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Abstract Homeostatic proliferation plays an important role in cell proliferation. In this paper, we developed a delayed HIV infection
model incorporating two modes of infection along with homeostatic proliferation. We showed the positivity of the solution and the
existence of the steady state for the dimensionless model. We derived the conditions for local stability and the occurrence of Hopf
bifurcation at the infected steady state. We also established the direction and stability of Hopf bifurcation by using the center manifold
theorem and normal form method. Numerical simulations were conducted to demonstrate the analytical results and explore the effect
of delays on the virus dynamics. Our findings indicate that homeostatic proliferation or an intracellular time delay can destabilize
the infected steady state. However, cell-to-cell transmission alone cannot induce a stability switch in the infected steady state.
Furthermore, as the intracellular time delay or the homeostatic proliferation rate increases, the time required for the model to reach
an infected steady state also increases.

1 Introduction

Infectious diseases continue to pose a significant threat to global public health, and among these, the human immunodeficiency virus
(HIV) stands out as particularly detrimental. As a retrovirus, HIV primarily targets the crucial CD4+ T cells in the human immune
system. According to the World Health Organization (WHO), HIV has claimed over 40.4 million lives to date. By the end of 2022,
it is estimated that around 39 million people were living with HIV, with two-thirds of them (approximately 25.6 million) located in
the African region [1]. Since its initial identification in 1981, the global community has been relentless in its battle against HIV. As
awareness of its devastating effects on human health has grown, extensive research has been conducted to understand the dynamic
behavior of this virus.

Many existing HIV models focus solely on cell-free virus infection [2-6] and incorporate aspects such as delays, age structure,
and latency. These models often overlook cell-to-cell transmission, which might be more efficient in transmitting the virus because it
can transmit several virions each time and the virus is not exposed to the neutralization of antibodies [7, 8]. Given the importance of
understanding HIV’s spread, it is essential to consider the role of cell-to-cell transmission. In recent years, many models have begun
to include this form of transmission [9-12]. For instance, Wang et al. [10] examined an HIV latent infection model that features
cell-to-cell transmission, assessing how time delays and the fraction of infection contributing to these delays affect virus dynamics.
They also evaluated the relative contributions of both transmission modes to the HIV population. Furthermore, viral infection is a
complex process that does not occur instantaneously. For example, the virus enters target cells, followed by reverse transcription,
integration, transcription, and translation [3]. Therefore, introducing delay(s) to capture the temporal dynamics in viral infection
and other diseases aligns more closely with real-world observations [2, 13, 14].

Cell proliferation plays a crucial role in the infection of HIV and should not be overlooked. Research highlighted in [15] has
demonstrated the significant impact of CD4+ T cells in primary viral infections. Thus, varying levels of CD4+ T cells may either
promote or inhibit virus replication during HIV transmission. Previous studies of HIV within-host models have typically focused
on viral infection or clearance, considering only parameter variations and overlooking initial viral loads or changes in CD4+ T cell
counts during transmission [16]. In this paper, we focus primarily on the homeostatic proliferation of CD4+ T cells, which provides
HIV additional opportunities to infect through free virus particles by replenishing the pool of target cells. In the absence of specific
antigens, CD4+ T cell division in depleted lymphoid tissues is thought to be driven by the presence of foreign antigens [17, 18].
Fan et al. explored an acute phase model that relies solely on healthy CD4+ T cells, illustrating the body’s regulatory mechanism to
maintain CD4+ T cell population [19].
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Studies have shown that in the context of reduced lymphoid cells caused by HIV, the homeostatic proliferation of CD4+ T cells
is primarily driven by viral load. This increase in viral load not only consumes CD4+ T cells but also leads to the recruitment of
immature CD4+ T cells into a proliferation pool [20]. Therefore, in the presence of HIV, this regulatory mechanism is influenced
by both the intensity of the viral load and the size of the CD4+ T cell population. Many studies found that the production of new
CD4+ T cells and macrophages from the thymus, bone marrow, and other sources typically remains constant. However, HIV and
other pathogens can induce the proliferation of immune cells [21-24], necessitating a consideration of homeostatic proliferation in
response to infection.

The structure of this article is as follows. In Sect. 2, we construct a delayed HIV infection model that incorporates homeostatic
proliferation and cell-to-cell transmission. We determine the basic reproduction number of the model and the dimensionless system.
In Sect. 3, we study the local stability of all the steady states of the dimensionless model and analyze the existence of Hopf bifurcation
at the infected steady state. The direction and stability of Hopf bifurcation are determined using the center manifold theorem and
normal form theory in Sect. 4. In Sect. 5, numerical simulations are used to illustrate the analytical results. Finally, the paper
concludes with a brief summary and discussion.

2 Mathematical model
2.1 Model formulation

We have included homeostatic proliferation and cell-to-cell transmission in the model, which resulted in the following delayed HIV
infection model with two modes of transmission.

7o - + T(V@) —kT@)V () — BT0)I(E) — diT(1)
o M v OV p 1T (0),
dgil) =kT(t—-7)V(t - T)e—5T + BTt — DIt — T)e—Sr — 1), 2.1
dv
0 = pie) -~ dsv)

where T'(¢), I(¢), and V(¢) represent the concentrations of uninfected CD4+ T cells, infected cells, and free virus at time ¢, respectively.
The time 7 represents the intracellular delay, which is the time it takes for uninfected CD4+ T cells to become productively infected
after coming into contact with the virus. The model assumes that uninfected CD4+ T cells are produced at a rate A, and die at a
rate d;. Healthy CD4+ T cells are infected by free viruses at a rate k and through direct cell-to-cell transmission at a rate 8. Since
the time delay between viral entry and viral production is independent of the transmission mode, we apply the same delay for KTV
and BT I, collectively referred to as the intracellular delay. The parameter p indicates the rate at which new virions are produced by
infected cells. The death rate of infected cells is denoted by d», and d3 is the rate of viral clearance. The death rate of infected cells
that have not begun to produce viruses is 8, and e % represents the survival probability of these infected cells.

The term ﬁv([)T(z‘)V(z‘) describes the homeostatic proliferation due to the immune response, as detailed in [25]. Specifically,
the homeostatic proliferation of CD4+ T cells is triggered by the presence of the virus and the consequent decrease in the number of
uninfected CD4+ T cells. Here, ¢ represents the maximum growth rate, and M is the half-velocity constant of growth. We define the

function F(V) = MLWV, which satisfies F(0) = 0, F/(V) > 0, and Vlim F(V) = ¢. Thus, this saturated term vanishes when no
—00

virions are present in the model. The basic dynamics of the model align with those of the general virus model. Furthermore, as the
virus population grows, the immune system of the infected host replenishes the CD4+ T cells to compensate for what is consumed
in-host, with the maximum growth rate given by 7. Although the growth rate of this term is limited, homeostatic proliferation
significantly impacts the dynamics of the model. When cells undergo pathological changes, their concentration does not sharply
increase or grow indefinitely over time but instead varies within a limited range. Therefore, to maintain biological relevance, we
assume that the maximum growth rate of uninfected cells is less than their death rate, meaning that ¢ < d; [27].

Model (2.1) always has the steady state Py = (%, 0, 0). Through the next-generation matrix method [28], we obtain

pkA st | BA -8t kA -5t
Fy—! = (d1d2dse O+ 4 € d1d3g )

The basic reproduction number is given by p(FV~!), where p denotes the spectral radius of the next-generation matrix. Thus, we
have
kA A
0= PR ot PA e %",

didards didy
Ry refers to the number of secondary infections caused by a single infected cell (or virus) in a completely susceptible environment.
The term dlp 52[:13 e~%7 represents the basic reproduction number for the model with cell-free infection, while Cﬁ—gze“;’ represents the
basic reproduction number for the model with cell-to-cell transmission.
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2.2 Positivity and boundedness of solution

The following result shows that the solution (7'(¢), 1(¢), V(¢)) of model (2.1) remains nonnegative and boundedness.
Theorem 2.1 Under the given initial conditions, all solutions of model (2.1) are positive and ultimately bounded for all t > 0.

I?roof We first show that 7'(¢) > O for all > 0. Assume tha} there existsaf; > Osuchthat T(¢+;) =0, T(¢t) > 0, t € [0, t1). Thus,
T(t1) < 0. From the first equation of model (2.1), we have T'(#;) = A > 0, which is a contradiction. This implies that 7'(¢) > 0O for
allr > 0.
Next, we prove that I(¢) > 0, V(¢) > 0 for all + > 0. Assume that thpre exist a tp > 0 such that min{/(1,), V(t2)} = 0.
IfI(t) =0,1()>O0forr € [0, n)and V(z) > 0, t € [0, 1], then I(t;) < 0. We have
dl(r2)
dr

When t, — 7 € [0, 1p), we have i (2) > 0, which is a contradiction. This implies that /(¢) > 0 for all > 0.
By the last equation of model (2.1), we have

=kT(tr — T)V(tr — T)e T + BT (12 — T)I (12 — T)e°".

t
V() = Voe B + / pl(&)e BU=5dg > 0.
0

Thus, T(t) > 0, I(t) > 0, V(t) > O for all + > 0. Similarly, we can prove that V() = 0, V(t) > 0 fort € [0, 10), I(¢) > O,
t €[0,nland I(tr) = V() =0, I(¢), V(¢) > O for ¢ € [0, tp) are possible using the same method.

In conclusion, 7'(¢), I(t), V(t) > O for all r > 0.

The boundedness of the model is proved below. Define N'(¢) = T(¢) + I (¢ + 7)e%7. We have

dN () L
dt = M+ V(@)
<A+eT@t)—diT®) — doI(t + 1)’
<A—(d —T@®) —dI(t+1)e’"
<A —dN(@).

TOV(@)—diT(t) — dal(t +7)e"

Thus, lim sup N(¢) < A and d = min{d; — &, d»}. Moreover, we obtain lim sup V(1) < Ap O
t—00 d t—o0 dd
Therefore, Y defined dy
3 A Ap
T =T, 11), V) e R :0<T)+1(t) < T
is a globally attractive and positively invariant subset of model (2.1).

2.3 Dimensionless model

To reduce the parameter space, model (2.1) can be reconstructed to a dimensionless form. Let

- T®) . It ~. V@& . t _. T
Th=—r Ih="7 V=7, i=—. T=—.
(pk + Bd3)e=*7’ pk’ k’ d’
To simplify, we remove the symbol ~, which leads to
dT (1) R
—— =Roy+ ———T0)\Ve)—-TO)V(@) — BTt)I() —T(1),
i 0 1+ﬂ1V(t)()() OV@) = BTOI() — T )
dr(
% =aiT(t— )Vt — 1)+l — It —1)—a3l(t), 22)
dv()
= I(t) = V@),
” ag[1(1) = V(1]
where
kA A d d
T~y S N -
didrds did Mk Mk pk
pkda Bdrd; d d3
A=—"""", ) =——————, 03=—, 4= —.
di(pk + Bd3) di(pk + pd3) d di

@ Springer



1064  Page 4 of 23 Eur. Phys. J. Plus (2024) 139:1064

Each new parameter is positive, reflecting the positivity of the original parameters. The properties of the transformed model remain
unchanged, ensuring that the solutions of model (2.2) are positive and uniformly bounded. Moreover, we typically fix the values
of B1, B2, a1, oy, w3, and oy while exploring variations in Rg and R,,. Here, o1 + op = o3 and o182 = 3. Ry represents the
basic reproduction number of model (2.1), derived using the next-generation matrix method, while R,, denotes a new reproduction
number introduced by incorporating the saturated term.

Let’s define the Banach space as follows:

Qr ={p =(p1, 02, p3) € L:¢;(A) >0 forall 6 e[-7,0], i =1,2,3}.

The Banach space of continuous functions mapping the interval [—7, 0] to R is defined by ¢ : [—7, 0] — R3. The initial
conditions of model (2.2) is

T©)=¢10), 100) =p20), V() =¢3(0), 0 ¢€[-1,0], (2.3)

where ¢ = (@1, @2, ¢3) € Q4.

3 Stability analysis
3.1 Existence of the steady state

Model (2.2) always has an infection-free steady state Eg = (Rp, 0, 0). For the other steady states, we use the same approach as in
[16] and the components of equilibrium satisfy

m
1+,31V
a1 TV +arTI — a3l =0,
as(I —V)=0.

Ry +

TV -TV =TI -T =0,
3.1

Starting with the equilibrium equations (3.1), we use the last equation to deduce that / = V. This leads to the infection-free steady
state Eg if I = V = 0. When I = V # 0, substituting this condition in the second equation yields:

o3
ao T +aT =3, T = =1.
o]+ o
From this equation, we can derive a formula for V, specifically:
V24V +e3 =0, (3.2)

where

c1=B11+B2)>0, c2=p1(1-—Rp)+1—Ry+p, c3=1-Ry.

(a)If Rg < 1, then ¢z > 0.
The condition A = c% — 4cic3 > 0 needs to be satisfied, which implies that all the solutions of the equation are real values.
(i) A = ¢ —4cic3 > 0. This is equivalent to

(G+1+B—Rn)?> —4G(1+B2) > 0,
where G = B1(1 — Rp). We have
G*+(1+ B2 — Rp)> +2G(1 + By — Ry) —4G(1 + B2)
=G?>+(1+B2r— Rp)> +2G(1 + B2 — Rp) — 4G (1 + B2)
+2G(1+ B+ Ry) —2G(1 + B2+ Ry)
= G2 —2G(1+Br+Ry)+(1+ B — Ry > 0.

It follows that
6= (ViTh - V&) || 6~ (Vith+ VR | 20

Clearly, ( 1+ 62+ «/Rm)2 > («/1 + B — «/Rm)z. Thus, A = c% —4cqc3 > 0if and only if

2 2
G- (w/l + B — \/Rm) <0 or G— (w/l +/32+\/Rm> 0.
Then we have
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e 2 e 2
R0>1—( 1+ﬁﬂ_m) 0rR0<1—( 1+ﬂ2ﬂ+m).
1 1

The infected steady states also exist when ¢, < 0. The condition 1 > Ry > 1+
Thus, we have

H%%R’" is equivalentto 1+ B2 < R,,.

2
1+ —R 1+B8+VR
1+M<R0<1—( 2 m) or B <Ry<,
Bi Bi
2 2
where B = maX{O, 1- (71%2};1 'Rm)}. Because 1 + W <Ry<1- (7]%2‘; VRu) s an empty set, this implies that there

is no solution in the (Rg, R;,) space. Under these conditions, we identify two infected steady states, £ and E>.

If Bl < Rp <land 1+ B < Ry, we have
—Ccy — 1/ — 4C]C3 —Ccy — 1/ — 4C1€3
—c2+,/c5 —4C163 —cy +,/ch —4C]C3

) IfA = c2 4c1c3 = 0, following the same analysis as above, we have

oot o (e -

Er=(, I, Vi)=(,

Ey,=(1, L, V)=,

Thus,
(VT+P2 — VR (VT+ B2+ VRy)
Ro:l— ,31 OI'R():l— ﬂl .

In additon to c» < 0, we get
2
(VT+B2— VRu)
B1 '

Under these conditions, we have a unique infected steady state E», which is of multiplicity 2.
(b) If Ry = 1, then ¢3 = 0. Equation (3.2) becomes

Rnw>1+pr and Ry =1 —

V(c1V +¢2)=0.

Thus, V =0o0r V = —22, Since ¢c» < 0, we have V = —% > 0 and R, > 1+ B7. Therefore, there is a unique infected steady

state E>.
(¢) If Ro > 1, then ¢3 < 0. This is the infected steady state E».
In summary, we present the following theorem.

Theorem 3.1 (i) The infection-free steady state Eq of model (2.2) always exists.
2
(ii) If Ry = 1 — (P os/Ru).

steady state E».
(iii) If Bl < Ry < 1l and 1 + B> < Ry, then model (2.2) has two infected steady states E1 and E.

and 1+ By < Ry or Ry=1and 1+ B> < Ry, or Ry > 1, then model (2.2) has a unique infected

3.2 Stability of the steady state

In this section, we examine the stability of the steady states of model (22 where T > 0. We linearize model (2.2) and derive the
characteristic equation evaluated at an arbitrary steady state E = (T, I, V), which is determined by the following determinant:

v - = Ry
At 14V 4 ol — ful BT T(l—i(nﬂl\;)z)
— Ve ™" —aple ™ r+a3—opTe ™™™ —qTe =0. (3.3)
0 —0ty A+ oy

Theorem 3.2 When Ry < 1, the infection-free steady state Ey of model (2.2) is locally asymptotically stable for all T > 0.
Otherwise, it is unstable.
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Proof For Ey = (Ryp, 0, 0), the characteristic equation is
F) =G+ DA +a3)h+az) — (L + DO+ ag)azRoe ™ — (A + Darjog Roe ™* )
=+ DA +03)A +ag) — (A + o)z Roe ™" — ayaa Roe 7] = 0. '

Our goal is to demonstrate that if the eigenvalue A; = x + iy is a solution of Eq. (3.4), then the real part x < 0 when Ry < 1.
Suppose this conclusion is incorrect, and we find that x > 0. Under this assumption, calculate equation (3.4) we get

OIICX4R0€_)‘” OIQRQe_)“'r
(A1 +a3)(A +ag) Al tas
oo Roe ™17 oy Rge ™17

(A1 +a3)(A1 +aq)
- a1 Ry N azRo

AM+a3 (3.5)

a3 a3
= Ro.

This leads to a contradiction. Thus, all the roots of the characteristic equation (3.4) have negative real parts. This shows that Ey is
locally asymptotically stable when Ry < 1.

When Ry > 1, we know that the characteristic equation f(0) = aza4(1 — Rp) < 0 and limy_, 400 f (1) = +00. Therefore, there
is at least one positive root such that f(A) = 0. Thus, the infection-free steady state Ej is unstable when Rg > 1. (]

The infected steady state Ej , is brought into the characteristic equation (3.3) and ] + oo = «3. We obtain the following
characteristic equation:

H(A1) = Pi(A) + P,(Me " =0, (3.6)
where
PV =2 +ar>+aih+ag, Pr(A) =boAr +biA+ b
and
R Vi2
am=a3+as+1+Vi2+BVi2— ———,
1+ 81Vi2

Rmvl 2
a) = aza4 + (a3 +0!4)(1 +Via+BaVi2— 7)
1+ B1Vi2

RuVi,2 )

apo=o304| 1+ Vi2+BoVio — ———
( 1+,31V1,2

by = —ay,

RuVi,2
by =a3(BVi,2 —ay) —062(1 +Vio2+ B Vi — m7>

L+ p1Vi2
( RuVi,2 RnuVi2 )
bo =z ——— —1— ———=— |
1+p1Vi,2 (I+p1V1,2)
When 7 = 0, the equation becomes
A3+ (ag + b2)A% + (ay + b)A +ag + by = 0. (3.7)

Letiw (o > 0) be a root of Eq. (3.6). We separate the real and imaginary parts and get

biwsin wt + (bg — bza)z) CoSwT = a2w2 — ao,

) 3 (3.8)
(by — brw")sinwt — biwcoswt = —w” +ajw.
This leads to
. (a0* — ag)biw + (by — bro*)(a 1w — w*)
sinwt = VI ,
(b — bhow?*)* + biw
(@° — a1w)byw + (by — brw*)(arw? — ap)
CoS WT = I .
(bp — bow?*)* + biw
Adding the square of each equation yields
® +mo* +l0* +r =0, (3.9)
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where
m=a3 —2a; — b3, [=a}+2byby—2azap —b}, r=aj— Db}
Let z = w?. Then Eq. (3.9) becomes

hz)=2>+mz> +lz+r =0. (3.10)
Lemma 3.3 When E| exists, we have B1(1 + ﬁz)Vl2 +Ryp—1<0.

Proof From the previous discussion, we know that Ry < 1,¢2 < Oand A = c% —4cyc3 > Owhen E exists. Thus,c3 = 1—Rg > 0.

We have
—cp — ,/c% —4cic3

Vi =
! 2C1

Multiplying the numerator and denominator by —c, + , /C% — 4cqc3, we obtain

2¢ 2¢
Vi = 3 < —73.
-2 +‘/c% —4cic3 c
Thus, —c2 Vi < 2c¢3. From Eq. (3.2), we get
c1V12 = -V —c3 <c3.

Therefore

Bi(1+B)VE+Ry—1=c1VE —c3 <0.

O
Theorem 3.4 When the infected steady state E| of model (2.2) exists, E| is unstable for all T > 0.
Proof (a) When t = 0, Eq. (3.6) becomes
A3+ (a2 + b2)A% + (ap + by))A +ag + by = 0. (3.11)
From the first equation of (3.1) and Lemma 3.3, we have
ar)+by) =az+og4 —apy+ Ry > 0,
al +b1 = (053 + o4 — (xz)Ro +O{3,32V1 > 0,
ap +b0 = ﬂ[ﬂl(l +ﬂ2)V12 + Ry — 1] < 0.
L+ p1V1
From the existence of roots, we know that Eq. (3.11) has at least one positive root. Thus, E is unstable when t = 0.
(b) When 7 > 0, the characteristic equation is
A+ ar? +aih+ag+ A% +bid +bgle T =0, (3.12)
where
a) = a3 + o4 + Ry,
a1 = azog + (a3 + o4)Ro,
ayg = aza4 Ry,
by = —ay,
by = a3(BaVi — a4) — a2 Rp,
an
by = azaa V) |:,32 +1— 7] — a304 Ry.
(1+ p1V1)?
We have the following equation
h(z) =22 +mz* +lz+r =0, (3.13)

where

m=a§+a2+R(2)—a§>0,
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2

[ =(af +a] — a3)R3 — 2wa0304 (B1(1+ B2)VE+ Ry — 1]

1
I+p1Vi
+ 2362 Vi(azas + a Ry) — 0{%,322 Vlz,

r = (ap — bo)(aop + bo)

and
ap + bo 1+/31‘11[,31( + B2V + Ry — 1]
b 3% Ry + 1+ B1VIRy — Vi(Bs + 1))]
an — = ————-—---— _ .
0 0 ]+5]V1 0 1V1 0 1LP2

From Lemma 3.3, we know that 8;(1 + ﬁz)Vl2 + Ro — 1 < 0, which implies that ag + bg < 0. Additionally, we can derive that
B1(1+ ,32)V12 < 1—Rop < 1+ Ry, hence ap — by > 0. Therefore, we obtain r = (ap — bo)(ap + bg) < 0. Consequently, Eq. (3.13)
has one positive root zq for m > 0 and any /, leading to a positive root wy = /Z.

In conclusion, the infected steady state £ is unstable for all T > 0. The proof is completed. O

At the infected steady state E», when t = 0, Eq. (3.6) becomes
23+ (az + b)A2 + (a1 + b)A +ag + by = 0, (3.14)
where
ar)+by) =az+o4 —apy+ Ry > 0,
ay+b; = (@3 +a4 —ax)Ro+a3B2 V2 > 0,

ap + bo =
Lemma 3.5 When E; exists, we have B1(1 + ﬂz)sz +Ryp—1=>0.

Proof (a) When Ry > 1, B1(1 + ﬂz)sz + Rp — 1 > 0 always holds.
(b) When Ry < 1, we know that c; < O and A = c% —4cic3 > 0. Thus, c3 =1 — Ry > 0. We have

—cz+,/c% —4cic3

V2= 2cq
Multiplying the numerator and denominator by —c¢p — ,/ c% — 4c1c3, we obtain
Vy = 263 > 23
—cy —4/c5 —4cics €
Thus, —c2 V2 > 2c¢3. From Eq. (3.2) we get
c1 sz =—cVo —c3 > c3.

Therefore, we have
Bi(l+B)VE+Ry—1=c1Vi—c3 >0.
The proof is completed. U

From Lemma 3.5, we obtain that ag+bg > 0. When ap+bg = 0, Eq. (3.14) has an eigenvalue of zero, indicating that a saddle-node

bifurcation occurs at the infected steady state E2. When ap + bg > 0, according to the Routh-Hurwitz criterion, the equation 13:7574\‘/2
[Bi(1+B2)V5 + Ro — 1] < (a3 + 0t — 2 + Ro)[(3 + a4 — a2) Ro + a3 82 V2] holds when E; is stable.
When 7 > 0, letiw (@ > 0) be the root of the characteristic equation at £,. We have
hz) =2 +mz>+iz+r =0, (3.15)

where
m :a%+a£+Rg—a§ > 0,

2

[ =(a?+a] — a3)R3 — 2wz [Bi(1+B2)VE+ Ry — 1]

1
I+81V
+ 20382 Valasas + a2 Ro) — o33V,
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r =(ap — bo)(ap + by)

and
o304 2
by = ——— 1 V. Ry — 1],
ap + by 1+/31‘/2[,131( +B2)Vs + Ry — 1]
o304
— by = ——[R 1 Vo(2Ro — V. 1)].
ap — b 1+ﬂ1V2[ o+ 1+ B81V2(2Ry — V2(B2 + 1))]

From Lemma 3.5, we obtain that ag + bg > 0. When ag + by = 0, Eq. (3.15) becomes 2(z2+mz+1) = 0. In this case, Eq. (3.15) has
a unique positive root wy = /zo if / < 0. When ag + by > 0, we have r = (ag — bo)(ao + bp) > 0 if the equation has no positive
roots. Thus, ag — bg > 0, which implies Ry + 1 + 81 V2(2Rg — V2(B2 + 1)) > 0. Therefore, the infected steady state E; is stable.
Moreover, we have Ro + 1 + 81 V2(2Rg — Va(B2 + 1)) < 0if r < 0. Then Eq. (3.15) has one positive root zg for m > 0 and any /,
leading to a unique positive root wp = /zo. Thus, we can conclude the following results.

Theorem 3.6 (i) When Ry < 1 and A = 0, model (2.2) undergoes a saddle-node bifurcation at the infected steady state E;.
(ii) When Ry < 1 and A > 0, or Ry > 1, if the following conditions hold:

(@) 15545 [B1(1+ B2)V3 + Ro — 1] < (a3 + a4 — a2 + Ro)l(3 + s — a2)Ro + 3o Vol

(b) Ro+1+B1V2(2Ry— Va(Br+1)) =0,

then the infected steady state E> of model (2.2) is locally asymptotically stable for all T > 0.

Theorem 3.7 If the following conditions hold

(i) 155 [+ B2V + Ro — 1] < (@3 + s — a2 + Ro)l(@3 + s — a2)Ro + @352 V2],
(ii) Ro+ 1+ B1VaRRy — Va(Ba+1)) < 0andl < O, then E is locally asymptotically stable when t < 19 and unstable when

T > 19. Therefore, model (2.2) undergoes Hopf bifurcation when T = 1y,

1 (@ — ayw)b1w + (by — brw?*)(arw? — ag) . .
7; = — | arccos VIR +2jr), j=0,1,2,..
w (bo —bhw )* + bla)

Proof We need to verify the transversality condition for the Hopf bifurcation at T = 1o [29], i.e., sign(Re(g—i‘)“:m) = sign
(dﬁ(;) |z:a)2)' Taking the derivative of the Eq. (3.6) at , we obtain
dH(, t) 9dHQ, 1) N OH(, T)dr 0
v ot . dr

Then we have

<dx>‘1 _ R (P —tP))e T + PO G16)

dr) — MHen & APy ())e T

From H(A, ) = 0 and A = iw, we have
di
dr

-1 _ Pio) T P(iw)

e 0Pi®) 0 io0Piio)
Next, from straightforward calculations, we can rewrite equation (3.15)
h(z) = (ap — a2z2)? + z(a1 — 2)* — (bo — bz)* — zb%

= A1(2)? +242(2)* — B1(2)* — zBx(2)* = 0.

) w0 e )
=19 iwP(iw) ioP1(iw)

2AVAy + A3 +2zA5A,  2B|Bi+ B3 +2zB)B,
B A%+ w2AS B} +w?B3

It follows that

(dx
Re| —
dr

From Al(z)2 + wZAg(z)2 = Bl(z)2 +w? Bz(z)z, we obtain

dn ]! h'(z)
Re<dr ) = B+’ G
T=T0 1 2

7=w?
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Table 1 Parameter values of Parameters Values Description References
model (2.1)
A 10 mrn*3daLy*l Generation rate of uninfected cells [26]
€ 0.01 day*' Maximum homeostatic growth rate [25]
M 300 copies mm™3 Homeostatic half-velocity [25]
k 4.57 x 107> mm?3 day~! Rate of cell-free virus infection [21]
B 1.5 x 10~* mm3day~! Rate of cell-to-cell transmission [12]
P 40 virions per cell day_l Rate of viral production [21]
8 0.01 day_1 Death rate of infected cells that [3]
Have not started to produce virus
d 0.02 da)Fl Death rate of uninfected cells [26]
dy 04 day*1 Death rate of infected cells [26]
d3 2.4 day_1 Clearance rate of free virus [21]

We know that B (z)? + @?Ba(z)* > 0, which leads to

ol R dxr
sign| Re
& dr

. (dh(z) )
= sign .
=10 dz 7=w?

This completes the proof. (]

4 Direction and stability of the Hopf bifurcation

To better understand the Hopf bifurcation, we investigate the direction and stability of the bifurcating periodic solutions using the
normal form method and center manifold theories, as described by Hassard [30]. We obtain the following results (see Appendix for
proof).

Theorem 4.1 Under the condition of Theorem 3.7,

(i) if u2 > 0 (or po < 0), the Hopf bifurcation is supercritical (or subcritical) and the bifurcated periodic solutions exist for
T > 10 (0r T < 70),
(ii) ify > 0(ory <0), then the bifurcated periodic solutions are unstable (or stable),
(iii) if T»h > 0 (or T, < 0), then the period of the bifurcated periodic solutions increases (or decreases).

5 Numerical results

In this section, we illustrate the analytical results through numerical simulations, focusing particularly on the effects of cell home-
ostatic proliferation and cell-to-cell transmission on HIV infection. We have fixed the values of a1 = 16.71, o = 3.29, a3 = 20,
a4 = 120, 1 = 1.46, and B = 0.19, as calculated from Table 1.

For our simulations, we set Rp = 0.5 and varied the values of t and R,,. Figure 1 demonstrates that the infection-free steady
state Eg = (0.5, 0, 0) is locally asymptotically stable with the initial conditions (7'(0), 1(0), V(0)) = (2, 1, 1), in accordance with
Theorem 3.2. As shown in Fig. 1a, variations in t can reduce the peak of infection but prolong the time taken for the infection to
dissipate. Altering the value of R,, does not affect the time until the infection disappears but does increase the peak of infection, as
illustrated in Fig. 1b.

We incorporated cell-to-cell transmission into the model to study its impact on HIV infection. To examine the effects of varying
the cell-to-cell transmission rate (8), we adjusted the parameters related to 8 in model (2.2), specifically Ry, o1, a2, and B>. Which
requires assurance Ry < 1. As shown in Fig. 2, we observe that the peak of infection increases with the cell-to-cell transmission rate
at the infection-free steady state. This suggests that the number of infected cells escalates rapidly within a short period, resulting in
a significant increase in infection levels.

Model (2.2) undergoes both a backward bifurcation and a saddle-node bifurcation at the infected steady state E;. In Fig. 3, a
backward bifurcation (BP) occurs when Ry < 1, indicating the presence of two infected steady states. This suggests that even if
Ry is less than 1, sustained infection transmission may still occur, which has significant implications for public health policy. At
Ro = 0.979, model (2.2) undergoes a saddle-node bifurcation (LP(SN)) with multiplicity 2. When the backward bifurcation occurs,
the curve below the saddle-node represents an unstable equilibrium, while the curve above indicates a stable equilibrium.
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Fig. 1 The infection-free steady state E is locally asymptotically stable when Ry = 0.5. a The evolution of I(¢) for Eg is shown with different values of
7: the short blue dotted line, light blue solid line, long red dotted line, and magenta dotted line represent the dynamics of /(¢) under ¢ = 0.001, T = 0.02,
7 = 0.08, and T = 0.3, respectively. b The evolution of /() for E¢ is shown with different values of Ry, : the short blue dotted line, light blue solid line,
long red dotted line, and magenta dotted line represent the dynamics of 7(¢) under R;; = 0.8, R, = 2, Rjy = 5, and R, = 8, respectively

Fig. 2 The infection-free steady 14 \
state E( is locally asymptotically wenun 3,=0,0,=40,0,=0
stable at different values of the 12k ,‘\‘ 5.20.2,0.=33,0,=10 | |
cell-to-cell transmission rate when 1 | — . 32=0 8 a1=22 QZ=30
Rin = 0.8. The short blue dotted [ Tz T2
line represents B = 0, o] = 40, 106 .' \ = =150, 7160,752] |
and ap = 0; the light blue solid I / }
line represents 8y = 0.2, o] = 33, 1 7
and ap = 10; the long red dotted . 8 I 14 1
line represents B, = 0.8, oy = 22, z ] .'" .
and ap = 30; and the magenta 6l .' I :'\ '-_ 1
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o) = 16, and ap = 52 H :' “ '-‘
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Figure 4 illustrates the Hopf bifurcation curve and changes in stability under different parameters for t = 0. Figure 4a depicts
the Hopf bifurcation curve on the R,, — Rp parameter plane. Above this curve, the steady state E; is stable, while below it, E; is
unstable. Figure 4b—d show the relationships between R, and T, I, and V when R,, = 16 and Ry = 2, respectively. The results
indicate that a Hopf bifurcation occurs at R,,, = 16.027, changing the stability of the infected steady state E» = (1, 17.665, 17.665).
As R,, increases, model (2.2) transitions from stable (blue curve) to unstable (red curve).

The infected steady state E2 = (1, 1.857, 1.857) is locally asymptotically stable for various values of 7, given the initial
conditions (7'(0), 1(0), V(0)) = (2, 1, 1), in accordance with Theorem 3.6. In Fig. 5a, when Ry = 2 and R,, = 1.5, the peak value
of infection decreases as 7 increases, whereas the time to reach the steady state lengthens with an increase in t. Figure 5b illustrates
that at 7 = 0.03, as homeostatic proliferation (R,,;) increases, not only does the magnitude of the infected steady state E» increase,
but the time to reach this steady state also extends. This demonstrates that homeostatic proliferation (R,,) has a more significant
impact on HIV infection dynamics than the delay (7).

Similarly, to assess the impact of cell-to-cell transmission on the infected steady state, it is necessary to vary the cell-to-cell
transmission rate. With fixed values of R,, = 1.5, 81 = 0.73, and T = 0.02, we modified the values of &1, @2, and B,. Of note,
setting ap and B, to zero eliminates cell-to-cell transmission. Our observations indicate that as the cell-to-cell transmission rate

increases, the peak of the infected steady state also rises, while the time required to reach the steady state decreases, as shown in
Fig. 6.
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Fig. 3 The backward bifurcation
and saddle-node bifurcation occur
at the infected steady state Ep
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Fig. 4 a The Hopf bifurcation curve in (R;;, Rg) parameter plane. The components 7', I and V of infected steady state E, with respect to the parameter
R, when Ry = 2 in b, ¢ and d, respectively
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Fig. 5 The infected steady state E; is locally asymptotically stable when Ry = 2. a The evolution of /(¢) for E is shown with different values of ¢ when
R, = 1.5: the short blue dotted line, light blue solid line, long red dotted line, and magenta dotted line represent the dynamics of /(¢) under r = 0.01,
7 =0.08, T = 0.2, and = = 0.4, respectively. b The evolution of I(¢) for E5 is shown with different values of R;; when t = 0.03: the short blue dotted

line, light blue solid line, long red dotted line, and magenta dotted line represent the dynamics of /() under R, = 0.8, R, = 1.5, Ry = 2,and R, = 2.5,
respectively
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When Ry = 3 and R,, = 5, the infected steady state E, exists. As shown in Fig. 7, this steady state is stable at 7 = 0.03 and
becomes unstable at T = 0.06. Thus, the stability of model (2.2) changes from stable to unstable as t increases. To identify the
critical value for Hopf bifurcation, Fig. 8 shows how the difference between the maximum and minimum values of uninfected cells
T(¢) varies with T. When this difference is zero, it indicates that the steady state has reached a stable condition; if the difference
is nonzero, it signifies that the steady state is experiencing oscillations. Model (2.2) begins to exhibit bifurcation at 7 = 0.055. In
accordance with Theorem 3.7, this transition from stability to instability through a Hopf bifurcation indicates that £, undergoes a
supercritical Hopf bifurcation at T = tp.

Next, we investigate how the Hopf bifurcation behavior of model (2.2) changes with variations in parameters t, R,, and Rg. We
show the Hopf bifurcation curves for different values of ¢ = 0.001, 0.005, 0.01, 0.05, 0.1 in Fig. 9a. The infected steady state E; is
stable above these curves and unstable below them. It is also observed that the Hopf bifurcation curves tend to approximate a straight
line as 7 increases. In Fig. 9b, we illustrate the effect of homeostatic proliferation on model (2.2) and plot the Hopf bifurcation curves
for various values of R,, = 5, 5.5, 6, 6.5, 7. Similarly, the infected steady state E» is stable above the Hopf bifurcation curves and
becomes unstable below them. The results indicate that the stable region for E; decreases while the unstable region expands as t
and R,, increase. These Hopf bifurcation curves allow us to understand the dynamic characteristics of the model under different
parameter combinations, providing valuable insights for understanding and predicting virus transmission.
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(a) Es is locally asymptotically stable at 7 = 0.03.
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Fig. 7 The evolution of solution curves and phase portraits associated with the infected steady state Eo are shown with initial conditions (7°(0), 7(0),
V() =(2, 1, 1)when Rg =3and R, =5
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Fig. 8 A Hopf bifurcation occurs 2
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Fig. 9 The Hopf bifurcation curves of model (2.2). a The Hopf bifurcation curves in (R;;, R() parameter plane with different values of . b The Hopf
bifurcation curves in (t, Rg) parameter plane with different values of R,

Cell-to-cell transmission is a critical factor in this study, essential for understanding its impact on the model dynamics. Figure 10
displays the Hopf bifurcation curves for cell-to-cell transmission when R,, = 5 and 7 = 0.1. The red curve represents the Hopf
bifurcation without cell-to-cell transmission, while the blue curve represents the Hopf bifurcation with cell-to-cell transmission.
The infected steady state E; is unstable above the Hopf bifurcation curve and stable below it. This indicates that the stable region
for E; expands and the unstable region contracts as the cell-to-cell transmission rate increases. This is consistent with Figs. 2 and
6, which show a decrease in the time required for the infected steady state E» to reach stability.

6 Conclusion and discussion

Since the discovery of the first HIV/AIDS case in the 1980s, we have been engaged in a battle against HIV for about 40 years [31].
Due to the complexity of disease transmission, it is necessary to continually refine models to better reflect reality. The homeostatic
proliferation of cells is a significant factor influencing disease spread, resulting in complex dynamical behaviors in the model. This
paper primarily focuses on the proliferative effect induced by free virus on uninfected cells, which can help maintain the stability
of uninfected cell numbers in the circulatory system [21, 32].
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Fig. 10 The Hopf bifurcation 0.2 T T T T
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This paper establishes a delayed model with homeostatic proliferation and cell-to-cell transmission. We transform the model and
prove its positivity, and we discuss the existence of its steady states. When Ry < 1 and A = 0, model (2.2) undergoes a saddle-node
bifurcation, resulting in two infected steady states (E; and E») in addition to the infection-free steady state (Eq). The infection-free
steady state is stable when Ry < 1; otherwise, it is unstable. The infected steady state E; is always unstable. We analyze the local
stability conditions of E», the conditions for Hopf bifurcation, and the direction and stability of these bifurcations. Numerical results
show that when Ry < 1, Ej is stable for any t and R,,, leading to eventual disease extinction. However, backward bifurcation and
saddle-node bifurcation can occur in model (2.2). It is observed that the time delay t, homeostatic proliferation R, and cell-to-cell
transmission B all influence HIV infection. In Figs. 9 and 10, the infected steady state E; transitions from a stable to an unstable state,
indicating that the disease exhibits periodic recurrence, complicating eradication efforts. Some previous models did not consider
homeostatic proliferation, while others assumed logistic growth. Logistic growth affects the rate of disease spread without altering
its dynamic behavior [33, 34].

Homeostatic proliferation alters the model’s dynamic behavior, making it essential to inhibit free virus during preventive treatment.
Current treatments typically include protease inhibitors and reverse transcriptase inhibitors, as studied in modeling studies [35, 36].
However, to mitigate the effects of cellular homeostatic proliferation, it may also be necessary to develop drugs that can block the
proliferation of uninfected cells stimulated by free virus. Such targeted interventions could help reduce the activation of uninfected
cells and improve the effectiveness of treatment strategies [37].

In summary, this paper investigates how homeostatic proliferation and cell-to-cell transmission can cause the model to transition
from stable to unstable, complicating the prevention and treatment of the virus. Since this study only analyzes the effects of
homeostatic proliferation under a time-delay model, it is important to recognize that viral infection is influenced by multiple factors.
For example, the age of cell infection, immune response, and preventive treatment measures all impact viral infection [5, 38, 39].
In addition to the effects of drugs on the virus, the role of the innate immune system should be taken into account, highlighting an
area that requires further research.
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Appendix

AtEy =1, L, Vo),wehave Ip = V. Let X(t) =T(tt)— 1, Y@t)=I1(tt)— I, Zt)=V(rt)— Voandt =190+, U E R.
Model (2.2) can be written as a functional differential equation system in C = C([—1, 0], R3) as

x(t) = Lu(xo) + f (1, x0), (6.1)
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where x(t) = (X(t), Y(t), Z(t))T € R®, L, : C — R3, f : R x C — R3. We can define an operator as ¢(0) = (¢1(6), $2(0),
b3 O e C. We get the linear part

R Ry
WVZ_,BZVZ_VZ_l_ﬁ2W_I ¢l(0)

Ly (¢) = (10 +p) 0 —o3 0 $2(0)
0 oy —ay $3(0)
(6.2)
0 0 0)[o(—1)
+ (to + ) a3V o g ¢r(—1)
0 00 ¢3(—1)
The nonlinear part is
R}’Il ﬂ RVH 2
(ekns = 1)810093(0) — B (0)2(0) — L2Re92(0)
Fu, @) = (T + 1) a1 (—Dp3(—1) + a0 (—Dga(—1) . (6.3)
0
By the Riesz representation theorem, there exists a matrix (@, u) € [—1, 0] — R3 of bounded variation, such that
0
L,(¢) 2/ dn(@, w)@) for¢ € C. (6.4)
-1
We can choose
Rm Rm
g V2 PVa=Va—1 =P gt —
n@, n) = (0 +p) 0 —a3 0 3(0)
0 oy —ay
(6.5)
0 00
—(o+mw)| azVs ap oy |90 + 1),
0 00
where §(0) is Dirac delta function.
Define
d¢®)
“J5 9 € [_1’ O)s
Awgp®) =1 ¢
S dn(u, 9)é(s),  6=0
and
0, 0 e[—1,0),
R 0) =
(W@ { i ), 6 =0.
To conveniently study the Hopf bifurcation, we rewrite the system (6.1) as
Xy = A(u)x, + R(u)xy, (6.6)
where x; = x(¢ +0), 0 € [—1, 0]. The adjoint operator A* of A is defined by
_de
Aty ={ b s €(0, 1],
Jopdnt @, O)p(=1), s=0,

where 57 is the transpose of the matrix n and ¢ € C([0, 1], R3*), R**is complex vector space of dimension 3. Then for ¢ € C([—1,
0], R?), we can define a bilinear form

0 0
{0(5), #(0)) = 9(0)p(0) — /67 1 fgio @' (& — 6)dn(6)¢(©), (6.7)
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where n(6) = n(@, 0) and ¢(0)¢(0) means Z?:l ©i(0)¢; (0). From the discussion in the previous section, we know that +iwgtg are
eigenvalues of A(0) and other eigenvalues are all negative real parts. Moreover, %iwqtg are also eigenvalues of A*.

Next, we calculate the eigenvector of A(0) and A* corresponding to i wo T and —i wg o, respectively. Let ¢(0) = (1, u, v)T eiwonol
6 € (—1, 0]. Form the above discussion, we have A(0)g(6) = iwotpq(0). Thus, we get

oo — _ Ry
iwo 1+ﬁ|V2 Vo+BoVo+Vo+1 B2 1 ABE 1 0
70 —a3 Ve i@oTo fwo + a3 — ape 10Ty e~iw0To ul=10
0 —ay fwo + o4 v 0

By straightforward calculations, we obtain

(iwg + ag)v
= ” ,
30y Vzeiiwor‘)
V=

—wg + 304 + (0300 + Q4w — eI NT0g)i — azoe—iO0T0

Similarly, we let g*(s) = D(1, u*, v*)T ™5, 5 € [0, 1) and A*q*(s) = —iwpToq™*(s). We obtain

—iwy — 1+ﬂ1V2 Vo+BoVo+Vo+1 —a3 Vpe! @0 0 1 0
70 B —iwg + 03 — el gy u =101,
R i .
1- W —qa ' —iwo + oy v* 0

which leads to
—RyuyVo+(B2Va+ Va+ 1 —iwp)(1 + /31V2)
azVa(l + B1Vp)elomo
B2 + (o3 — @20 — jwp)u*

u*

V¥ =
ay

The condition (g*, ¢) = 1 needs to be satisfied, which can obtain the value of D. From (6.7), we have

0 0
(661 @) = D1+ ui + vy = [ [ B e o)1, T e
—1Je=0

0
= D(1 + uu* + vv*) — / DA, u*, v)0e ™ dnO)(1, u, v)"
0=—1

_ _ _ _ L 0 00 1 '
= D1 +uu* + vv*) + Dro(1, u*, v¥)| a3 V2 ap oy u | e—iwomo
0 00 v

= D[1 + uu* + vv* + 1o(a3 Vau* + apuu® + aju*v)e 00 = 1.
Thus, we get
D = [1 + uu* + vv* + to(o3 Vau™ + apuut™ + aquv)e @001,
Therefore,
D = [1 +au* +ov* + ooz Vau™ + apiiu™ + aqu*v)e! ™11,

We first construct the coordinates describing the center manifold M, at u = 0. Let x; be the solution of system (6.6) when p = 0.
Define

2(t) =(g", %), W(t,0) = x,(0) — 2(t)q(0) — 2(1)g (). (6.8)
On the center manifold M(, we have
W, 0) =W(z, z, 0),

where
_ 22 _ Z2 23
W(z,2,0) = W20(9)3 + Wi(0)zz + Woz(9)3 + W30(9)g +oee, (6.9)
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and z and 7 are local coordinates for center manifold M in the direction of ¢ and g *, respectively. We need to consider real solutions.

For solution x; € M of (6.6), we have
1) = (g, &) = iwoT0z + §7(0) fo(2, 2),

where fo(z, z2) = f(0, W(z, z, 0) + z(t)q(0) + Z(t)q(6)). Then we have

2 =2 2=
Zz - Z °z
fo=fzoz+f11zz+f023+f217+....

Rewrite equation (6.10) as
2(t) = iwot0z + 8(2, 2),

where

2 EZ ZZZ

_ - _ z _ ,
8(z, 2) = q*(0) fo(z, 2) = 8205 +8NITF Q2 + 82—+

From (6.8) and (6.9), we have

x(0) = W(t,0) + 2()q(0) + (1) ()
2 =2
= Wzo(Q)% + Wi (0)2Z + Woz(e)% + (L, 0)T ™07 4 (1,7, ) =100z 4.

Thus, we obtain

8z, 2) =4%(0) foz, 2)

(s = 1)1 (x3(0) = Box1 Oz (0) — 4552 0)

a1x1(—1Dx3(=1) + azx1,(=1x2 (1)
0

=19D(1, u*, v¥)

BiR
18%m 3)5%;(0)

_ R,
= TOD{ (7 l)xlt(o)x?at(o) — B2x1,(0)x2,(0) — m

(1+p1V2)?
+M_*a]x1t(_l)x3t(_1)+M_*a2xlt(_1)x2t(_l)}a
where x;(8) = (x1,(0), x2(8), x3:(0) = W(t, 6) + 2(t)q(0) + Z(1)G(0). We have

2 =2
_ Z _ Z _
x1,(0) =z +7 + Wz((l))(O)E + W02z + WO(?(O)? +o(l(z, DY),

2 =2
_ Z _ Z _
x21(0) = uz + 2 + Wy (0) 5 + Wi (0022 + We () + o(l(z. DI,
0D 0 s wOmE =\ (3
x3/(0) = vz + 07 + Wy, (0)? + W7 (0)zz + W, (O)E +o(|(z, 2I),
i i 1 z? 1 1 z?
X (1) = 26710 4 20 4 Wi (1) T4 W (=122 + W (=D + oIz, 2P,
i — @ 1\Z W WO -3
x2i(—1) = uze 070 + i1ze 00 + Wy (—1)5 + Wi (=Dzz + W, (—1)5 +0(l(z, 2)),

2 =2
X3(—1) = vze 0T 4 pZele0T0 4 Wg)(—n% + W (=1)zz + W(S)(—l)% +o(l(z, DP).

Comparing the coefficients, we get

(6.10)

(6.11)
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_ R R o L
g20 =2t0D — " _1lv- Bou — Mvz +oc1u*ve_2l“’°’° +ozgu”‘ue_2"“‘)70 R
(1+ B1V2)? 1+ p1V2)?
N Rm - - ,81 Rm
811 =T0D|:<7 — 1>(v +0)— Bou+u)—2———vv
(1+ B1V2)? 1+ B1V2)3
+ o u*(v + D) + aau*(u + zi)i|,
_ R L BiRn 5 o .
=2toD|| —M — 1 — R sy R * 100To * @070 |
802 70 |:<(1 RS )U Bou EY AL V7 +ajutve apu*ite
_ A Rin Dy 2 5D 3) 3)
1 = roD<(1 TS 1) (oW + WO + W@ +2W )
= 70D (2uW (1 (0) + AWS () + W@ +2W (P (0)
5_ BiRm Y 3
~wD s (20w © + 40w )

+ 7o Daryi* (20T OOWD(= 1) + B VWL (1) + T WR (—1) + 2e 00 W (1))

+ 19 Dayii* (2ue—iw0f0 WO 1) + el @O WD (1) + 0D WD (1) + 2¢ 070 Wl‘f)(—n).

Next, we need to get the values of Wyo(6) and W11(6) to calculate g>. From (6.6) and (6.8), we obtain
AW — gq(0) — 8q(9), 0 €[-1,0),

W=x-q-4= { AW — gg(0) — 3G + fo, 6 =0.
By Eq. (6.9), we obtain
W =W,z + Wsz
= (W20(0)z + W11(8)Z + - - ) (fwoT02(?) + 8(2, 7))
F (Wi(0)2 + Won(0)7 + ) (—iwomoZ(1) + (2, 2).

Substituting (6.9) and (6.13) in (6.12), and comparing coefficients of % and zz, we get

—£209(0) — 802q(0), 0 €[-1,0),

QRiwotol — A0)Wr(0) =
—8209(0) — g02g(0) + f20, 6 =0

and
—g119(0) — g119(0), 0 €[-1,0),
—£119(0) — g11g(®) + f11, 6 =0.

From the definition of A(0) when 8 € [—1, 0), (6.14) and (6.15), we get

—AO)W11(0) =

Wao = 2iwotoWa0(0) + 820q(0) + 8024(0)
and
Wi = g11q(®) + 214(0).
Therefore, we have
1802

i . ' '
Wag(8) === g (@)e'nm? 4 B2 g(g)emientl 4 G e2ienm?
w0 T 3w o

W) =-— ﬂq(o)eiwom@ + ﬂé(o)e—iwome +Go,
w070 woTo

i Y ,GE3))T€R3,i:],2.
Next, we calculate the values of G| and G,. From the definition of A(0) and (6.14), we have

where G; = (G'", G

0
/ 1 dn(0)W20(0) = 2iwoto Wao(0) + g209(0) + £02g(0) — f20.
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Substituting (6.16) in (6.18) and noticing that

0
(iwotol —/ ei“’ofoedn(O))q(O) =0

-1

and
O .
(—iworol —/ e"“)‘”‘)gdn(Q))é(O) =0
1
we have
Rim — — _ ,BlRm 2
. LT (<1+ﬁ1 V2)? ])” Pou = vy V
2iwgtol —f e dn0) |G = 219 g ve~2OT0 4 gy =200
-1
0
It follows that
2iwg — 1+ﬂ1V2 Vo+BoVo+Vo+1 B W
—a3Vye He0n0 Qiwy + o3 — ape 200 _g =20t |Gy
0 —ay 2iwo + o4

Rm 1) ,31 Rm 2
— v — u — v
<<1+ﬂ1 [ 2 (4B V2)?
alve—Zzworo + azue—Zzworo

0
Therefore, the following value of G is given
: Ry -1
Diwy — l+ﬂIV2V2+,32V2+V2+] B2 ‘ L= Gapvp
G =2 —a3 Vpe 2ionTo Diwy + a3 — ape 2900 g o= 2i00T0
0 —0ty 2iwo + oty

R _ _ _ B1Rm 2
((14‘51 V)2 ) Pavt = gy Y
alve—Zzwgro +0{2ue_2lw0f0

0
Similarly, from (6.17), we obtain

Rim — 1) — 7Y ﬂlRm
0 (<1+51v2>2 1)(v+v) Potu+ i) — 2 LR
1 dn(0)G, = —219 a1 (v + D)+ ao(u + i)
- 0

We have

S TR VA BoVo—Vo—1 —B __Rn

v, 2~ P2V2— V2 2 0+pVa?

azV; ay — a3 o] G,
0 oy —0ty

R, B1R
(1 - 7(1+ﬁlv2)2)(v +0)+ ol + )+ 2 2Ry

—a1(v+v) —ax(u +u)
0

=2

Therefore, the following value of G is given

-1
%Vz—ﬂsz—Vz—l By m ]

1+p1V2)?
Gy =2 a3V o) — a3 oy
0 oy —ay

(1 - 7(“;@2)2)(1; +0)+ o+ )+ 2248y
—a1(v+v) —ax(u+u)
0

Thus, we can obtain Wy (0) and W;(6).
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From the values of g20, g11, go2 and g2, the following parameters can be calculated:

i lg021? 821
0)=-—— —2lgn - + 82
c1(0) 3000 (811g20 lg11l 3 ) >
__ Re{c1(0)}
2= TR o))

¥ = 2Re{c1(0)},
_Im{c1(0)} + poIm{A(z0)}

woT
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