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Abstract Homeostatic proliferation plays an important role in cell proliferation. In this paper, we developed a delayed HIV infection
model incorporating two modes of infection along with homeostatic proliferation. We showed the positivity of the solution and the
existence of the steady state for the dimensionless model. We derived the conditions for local stability and the occurrence of Hopf
bifurcation at the infected steady state. We also established the direction and stability of Hopf bifurcation by using the center manifold
theorem and normal form method. Numerical simulations were conducted to demonstrate the analytical results and explore the effect
of delays on the virus dynamics. Our findings indicate that homeostatic proliferation or an intracellular time delay can destabilize
the infected steady state. However, cell-to-cell transmission alone cannot induce a stability switch in the infected steady state.
Furthermore, as the intracellular time delay or the homeostatic proliferation rate increases, the time required for the model to reach
an infected steady state also increases.

1 Introduction

Infectious diseases continue to pose a significant threat to global public health, and among these, the human immunodeficiency virus
(HIV) stands out as particularly detrimental. As a retrovirus, HIV primarily targets the crucial CD4+ T cells in the human immune
system. According to the World Health Organization (WHO), HIV has claimed over 40.4 million lives to date. By the end of 2022,
it is estimated that around 39 million people were living with HIV, with two-thirds of them (approximately 25.6 million) located in
the African region [1]. Since its initial identification in 1981, the global community has been relentless in its battle against HIV. As
awareness of its devastating effects on human health has grown, extensive research has been conducted to understand the dynamic
behavior of this virus.

Many existing HIV models focus solely on cell-free virus infection [2–6] and incorporate aspects such as delays, age structure,
and latency. These models often overlook cell-to-cell transmission, which might be more efficient in transmitting the virus because it
can transmit several virions each time and the virus is not exposed to the neutralization of antibodies [7, 8]. Given the importance of
understanding HIV’s spread, it is essential to consider the role of cell-to-cell transmission. In recent years, many models have begun
to include this form of transmission [9–12]. For instance, Wang et al. [10] examined an HIV latent infection model that features
cell-to-cell transmission, assessing how time delays and the fraction of infection contributing to these delays affect virus dynamics.
They also evaluated the relative contributions of both transmission modes to the HIV population. Furthermore, viral infection is a
complex process that does not occur instantaneously. For example, the virus enters target cells, followed by reverse transcription,
integration, transcription, and translation [3]. Therefore, introducing delay(s) to capture the temporal dynamics in viral infection
and other diseases aligns more closely with real-world observations [2, 13, 14].

Cell proliferation plays a crucial role in the infection of HIV and should not be overlooked. Research highlighted in [15] has
demonstrated the significant impact of CD4+ T cells in primary viral infections. Thus, varying levels of CD4+ T cells may either
promote or inhibit virus replication during HIV transmission. Previous studies of HIV within-host models have typically focused
on viral infection or clearance, considering only parameter variations and overlooking initial viral loads or changes in CD4+ T cell
counts during transmission [16]. In this paper, we focus primarily on the homeostatic proliferation of CD4+ T cells, which provides
HIV additional opportunities to infect through free virus particles by replenishing the pool of target cells. In the absence of specific
antigens, CD4+ T cell division in depleted lymphoid tissues is thought to be driven by the presence of foreign antigens [17, 18].
Fan et al. explored an acute phase model that relies solely on healthy CD4+ T cells, illustrating the body’s regulatory mechanism to
maintain CD4+ T cell population [19].
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Studies have shown that in the context of reduced lymphoid cells caused by HIV, the homeostatic proliferation of CD4+ T cells
is primarily driven by viral load. This increase in viral load not only consumes CD4+ T cells but also leads to the recruitment of
immature CD4+ T cells into a proliferation pool [20]. Therefore, in the presence of HIV, this regulatory mechanism is influenced
by both the intensity of the viral load and the size of the CD4+ T cell population. Many studies found that the production of new
CD4+ T cells and macrophages from the thymus, bone marrow, and other sources typically remains constant. However, HIV and
other pathogens can induce the proliferation of immune cells [21–24], necessitating a consideration of homeostatic proliferation in
response to infection.

The structure of this article is as follows. In Sect. 2, we construct a delayed HIV infection model that incorporates homeostatic
proliferation and cell-to-cell transmission. We determine the basic reproduction number of the model and the dimensionless system.
In Sect. 3, we study the local stability of all the steady states of the dimensionless model and analyze the existence of Hopf bifurcation
at the infected steady state. The direction and stability of Hopf bifurcation are determined using the center manifold theorem and
normal form theory in Sect. 4. In Sect. 5, numerical simulations are used to illustrate the analytical results. Finally, the paper
concludes with a brief summary and discussion.

2 Mathematical model

2.1 Model formulation

We have included homeostatic proliferation and cell-to-cell transmission in the model, which resulted in the following delayed HIV
infection model with two modes of transmission.

dT (t)
dt

! ! +
ε

M + V (t)
T (t)V (t) − kT (t)V (t) − βT (t)I (t) − d1T (t),

dI (t)
dt

! kT (t − τ )V (t − τ )e−δτ + βT (t − τ )I (t − τ )e−δτ − d2 I (t),

dV (t)
dt

! pI (t) − d3V (t),

(2.1)

where T (t), I(t), andV (t) represent the concentrations of uninfected CD4+ T cells, infected cells, and free virus at time t, respectively.
The time τ represents the intracellular delay, which is the time it takes for uninfected CD4+ T cells to become productively infected
after coming into contact with the virus. The model assumes that uninfected CD4+ T cells are produced at a rate !, and die at a
rate d1. Healthy CD4+ T cells are infected by free viruses at a rate k and through direct cell-to-cell transmission at a rate β. Since
the time delay between viral entry and viral production is independent of the transmission mode, we apply the same delay for kTV
and βT I , collectively referred to as the intracellular delay. The parameter p indicates the rate at which new virions are produced by
infected cells. The death rate of infected cells is denoted by d2, and d3 is the rate of viral clearance. The death rate of infected cells
that have not begun to produce viruses is δ, and e−δτ represents the survival probability of these infected cells.

The term ε
M+V (t)T (t)V (t) describes the homeostatic proliferation due to the immune response, as detailed in [25]. Specifically,

the homeostatic proliferation of CD4+ T cells is triggered by the presence of the virus and the consequent decrease in the number of
uninfected CD4+ T cells. Here, ε represents the maximum growth rate, and M is the half-velocity constant of growth. We define the
function F(V ) ! ε

M+V V , which satisfies F(0) ! 0, F ′(V ) > 0, and lim
V→∞

F(V ) ! ε. Thus, this saturated term vanishes when no

virions are present in the model. The basic dynamics of the model align with those of the general virus model. Furthermore, as the
virus population grows, the immune system of the infected host replenishes the CD4+ T cells to compensate for what is consumed
in-host, with the maximum growth rate given by εT . Although the growth rate of this term is limited, homeostatic proliferation
significantly impacts the dynamics of the model. When cells undergo pathological changes, their concentration does not sharply
increase or grow indefinitely over time but instead varies within a limited range. Therefore, to maintain biological relevance, we
assume that the maximum growth rate of uninfected cells is less than their death rate, meaning that ε < d1 [27].

Model (2.1) always has the steady state P0 ! ( !
d1

, 0, 0). Through the next-generation matrix method [28], we obtain

FV−1 !
(

pk!
d1d2d3

e−δτ + β!
d1d2

e−δτ k!
d1d3

e−δτ

0 0

)

.

The basic reproduction number is given by ρ(FV−1), where ρ denotes the spectral radius of the next-generation matrix. Thus, we
have

R0 ! pk!
d1d2d3

e−δτ +
β!

d1d2
e−δτ .

R0 refers to the number of secondary infections caused by a single infected cell (or virus) in a completely susceptible environment.
The term pk!

d1d2d3
e−δτ represents the basic reproduction number for the model with cell-free infection, while β!

d1d2
e−δτ represents the

basic reproduction number for the model with cell-to-cell transmission.
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2.2 Positivity and boundedness of solution

The following result shows that the solution (T (t), I(t), V (t)) of model (2.1) remains nonnegative and boundedness.

Theorem 2.1 Under the given initial conditions, all solutions of model (2.1) are positive and ultimately bounded for all t > 0.

Proof We first show that T (t) > 0 for all t > 0. Assume that there exists a t1 > 0 such that T (t1) ! 0, T (t) > 0, t ∈ [0, t1). Thus,
Ṫ (t1) ≤ 0. From the first equation of model (2.1), we have Ṫ (t1) ! ! > 0, which is a contradiction. This implies that T (t) > 0 for
all t > 0.

Next, we prove that I (t) > 0, V (t) > 0 for all t > 0. Assume that there exist a t2 > 0 such that min{I (t2), V (t2)} ! 0.
If I (t2) ! 0, I (t) > 0 for t ∈ [0, t2) and V (t) > 0, t ∈ [0, t2], then İ (t2) ≤ 0. We have

dI (t2)
dt

! kT (t2 − τ )V (t2 − τ )e−δτ + βT (t2 − τ )I (t2 − τ )e−δτ .

When t2 − τ ∈ [0, t2), we have İ (t2) > 0, which is a contradiction. This implies that I (t) > 0 for all t > 0.
By the last equation of model (2.1), we have

V (t) ! V0e−d3t +
∫ t

0
pI (ξ )e−d3(t−ξ )dξ > 0.

Thus, T (t) > 0, I (t) > 0, V (t) > 0 for all t > 0. Similarly, we can prove that V (t2) ! 0, V (t) > 0 for t ∈ [0, t2), I (t) > 0,
t ∈ [0, t2] and I (t2) ! V (t2) ! 0, I (t), V (t) > 0 for t ∈ [0, t2) are possible using the same method.

In conclusion, T (t), I (t), V (t) > 0 for all t > 0.
The boundedness of the model is proved below. Define N (t) ! T (t) + I (t + τ )eδτ . We have

dN (t)
dt

≤ ! +
ε

M + V (t)
T (t)V (t) − d1T (t) − d2 I (t + τ )eδτ

≤ ! + εT (t) − d1T (t) − d2 I (t + τ )eδτ

≤ ! − (d1 − ε)T (t) − d2 I (t + τ )eδτ

≤ ! − dN (t).

Thus, lim
t→∞ supN (t) ≤ !

d and d ! min{d1 − ε, d2}. Moreover, we obtain lim
t→∞ sup V (t) ≤ !p

dd3
. !

Therefore, ϒ defined dy

ϒ !
{

(T (t), I (t), V (t)) ∈ R3
+ : 0 < T (t) + I (t) ≤ !

d
, V (t) ≤ !p

dd3

}

is a globally attractive and positively invariant subset of model (2.1).

2.3 Dimensionless model

To reduce the parameter space, model (2.1) can be reconstructed to a dimensionless form. Let

T̃ (t̃) ! T (t)
T ∗ , Ĩ (t̃) ! I (t)

I ∗ , Ṽ (t̃) ! V (t)
V ∗ , t̃ ! t

t∗
, τ̃ ! τ

τ ∗ ,

T ∗ ! d2d3

(pk + βd3)e−δτ
, I ∗ ! d1d3

pk
, V ∗ ! d1

k
, t∗ ! τ ∗ ! 1

d1
.

To simplify, we remove the symbol ∼, which leads to

dT (t)
dt

! R0 +
Rm

1 + β1V (t)
T (t)V (t) − T (t)V (t) − β2T (t)I (t) − T (t),

dI (t)
dt

! α1T (t − τ )V (t − τ ) + α2T (t − τ )I (t − τ ) − α3 I (t),

dV (t)
dt

! α4[I (t) − V (t)],

(2.2)

where

R0 ! pk!
d1d2d3

e−δτ +
β!

d1d2
e−δτ , Rm ! ε

Mk
, β1 ! d1

Mk
, β2 ! βd3

pk
,

α1 ! pkd2

d1(pk + βd3)
, α2 ! βd2d3

d1(pk + βd3)
, α3 ! d2

d1
, α4 ! d3

d1
.
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Each new parameter is positive, reflecting the positivity of the original parameters. The properties of the transformed model remain
unchanged, ensuring that the solutions of model (2.2) are positive and uniformly bounded. Moreover, we typically fix the values
of β1, β2, α1, α2, α3, and α4 while exploring variations in R0 and Rm . Here, α1 + α2 ! α3 and α1β2 ! α2. R0 represents the
basic reproduction number of model (2.1), derived using the next-generation matrix method, while Rm denotes a new reproduction
number introduced by incorporating the saturated term.

Let’s define the Banach space as follows:

*+ ! {ϕ ! (ϕ1, ϕ2, ϕ3) ∈ * : ϕi (θ ) ≥ 0 for all θ ∈ [−τ , 0], i ! 1, 2, 3}.

The Banach space of continuous functions mapping the interval [−τ , 0] to R3
+ is defined by ϕ : [−τ , 0] → R3

+. The initial
conditions of model (2.2) is

T (θ ) ! ϕ1(θ ), I (θ ) ! ϕ2(θ ), V (θ ) ! ϕ3(θ ), θ ∈ [−τ , 0], (2.3)

where ϕ ! (ϕ1, ϕ2, ϕ3) ∈ *+.

3 Stability analysis

3.1 Existence of the steady state

Model (2.2) always has an infection-free steady state E0 ! (R0, 0, 0). For the other steady states, we use the same approach as in
[16] and the components of equilibrium satisfy

R0 +
Rm

1 + β1V
TV − T V − β2T I − T ! 0,

α1T V + α2T I − α3 I ! 0,

α4(I − V ) ! 0.

(3.1)

Starting with the equilibrium equations (3.1), we use the last equation to deduce that I ! V . This leads to the infection-free steady
state E0 if I ! V ! 0. When I ! V *! 0, substituting this condition in the second equation yields:

α1T + α2T ! α3, T ! α3

α1 + α2
! 1.

From this equation, we can derive a formula for V , specifically:

c1V 2 + c2V + c3 ! 0, (3.2)

where

c1 ! β1(1 + β2) > 0, c2 ! β1(1 − R0) + 1 − Rm + β2, c3 ! 1 − R0.

(a) If R0 < 1, then c3 > 0.
The condition - ! c2

2 − 4c1c3 ≥ 0 needs to be satisfied, which implies that all the solutions of the equation are real values.
(i) - ! c2

2 − 4c1c3 > 0. This is equivalent to

(G + 1 + β2 − Rm)2 − 4G(1 + β2) > 0,

where G ! β1(1 − R0). We have

G2 + (1 + β2 − Rm)2 + 2G(1 + β2 − Rm) − 4G(1 + β2)

! G2 + (1 + β2 − Rm)2 + 2G(1 + β2 − Rm) − 4G(1 + β2)

+ 2G(1 + β2 + Rm) − 2G(1 + β2 + Rm)

! G2 − 2G(1 + β2 + Rm) + (1 + β2 − Rm)2 > 0.

It follows that
[
G −

(√
1 + β2 −

√
Rm

)2
][

G −
(√

1 + β2 +
√
Rm

)2
]
> 0.

Clearly,
(√

1 + β2 +
√
Rm

)2
>

(√
1 + β2 − √

Rm
)2. Thus, - ! c2

2 − 4c1c3 > 0 if and only if

G −
(√

1 + β2 −
√
Rm

)2
< 0 or G −

(√
1 + β2 +

√
Rm

)2
> 0.

Then we have
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R0 > 1 −
(√

1 + β2 − √
Rm

)2

β1
or R0 < 1 −

(√
1 + β2 +

√
Rm

)2

β1
.

The infected steady states also exist when c2 < 0. The condition 1 > R0 > 1 + 1+β2−Rm
β1

is equivalent to 1 + β2 < Rm .
Thus, we have

1 +
1 + β2 − Rm

β1
< R0 < 1 −

(√
1 + β2 +

√
Rm

)2

β1
or B1 < R0 < 1,

where B1 ! max
{

0, 1 − (
√

1+β2−√
Rm)

2

β1

}
. Because 1 + 1+β2−Rm

β1
< R0 < 1 − (

√
1+β2+

√
Rm)

2

β1
is an empty set, this implies that there

is no solution in the (R0, Rm) space. Under these conditions, we identify two infected steady states, E1 and E2.
If B1 < R0 < 1 and 1 + β2 < Rm , we have

E1 ! (1, I1, V1) ! (1,
−c2 −

√
c2

2 − 4c1c3

2c1
,

−c2 −
√
c2

2 − 4c1c3

2c1
),

E2 ! (1, I2, V2) ! (1,
−c2 +

√
c2

2 − 4c1c3

2c1
,

−c2 +
√
c2

2 − 4c1c3

2c1
).

(ii) If - ! c2
2 − 4c1c3 ! 0, following the same analysis as above, we have

[
G −

(√
1 + β2 −

√
Rm

)2
][

G −
(√

1 + β2 +
√
Rm

)2
]

! 0.

Thus,

R0 ! 1 −
(√

1 + β2 − √
Rm

)2

β1
or R0 ! 1 −

(√
1 + β2 +

√
Rm

)2

β1
.

In additon to c2 < 0, we get

Rm > 1 + β2 and R0 ! 1 −
(√

1 + β2 − √
Rm

)2

β1
.

Under these conditions, we have a unique infected steady state E2, which is of multiplicity 2.
(b) If R0 ! 1, then c3 ! 0. Equation (3.2) becomes

V (c1V + c2) ! 0.

Thus, V ! 0 or V ! − c2
c1

. Since c2 < 0, we have V ! − c2
c1

> 0 and Rm > 1 + β2. Therefore, there is a unique infected steady
state E2.

(c) If R0 > 1, then c3 < 0. This is the infected steady state E2.
In summary, we present the following theorem.

Theorem 3.1 (i) The infection-free steady state E0 of model (2.2) always exists.

(ii) If R0 ! 1 − (
√

1+β2−√
Rm)

2

β1
and 1 + β2 < Rm or R0 ! 1 and 1 + β2 < Rm or R0 > 1, then model (2.2) has a unique infected

steady state E2.
(iii) If B1 < R0 < 1 and 1 + β2 < Rm, then model (2.2) has two infected steady states E1 and E2.

3.2 Stability of the steady state

In this section, we examine the stability of the steady states of model (2.2) where τ ≥ 0. We linearize model (2.2) and derive the
characteristic equation evaluated at an arbitrary steady state Ē ! (T̄ , Ī , V̄ ), which is determined by the following determinant:

∣∣∣∣∣∣∣∣∣

λ + 1 + V̄ + β2 Ī − Rm V̄
1+β1 V̄

β2T̄ T̄
(

1 − Rm
(1+β1 V̄ )2

)

−α1V̄ e−λτ − α2 Ī e−λτ λ + α3 − α2T̄ e−λτ −α1T̄ e−λτ

0 −α4 λ + α4

∣∣∣∣∣∣∣∣∣

! 0. (3.3)

Theorem 3.2 When R0 < 1, the infection-free steady state E0 of model (2.2) is locally asymptotically stable for all τ ≥ 0.
Otherwise, it is unstable.
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Proof For E0 ! (R0, 0, 0), the characteristic equation is

f (λ) ! (λ + 1)(λ + α3)(λ + α4) − (λ + 1)(λ + α4)α2R0e−λτ − (λ + 1)α1α4R0e−λτ

! (λ + 1)[(λ + α3)(λ + α4) − (λ + α4)α2R0e−λτ − α1α4R0e−λτ ] ! 0.
(3.4)

Our goal is to demonstrate that if the eigenvalue λ1 ! x + iy is a solution of Eq. (3.4), then the real part x < 0 when R0 < 1.
Suppose this conclusion is incorrect, and we find that x ≥ 0. Under this assumption, calculate equation (3.4) we get

1 !
∣∣∣∣

α1α4R0e−λ1τ

(λ1 + α3)(λ1 + α4)
+

α2R0e−λ1τ

λ1 + α3

∣∣∣∣

≤
∣∣∣∣

α1α4R0e−λ1τ

(λ1 + α3)(λ1 + α4)

∣∣∣∣ +
∣∣∣∣
α2R0e−λ1τ

λ1 + α3

∣∣∣∣

≤ α1R0

α3
+

α2R0

α3

! R0.

(3.5)

This leads to a contradiction. Thus, all the roots of the characteristic equation (3.4) have negative real parts. This shows that E0 is
locally asymptotically stable when R0 < 1.

When R0 > 1, we know that the characteristic equation f (0) ! α3α4(1 − R0) < 0 and limλ→+∞ f (λ) ! +∞. Therefore, there
is at least one positive root such that f (λ) ! 0. Thus, the infection-free steady state E0 is unstable when R0 > 1. !

The infected steady state E1, 2 is brought into the characteristic equation (3.3) and α1 + α2 ! α3. We obtain the following
characteristic equation:

H (λ, τ ) ! P1(λ) + P2(λ)e−λτ ! 0, (3.6)

where

P1(λ) ! λ3 + a2λ
2 + a1λ + a0, P2(λ) ! b2λ

2 + b1λ + b0

and

a2 ! α3 + α4 + 1 + V1, 2 + β2V1, 2 − RmV1, 2

1 + β1V1, 2
,

a1 ! α3α4 + (α3 + α4)
(

1 + V1, 2 + β2V1, 2 − RmV1, 2

1 + β1V1, 2

)
,

a0 ! α3α4

(
1 + V1, 2 + β2V1, 2 − RmV1, 2

1 + β1V1, 2

)
,

b2 ! −α2,

b1 ! α3(β2V1, 2 − α4) − α2

(
1 + V1, 2 + β2V1, 2 − RmV1, 2

1 + β1V1, 2

)
,

b0 ! α3α4

(
RmV1, 2

1 + β1V1, 2
− 1 − RmV1, 2

(1 + β1V1, 2)2

)
.

When τ ! 0, the equation becomes

λ3 + (a2 + b2)λ2 + (a1 + b1)λ + a0 + b0 ! 0. (3.7)

Let iω (ω > 0) be a root of Eq. (3.6). We separate the real and imaginary parts and get

b1ω sin ωτ + (b0 − b2ω
2) cos ωτ ! a2ω

2 − a0,

(b0 − b2ω
2) sin ωτ − b1ω cos ωτ ! −ω3 + a1ω.

(3.8)

This leads to

sin ωτ ! (a2ω
2 − a0)b1ω + (b0 − b2ω

2)(a1ω − ω3)

(b0 − b2ω2)2 + b2
1ω

2
,

cos ωτ ! (ω3 − a1ω)b2ω + (b0 − b2ω
2)(a2ω

2 − a0)

(b0 − b2ω2)2 + b2
1ω

2
.

Adding the square of each equation yields

ω6 + mω4 + lω2 + r ! 0, (3.9)
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where

m ! a2
2 − 2a1 − b2

2, l ! a2
1 + 2b2b0 − 2a2a0 − b2

1, r ! a2
0 − b2

0.

Let z ! ω2. Then Eq. (3.9) becomes

h(z) ! z3 + mz2 + lz + r ! 0. (3.10)

Lemma 3.3 When E1 exists, we have β1(1 + β2)V 2
1 + R0 − 1 < 0.

Proof From the previous discussion, we know that R0 < 1, c2 < 0 and - ! c2
2 −4c1c3 > 0 when E1 exists. Thus, c3 ! 1−R0 > 0.

We have

V1 !
−c2 −

√
c2

2 − 4c1c3

2c1
.

Multiplying the numerator and denominator by −c2 +
√
c2

2 − 4c1c3, we obtain

V1 ! 2c3

−c2 +
√
c2

2 − 4c1c3

< −2c3

c2
.

Thus, −c2V1 < 2c3. From Eq. (3.2), we get

c1V 2
1 ! −c2V1 − c3 < c3.

Therefore

β1(1 + β2)V 2
1 + R0 − 1 ! c1V 2

1 − c3 < 0.

!

Theorem 3.4 When the infected steady state E1 of model (2.2) exists, E1 is unstable for all τ ≥ 0.

Proof (a) When τ ! 0, Eq. (3.6) becomes

λ3 + (a2 + b2)λ2 + (a1 + b1)λ + a0 + b0 ! 0. (3.11)

From the first equation of (3.1) and Lemma 3.3, we have

a2 + b2 ! α3 + α4 − α2 + R0 > 0,

a1 + b1 ! (α3 + α4 − α2)R0 + α3β2V1 > 0,

a0 + b0 ! α3α4

1 + β1V1

[
β1(1 + β2)V 2

1 + R0 − 1
]
< 0.

From the existence of roots, we know that Eq. (3.11) has at least one positive root. Thus, E1 is unstable when τ ! 0.
(b) When τ > 0, the characteristic equation is

λ3 + a2λ
2 + a1λ + a0 + (b2λ

2 + b1λ + b0)e−λτ ! 0, (3.12)

where

a2 ! α3 + α4 + R0,

a1 ! α3α4 + (α3 + α4)R0,

a0 ! α3α4R0,

b2 ! −α2,

b1 ! α3(β2V1 − α4) − α2R0,

b0 ! α3α4V1

[
β2 + 1 − Rm

(1 + β1V1)2

]
− α3α4R0.

We have the following equation

h(z) ! z3 + mz2 + lz + r ! 0, (3.13)

where

m ! α2
3 + α2

4 + R2
0 − α2

2 > 0,
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l ! (α2
3 + α2

4 − α2
2)R2

0 − 2α2α3α4
1

1 + β1V1
[β1(1 + β2)V 2

1 + R0 − 1]

+ 2α3β2V1(α3α4 + α2R0) − α2
3β2

2V
2
1 ,

r ! (a0 − b0)(a0 + b0)

and

a0 + b0 ! α3α4

1 + β1V1
[β1(1 + β2)V 2

1 + R0 − 1],

a0 − b0 ! α3α4

1 + β1V1
[R0 + 1 + β1V1(2R0 − V1(β2 + 1))].

From Lemma 3.3, we know that β1(1 + β2)V 2
1 + R0 − 1 < 0, which implies that a0 + b0 < 0. Additionally, we can derive that

β1(1 + β2)V 2
1 < 1 − R0 < 1 + R0, hence a0 − b0 > 0. Therefore, we obtain r ! (a0 − b0)(a0 + b0) < 0. Consequently, Eq. (3.13)

has one positive root z0 for m > 0 and any l, leading to a positive root ω0 ! √
z0.

In conclusion, the infected steady state E1 is unstable for all τ ≥ 0. The proof is completed. !

At the infected steady state E2, when τ ! 0, Eq. (3.6) becomes

λ3 + (a2 + b2)λ2 + (a1 + b1)λ + a0 + b0 ! 0, (3.14)

where

a2 + b2 ! α3 + α4 − α2 + R0 > 0,

a1 + b1 ! (α3 + α4 − α2)R0 + α3β2V2 > 0,

a0 + b0 ! α3α4

1 + β1V2

[
β1(1 + β2)V 2

2 + R0 − 1
]
.

Lemma 3.5 When E2 exists, we have β1(1 + β2)V 2
2 + R0 − 1 ≥ 0.

Proof (a) When R0 ≥ 1, β1(1 + β2)V 2
2 + R0 − 1 > 0 always holds.

(b) When R0 < 1, we know that c2 < 0 and - ! c2
2 − 4c1c3 ≥ 0. Thus, c3 ! 1 − R0 > 0. We have

V2 !
−c2 +

√
c2

2 − 4c1c3

2c1
.

Multiplying the numerator and denominator by −c2 −
√
c2

2 − 4c1c3, we obtain

V2 ! 2c3

−c2 −
√
c2

2 − 4c1c3

≥ −2c3

c2
.

Thus, −c2V2 ≥ 2c3. From Eq. (3.2) we get

c1V 2
2 ! −c2V2 − c3 ≥ c3.

Therefore, we have

β1(1 + β2)V 2
2 + R0 − 1 ! c1V 2

2 − c3 ≥ 0.

The proof is completed. !

From Lemma 3.5, we obtain that a0 +b0 ≥ 0. When a0 +b0 ! 0, Eq. (3.14) has an eigenvalue of zero, indicating that a saddle-node
bifurcation occurs at the infected steady state E2. When a0 + b0 > 0, according to the Routh-Hurwitz criterion, the equation α3α4

1+β1V2[
β1(1 + β2)V 2

2 + R0 − 1
]
< (α3 + α4 − α2 + R0)[(α3 + α4 − α2)R0 + α3β2V2] holds when E2 is stable.

When τ > 0, let iω (ω > 0) be the root of the characteristic equation at E2. We have

h(z) ! z3 + mz2 + lz + r ! 0, (3.15)

where

m ! α2
3 + α2

4 + R2
0 − α2

2 > 0,

l ! (α2
3 + α2

4 − α2
2)R2

0 − 2α2α3α4
1

1 + β1V2
[β1(1 + β2)V 2

2 + R0 − 1]

+ 2α3β2V2(α3α4 + α2R0) − α2
3β2

2V
2
2 ,
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r ! (a0 − b0)(a0 + b0)

and

a0 + b0 ! α3α4

1 + β1V2
[β1(1 + β2)V 2

2 + R0 − 1],

a0 − b0 ! α3α4

1 + β1V2
[R0 + 1 + β1V2(2R0 − V2(β2 + 1))].

From Lemma 3.5, we obtain that a0 + b0 ≥ 0. When a0 + b0 ! 0, Eq. (3.15) becomes z(z2 +mz + l) ! 0. In this case, Eq. (3.15) has
a unique positive root ω0 ! √

z0 if l < 0. When a0 + b0 > 0, we have r ! (a0 − b0)(a0 + b0) > 0 if the equation has no positive
roots. Thus, a0 − b0 > 0, which implies R0 + 1 + β1V2(2R0 − V2(β2 + 1)) > 0. Therefore, the infected steady state E2 is stable.
Moreover, we have R0 + 1 + β1V2(2R0 − V2(β2 + 1)) < 0 if r < 0. Then Eq. (3.15) has one positive root z0 for m > 0 and any l,
leading to a unique positive root ω0 ! √

z0. Thus, we can conclude the following results.

Theorem 3.6 (i) When R0 < 1 and - ! 0, model (2.2) undergoes a saddle-node bifurcation at the infected steady state E2.
(ii) When R0 < 1 and - > 0, or R0 ≥ 1, if the following conditions hold:

(a) α3α4
1+β1V2

[
β1(1 + β2)V 2

2 + R0 − 1
]
< (α3 + α4 − α2 + R0)[(α3 + α4 − α2)R0 + α3β2V2] ,

(b) R0 + 1 + β1V2(2R0 − V2(β2 + 1)) ≥ 0,

then the infected steady state E2 of model (2.2) is locally asymptotically stable for all τ ≥ 0.

Theorem 3.7 If the following conditions hold

(i) α3α4
1+β1V2

[
β1(1 + β2)V 2

2 + R0 − 1
]
< (α3 + α4 − α2 + R0)[(α3 + α4 − α2)R0 + α3β2V2],

(ii) R0 + 1 + β1V2(2R0 − V2(β2 + 1)) < 0 and l < 0, then E2 is locally asymptotically stable when τ < τ0 and unstable when
τ > τ0. Therefore, model (2.2) undergoes Hopf bifurcation when τ ! τ0,

τ j ! 1
ω

(

arccos

(
(ω3 − a1ω)b1ω + (b0 − b2ω

2)(a2ω
2 − a0)

(b0 − b2ω2)2 + b2
1ω

2

)

+ 2 jπ

)

, j ! 0, 1, 2, ...

Proof We need to verify the transversality condition for the Hopf bifurcation at τ ! τ0 [29], i.e., sign
(
Re

( dλ
dτ

)|τ!τ0

)
! sign(

dh(z)
dz |z!ω2

)
. Taking the derivative of the Eq. (3.6) at τ , we obtain

dH (λ, τ )
dτ

! ∂H (λ, τ )
∂τ

+
∂H (λ, τ )

∂λ

dλ

dτ
! 0.

Then we have
(

dλ

dτ

)−1

! −
∂H (λ,τ )

∂λ
∂H (λ,τ )

∂τ

! (P ′
2(λ) − τ P2(λ))e−λτ + P ′

1(λ)
λP2(λ)e−λτ

. (3.16)

From H (λ, τ ) ! 0 and λ ! iω, we have

dλ

dτ

∣∣∣∣
−1

τ!τ0

! P ′
2(iω)

iωP2(iω)
− τ

iω
− P ′

1(iω)
iωP1(iω)

.

Next, from straightforward calculations, we can rewrite equation (3.15)

h(z) ! (a0 − a2z)2 + z(a1 − z)2 − (b0 − b2z)2 − zb2
1

! A1(z)2 + zA2(z)2 − B1(z)2 − zB2(z)2 ! 0.

It follows that

Re

(
dλ

dτ

∣∣∣∣
−1

τ!τ0

)

! Re
(

P ′
2(iω)

iωP2(iω)

)
− Re

(
P ′

1(iω)
iωP1(iω)

)

! 2A′
1A1 + A2

2 + 2zA′
2A2

A2
1 + ω2A2

2
− 2B ′

1B1 + B2
2 + 2zB ′

2B2

B2
1 + ω2B2

2
.

From A1(z)2 + ω2A2(z)2 ! B1(z)2 + ω2B2(z)2, we obtain

Re

(
dλ

dτ

∣∣∣∣
−1

τ!τ0

)

! h′(z)
B2

1 + ω2B2
2

∣∣∣∣
z!ω2

. (3.17)
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Table 1 Parameter values of
model (2.1)

Parameters Values Description References

! 10 mm−3day−1 Generation rate of uninfected cells [26]
ε 0.01 day−1 Maximum homeostatic growth rate [25]

M 300 copies mm−3 Homeostatic half-velocity [25]

k 4.57 × 10−5 mm3 day−1 Rate of cell-free virus infection [21]
β 1.5 × 10−4 mm3day−1 Rate of cell-to-cell transmission [12]

p 40 virions per cell day−1 Rate of viral production [21]
δ 0.01 day−1 Death rate of infected cells that [3]

Have not started to produce virus
d1 0.02 day−1 Death rate of uninfected cells [26]
d2 0.4 day−1 Death rate of infected cells [26]
d3 2.4 day−1 Clearance rate of free virus [21]

We know that B1(z)2 + ω2B2(z)2 > 0, which leads to

sign

(

Re
(

dλ

dτ

)∣∣∣∣
τ!τ0

)

! sign
(
dh(z)

dz

∣∣∣∣
z!ω2

)
.

This completes the proof. !

4 Direction and stability of the Hopf bifurcation

To better understand the Hopf bifurcation, we investigate the direction and stability of the bifurcating periodic solutions using the
normal form method and center manifold theories, as described by Hassard [30]. We obtain the following results (see Appendix for
proof).

Theorem 4.1 Under the condition of T heorem 3.7,

(i) if µ2 > 0 (or µ2 < 0), the Hopf bifurcation is supercritical (or subcritical) and the bifurcated periodic solutions exist for
τ > τ0 (or τ < τ0),

(ii) if γ > 0 (or γ < 0), then the bifurcated periodic solutions are unstable (or stable),
(iii) if T2 > 0 (or T2 < 0), then the period of the bifurcated periodic solutions increases (or decreases).

5 Numerical results

In this section, we illustrate the analytical results through numerical simulations, focusing particularly on the effects of cell home-
ostatic proliferation and cell-to-cell transmission on HIV infection. We have fixed the values of α1 ! 16.71, α2 ! 3.29, α3 ! 20,
α4 ! 120, β1 ! 1.46, and β2 ! 0.19, as calculated from Table 1.

For our simulations, we set R0 ! 0.5 and varied the values of τ and Rm . Figure 1 demonstrates that the infection-free steady
state E0 ! (0.5, 0, 0) is locally asymptotically stable with the initial conditions (T (0), I (0), V (0)) ! (2, 1, 1), in accordance with
Theorem 3.2. As shown in Fig. 1a, variations in τ can reduce the peak of infection but prolong the time taken for the infection to
dissipate. Altering the value of Rm does not affect the time until the infection disappears but does increase the peak of infection, as
illustrated in Fig. 1b.

We incorporated cell-to-cell transmission into the model to study its impact on HIV infection. To examine the effects of varying
the cell-to-cell transmission rate (β), we adjusted the parameters related to β in model (2.2), specifically R0, α1, α2, and β2. Which
requires assurance R0 < 1. As shown in Fig. 2, we observe that the peak of infection increases with the cell-to-cell transmission rate
at the infection-free steady state. This suggests that the number of infected cells escalates rapidly within a short period, resulting in
a significant increase in infection levels.

Model (2.2) undergoes both a backward bifurcation and a saddle-node bifurcation at the infected steady state E2. In Fig. 3, a
backward bifurcation (BP) occurs when R0 ≤ 1, indicating the presence of two infected steady states. This suggests that even if
R0 is less than 1, sustained infection transmission may still occur, which has significant implications for public health policy. At
R0 ! 0.979, model (2.2) undergoes a saddle-node bifurcation (LP(SN)) with multiplicity 2. When the backward bifurcation occurs,
the curve below the saddle-node represents an unstable equilibrium, while the curve above indicates a stable equilibrium.
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Fig. 1 The infection-free steady state E0 is locally asymptotically stable when R0 ! 0.5. a The evolution of I(t) for E0 is shown with different values of
τ : the short blue dotted line, light blue solid line, long red dotted line, and magenta dotted line represent the dynamics of I(t) under τ ! 0.001, τ ! 0.02,
τ ! 0.08, and τ ! 0.3, respectively. b The evolution of I(t) for E0 is shown with different values of Rm : the short blue dotted line, light blue solid line,
long red dotted line, and magenta dotted line represent the dynamics of I(t) under Rm ! 0.8, Rm ! 2, Rm ! 5, and Rm ! 8, respectively

Fig. 2 The infection-free steady
state E0 is locally asymptotically
stable at different values of the
cell-to-cell transmission rate when
Rm ! 0.8. The short blue dotted
line represents β2 ! 0, α1 ! 40,
and α2 ! 0; the light blue solid
line represents β2 ! 0.2, α1 ! 33,
and α2 ! 10; the long red dotted
line represents β2 ! 0.8, α1 ! 22,
and α2 ! 30; and the magenta
dotted line represents β2 ! 1.5,
α1 ! 16, and α2 ! 52
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Figure 4 illustrates the Hopf bifurcation curve and changes in stability under different parameters for τ ! 0. Figure 4a depicts
the Hopf bifurcation curve on the Rm − R0 parameter plane. Above this curve, the steady state E2 is stable, while below it, E2 is
unstable. Figure 4b–d show the relationships between Rm and T , I , and V when Rm ! 16 and R0 ! 2, respectively. The results
indicate that a Hopf bifurcation occurs at Rm ! 16.027, changing the stability of the infected steady state E2 ! (1, 17.665, 17.665).
As Rm increases, model (2.2) transitions from stable (blue curve) to unstable (red curve).

The infected steady state E2 ! (1, 1.857, 1.857) is locally asymptotically stable for various values of τ , given the initial
conditions (T (0), I (0), V (0)) ! (2, 1, 1), in accordance with Theorem 3.6. In Fig. 5a, when R0 ! 2 and Rm ! 1.5, the peak value
of infection decreases as τ increases, whereas the time to reach the steady state lengthens with an increase in τ . Figure 5b illustrates
that at τ ! 0.03, as homeostatic proliferation (Rm) increases, not only does the magnitude of the infected steady state E2 increase,
but the time to reach this steady state also extends. This demonstrates that homeostatic proliferation (Rm) has a more significant
impact on HIV infection dynamics than the delay (τ ).

Similarly, to assess the impact of cell-to-cell transmission on the infected steady state, it is necessary to vary the cell-to-cell
transmission rate. With fixed values of Rm ! 1.5, β1 ! 0.73, and τ ! 0.02, we modified the values of α1, α2, and β2. Of note,
setting α2 and β2 to zero eliminates cell-to-cell transmission. Our observations indicate that as the cell-to-cell transmission rate
increases, the peak of the infected steady state also rises, while the time required to reach the steady state decreases, as shown in
Fig. 6.
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Fig. 3 The backward bifurcation
and saddle-node bifurcation occur
at the infected steady state E2
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(a) τ = 0 (b) R0 = 2

(c) R0 = 2 (d) R0 = 2

Fig. 4 a The Hopf bifurcation curve in (Rm , R0) parameter plane. The components T , I and V of infected steady state E2 with respect to the parameter
Rm when R0 ! 2 in b, c and d, respectively
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Fig. 5 The infected steady state E2 is locally asymptotically stable when R0 ! 2. a The evolution of I(t) for E2 is shown with different values of τ when
Rm ! 1.5: the short blue dotted line, light blue solid line, long red dotted line, and magenta dotted line represent the dynamics of I(t) under τ ! 0.01,
τ ! 0.08, τ ! 0.2, and τ ! 0.4, respectively. b The evolution of I(t) for E2 is shown with different values of Rm when τ ! 0.03: the short blue dotted
line, light blue solid line, long red dotted line, and magenta dotted line represent the dynamics of I(t) under Rm ! 0.8, Rm ! 1.5, Rm ! 2, and Rm ! 2.5,
respectively

Fig. 6 The infected steady state
E2 is locally asymptotically stable
at different values of the
cell-to-cell transmission rate when
Rm ! 1.5. The short blue dotted
line represents β2 ! 0, α1 ! 40,
and α2 ! 0; the light blue solid
line represents β2 ! 0.2, α1 ! 33,
and α2 ! 10; the long red dotted
line represents β2 ! 0.8, α1 ! 22,
and α2 ! 30; and the magenta
dotted line represents β2 ! 1.5,
α1 ! 16, and α2 ! 52
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When R0 ! 3 and Rm ! 5, the infected steady state E2 exists. As shown in Fig. 7, this steady state is stable at τ ! 0.03 and
becomes unstable at τ ! 0.06. Thus, the stability of model (2.2) changes from stable to unstable as τ increases. To identify the
critical value for Hopf bifurcation, Fig. 8 shows how the difference between the maximum and minimum values of uninfected cells
T (t) varies with τ . When this difference is zero, it indicates that the steady state has reached a stable condition; if the difference
is nonzero, it signifies that the steady state is experiencing oscillations. Model (2.2) begins to exhibit bifurcation at τ0 ! 0.055. In
accordance with Theorem 3.7, this transition from stability to instability through a Hopf bifurcation indicates that E2 undergoes a
supercritical Hopf bifurcation at τ ! τ0.

Next, we investigate how the Hopf bifurcation behavior of model (2.2) changes with variations in parameters τ , Rm and R0. We
show the Hopf bifurcation curves for different values of τ ! 0.001, 0.005, 0.01, 0.05, 0.1 in Fig. 9a. The infected steady state E2 is
stable above these curves and unstable below them. It is also observed that the Hopf bifurcation curves tend to approximate a straight
line as τ increases. In Fig. 9b, we illustrate the effect of homeostatic proliferation on model (2.2) and plot the Hopf bifurcation curves
for various values of Rm ! 5, 5.5, 6, 6.5, 7. Similarly, the infected steady state E2 is stable above the Hopf bifurcation curves and
becomes unstable below them. The results indicate that the stable region for E2 decreases while the unstable region expands as τ

and Rm increase. These Hopf bifurcation curves allow us to understand the dynamic characteristics of the model under different
parameter combinations, providing valuable insights for understanding and predicting virus transmission.
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Fig. 7 The evolution of solution curves and phase portraits associated with the infected steady state E2 are shown with initial conditions (T (0), I (0),
V (0)) ! (2, 1, 1) when R0 ! 3 and Rm ! 5
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Fig. 8 A Hopf bifurcation occurs
at τ ! 0.0552895 when R0 ! 3
and Rm ! 5. Vertical axis: if the
difference between the maximum
and minimum values of uninfected
cells T (t) is nonzero, it indicates
that model (2.2) is experiencing
oscillations
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Fig. 9 The Hopf bifurcation curves of model (2.2). a The Hopf bifurcation curves in (Rm , R0) parameter plane with different values of τ . b The Hopf
bifurcation curves in (τ , R0) parameter plane with different values of Rm

Cell-to-cell transmission is a critical factor in this study, essential for understanding its impact on the model dynamics. Figure 10
displays the Hopf bifurcation curves for cell-to-cell transmission when Rm ! 5 and τ ! 0.1. The red curve represents the Hopf
bifurcation without cell-to-cell transmission, while the blue curve represents the Hopf bifurcation with cell-to-cell transmission.
The infected steady state E2 is unstable above the Hopf bifurcation curve and stable below it. This indicates that the stable region
for E2 expands and the unstable region contracts as the cell-to-cell transmission rate increases. This is consistent with Figs. 2 and
6, which show a decrease in the time required for the infected steady state E2 to reach stability.

6 Conclusion and discussion

Since the discovery of the first HIV/AIDS case in the 1980s, we have been engaged in a battle against HIV for about 40 years [31].
Due to the complexity of disease transmission, it is necessary to continually refine models to better reflect reality. The homeostatic
proliferation of cells is a significant factor influencing disease spread, resulting in complex dynamical behaviors in the model. This
paper primarily focuses on the proliferative effect induced by free virus on uninfected cells, which can help maintain the stability
of uninfected cell numbers in the circulatory system [21, 32].
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Fig. 10 The Hopf bifurcation
curves in the (R0, τ ) parameter
plane of model (2.2) are shown
with and without cell-to-cell
transmission. The blue line
represents the case with
cell-to-cell transmission, and the
red line represents the case
without it

This paper establishes a delayed model with homeostatic proliferation and cell-to-cell transmission. We transform the model and
prove its positivity, and we discuss the existence of its steady states. When R0 < 1 and - ! 0, model (2.2) undergoes a saddle-node
bifurcation, resulting in two infected steady states (E1 and E2) in addition to the infection-free steady state (E0). The infection-free
steady state is stable when R0 < 1; otherwise, it is unstable. The infected steady state E1 is always unstable. We analyze the local
stability conditions of E2, the conditions for Hopf bifurcation, and the direction and stability of these bifurcations. Numerical results
show that when R0 < 1, E0 is stable for any τ and Rm , leading to eventual disease extinction. However, backward bifurcation and
saddle-node bifurcation can occur in model (2.2). It is observed that the time delay τ , homeostatic proliferation Rm , and cell-to-cell
transmission β all influence HIV infection. In Figs. 9 and 10, the infected steady state E2 transitions from a stable to an unstable state,
indicating that the disease exhibits periodic recurrence, complicating eradication efforts. Some previous models did not consider
homeostatic proliferation, while others assumed logistic growth. Logistic growth affects the rate of disease spread without altering
its dynamic behavior [33, 34].

Homeostatic proliferation alters the model’s dynamic behavior, making it essential to inhibit free virus during preventive treatment.
Current treatments typically include protease inhibitors and reverse transcriptase inhibitors, as studied in modeling studies [35, 36].
However, to mitigate the effects of cellular homeostatic proliferation, it may also be necessary to develop drugs that can block the
proliferation of uninfected cells stimulated by free virus. Such targeted interventions could help reduce the activation of uninfected
cells and improve the effectiveness of treatment strategies [37].

In summary, this paper investigates how homeostatic proliferation and cell-to-cell transmission can cause the model to transition
from stable to unstable, complicating the prevention and treatment of the virus. Since this study only analyzes the effects of
homeostatic proliferation under a time-delay model, it is important to recognize that viral infection is influenced by multiple factors.
For example, the age of cell infection, immune response, and preventive treatment measures all impact viral infection [5, 38, 39].
In addition to the effects of drugs on the virus, the role of the innate immune system should be taken into account, highlighting an
area that requires further research.

Acknowledgements X. Wang was supported by the National Natural Science Foundation of China (No. 12171413), the Natural Science Foundation of
Henan Province (222300420016). Y. Wang was supported by the Scientific Research Foundation of Graduate School of Xinyang Normal University (No.
2024KYJJ059). L. Rong was supported by the NSF Grant DMS-2324692.

Data Availibility Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. The
manuscript has associated data in a data repository.

Appendix

At E2 ! (1, I2, V2), we have I2 ! V2. Let X (t) ! T (τ t) − 1, Y (t) ! I (τ t) − I2, Z (t) ! V (τ t) − V2 and τ ! τ0 + µ, µ ∈ R.
Model (2.2) can be written as a functional differential equation system in C ! C([−1, 0], R3) as

ẋ(t) ! Lµ(xt ) + f (µ, xt ), (6.1)
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where x(t) ! (X (t), Y (t), Z (t))T ∈ R3, Lµ : C → R3, f : R × C → R3. We can define an operator as φ(θ ) ! (φ1(θ ), φ2(θ ),
φ3(θ ))T ∈ C . We get the linear part

Lµ(φ) ! (τ0 + µ)





Rm
1+β1V2

V2 − β2V2 − V2 − 1 −β2
Rm

(1+β1V2)2 − 1

0 −α3 0

0 α4 −α4









φ1(0)

φ2(0)

φ3(0)





+ (τ0 + µ)





0 0 0

α3V2 α2 α1

0 0 0









φ1(−1)

φ2(−1)

φ3(−1)




.

(6.2)

The nonlinear part is

f (µ, φ) ! (τ0 + µ)





(
Rm

(1+β1V2)2 − 1
)
φ1(0)φ3(0) − β2φ1(0)φ2(0) − β1Rm

(1+β1V2)3 φ2
3(0)

α1φ1(−1)φ3(−1) + α2φ1(−1)φ2(−1)

0




. (6.3)

By the Riesz representation theorem, there exists a matrix η(θ , µ) ∈ [−1, 0] → R3 of bounded variation, such that

Lµ(φ) !
∫ 0

−1
dη(θ ,µ)φ(θ ) for φ ∈ C. (6.4)

We can choose

η(θ ,µ) ! (τ0 + µ)





Rm
1+β1V2

V2 − β2V2 − V2 − 1 −β2
Rm

(1+β1V2)2 − 1

0 −α3 0

0 α4 −α4




δ(θ )

− (τ0 + µ)





0 0 0

α3V2 α2 α1

0 0 0




δ(θ + 1),

(6.5)

where δ(θ ) is Dirac delta function.
Define

A(µ)φ(θ ) !






dφ(θ )
dθ

, θ ∈ [−1, 0),
∫ 0
−1 dη(µ, s)φ(s), θ ! 0

and

R(µ)φ(θ ) !
{

0, θ ∈ [−1, 0),
f (µ, φ), θ ! 0.

To conveniently study the Hopf bifurcation, we rewrite the system (6.1) as

ẋt ! A(µ)xt + R(µ)xt , (6.6)

where xt ! x(t + θ ), θ ∈ [−1, 0]. The adjoint operator A∗ of A is defined by

A∗ϕ(s) !
{

−dϕ
ds , s ∈ (0, 1],∫ 0

−1 dηT (t , 0)ϕ(−t), s ! 0,

where ηT is the transpose of the matrix η and ϕ ∈ C1([0, 1], R3∗), R3∗ is complex vector space of dimension 3. Then for φ ∈ C([−1,
0], R3), we can define a bilinear form

〈ϕ(s), φ(θ )〉 ! ϕ̄(0)φ(0) −
∫ 0

θ!−1

∫ θ

ξ!0
ϕ̄T (ξ − θ )dη(θ )φ(ξ ), (6.7)
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where η(θ ) ! η(θ , 0) and ϕ̄(0)φ(0) means
∑3

i!1 ϕ̄i (0)φi (0). From the discussion in the previous section, we know that ±iω0τ0 are
eigenvalues of A(0) and other eigenvalues are all negative real parts. Moreover, ±iω0τ0 are also eigenvalues of A∗.

Next, we calculate the eigenvector ofA(0) and A∗ corresponding to iω0τ0 and −iω0τ0, respectively. Let q(θ ) ! (1, u, v)T eiω0τ0θ ,
θ ∈ (−1, 0]. Form the above discussion, we have A(0)q(θ ) ! iω0τ0q(θ ). Thus, we get

τ0





iω0 − Rm
1+β1V2

V2 + β2V2 + V2 + 1 β2 1 − Rm
(1+β1V2)2

−α3V2e−iω0τ0 iω0 + α3 − α2e−iω0τ0 −α1e−iω0τ0

0 −α4 iω0 + α4









1

u

v




!





0

0

0




.

By straightforward calculations, we obtain

u ! (iω0 + α4)v
α4

,

v ! α3α4V2e−iω0τ0

−ω2
0 + α3α4 + (α3ω0 + α4ω0 − α2e−iω0τ0ω0)i − α3α4e−iω0τ0

.

Similarly, we let q∗(s) ! D(1, u∗, v∗)T eiω0τ0s , s ∈ [0, 1) and A∗q∗(s) ! −iω0τ0q∗(s). We obtain

τ0





−iω0 − Rm
1+β1V2

V2 + β2V2 + V2 + 1 −α3V2eiω0τ0 0

β2 −iω0 + α3 − α2eiω0τ0 −α4

1 − Rm
(1+β1V2)2 −α1eiω0τ0 −iω0 + α4









1

u∗

v∗




!





0

0

0




,

which leads to

u∗ ! −RmV2 + (β2V2 + V2 + 1 − iω0)(1 + β1V2)
α3V2(1 + β1V2)eiω0τ0

,

v∗ ! β2 + (α3 − α2eiω0τ0 − iω0)u∗

α4
.

The condition 〈q∗, q〉 ! 1 needs to be satisfied, which can obtain the value of D. From (6.7), we have

〈q∗(s), q(θ )〉 ! D̄(1 + uū∗ + vv̄∗) −
∫ 0

θ!−1

∫ θ

ξ!0
D̄(1, ū∗, v̄∗)e−iω0τ0(ξ−θ )dη(θ )(1, u, v)T eiω0τ0ξ dξ

! D̄(1 + uū∗ + vv̄∗) −
∫ 0

θ!−1
D̄(1, ū∗, v̄∗)θeiω0τ0θ dη(θ )(1, u, v)T

! D̄(1 + uū∗ + vv̄∗) + D̄τ0(1, ū∗, v̄∗)




0 0 0

α3V2 α2 α1
0 0 0








1
u
v



e−iω0τ0

! D̄[1 + uū∗ + vv̄∗ + τ0(α3V2ū∗ + α2uū∗ + α1ū∗v)e−iω0τ0 ] ! 1.

Thus, we get

D̄ ! [1 + uū∗ + vv̄∗ + τ0(α3V2ū∗ + α2uū∗ + α1ū∗v)e−iω0τ0 ]−1.

Therefore,

D ! [1 + ūu∗ + v̄v∗ + τ0(α3V2u∗ + α2ūu∗ + α1u∗v̄)eiω0τ0 ]−1.

We first construct the coordinates describing the center manifold Mµ at µ ! 0. Let xt be the solution of system (6.6) when µ ! 0.
Define

z(t) ! 〈q∗, xt 〉, W (t , θ ) ! xt (θ ) − z(t)q(θ ) − z̄(t)q̄(θ ). (6.8)

On the center manifold M0, we have

W (t , θ ) ! W (z, z̄, θ ),

where

W (z, z̄, θ ) ! W20(θ )
z2

2
+ W11(θ )zz̄ + W02(θ )

z̄2

2
+ W30(θ )

z3

6
+ · · · , (6.9)
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and z and z̄ are local coordinates for center manifold M0 in the direction of q and q∗, respectively. We need to consider real solutions.
For solution xt ∈ M0 of (6.6), we have

ż(t) ! 〈q∗, ẋt 〉 ! iω0τ0z + q̄∗(0) f0(z, z̄), (6.10)

where f0(z, z̄) ! f (0, W (z, z̄, θ ) + z(t)q(θ ) + z̄(t)q̄(θ )). Then we have

f0 ! f20
z2

2
+ f11zz̄ + f02

z̄2

2
+ f21

z2 z̄
2

+ · · · .

Rewrite equation (6.10) as

ż(t) ! iω0τ0z + g(z, z̄),

where

g(z, z̄) ! q̄∗(0) f0(z, z̄) ! g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2 z̄
2

+ · · · .

From (6.8) and (6.9), we have

xt (θ ) ! W (t , θ ) + z(t)q(θ ) + z̄(t)q̄(θ )

! W20(θ )
z2

2
+ W11(θ )zz̄ + W02(θ )

z̄2

2
+ (1, u, v)T eiω0τ0θ z + (1, ū, v̄)T e−iω0τ0θ z̄ + · · · .

(6.11)

Thus, we obtain

g(z, z̄) ! q̄∗(0) f0(z, z̄)

! τ0 D̄(1, ū∗, v̄∗)





(
Rm

(1+β1V2)2 − 1
)
x1t (0)x3t (0) − β2x1t (0)x2t (0) − β1Rm

(1+β1V2)3 x
2
3t (0)

α1x1t (−1)x3t (−1) + α2x1t (−1)x2t (−1)
0





! τ0 D̄
{(

Rm

(1 + β1V2)2 − 1
)
x1t (0)x3t (0) − β2x1t (0)x2t (0) − β1Rm

(1 + β1V2)3 x
2
3t (0)

+ ū∗α1x1t (−1)x3t (−1) + ū∗α2x1t (−1)x2t (−1)
}

,

where xt (θ ) ! (x1t (θ ), x2t (θ ), x3t (θ ))T ! W (t , θ ) + z(t)q(θ ) + z̄(t)q̄(θ ). We have

x1t (0) ! z + z̄ + W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2
+ o(|(z, z̄)|3),

x2t (0) ! uz + ū z̄ + W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz̄ + W (2)
02 (0)

z̄2

2
+ o(|(z, z̄)|3),

x3t (0) ! vz + v̄z̄ + W (3)
20 (0)

z2

2
+ W (3)

11 (0)zz̄ + W (3)
02 (0)

z̄2

2
+ o(|(z, z̄)|3),

x1t (−1) ! ze−iω0τ0 + z̄eiω0τ0 + W (1)
20 (−1)

z2

2
+ W (1)

11 (−1)zz̄ + W (1)
02 (−1)

z̄2

2
+ o(|(z, z̄)|3),

x2t (−1) ! uze−iω0τ0 + ū z̄eiω0τ0 + W (2)
20 (−1)

z2

2
+ W (2)

11 (−1)zz̄ + W (2)
02 (−1)

z̄2

2
+ o(|(z, z̄)|3),

x3t (−1) ! vze−iω0τ0 + v̄z̄eiω0τ0 + W (3)
20 (−1)

z2

2
+ W (3)

11 (−1)zz̄ + W (3)
02 (−1)

z̄2

2
+ o(|(z, z̄)|3).

Comparing the coefficients, we get
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g20 ! 2τ0 D̄
[(

Rm

(1 + β1V2)2 − 1
)
v − β2u − β1Rm

(1 + β1V2)3 v
2 + α1ū∗ve−2iω0τ0 + α2ū∗ue−2iω0τ0

]
,

g11 ! τ0 D̄
[(

Rm

(1 + β1V2)2 − 1
)

(v + v̄) − β2(u + ū) − 2
β1Rm

(1 + β1V2)3 vv̄

+ α1ū∗(v + v̄) + α2ū∗(u + ū)
]

,

g02 ! 2τ0 D̄
[(

Rm

(1 + β1V2)2 − 1
)
v̄ − β2ū − β1Rm

(1 + β1V2)3 v̄
2 + α1ū∗v̄e2iω0τ0 + α2ū∗ūe2iω0τ0

]
,

g21 ! τ0 D̄
(

Rm

(1 + β1V2)2 − 1
)(

2vW (1)
11 (0) + v̄W (1)

20 (0) + W (3)
20 (0) + 2W (3)

11 (0)
)

− τ0 D̄β2

(
2uW (1)

11 (0) + ūW (1)
20 (0) + W (2)

20 (0) + 2W (2)
11 (0)

)

− τ0 D̄
β1Rm

(1 + β1V2)3

(
2v̄W (3)

20 (0) + 4vW (3)
11 (0)

)

+ τ0 D̄α1ū∗
(

2ve−iω0τ0W (1)
11 (−1) + v̄eiω0τ0W (1)

20 (−1) + eiω0τ0W (3)
20 (−1) + 2e−iω0τ0W (3)

11 (−1)
)

+ τ0 D̄α2ū∗
(

2ue−iω0τ0W (1)
11 (−1) + ūeiω0τ0W (1)

20 (−1) + eiω0τ0W (2)
20 (−1) + 2e−iω0τ0W (2)

11 (−1)
)
.

Next, we need to get the values of W20(θ ) and W11(θ ) to calculate g21. From (6.6) and (6.8), we obtain

Ẇ ! ẋt − żq − ˙̄zq̄ !
{
A(0)W − gq(θ ) − ḡq̄(θ ), θ ∈ [−1, 0),
A(0)W − gq(0) − ḡq̄(0) + f0, θ ! 0.

(6.12)

By Eq. (6.9), we obtain

Ẇ ! Ẇz ż + Ẇz̄ ˙̄z
! (W20(θ )z + W11(θ )z̄ + · · ·)(iω0τ0z(t) + g(z, z̄))

+ (W11(θ )z + W02(θ )z̄ + · · ·)(−iω0τ0 z̄(t) + ḡ(z, z̄)). (6.13)

Substituting (6.9) and (6.13) in (6.12), and comparing coefficients of z2

2 and zz̄, we get

(2iω0τ0 I − A(0))W20(θ ) !





−g20q(θ ) − ḡ02q̄(θ ), θ ∈ [−1, 0),

−g20q(0) − ḡ02q̄(0) + f20, θ ! 0
(6.14)

and

−A(0)W11(θ ) !





−g11q(θ ) − ḡ11q̄(θ ), θ ∈ [−1, 0),

−g11q(0) − ḡ11q̄(0) + f11, θ ! 0.
(6.15)

From the definition of A(0) when θ ∈ [−1, 0), (6.14) and (6.15), we get

Ẇ20 ! 2iω0τ0W20(θ ) + g20q(θ ) + ḡ02q̄(θ )

and

Ẇ11 ! g11q(θ ) + ḡ11q̄(θ ).

Therefore, we have

W20(θ ) ! ig20

ω0τ0
q(0)eiω0τ0θ +

i ḡ02

3ω0τ0
q̄(0)e−iω0τ0θ + G1e2iω0τ0θ , (6.16)

W11(θ ) ! − ig11

ω0τ0
q(0)eiω0τ0θ +

i ḡ11

ω0τ0
q̄(0)e−iω0τ0θ + G2, (6.17)

where Gi ! (G(1)
i , G(2)

i , G(3)
i )T ∈ R3, i ! 1, 2.

Next, we calculate the values of G1 and G2. From the definition of A(0) and (6.14), we have
∫ 0

−1
dη(θ )W20(θ ) ! 2iω0τ0W20(θ ) + g20q(0) + ḡ02q̄(0) − f20. (6.18)
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Substituting (6.16) in (6.18) and noticing that
(
iω0τ0 I −

∫ 0

−1
eiω0τ0θ dη(θ )

)
q(0) ! 0

and
(

−iω0τ0 I −
∫ 0

−1
e−iω0τ0θ dη(θ )

)
q̄(0) ! 0,

we have

(
2iω0τ0 I −

∫ 0

−1
e2iω0τ0θ dη(θ )

)
G1 ! 2τ0





(
Rm

(1+β1V2)2 − 1
)
v − β2u − β1Rm

(1+β1V2)3 v
2

α1ve−2iω0τ0 + α2ue−2iω0τ0

0



.

It follows that



2iω0 − Rm

1+β1V2
V2 + β2V2 + V2 + 1 β2 1 − Rm

(1+β1V2)2

−α3V2e−2iω0τ0 2iω0 + α3 − α2e−2iω0τ0 −α1e−2iω0τ0

0 −α4 2iω0 + α4



G1

! 2





(
Rm

(1+β1V2)2 − 1
)
v − β2u − β1Rm

(1+β1V2)3 v
2

α1ve−2iω0τ0 + α2ue−2iω0τ0

0



.

Therefore, the following value of G1 is given

G1 ! 2




2iω0 − Rm

1+β1V2
V2 + β2V2 + V2 + 1 β2 1 − Rm

(1+β1V2)2

−α3V2e−2iω0τ0 2iω0 + α3 − α2e−2iω0τ0 −α1e−2iω0τ0

0 −α4 2iω0 + α4





−1





(
Rm

(1+β1V2)2 − 1
)
v − β2u − β1Rm

(1+β1V2)3 v
2

α1ve−2iω0τ0 + α2ue−2iω0τ0

0



.

Similarly, from (6.17), we obtain

∫ 0

−1
dη(θ )G2 ! −2τ0





(
Rm

(1+β1V2)2 − 1
)

(v + v̄) − β2(u + ū) − 2 β1Rm
(1+β1V2)3 vv̄

α1(v + v̄) + α2(u + ū)
0



.

We have



Rm

1+β1V2
V2 − β2V2 − V2 − 1 −β2

Rm
(1+β1V2)2 − 1

α3V2 α2 − α3 α1
0 α4 −α4



G2

! 2





(
1 − Rm

(1+β1V2)2

)
(v + v̄) + β2(u + ū) + 2 β1Rm

(1+β1V2)3 vv̄

−α1(v + v̄) − α2(u + ū)
0



.

Therefore, the following value of G2 is given

G2 ! 2




Rm

1+β1V2
V2 − β2V2 − V2 − 1 −β2

Rm
(1+β1V2)2 − 1

α3V2 α2 − α3 α1
0 α4 −α4





−1





(
1 − Rm

(1+β1V2)2

)
(v + v̄) + β2(u + ū) + 2 β1Rm

(1+β1V2)3 vv̄

−α1(v + v̄) − α2(u + ū)
0



.

Thus, we can obtain W20(θ ) and W11(θ ).
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From the values of g20, g11, g02 and g21, the following parameters can be calculated:

c1(0) ! i
2ω0τ0

(
g11g20 − 2|g11|2−

|g02|2
3

)
+
g21

2
,

µ2 ! − Re{c1(0)}
Re{λ′(τ0)} ,

γ ! 2Re{c1(0)},

T2 ! − Im{c1(0)} + µ2Im{λ′(τ0)}
ω0τ0

.
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