cos(z) = 0

fs = 2(cos(x) cos(y) + cos(y) cos(z) + cos(z) cos(x)) — (cos(2x) + cos(2y) + cos(2z)) =0
s = 4 cos(x) cos(y) cos(z) — (cos(2x) cos(2y) + cos(2y) cos(2z) + cos(2x) cos(2z)) =0

f7 = cos(2x)sin(y)eos(z) + sin(x)cos(2y)sin(z) + sin(x)sin(y)cos(2z) = 0

fs = c0s8(2x) + cos(2y) + cos(2z) + 2(sin(3x)sin(2y)cos(z) + cos(x)sin(3y)sin(2z) + sin(2x)cos(y)sin(3z) +
2(sin(2x)cos(3y)sin(z) + sin(x)sin(2y)cos(3z) + cos(3x)sin(y)sin(2z)) =0

fa = cos(x)cos(y)cos(z) + sin(x)sin(y)sin(z) + sin(2x)sin(y) + sin(2y)sin(z) + sin(x)sin(2z) + sin(2x)cos(z) +
sin(2y)cos(x) + sin(2z)cos(y) =0

fio = —sin(x)sin(y)sin(z) + sin(2x)sin(y) + sm(2y)sin(z) + sin(2z)sin(x) — cos(x)cos(y)cos(z) + sin(2x)cos(z) +
cos(x)sin(2y) + cos(y)sin(2z) =0
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Figure S1. Initial structures for Multi Bayesian Optimization (MBO) with Gaussian Process
Regression (GPR). The structures on the left are based on reference TPBS, while the structures
on the right are constructed based on the definition of HTAM.
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Figure S2. (a) A graphical representation of the Gaussian Process Regression model for
multiple objectives. (b) A graphical representation of multi-objective Bayesian optimization in

the 2D objective space.
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Figure S3. Illustration showing the emergence of floating structures as density decreases. As
the density reduces, the level-set equations generate structures with disconnected or isolated
elements, leading to the formation of "floating" structures that are not connected to the main
framework.
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Figure S4. Illustration of Sampling Error (SE) and Distribution Metric (DM) concepts.
Evaluation results of SE and DM for Multi, EHVI, and PHVI are also included. This figure
demonstrates how each acquisition function performs in terms of proximity to the ground truth
Pareto front and the uniformity of sampling distribution in the objective space.



