

1 **Millennial-timescale thermogenic CO₂ release preceding the PETM**

2 Shijun Jiang^{1,2,*}, Ying Cui^{3,*}, Yasu Wang¹, Maura De Palma³, B. David A. Naafs⁴,
3 Jingxin Jiang⁵, Xiumian Hu⁵, Huaichun Wu⁶, Runjian Chu⁶, Yangguang Gu⁷, Jiuyuan
4 Wang⁸, Yizhou Huang⁴, Miquela Ingalls⁹, Timothy J. Bralower⁹, Shiling Yang¹⁰,
5 James C. Zachos¹¹, Andy Ridgwell¹²

6

7 ¹State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan
8 University, Haikou 570228, China

9 ²Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai
10 519082, China

11 ³Department of Earth and Environmental Studies, Montclair State University,
12 Montclair, NJ 07043, USA

13 ⁴Organic Chemistry Unit, School of Chemistry and School of Earth Sciences,
14 University of Bristol, Bristol, UK

15 ⁵State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and
16 Engineering, Nanjing University, Nanjing 210023, China

17 ⁶School of Ocean Sciences, China University of Geosciences (Beijing), Beijing
18 100083, China

19 ⁷South China Sea Fisheries Research Institute, Chinese Academy of Fishery
20 Sciences, Guangzhou, China

21 ⁸Department of Earth and Planetary Sciences, Yale University, New Haven, CT
22 06511, USA

23 ⁹Department of Geosciences, The Pennsylvania State University, University Park, PA
24 16801, USA

25 ¹⁰Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and
26 Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029, China

27 ¹¹Department of Earth and Planetary Sciences, University of California, Santa Cruz,
28 CA 95064, USA

29 ¹²Department of Earth and Planetary Sciences, University of California, Riverside,
30 CA 92521, USA

31

32 *Correspondence should be addressed to: cuiy@montclair.edu (Y. Cui) and
33 ssj0047@my.fsu.edu (S. Jiang).

34

35 **Abstract**

36 Geologic records support a short-lived carbon release, known as the pre-onset
37 excursion (POE), occurred shortly before the Paleocene-Eocene Thermal Maximum
38 (PETM; ~56 Ma). However, the source and pace of the POE carbon release and its
39 relationship to the PETM remain unresolved. Here we show a high-temporal-
40 resolution stratigraphic record spanning the POE and PETM from the eastern Tethys
41 Ocean that documents the evolution of surface ocean carbon cycle, redox and

42 eutrophication, confirming the global nature of the POE. Biomarkers extracted from
43 the sedimentary record indicate a smaller environmental perturbation during the POE
44 than that during the PETM in the eastern Tethys Ocean. Earth system modeling
45 constrained by observed $\delta^{13}\text{C}$ and pH data indicates that the POE was driven by a
46 largely thermogenic CO₂ source, likely associated with sill intrusions prior to the
47 main eruption phase of the North Atlantic Igneous Province and possibly
48 biogeochemical feedbacks involving the release of biogenic methane.

49

50 **Introduction**

51 A holistic understanding of the carbon-climate dynamics of past warming events has
52 important implications for CO₂-induced anthropogenic climate change. The
53 Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) represents the largest
54 disruption of the global carbon cycle in the Cenozoic¹, which led to 5–6 °C global
55 warming^{2, 3}, ocean acidification⁴, ocean deoxygenation^{5, 6, 7, 8}, and intensified tropical
56 cyclones^{9, 10}. The prominent 3–6‰ negative carbon isotope excursion (CIE) registered
57 in both terrestrial and marine sections is consistent with major emissions (~2,000
58 to >13,000 Pg C) of ¹³C-depleted carbon to the atmosphere and/or ocean and on a
59 time-scale of a few to no more than *ca.* 20 kyr^{11, 12}. Recent work suggests that the
60 North Atlantic Igneous Province (NAIP) and associated CO₂ emissions may have
61 triggered the PETM^{13, 14, 15}, followed by carbon sequestration through organic carbon
62 burial¹⁶ and silicate weathering¹⁷. The PETM was proceeded by a transient warming

63 accompanied by a smaller CIE¹⁸—known as the pre-onset excursion (POE) and which
64 is recorded in terrestrial records from the Wyoming Bighorn Basin¹⁸ together with
65 only a few shallow marine sections (Atlantic coastal plain, southwest Pacific Ocean,
66 the North Sea and the Pyrenean foreland basins)^{19, 20, 21, 22, 23}. The POE is a short-lived
67 warming event that occurred about 38 kyr to >100 kyr²⁴ prior to the PETM onset with
68 an estimated duration of no more than a few centuries¹⁹ to millennia²⁴. As an
69 environmental precursor to the PETM, the POE is absent in deep-sea sedimentary
70 records because its short duration may have limited its preservation to surface and
71 shallow water records¹⁹. Resolving a global POE signal could be further complicated
72 by bioturbation, sediment mixing, and chemical burndown of deep-sea carbonates^{4, 25},
73 which could only be understood by studying shallow marine and terrestrial sections.
74 The POE warming may represent an early warning signal on the instability of carbon
75 reservoirs and set the stage for a climatic threshold crossing occurred during the
76 PETM. Previous studies suggest that the PETM is modulated by astronomical
77 forcing^{26, 27, 28}, and linked with the POE via repeated, catastrophic CO₂ release²⁴, such
78 as methane hydrate dissociation¹⁹, either as a direct response of the warming or via
79 positive feedback mechanisms. Furthermore, the close timing between the initial stage
80 of the NAIP and the POE suggests that volcanism and magmatism may also serve as a
81 viable trigger²⁹. However, the global extent of the POE, its relationship with the
82 PETM and exact mechanisms that triggered the POE—whether from methane hydrate
83 release, volcanic activity, or orbital drivers—remain debated.

84 Here we report ultra-high-resolution biogeochemical records from a recently
85 discovered coastal shallow marine section in the eastern Tethys that span both the
86 POE and the PETM (Fig. 1). The Kuzigongsu section (39°45'10" N, 75°17'29" E) is
87 located in the western Xinjiang Uygur Autonomous Region of China, which was
88 covered by the Turan Sea—an arm of the Tethys Ocean during the early Paleogene
89 (Fig. S1). The eastern Tethys was a restricted shallow-water carbonate platform
90 environment³⁰, and a critical site for the formation of warm and saline intermediate
91 water and the burial of organic matter³¹. Abundant calcareous nannofossils³² and well-
92 preserved organic matter and oyster shells (Fig. S2) allow for an integrated
93 sedimentological, biogeochemical, isotopic, organic geochemical, and global carbon
94 cycle modeling approach to unravel the paleoenvironmental evolution of the eastern
95 Tethys during the POE and PETM, thus filling a critical spatial data gap and
96 advancing knowledge on forcing and recovery mechanisms of ancient hyperthermals.

97

98 **Results and Discussion**

99 **Astronomically tuned high-resolution PETM and POE records from the** 100 **understudied eastern Tethys**

101 The presence of the PETM within the Kuzigongsu section has been confirmed by
102 calcareous nannofossil biostratigraphy³² (the NP9/NP10 boundary). It occurs at 19.9
103 m (on a depth scale of 0 to 48 meters in Fig. 2) and corresponds to a ~ 6–8‰ negative
104 carbon isotope excursion (CIE)—among the largest CIEs observed in shallow marine

105 sites¹. The CIE magnitude is $\sim 6.3\text{\textperthousand}$ in carbonate³², $\sim 6.0\text{\textperthousand}$ in organic matter, and
106 somewhat amplified in long-chain *n*-alkanes ($\sim 7.8\text{\textperthousand}$), which is likely a result of an
107 enhanced hydrological cycle³³ and elevated $p\text{CO}_2^{19,34}$. The primary $\delta^{13}\text{C}_{\text{carb}}$ signal
108 should be well preserved, on the basis of: 1) the strong covariation between $\delta^{13}\text{C}_{\text{carb}}$
109 and $\delta^{13}\text{C}_{\text{org}}$ ($r^2 = 0.75, p < 0.001$; Fig. S3); 2) that most $\delta^{13}\text{C}_{\text{carb}}$ and $\delta^{18}\text{O}_{\text{carb}}$ data plots
110 within the area of primary carbonates³⁵ (Fig. S3), and 3) the existence of only a weak
111 correlation ($r^2 = 0.18, p < 0.001$, Fig. S3) between $\delta^{13}\text{C}_{\text{carb}}$ and Mn/Sr (a strong
112 correlation is an indicator of diagenetic alteration³⁶).

113 The POE is found at ~ 8.4 m below the PETM onset within lower nannofossil
114 Zone NP9a³² and occurs in a 1.2-meter-thick interval (10.3 to 11.5 m) characterized
115 by a -1 to $-2.5\text{\textperthousand}$ CIE (Fig. 2). Specifically, we observed CIEs of $-2.5\text{\textperthousand}$ in carbonate
116 and $-2.1\text{\textperthousand}$ in organic matter, but in contrast to the PETM, only $\sim -1\text{\textperthousand}$ in long-chain
117 *n*-alkanes. The relatively smaller recorded magnitude in the *n*-alkane record is likely
118 due to the lack of data at 10.8 m depth where $\delta^{13}\text{C}_{\text{carb}}$ and $\delta^{13}\text{C}_{\text{org}}$ values reach their
119 minima (Fig. 2).

120 Power spectrum analysis of the detrended magnetic susceptibility (MS) data
121 series shows significant peaks in wavelength at 0.8, 1.2, 1.9, 3, 5, 6.5, and 9.8 m (see
122 Methods, SI and Figs. S4–S6), with the filtered 1.2–1.9 m cycles interpreted as
123 precession signal with an assumed 21 kyr duration and the filtered 5 to 9.8 m cycles
124 as short eccentricity (~ 100 kyr). Spectral analysis revealed sedimentation rates
125 averaging between 6.0 and 8.3 cm kyr⁻¹ (Fig. S5) and suggests that the durations of

126 the PETM and the POE at our study site are \sim 127 kyr and \sim 21 kyr, respectively (age
127 model option 1; see SI and Table S2 for details). The PETM and POE are separated
128 by \sim 144 kyr (\pm 21 kyr). The estimated PETM duration of 127 kyr is shorter than
129 inferred from the deep sea sites (e.g., \sim 170 kyr from Röhl et al.³⁷ and Zeebe and
130 Lourens³⁸), likely due to incomplete preservation of the entire PETM at Kuzigongsu
131 with a change in lithology that truncates the recovery phase. The POE onset duration
132 of \sim 7.0 kyr (age model option 1) is similar to, but slightly longer than the 2 to 5.5 kyr
133 estimated by Bowen et al.¹⁸ (Fig. 4). An alternative age model option 2 that accounts
134 for the significant drop in wt.% CaCO₃ and a likely truncation assumes the filtered 6–
135 10 m cycles represent \sim 20 kyr precessional signal. This age model option provides a
136 duration of \sim 39 kyr for the PETM, \sim 4 kyr for the POE and \sim 54 kyr between the
137 PETM and POE, which suggests the study site only preserves the PETM onset and the
138 plateau, rather than the recovery (see SI for detailed discussion). However, due to the
139 uncertainty in the astronomically tuned age model, we assume that the POE onset
140 duration ranges from 500 to 7,000 years to cover the full range of reported values in
141 the literature^{19, 24}.

142

143 **Paleoenvironment of the eastern Tethys during the POE and PETM**

144 We use a multi-proxy approach to reconstruct the paleoenvironmental evolution of the
145 eastern Tethys during the POE and PETM. Our records (Figs. 2, 3) include C/N ratios
146 as indicators of organic matter source, weight percent (wt.%) CaCO₃ as a proxy for

147 ocean acidification and detrital dilution, trace element geochemistry for marine
148 nutrient and chemical weathering proxies, organic biomarkers as proxies for marine
149 microbial communities, and mercury content as a possible indicator of NAIP activity.
150 Together, our new data suggest that the shallow eastern Tethys experienced profound
151 environmental changes, including extreme warmth, eutrophication, and biological
152 turnover. Furthermore, the moderately high sedimentation rates (optimal
153 sedimentation rate fluctuates between $\sim 6\text{--}8 \text{ cm kyr}^{-1}$; Figs. S4, S5) at this shallow
154 site (estimated water depth is $\sim 30\text{--}50 \text{ m}$ based on microfacies analysis and
155 foraminifera indicators³⁰) yield highly expanded records that provide unique details
156 on the relationship between the PETM and the POE. Such details are generally
157 obscured in deep-sea sites because of lower sedimentation rates, dissolution, and
158 bioturbation^{4, 39}.

159 The section is characterized by a rapid decrease in wt.% CaCO_3 from >80
160 wt.% to near 0 wt.% at $\sim 9 \text{ m}$ —a shift which precedes the POE and PETM and may be
161 attributed to significant reduction of carbonate production, detrital dilution, or shallow
162 ocean acidification^{4, 40}. The sharp decrease in oxygen isotopes of marine carbonate
163 values ($\delta^{18}\text{O}_{\text{carb}}$) (the magnitude of $\delta^{18}\text{O}_{\text{carb}}$ excursion is $2.5\text{\textperthousand}$, from $-3.6\text{\textperthousand}$ to $-6.1\text{\textperthousand}$,
164 which corresponds to a temperature rise of $12.8 \text{ }^{\circ}\text{C}$, much larger than the estimated
165 global temperature change of $\sim 5.4\text{--}5.9 \text{ }^{\circ}\text{C}$, ref. 3), while consistent with an abrupt
166 and significant warming during the POE and PETM (Fig. 2b), could be due to
167 diagenetic overprinting. Alternatively, the $\delta^{18}\text{O}_{\text{carb}}$ decrease may represent a decline in

168 local salinity as the $\delta^{18}\text{O}_{\text{sw}}$ at epeiric sites can be strongly influenced by freshwater
169 input from surrounding continents². Clumped isotope data from a well-preserved
170 oyster specimen (at 29.8 m; Fig. S2) indicate that the eastern Tethys surface water
171 temperature was around 32.5 ± 1.5 °C (1σ) at the recovery phase of the PETM (Fig.
172 2). This estimate is similar to our independent temperature estimate of 30.6 ± 4.5 °C
173 based on the $\text{TEX}_{86}^{\text{H}}$ proxy⁴¹ for the sample at the same depth. However, the
174 thermal maturity is relatively high for this section and the cyclized isoGDGTs
175 abundance is low, preventing us from obtaining a high-resolution and precise $\text{TEX}_{86}^{\text{H}}$
176 temperature record at the site (Fig. 2).

177 In the organic matter fraction, peak TOC and C/N ratios coincide with the
178 lowest $\delta^{13}\text{C}_{\text{org}}$ values during the PETM, suggesting increased terrestrial organic matter
179 input at the study site, a likely consequence of intensified continental weathering
180 and/or higher terrestrial primary production⁴². The inferred increase in terrestrial
181 weathering is supported by the higher values of Ti/Al and K/Al ratios⁴³. Elevated C_{29}
182 hopane $\beta\beta/(\alpha\beta+\beta\alpha+\alpha\beta)$ ratios (average = 0.3) during the PETM indicate increased
183 input of fresh organic matter either due to higher primary productivity or increased
184 flux of fresh terrestrial organic matter into the basin (Fig. 3e). Lower C_{29} hopane
185 $\beta\beta/(\alpha\beta+\beta\alpha+\alpha\beta)$ ratios (average = 0.1) in the pre- and post-PETM samples suggest
186 relatively low primary production in the surface waters with background input of
187 reworked and more mature organic matter from the surrounding continents⁴².
188 Similarly, Crenarchaeol/(Crenarchaeol+isoGDGT-0) ratios range from 0.1 to 1.0,

189 with a significant decrease during the POE and PETM. Crenarchaeol (with four
190 cyclopentane rings and one cyclohexane ring) is considered as a biomarker for
191 Thaumarchaeota⁴⁴. The lower Cren/(Cren+isoGDGT-0) ratios during the POE and
192 PETM therefore likely reflect a reduction in marine Thaumarchaeota, which may be
193 attributed to warmer surface ocean temperature and lower dissolved oxygen
194 concentration⁴⁵. The occurrence of 2-methylhopanes (2-MeHop) in the PETM interval
195 indicates a transient perturbation of surface ocean characteristics (Fig. 3). The C₂₉ 2-
196 MeHop Index, calculated as $100 \times (C_{29} \text{ 2-MeHop}) / (C_{29} \text{ 2-MeHop} + C_{29} \text{ Hop})$ ⁴⁶,
197 ranges from ~ 0–38% with two prominent peaks, at 20.9 m and 28.5 m respectively,
198 corresponding to the peak values of TOC and C/N ratios. Several studies reported that
199 the occurrence of 2-MeHop in the sedimentary record can be viewed as indicators of
200 stress responses to the capacity of microbial respiration under hypoxia⁴⁷, nitrogen
201 fixation⁴⁸, increased productivity⁴⁹, and changes in pH⁵⁰, corroborating the
202 interpretations of elevated primary productivity discussed above. Furthermore, the
203 anomalously high C₂₉ 2-MeHop Index during the PETM may be attributed to marine
204 nitrogen cycle perturbation as a result of biogeochemical changes. This is similar to
205 observations of other major carbon cycle perturbations of the Phanerozoic, such as the
206 end-Permian mass extinction event⁵¹, the end-Triassic extinction event⁵², and the
207 Mesozoic Oceanic Anoxic Events^{53, 54}.
208 Ocean deoxygenation may have been strengthened by increased primary
209 productivity from elevated nutrient input due to enhanced terrestrial weathering. This

210 suggestion is supported by negative Mn* values (Eq. 1) from the POE to the PETM
211 (Fig. 3), which are associated with more reducing conditions due to significant redox-
212 related changes in the solubility of Fe and Mn⁵⁵.

213
$$\text{Mn}^* = \log[(\text{Mn}_{\text{sample}}/\text{Mn}_{\text{shales}})/(\text{Fe}_{\text{sample}}/\text{Fe}_{\text{shales}})] \quad (1)$$

214 The values used for the Mn_{shales} and Fe_{shales} are 600 and 46,150 ppm, respectively⁵⁶.

215 Furthermore, the inferred surface ocean deoxygenation is consistent with elevated

216 V/Al ratios over the same interval (Fig. 3) because V ions (+4 and +5 valence) are

217 closely coupled with the redox cycle of Mn⁵⁷. Widespread deoxygenation is well

218 documented in many ocean basins across the globe during the PETM^{5, 58}, including

219 the North Sea⁵⁹, the Arctic Ocean⁶⁰, the Atlantic and Caribbean^{61, 62}, and the

220 northwestern Tethyan margins⁶³. However, no significant changes in these redox

221 indicators were observed across the POE⁶⁴, suggesting relatively stable redox

222 conditions in the eastern Tethys at this time.

223 Mercury content (or Hg concentration normalized as a ratio to organic carbon

224 content—Hg/TOC) has been used as a signal of NAIP activity by several previous

225 studies^{15, 65}. Our site exhibits two prominent Hg/TOC peaks that show a small lead in

226 time relative to the onset of the POE (~ 11 kyr) and the PETM (~ 26 kyr) (Fig. 2),

227 supporting a pulsed Hg input and a possible link between Hg source and the ¹³C-

228 depleted carbon source. However, because of the overall low Hg concentrations at the

229 study site, establishing a direct link between the NAIP and the Hg peaks is not

230 straightforward. Low Hg is likely due to dilution by carbonate and detrital input, the

231 long distance of the site relative to Hg source, and/or Hg transport via oceanic waters
232 rather than global atmospheric transport¹⁵. Increased Hg concentrations across the
233 POE and PETM compared to background values suggest that multiple possible
234 sources and processes may have been at play in addition to the NAIP activity. For
235 example, variations in Hg concentrations in the sedimentary records can be caused by
236 changes in river runoff, weathering, transport of terrestrial materials, primary
237 productivity, source of organic matter, and post-depositional processes (e.g.,
238 diagenesis and dissolution)¹⁵, which could become more important at the study site
239 because of its restricted carbonate platform setting⁶⁶. Deoxygenation and changes in
240 organic matter preservation and transport cannot fully account for the excess Hg as
241 shown by the steeper Hg gradient to TOC within the PETM and POE interval at our
242 site (Fig. S7). Moreover, Hg fluxes associated with wildfire (e.g., Arctic region⁶⁷,
243 northeastern US margin⁶⁸, and England⁶⁹) may have been far less than the Hg fluxes
244 associated with a large igneous province event⁷⁰, and therefore cannot provide
245 sufficient Hg into the study site. Principal component analysis (PCA) suggests that Hg
246 is most closely related to C/N ratios (higher C/N ratio indicates more terrestrial
247 organic source) and $\delta^{13}\text{C}_{\text{org}}$ during the PETM, which reflect changes in source of
248 organic matter and ^{13}C -depleted CO_2 emissions (Fig. S7). The C/N ratio exhibits no
249 significant change across the POE, suggesting the increase in Hg and Hg/TOC ratio is
250 unrelated to changes in source of organic matter. On the other hand, C/N ratio shows
251 a large increase across the PETM, which indicates that changes in source of organic

252 matter may have contributed to the increased Hg concentrations. These potential
253 processes do not preclude volcanic involvement, however, especially via more
254 complex pathways than simple atmospheric loading and deposition⁷¹. Despite these
255 potential complex sources of Hg, we cannot completely exclude direct and indirect
256 involvement of the NAIP in driving the Hg changes in the study section⁷². For
257 example, the NAIP was active as early as 62 Ma⁷², and its peak activity may have
258 encompassed both the POE and the PETM^{73, 74, 75, 76}. A negative shift in ¹⁸⁷Os/¹⁸⁸Os
259 ratios has been observed prior to the PETM in several sites globally^{29, 72, 77, 78}, lending
260 support to the occurrence of LIP activity prior to the PETM. Furthermore,
261 hydrothermal vent complexes in the northeast Atlantic region^{79, 80} further support that
262 the NAIP activity can at least partially explain the observed Hg records.

263

264 **Thermogenic CO₂ emissions associated with NAIP activity during the POE**
265 The PETM carbon emission history has been extensively modeled in the past, with
266 estimated carbon emission rates ranging from 0.3 to 1.7 Pg C yr⁻¹ for a CIE onset
267 duration from 3,000 to 20,000 years and cumulative amount of carbon added ranging
268 from 2,500 to 13,000 Pg C^{11, 12, 18, 80, 81, 82}. Because the carbon emission history
269 preceding the PETM has not been systematically quantified in an Earth system model
270 and very little is yet known about the CO₂ source during this time¹⁹, we then focused
271 our model analysis on the POE (Table S3 and Fig. 4). Our new high-resolution

272 geochemical data, together with an orbitally tuned astronomical age model, provide a
273 unique opportunity to assess the effects of CO₂ emissions during the POE.

274 We quantify carbon emissions over the POE using a data assimilation
275 approach that considers paired $\delta^{13}\text{CDIC}$ -pH variation across the POE within an Earth
276 system model of intermediate complexity cGENIE, following the approach detailed in
277 Gutjahr et al.¹². In this, changes with time in annual global mean surface ocean pH
278 (derived from $\delta^{11}\text{B}$ proxy data from the Mid-Atlantic Coastal Plain with a change of ~
279 -0.1 to -0.3 pH units¹⁹) constrain the emission rate of CO₂ to the atmosphere.

280 Similarly, the change with time in observed $\delta^{13}\text{C}$ of annual global mean surface ocean
281 DIC ($\delta^{13}\text{CDIC}$) (reconstructed by applying an anomaly derived from the $\delta^{13}\text{C}$ data of a
282 global compilation; Fig. S8) refines the $\delta^{13}\text{C}$ value of the (pH-constrained) CO₂
283 emissions. The novelty of this approach is that it offers a unique solution of the mean
284 $\delta^{13}\text{C}_{\text{source}}$ without having to make a specific assumption about the carbon source (e.g.,
285 compare with Cui et al.¹¹; see Methods and SI for detailed model results and
286 sensitivity tests). To account for the uncertainty in the POE onset duration, we place
287 our records on four different age models, including age model option 1 and 2 from
288 this study, an age model from the Bighorn Basin based on Bowen et al.¹⁸ and an
289 assumed age of 500 years based on Babilia et al.¹⁹ (a summary of our model results
290 and sensitivity analyses for the POE is listed in Table S3). (Fig. 4).

291 The flux-weighted $\delta^{13}\text{C}_{\text{source}}$ values across the entire emission duration vary
292 between -30.8 and -44.5‰ for the four age models used in our simulations with the

293 minimum change in pH suggested by Babila et al.¹⁹, consistent with a thermogenic
294 CO₂ source⁸³ (−30 to −65‰; Fig. 4a-d and Table S5a). Longer POE duration (e.g.,
295 Age 1 associated with ∼7,000 year POE onset) necessitates lower flux-weighted
296 δ¹³C_{source} values (−44.5‰) over the entire emission interval (Fig. 4a) at slower
297 emission rate (∼0.2 Pg C yr^{−1}). We note that the δ¹³C_{source} values become
298 progressively lower from the POE onset, likely resulting from a faster rate of change
299 toward its minimum values in the δ¹³C forcing. This may represent a shift from
300 thermogenic methane to biogenic methane (−34 to <−70‰^{84, 85}) emissions during
301 the development of the POE. The average carbon emission rate over the entire
302 emission period ranges from 0.2 to 1.3 Pg C yr^{−1} (Fig. 4e-h), comparable to those
303 estimated for the PETM from sill-degassed CO₂ and thermogenic methane (0.2 to 0.5
304 Pg C yr^{−1} from Jones et al.¹³; 0.6 Pg C yr^{−1} from Frieling et al.⁸⁰). Larger magnitude of
305 pH changes (e.g., ΔpH = ∼0.2 to 0.3) yield overall larger average peak CO₂ emission
306 flux (2.9 Pg C yr^{−1}) and higher average δ¹³C_{source} values (−19.5‰) (Table S3), still
307 consistent with largely thermogenic methane source. The pH change for the POE has
308 only been documented at a single location utilizing a novel approach to measuring
309 boron isotopes (δ¹¹B) and thus has a high uncertainty¹⁹. Considering the smaller
310 magnitude of δ¹³C excursion, smaller degree of warming, its shorter duration, and
311 minor ecological responses, the changes in pH during the POE is unlikely to exceed
312 that during the PETM (ΔpH = ∼0.3)⁸⁶. Higher average carbon emission rate is

313 associated with shorter POE onset duration (Fig. 4e), which represents a combined
314 feature of the imposed ΔpH forcing and age models used (Fig. S8).

315 The cumulative CO_2 emission during the POE ranges from $\sim 1,030$ to $1,765 \text{ Pg}$
316 C (Fig. 4i-l), with peak $p\text{CO}_2$ reaching $\sim 1,180$ to $\sim 1,220 \text{ ppm}$ —a rise of ~ 350 to ~ 390
317 ppm above $\sim 830 \text{ ppm}$ (Fig. S9). The modeled cumulative carbon emitted during the
318 POE falls within the range of the 400 to $1,600 \text{ Pg C}$ suggested by Babila et al.¹⁹ using
319 similar ΔpH . However, if the actual ΔpH was at the lower end (lower than ~ 0.1), it is
320 more likely that the carbon source was primarily biogenic methane. Associated with
321 the diagnosed carbon emissions is a modelled global sea surface temperature rise (ΔT)
322 of ~ 1.1 to $\sim 1.3 \text{ }^\circ\text{C}$ (Fig. S9). Although the paleotemperature history of the POE is
323 currently poorly known, existing Mg/Ca ratios of planktonic foraminifera from the
324 mid-Atlantic coastal plain suggest that the surface ocean temperature increase was ~ 2
325 $\text{ }^\circ\text{C}$ with an uncertainty of $\pm 1 \text{ }^\circ\text{C}$ due to salinity variations¹⁹, consistent with our
326 modeled temperature changes within uncertainty. The POE warming may also help
327 explain the observed increase in warm-water coccolithophore taxa in the eastern
328 Tethys³².

329 Thermogenic CO_2 related to the NAIP activities may have been the dominant
330 carbon sources during the POE via contact metamorphism by intrusive activity
331 through hydrothermal vent complexes⁷⁹. It should be noted that mantle convection
332 models suggest that a peak NAIP carbon emission flux at $\sim 0.5 \text{ Pg C yr}^{-1}$ could occur
333 between 1 and 20 kyr¹³, comparable to those simulated in our inversion experiments,

334 despite the geochronology of the NAIP continental flood basalt sequences being not
335 very well constrained⁷². It is also important to note that a caveat of cGENIE in
336 interpreting our results is the lack of terrestrial biosphere and potential changes in
337 orbital forcing, which could impact the climate responses and lead to uncertainties in
338 carbon emission estimates. Although this study provides a range of estimates on the
339 carbon source and emission flux during the POE, more precise $\delta^{11}\text{B}$ -based global
340 surface pH records, detailed history of the sill intrusion of the NAIP, sea surface
341 temperature records from across different latitudes, and better-constrained
342 geochronology of the NAIP activity are clearly needed to reduce the uncertainty of
343 the estimated thermogenic carbon emission fluxes from the NAIP.

344 The evolution of mean core-top carbonate (CaCO_3) with time in the model
345 exhibits a smaller magnitude of $\delta^{13}\text{C}$ decrease for simulations with bioturbation turned
346 on compared to those without bioturbation (Fig. S10). Similarly, core-top CaCO_3
347 wt.% also exhibits smaller degree of dissolution for experiments with bioturbation on
348 (Fig. S10). Longer experiment duration allows for a larger CIE magnitude regardless
349 of whether bioturbation is on. This is due to the combined effects of bioturbation and
350 dissolution as a result of the cumulative carbon emission (Fig. S10 and Fig. 4i-l),
351 supported by a comparable Eocene hyperthermal event⁸⁷. These experiments support
352 the inference that short POE onset duration (less than millennial timescale) and
353 bioturbation are the main causes of the lack of POE signal in the deep-sea
354 sedimentary records.

355

356 In conclusion, we report astronomically tuned, ultrahigh-resolution PETM and POE

357 stratigraphic records from a recently discovered site in the eastern Tethys.

358 Geochemical proxies based on carbonate, bulk organic matter, and biomarkers

359 suggest that the eastern Tethys experienced profound carbon cycle perturbations

360 during the POE and PETM. Our integrated stratigraphic data and Earth system

361 modeling together suggest that the millennial time-scale POE may be attributed to

362 mainly thermogenic CO₂ emission associated with sill intrusion prior to the main

363 eruption phase of the NAIP, with contributions from amplifying feedbacks such as

364 biogenic methane release. The POE may have set the stage for the ecosystem

365 threshold crossing and the extreme carbon cycle disruption occurred during the

366 PETM.

367

368

369 **Methods**

370 **Cyclostratigraphy and astronomically tuned age model**

371 **Magnetic susceptibility measurements:** A total of 480 samples at 10 cm intervals

372 spanning both the POE and the PETM weighing 4 to 8 grams were measured for bulk

373 mass-normalized magnetic susceptibility (MS or χ) using KLY-4S Kappabridge after

374 being crushed in a copper rock hammer and placed in a $2 \times 2 \times 2$ cm³ cubic plastic

375 holder. The MS measurements were conducted at the Paleomagnetism and

376 Environmental Magnetism Laboratory at the China University of Geoscience

377 (Beijing). Measurements were made at room temperature with an applied field

378 amplitude of 200 A/m and frequency of 976 Hz. Each measurement is corrected for

379 the contribution of the plastic sample holder. Each sample was measured three times,

380 with the average value corrected by mass to obtain χ in units of m³ kg⁻¹. Relative

381 standard deviations between the three runs were smaller than 0.5%.

382 **Time series analysis:** Time-series analysis was conducted using MS data with the

383 open-source software Acycle V2.4⁸⁸ because MS measures the magnetic mineral

384 concentration, and is considered as a proxy for detrital fluxes from land to the ocean⁸⁹.

385 The MS data series was first detrended by subtracting a 40-m “loess” trend (locally

386 estimated scatterplot smoothing, a non-parametric method for a series of data

387 smoothing with a default window size of 35%) to remove non-periodic or high-

388 amplitude long-term trends following the procedures described in Li et al.⁹⁰. The

389 multi-taper method (MTM)⁹¹ with 2π tapers was used to estimate the spectrum for the

390 detrended MS series and confidence levels (mean, 90%, 95%, and 99%) were
391 provided to test against robust first-order autoregressive model AR(1) red noise in
392 order to reveal the MS series' dominant wavelength. The evolutionary power spectra
393 were calculated with "Evolutionary Spectral Analysis" function in Acycle with a
394 sliding window of 10 m and a step of 0.1 m to identify any secular trend in dominant
395 frequencies, which may be attributed to variations in sedimentation rates. The time
396 scale optimization (TimeOpt; Meyers⁹²) and correlation coefficient (COCO; Li et
397 al.⁸⁸) methods were used to identify the optimal sedimentation rate using Acycle's
398 "COCO" and "TimeOpt" functions, which use 2,000 Monte Carlo statistical
399 simulations to test the null hypothesis of no orbital forcing. The evolutionary versions
400 of COCO and TimeOpt functions (i.e., eCOCO and eTimeOpt) were used to track
401 changes in sedimentation rates. In addition, the "Spectral Moments" function was
402 used to estimate variable sedimentation rates based on a periodogram with two
403 spectral moments: evolutionary mean frequency (μf) and evolutionary bandwidth (B)
404 (Figs. S4, S5). Subsequently, "Dynamic Filtering" function was used to apply
405 dynamic filtering and isolate interpreted precession cycles from the MS data series.
406 Since the power of long-term cycles (i.e., short eccentricity cycles) may have muted
407 the manifestation of precession cycles in the evolutive harmonic analysis (EHA), we
408 remove the > 4 m cycles that may be associated with eccentricity cycles to reveal
409 precession-related cycles as the most prominent signal in the EHA spectrogram (Fig.
410 S6). The significant power of the interpreted precession cycles in the EHA

411 spectrogram allows us to effectively isolate this signal from EHA (Fig. S4). We then
412 use the precession cycles to construct an astrochronological timescale for the study
413 interval. Analyses of TimeOpt and COCO indicate alternation of optimal
414 sedimentation rates (i.e., 6.0 cm kyr⁻¹ and 8.3 cm kyr⁻¹) (Fig. S4). Spectral Moments,
415 eTimeOpt and eCOCO together suggest the estimated sedimentation rate ranges from
416 4.2 to 10.6 cm kyr⁻¹ with increased sedimentation rate during the PETM body (Figs.
417 S5-S6).

418

419 **Stable carbon isotopes of bulk organic matter and wt.% CaCO₃**

420 HCl-treated carbonate-free powders were measured for total organic carbon
421 (TOC) and total nitrogen (TN) concentrations on a Vario EL-III elemental analyzer,
422 and the $\delta^{13}\text{C}_{\text{org}}$ analyses were made using a thermo DELTA plus XL mass
423 spectrometer at State Key Laboratory of Organic Geochemistry, Guangzhou Institute
424 of Geochemistry, Chinese Academy of Sciences. Three reference materials were used
425 to monitor the measurement of carbon isotopic ratio of bulk organic carbon, which
426 included black carbon (-22.43‰), Urea#1 (-34.13‰), and Urea#2 (-8.02‰).
427 Precision based on repeated measurement of these three standards were 0.12‰,
428 0.08‰, and 0.09‰, respectively. $\delta^{13}\text{C}_{\text{org}}$ values were reported in VPDB and analytical
429 precision was better than $\pm 0.1\text{‰}$ based on replicate analyses of the standards
430 processed with each batch of samples. Weight percent (wt.%) CaCO₃ was measured
431 using a modified acid soluble weight-loss method⁹³.

432

433 **Carbonate clumped isotope geochemistry**

434 The carbonate clumped isotope thermometer is based on the thermodynamic
435 stability of C–O bonds at varying temperature, in which “clumping” of the rare, heavy
436 isotopes of carbon and oxygen (^{13}C and ^{18}O) occurs more frequently at lower
437 temperatures⁹⁴. The excess occurrence of the $^{13}\text{C}^{18}\text{O}^{16}\text{O}$ isotopologue of CO_2 relative
438 to a stochastic distribution of the heavy isotopes among all CO_2 molecules is referred
439 to as the mass 47 anomaly and notated as Δ_{47} , in which $\Delta_{47} = \left(\frac{^{47}\text{R}}{^{47}\text{R}^*} \right) \times 1000$ where
440 $^{47}\text{R} = [^{13}\text{C}^{16}\text{O}^{18}\text{O} + ^{12}\text{C}^{17}\text{O}^{18}\text{O} + ^{13}\text{C}^{17}\text{O}_2] / [^{12}\text{C}^{16}\text{O}_2]$ and * denotes a stochastic
441 distribution of isotopes. Clumped isotope thermometry presents a significant
442 innovation over oxygen isotope-based thermometry because the temperature estimate
443 is independent of the bulk isotopic composition, and thus requires no assumptions
444 about $\delta^{18}\text{O}_{\text{carb}}$ or $\delta^{18}\text{O}_{\text{water}}$. This mineral formation temperature can be used to
445 calculate $\delta^{18}\text{O}$ of ancient waters when paired with $\delta^{18}\text{O}_{\text{carb}}$ values of the same sample,
446 which is measured concurrently with Δ_{47} .

447 Carbonate clumped isotope measurements of one Eocene fossil oyster
448 (*Crassostrea* sp.) and one modern oyster specimen (*Crassostrea hongkongensis*)
449 collected from northern South China Sea (21°42'7.89" N, 111°55'44.61" E) in 2022
450 were made at the Pennsylvania State University in April 2022 (see SI).
451 Approximately 8 mg of pure carbonate powder was digested in a 105% phosphoric
452 acid common acid bath at 90 °C to yield CO_2 . Evolved CO_2 was passed through a

453 Protium Isotope Batch Extraction (IBEX) carbonate preparation line to purify the
454 sample gas. The gas is passed through a cryogenic trap to separate CO₂ from water, a
455 silver wool-packed borosilicate column to trap sulfides, and a gas chromatography
456 column packed with Poropak to separate CO₂ from other compounds with a He carrier
457 gas. The purified CO₂ gas is once more frozen into a cryogenic trap before being
458 frozen into a microvolume, and passed through a polished nickel capillary to the MAT
459 253 Plus bellows. Purified CO₂ sample gas was analyzed on a Thermo MAT253 Plus
460 dual inlet IRMS relative to an Oztech working gas.

461 Δ_{47} values versus the working gas were projected to the Intercarb-Carbon
462 Dioxide Equilibrium Scale⁹⁵ (I-CDES) using a carbonate standard-based empirical
463 transfer function. ETH 1, 2, 3, and 4 were measured to build the reference frame and
464 for interlaboratory comparison, and IAEA-C2 and Carrara Marble were treated as
465 unknowns. Individual replicates were averaged to create final sample Δ_{47} values and
466 reported with a 95% confidence interval. Temperatures were calculated using the T-
467 Δ_{47} calibration of Anderson et al.⁹⁶. The average measured Δ_{47} value for the oyster
468 fossil is 0.573 ± 0.011 (2σ), while the Δ_{47} value for the modern oyster specimen is
469 0.604 ± 0.028 (2σ). The calculated sea surface temperature in the eastern Tethys
470 based on early Eocene oyster fossil is 32.5 ± 3.9 °C (2σ). The calculated modern sea
471 surface temperature based on modern oyster specimen is 21.6 ± 8.7 °C (2σ), falling in
472 the range of the observed average annual sea surface temperature (24.1 ± 5.6 °C) in
473 northern South China Sea in 2022.

474

475 **Biomarker and stable carbon isotopes of long-chain *n*-alkanes**

476 Around 11 grams of dried and powdered sample were extracted for their
477 biomarker content using a microwave system (Milestone Ethos EX) and using 20 ml
478 of a dichloromethane and methanol mixture (9:1). The total lipid extract was
479 separated using silica flash chromatography and elution with hexane:DCM (9:1) for
480 the apolar and DCM:MeOH (2:1) for the polar fraction. The apolar fractions were
481 characterized on a Thermo Scientific ISQ single quadrupole mass spectrometer (MS)
482 coupled to a gas chromatograph (GC). Compounds were separated using a fused silica
483 column (50 m × 0.32 mm) with a ZB1 stationary phase and helium as the carrier gas.
484 The GC was programmed for: injection at 70 °C (1 min hold), ramp to 130 °C at
485 20 °C/min, followed by a ramp to 300 °C at 4 °C/min (20 min hold). The MS
486 continuously scanned between *m/z* 650-50. The apolar fractions were subsequently
487 analyzed using an Isoprime 100 combustion isotope ratio mass spectrometer, coupled
488 to an Agilent GC, to determine the $\delta^{13}\text{C}$ of the long-chain *n*-alkanes. We used the
489 same type of column and temperature program as used for the GC-MS analyses.
490 Samples were measured in duplicate on the GC-C-IRMS, and the average is reported
491 here. An in-house CO₂ reference gas was used to calculate compound specific $\delta^{13}\text{C}$
492 values relative to Vienna Pee Dee Belemnite (VPDB). $\delta^{13}\text{C}$ values of the C₂₉ *n*-alkane
493 are not reported here due to possible co-elution with other lipids. All biomarker and

494 stable carbon isotopes of long-chain *n*-alkane analyses were performed at the
495 University of Bristol.

496

497 **Methods for GDGTs**

498 Polar fractions were filtered through a 0.45 μm filter at the university of
499 Bristol. The filtered polar fractions were redissolved in hexane:iso-propanol (99:1)
500 and analyzed using a high-pressure liquid chromatography atmospheric pressure
501 chemical ionization mass spectrometer for their GDGT distribution. We used two
502 ultra-high performance liquid chromatography silica columns to separate compounds,
503 following Hopmans et al. (2016)⁹⁷, and analyses were performed in selective ion
504 monitoring (SIM) mode.

505 The thermal maturity of the organic matter in this section was estimated using
506 the hopane isomerisation index: $\text{C}_{29}\ \beta\beta/(\alpha\beta+\beta\alpha+\beta\beta)$ ⁹⁸. The results indicate that the
507 thermal maturity changes across the section, but the $\text{C}_{29}\ \beta\beta/(\alpha\beta+\beta\alpha+\beta\beta)$ ratio is
508 consistently below 0.4 (Fig. 3). This is indicative for an elevated thermal maturity, but
509 well below the oil window. Although this level of thermal maturity will not affect
510 apolar compounds like hopanoids or *n*-alkanes, it is likely to impact more labile
511 biomarkers such as glycerol dialkyl glycerol tetraethers (GDGTs)⁹⁹. We determined
512 the GDGT distribution in all samples. As expected with this level of thermal maturity,
513 GDGT concentrations were low and, in most samples, branched (br)GDGTs were
514 absent, as were isoprenoidal (iso)GDGTs containing cyclopentane rings. However, a

515 few samples did have isoprenoidal (iso)GDGTs with cyclopentane rings. This
516 includes the sample at depth 29.8 m that hosts the well-preserved oyster shell fossil.
517 This sample has a TEX₈₆ value of 0.76, which results in an SST of 30.6 ± 4.5 °C using
518 the TEX₈₆^H calibration¹⁰⁰. Although we treat this estimate cautious as thermal maturity
519 might have impacted the GDGTs distribution, this TEX₈₆-based SST is consistent
520 with the clumped isotope data from well-preserved oyster shell fossils from the same
521 sample, adding confidence that we are able to constrain the SSTs at this site during
522 the recovery phase of the PETM.

523

524 **Earth system modeling**

525 The carbon-centric Grid Enabled Integrated Earth system model (cGENIE) is
526 an intermediate complexity climate model that couples a 3D ocean (36×36 grid, 16
527 levels) with a 2D atmosphere that has the capability to track biogeochemical cycling
528 of elements, stable carbon isotopes, marine sediments, and continental weathering¹²,
529¹⁰¹. Bathymetry, paleogeography, planetary albedo, and wind fields are configured for
530 the late Paleocene-early Eocene with the same initial and boundary conditions as
531 Gutjahr et al.¹². For example, the δ¹³C value of late Paleocene-early Eocene
532 atmospheric CO₂ (δ¹³C_{CO2}) is set as ~ -5‰, and the atmospheric *p*CO₂ is set as ~830
533 ppmv. The moderately high *p*CO₂ allows for a small buildup of sea ice (0.5%) in the
534 northern polar regions. We then run a number of ‘double inversion’ experiments in
535 which δ¹³C of surface ocean dissolved inorganic carbon (δ¹³C_{DIC}) and surface ocean

536 pH¹⁹ are used as the two data assimilation constraints for the POE. The $\delta^{13}\text{C}_{\text{DIC}}$
537 forcing is based on the high-temporal-resolution $\delta^{13}\text{C}_{\text{carb}}$ data from the shallow Tethys
538 Kuzigongsu section using astronomically tuned age models. For our inversion
539 experiments, the model was first spun up for 20 kyr to establish the basic ocean
540 circulation and climatic state under published late Paleocene-early Eocene boundary
541 conditions, including paleogeography and paleobathymetry^{102, 103}. This is followed by
542 an open-system spin-up of 200 kyr to allow the long-term $\delta^{13}\text{C}$ cycle to reach balance.
543 A range of inversion experiments were carried out (Table S3; Figs. S8-10). Although
544 uncertainty exists for pre-PETM $\delta^{11}\text{B}$, the surface ocean pH at the end of the open-
545 system spinup is 7.75, same as those used in Gutjahr et al. (2017)¹², which is adapted
546 as the initial surface ocean pH forcing in the “double inversion” experiment.

547 First, the “double-inversion” modeling takes the observed pH data, which
548 constrains the flux and magnitude of CO₂ emissions, and the observed $\delta^{13}\text{C}$ values of
549 the dissolved inorganic carbon of the surface ocean, which simultaneously determines
550 the source of the emitted carbon by computing the $\delta^{13}\text{C}$ values of the carbon source.
551 At each model time step, a pulse of CO₂ is emitted to the atmosphere at a given rate if
552 the $\delta^{13}\text{C}$ value is lower than the previous time step, and the modeled surface DIC $\delta^{13}\text{C}$
553 values and the observed $\delta^{13}\text{C}$ values at the Kuzigongsu section are compared. If the
554 current modeled surface DIC $\delta^{13}\text{C}$ value is higher than the data value, the $\delta^{13}\text{C}$ value
555 of the emitted CO₂ is assigned a value of -100‰. In contrast, if the current modeled
556 surface DIC $\delta^{13}\text{C}$ value is lower than the data value, the $\delta^{13}\text{C}$ value of the emitted CO₂

557 is assigned a value of 0‰. $\delta^{13}\text{C}$ values of the emitted CO_2 between –100‰ and 0‰
558 can be achieved by binning the emission fluxes in time and averaging flux-weighted
559 $\delta^{13}\text{C}$ values. Justification for the choice of these end-member $\delta^{13}\text{C}$ values of the
560 emitted CO_2 is provided in Gutjahr et al.¹². During the experiments, cGENIE
561 continually adjusts the rate and $\delta^{13}\text{C}$ value of emitted CO_2 into the atmosphere in
562 order to simultaneously reproduce the two proxy records as a function of time. In
563 these experiments, we assume that the POE onset occurred as a linear decline in both
564 $\delta^{13}\text{C}$ and pH simultaneously (Fig. 4a, b). We use the same “double-inversion”
565 methodology in both the main experiments and the sensitivity experiments, both
566 starting from the same open-system spin-up state (Table S3).

567 **Sensitivity experiments and analyses**

568 We carried out sensitivity experiments to explore the importance of the
569 duration of the POE onset (~7,000, ~1,600, ~850, and ~500 years based on age model
570 option 1, age model option 2, Bowen et al. (2016), and Babilia et al. (2022),
571 respectively) using a global compilation of marine carbonate $\delta^{13}\text{C}_{\text{carb}}$ records (Table
572 S3; Fig. S8). We also tested the effect of larger pH decrease (i.e., –0.24 and –0.32 pH
573 unit) in combination with each of the four assumed age model (Table S3).
574 Additionally, we test the role of bioturbation on the carbon isotope excursion
575 magnitude of core-top carbonates (Fig. S10).

576

577 **Data availability.** Bulk carbonate, organic matter and compound specific stable
578 isotope data can be found in Supplementary Information. All modelling-related data
579 are included as part of the cGENIE model code distribution (see above).

580

581 **Code availability.** The code for the version of the ‘muffin’ release of the cGENIE
582 Earth system model used in this paper, is tagged as vxxxx, and is assigned a DOI: xxx.
583 Configuration files for the specific experiments presented in the paper can be found in
584 the directory: `genie-userconfigs/PUBS/submitted/Jiang_et_al.NC.2022`. Details of the
585 experiments, plus the command line needed to run each one, are given in the
586 `readme.txt` file in that directory. All other configuration files and boundary conditions
587 are provided as part of the code release. A manual detailing code installation, basic
588 model configuration, tutorials covering various aspects of model configuration,
589 experimental design, and output, plus the processing of results, is assigned a DOI:
590 xxx.
591
592

593 **References**

594 1. McInerney FA, Wing SL. The Paleocene-Eocene Thermal Maximum: A
595 perturbation of carbon cycle, climate, and biosphere with implications for the
596 future. *Annual Review of Earth and Planetary Sciences* **39**, 489-516 (2011).

597

598 2. Zhu J, Poulsen CJ, Tierney JE. Simulation of Eocene extreme warmth and
599 high climate sensitivity through cloud feedbacks. *Science Advances* **5**,
600 eaax1874 (2019).

601

602 3. Tierney JE, *et al.* Spatial patterns of climate change across the Paleocene-
603 Eocene Thermal Maximum. *Proceedings of the National Academy of Sciences*
604 **119**, e2205326119 (2022).

605

606 4. Zachos JC, *et al.* Rapid Acidification of the Ocean During the Paleocene-
607 Eocene Thermal Maximum. *Science* **308**, 1611-1615 (2005).

608

609 5. Yao W, Paytan A, Wortmann UG. Large-scale ocean deoxygenation during
610 the Paleocene-Eocene Thermal Maximum. *Science* **361**, 804-806 (2018).

611

612 6. Mariani E, *et al.* Large Igneous Province Control on Ocean Anoxia and
613 Eutrophication in the North Sea at the Paleocene–Eocene Thermal Maximum.
614 *Paleoceanography and Paleoclimatology* **39**, e2023PA004756 (2024).

615

616 7. Yao W, Kong T, Wang XT, Zhai R, Zhang R, Liu Y. Expanded subsurface
617 ocean anoxia in the Atlantic during the Paleocene-Eocene Thermal Maximum.
618 *Nature Communications* **15**, 9053 (2024).

619

620 8. Wu Q, Cui Y, Wang Y, Jiang S, Dong Y, Shen J. Biogeochemical responses to
621 global warming during the Paleocene–Eocene Thermal Maximum in the
622 eastern Tethys. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 111969
623 (2023).

624

625 9. Rush WD, Kiehl JT, Shields CA, Zachos JC. Increased frequency of extreme
626 precipitation events in the North Atlantic during the PETM: Observations and
627 theory. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 110289 (2021).

628

629 10. Kiehl JT, Zarzycki CM, Shields CA, Rothstein MV. Simulated changes to
630 tropical cyclones across the Paleocene-Eocene Thermal Maximum (PETM)
631 boundary. *Palaeogeography, Palaeoclimatology, Palaeoecology* **572**, 110421
632 (2021).

633

634 11. Cui Y, *et al.* Slow release of fossil carbon during the Palaeocene-Eocene
635 Thermal Maximum. *Nature Geoscience* **4**, 481-485 (2011).

636

637 12. Gutjahr M, *et al.* Very large release of mostly volcanic carbon during the
638 Palaeocene–Eocene Thermal Maximum. *Nature* **548**, 573-577 (2017).

639

640 13. Jones SM, Hoggett M, Greene SE, Jones TD. Large Igneous Province
641 thermogenic greenhouse gas flux could have initiated Paleocene-Eocene
642 Thermal Maximum climate change. *Nature Communications* **10**, 1-16 (2019).

643

644 14. Gernon TM, *et al.* Transient mobilization of subcrustal carbon coincident with
645 Palaeocene–Eocene Thermal Maximum. *Nature Geoscience*, (2022).

646

647 15. Jones MT, *et al.* Mercury anomalies across the Palaeocene–Eocene thermal
648 maximum. *Climate of the Past* **15**, 217-236 (2019).

649

650 16. Bowen GJ, Zachos JC. Rapid carbon sequestration at the termination of the
651 Palaeocene-Eocene Thermal Maximum. *Nature Geoscience* **3**, 866-869
652 (2010).

653

654 17. Penman DE. Silicate weathering and North Atlantic silica burial during the
655 Paleocene-Eocene Thermal Maximum. *Geology* **44**, 731-734 (2016).

656

657 18. Bowen GJ, *et al.* Two massive, rapid releases of carbon during the onset of the
658 Palaeocene-Eocene thermal maximum. *Nature Geoscience* **8**, 44-47 (2015).

659

660 19. Babila TL, *et al.* Surface ocean warming and acidification driven by rapid
661 carbon release precedes Paleocene-Eocene Thermal Maximum. *Science
662 Advances* **8**, eabg1025 (2022).

663

664 20. Crouch EM, Brinkhuis H, Visscher H, Adatte T, Bolle M-P. Late Paleocene-
665 early Eocene dinoflagellate cyst records from the Tethys; further observations
666 on the global distribution of Apectodinium. In: *Special Paper - Geological
667 Society of America*, vol.369 (eds Wing SL, Gingerich PD, Schmitz B, Thomas
668 E) (2003).

669

670 21. Sluijs A, *et al.* Environmental precursors to rapid light carbon injection at the
671 Palaeocene/Eocene boundary. *Nature* **450**, 1218-1221 (2007).

672

673 22. Tremblin M, *et al.* Mercury enrichments of the Pyrenean foreland basins
674 sediments support enhanced volcanism during the Paleocene-Eocene thermal
675 maximum (PETM). *Global and Planetary Change*, 103794 (2022).

676

677 23. Stokke EW, *et al.* Rapid and sustained environmental responses to global
678 warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea.
679 *Clim Past* **17**, 1989–2013 (2021).

680

681 24. Bowen GJ, *et al.* Two massive, rapid releases of carbon during the onset of the
682 Palaeocene–Eocene thermal maximum. *Nature Geoscience* **8**, 44–47 (2015).

683

684 25. Bralower TJ, *et al.* Impact of dissolution on the sedimentary record of the
685 Paleocene–Eocene thermal maximum. *Earth and Planetary Science Letters*
686 **401**, 70–82 (2014).

687

688 26. Zeebe RE, Westerhold T, Littler K, Zachos JC. Orbital forcing of the
689 Paleocene and Eocene carbon cycle. *Paleoceanography*, (2017).

690

691 27. Lourens LJ, *et al.* Astronomical pacing of late Palaeocene to early Eocene
692 global warming events. *Nature* **435**, 1083–1087 (2005).

693

694 28. Zeebe RE, Ridgwell A, Zachos JC. Anthropogenic carbon release rate
695 unprecedented during the past 66 million years. *Nature Geoscience* **9**, 325–329
696 (2016).

697

698 29. Wieczorek R, Fantle MS, Kump LR, Ravizza G. Geochemical evidence for
699 volcanic activity prior to and enhanced terrestrial weathering during the
700 Paleocene Eocene Thermal Maximum. *Geochimica et Cosmochimica Acta*
701 **119**, 391–410 (2013).

702

703 30. Jiang J, *et al.* Eustatic change across the Paleocene–Eocene Thermal
704 Maximum in the epicontinental Tarim seaway. *Global and Planetary Change*
705 **229**, 104241 (2023).

706

707 31. Kaya MY, *et al.* The Eurasian epicontinental sea was an important carbon sink
708 during the Palaeocene–Eocene thermal maximum. *Communications Earth &*
709 *Environment* **3**, 124 (2022).

710

711 32. Wang Y, *et al.* Response of calcareous nannoplankton to the Paleocene–
712 Eocene Thermal Maximum in the Paratethys Seaway (Tarim Basin, West
713 China). *Global and Planetary Change*, 103918 (2022).

714

715 33. Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH. Global
716 patterns in leaf ^{13}C discrimination and implications for studies of past and

717 future climate. *Proceedings of the National Academy of Sciences* **107**, 5738-
718 5743 (2010).

719

720 34. Cui Y, Schubert BA. Towards determination of the source and magnitude of
721 atmospheric pCO₂ change across the early Paleogene hyperthermals. *Global*
722 *and Planetary Change* **170**, 120-125 (2018).

723

724 35. Knauth LP, Kennedy MJ. The late Precambrian greening of the Earth. *Nature*,
725 (2009).

726

727 36. Derry LA. A burial diagenesis origin for the Ediacaran Shuram-Wonoka
728 carbon isotope anomaly. *Earth and Planetary Science Letters* **294**, 152-162
729 (2010).

730

731 37. Röhl U, Westerhold T, Bralower TJ, Zachos JC. On the duration of the
732 Paleocene-Eocene thermal maximum (PETM). *Geochemistry, Geophysics,*
733 *Geosystems* **8**, Q12002 (2007).

734

735 38. Zeebe RE, Lourens LJ. Solar System chaos and the Paleocene–Eocene
736 boundary age constrained by geology and astronomy. *Science* **365**, 926-929
737 (2019).

738

739 39. Bralower TJ, *et al.* Evidence for Shelf Acidification during the Onset of the
740 Paleocene- Eocene Thermal Maximum. *Paleoceanography and*
741 *Paleoclimatology*, (2018).

742

743 40. Bralower TJ, *et al.* Evidence for shelf acidification during the onset of the
744 Paleocene- Eocene Thermal Maximum. *Paleoceanography and*
745 *Paleoclimatology* **33**, 1408-1426 (2018).

746

747 41. Naafs BDA, Castro JM, De Gea GA, Quijano ML, Schmidt DN, Pancost RD.
748 Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic
749 Event 1a. *Nature Geoscience* **9**, 135 (2016).

750

751 42. De Palma M, *et al.* Stable isotopes of black carbon and their implications to
752 paleoclimate in the eastern Tethys during the PETM. *Palaeogeography,*
753 *Palaeoclimatology, Palaeoecology*, 112794 (2025).

754

755 43. Wu Q, Cui Y, Wang Y, Jiang S, Dong Y, Shen J. Biogeochemical responses to
756 global warming during the Paleocene–Eocene Thermal Maximum in the
757 eastern Tethys. *Palaeogeography, Palaeoclimatology, Palaeoecology* **636**,
758 111969 (2024).

759

760 44. Sinninghe Damsté JS, Schouten S, Hopmans EC, van Duin ACT, Geenevasen
761 JAJ. *Crenarchaeol. Journal of Lipid Research* **43**, 1641-1651 (2002).

762

763 45. Qin W, *et al.* Confounding effects of oxygen and temperature on the TEX86
764 signature of marine Thaumarchaeota. *Proceedings of the National Academy of
765 Sciences* **112**, 10979-10984 (2015).

766

767 46. Summons R, Jahnke L, Hope J, Logan G. 2-Methylhopanoids as biomarkers
768 for cyanobacterial oxygenic photosynthesis. **400**, 554-557 (1999).

769

770 47. Newman DK, Neubauer C, Ricci JN, Wu C-H, Pearson A. Cellular and
771 molecular biological approaches to interpreting ancient biomarkers. *Annual
772 Review of Earth and Planetary Sciences* **44**, 493-522 (2016).

773

774 48. Ricci JN, *et al.* Diverse capacity for 2-methylhopanoid production correlates
775 with a specific ecological niche. *The ISME Journal* **8**, 675-684 (2014).

776

777 49. Schaefer B, Schwark L, Böttcher ME, Smith V, Coolen MJL, Grice K.
778 Paleoenvironmental evolution during the Early Eocene Climate Optimum in
779 the Chicxulub impact crater. *Earth and Planetary Science Letters* **589**, 117589
780 (2022).

781

782 50. Garby TJ, *et al.* Lack of methylated hopanoids renders the cyanobacterium
783 *Nostoc punctiforme* sensitive to osmotic and pH stress. *Applied and
784 Environmental Microbiology* **83**, e00777-00717 (2017).

785

786 51. Xie S, Pancost RD, Yin H, Wang H, Evershed RP. Two episodes of microbial
787 change coupled with Permo/Triassic faunal mass extinction. *Nature* **434**, 494-
788 497 (2005).

789

790 52. Kasprak AH, *et al.* Episodic photic zone euxinia in the northeastern
791 Panthalassic Ocean during the end-Triassic extinction. *Geology*, G36371.
792 36371 (2015).

793

794 53. Naafs BDA, Bianchini G, Monteiro FM, Sánchez- Baracaldo P. The
795 occurrence of 2- methylhopanoids in modern bacteria and the geological
796 record. *Geobiology* **20**, 41-59 (2022).

797

798 54. Kuypers MM, van Breugel Y, Schouten S, Erba E, Damsté JSS. N₂-fixing
799 cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events.
800 *Geology* **32**, 853-856 (2004).

801

802 55. Cullers RL. Implications of elemental concentrations for provenance, redox
803 conditions, and metamorphic studies of shales and limestones near Pueblo,
804 CO, USA. *Chemical Geology* **191**, 305-327 (2002).

805

806 56. Wedepohl KH. Manganese: abundance in common sediments and sedimentary
807 rocks. *Handbook of Geochemistry: Berlin, Springer* **2**, 1-17 (1978).

808

809 57. Tribouillard N, Algeo T, Lyons T, Riboulleau A. Trace metals as paleoredox
810 and paleoproductivity proxies: An update. *Chemical Geology* **232**, 12-32
811 (2006).

812

813 58. Zhou X, Thomas E, Rickaby R, Winguth A, Lu Z. I/Ca evidence for upper
814 ocean deoxygenation during the PETM. *Paleoceanography* **29**, 964-975
815 (2014).

816

817 59. Schoon PL, Heilmann-Clausen C, Schultz BP, Damsté JSS, Schouten S.
818 Warming and environmental changes in the eastern North Sea Basin during
819 the Palaeocene–Eocene Thermal Maximum as revealed by biomarker lipids.
820 *Organic Geochemistry* **78**, 79-88 (2015).

821

822 60. Stein R, Boucsein B, Meyer H. Anoxia and high primary production in the
823 Paleogene central Arctic Ocean: First detailed records from Lomonosov
824 Ridge. *Geophysical Research Letters* **33**, (2006).

825

826 61. Stassen P, Thomas E, Speijer RP. Paleocene–Eocene Thermal Maximum
827 environmental change in the New Jersey Coastal Plain: benthic foraminiferal
828 biotic events. *Marine Micropaleontology* **115**, 1-23 (2015).

829

830 62. Sluijs A, *et al.* Warming, euxinia and sea level rise during the Paleocene–
831 Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean
832 oxygenation and nutrient cycling. *Climate of the Past* **10**, 1421-1439 (2014).

833

834 63. Behrooz L, *et al.* North- East Peri- Tethyan Water Column Deoxygenation and
835 Euxinia at the Paleocene Eocene Thermal Maximum. *Paleoceanography and*
836 *Paleoclimatology* **39**, e2023PA004828 (2024).

837

838 64. Dong Y, *et al.* Paleoenvironment reconstruction of the eastern Tethys during
839 the pre-onset excursion preceding the PETM. *Palaeogeography,*
840 *Palaeoclimatology, Palaeoecology*, 112234 (2024).

841

842 65. Kender S, *et al.* Paleocene/Eocene carbon feedbacks triggered by volcanic
843 activity. *Nature Communications* **12**, 1-10 (2021).

844

845 66. Fendley IM, Mittal T, Sprain CJ, Marvin-DiPasquale M, Tobin TS, Renne PR.
846 Constraints on the volume and rate of Deccan Traps flood basalt eruptions
847 using a combination of high-resolution terrestrial mercury records and
848 geochemical box models. *Earth and Planetary Science Letters* **524**, 115721
849 (2019).

850

851 67. Denis EH, Pedentchouk N, Schouten S, Pagani M, Freeman KH. Fire and
852 ecosystem change in the Arctic across the Paleocene–Eocene Thermal
853 Maximum. *Earth and Planetary Science Letters*, (2017).

854

855 68. Moore EA, Kurtz AC. Black carbon in Paleocene–Eocene boundary
856 sediments: A test of biomass combustion as the PETM trigger.
857 *Palaeogeography, Palaeoclimatology, Palaeoecology* **267**, 147-152 (2008).

858

859 69. Collinson ME, Steart D, Scott A, Glasspool I, Hooker J. Episodic fire, runoff
860 and deposition at the Palaeocene–Eocene boundary. *Journal of the Geological
861 Society* **164**, 87-97 (2007).

862

863 70. Sanei H, Grasby SE, Beauchamp B. Latest Permian mercury anomalies.
864 *Geology* **40**, 63-66 (2012).

865

866 71. Grasby SE, Them TR, Chen Z, Yin R, Ardakani OH. Mercury as a proxy for
867 volcanic emissions in the geologic record. *Earth-Science Reviews* **196**, 102880
868 (2019).

869

870 72. Jones MT, *et al.* Tracing North Atlantic volcanism and seaway connectivity
871 across the Paleocene–Eocene Thermal Maximum (PETM). *Climate of the Past*
872 **19**, 1623-1652 (2023).

873

874 73. Storey M, Duncan RA, Swisher III CC. Paleocene-Eocene thermal maximum
875 and the opening of the northeast Atlantic. *Science* **316**, 587-589 (2007).

876

877 74. Storey M, Duncan RA, Tegner C. Timing and duration of volcanism in the
878 North Atlantic Igneous Province: Implications for geodynamics and links to
879 the Iceland hotspot. *Chemical Geology* **241**, 264-281 (2007).

880

881 75. Wilkinson CM, Ganerød M, Hendriks BW, Eide EA. Compilation and
882 appraisal of geochronological data from the North Atlantic Igneous Province

883 (NAIP). *Geological Society, London, Special Publications* **447**, 69-103
884 (2017).

885

886 76. Larsen RB, Tegner C. Pressure conditions for the solidification of the
887 Skaergaard intrusion: Eruption of East Greenland flood basalts in less than
888 300,000 years. *Lithos* **92**, 181-197 (2006).

889

890 77. Dickson AJ, Cohen AS, Coe AL, Davies M, Shcherbinina EA, Gavrilov YO.
891 Evidence for weathering and volcanism during the PETM from Arctic Ocean
892 and Peri-Tethys osmium isotope records. *Palaeogeography,
893 Palaeoclimatology, Palaeoecology* **438**, 300-307 (2015).

894

895 78. Liu Z, *et al.* Assessing the Contributions of Comet Impact and Volcanism
896 Towards the Climate Perturbations of the Paleocene–Eocene Thermal
897 Maximum. *Geophysical Research Letters*, (2019).

898

899 79. Berndt C, *et al.* Shallow-water hydrothermal venting linked to the Palaeocene–
900 Eocene Thermal Maximum. *Nature Geoscience*, (2023).

901

902 80. Frieling J, Svensen HH, Planke S, Cramwinckel MJ, Selnes H, Sluijs A.
903 Thermogenic methane release as a cause for the long duration of the PETM.
904 *Proceedings of the National Academy of Sciences* **113**, 12059-12064 (2016).

905

906 81. Zeebe RE, Zachos JC, Dickens GR. Carbon dioxide forcing alone insufficient
907 to explain Palaeocene–Eocene Thermal Maximum warming. *Nature
908 Geoscience* **2**, 576-580 (2009).

909

910 82. Turner SK. Constraints on the onset duration of the Paleocene–Eocene
911 Thermal Maximum. *Philosophical Transactions of the Royal Society A:
912 Mathematical, Physical and Engineering Sciences* **376**, 20170082 (2018).

913

914 83. Schoell M. The hydrogen and carbon isotopic composition of methane from
915 natural gases of various origins. *Geochimica et Cosmochimica Acta* **44**, 649-
916 661 (1980).

917

918 84. Niemann H, Elvert M. Diagnostic lipid biomarker and stable carbon isotope
919 signatures of microbial communities mediating the anaerobic oxidation of
920 methane with sulphate. *Organic Geochemistry* **39**, 1668-1677 (2008).

921

922 85. Blumberg M, Seifert R, Reitner J, Pape T, Michaelis W. Membrane lipid
923 patterns typify distinct anaerobic methanotrophic consortia. *Proceedings of the
924 National Academy of Sciences* **101**, 11111-11116 (2004).

925

926 86. Penman DE, Hönisch B, Zeebe RE, Thomas E, Zachos JC. Rapid and
927 sustained surface ocean acidification during the Paleocene- Eocene Thermal
928 Maximum. *Paleoceanography* **29**, 357-369 (2014).

929

930 87. Kirtland Turner S, Ridgwell A. Recovering the true size of an Eocene
931 hyperthermal from the marine sedimentary record. *Paleoceanography* **28**, 700-
932 712 (2013).

933

934 88. Li M, Hinnov L, Kump L. Acycle: Time-series analysis software for
935 paleoclimate research and education. *Computers & Geosciences* **127**, 12-22
936 (2019).

937

938 89. Kodama KP, Hinnov LA. *Rock magnetic cyclostratigraphy*. John Wiley &
939 Sons (2014).

940

941 90. Li M, *et al.* Astrochronology of the Paleocene-Eocene Thermal Maximum on
942 the Atlantic Coastal Plain. *Nature Communications* **13**, 5618 (2022).

943

944 91. Thomson DJ. Spectrum estimation and harmonic analysis. *Proceedings of the
945 IEEE* **70**, 1055-1096 (1982).

946

947 92. Meyers SR. The evaluation of eccentricity- related amplitude modulation and
948 bundling in paleoclimate data: An inverse approach for astrochronologic
949 testing and time scale optimization. *Paleoceanography* **30**, 1625-1640 (2015).

950

951 93. Molnia BF. A rapid and accurate method for the analysis of calcium carbonate
952 in small samples. *Journal of Sedimentary Research* **44**, 589-590 (1974).

953

954 94. Eiler JM. "Clumped-isotope" geochemistry: The study of naturally-occurring,
955 multiply-substituted isotopologues. *Earth and Planetary Science Letters* **262**,
956 309-327 (2007).

957

958 95. Bernasconi SM, *et al.* InterCarb: A community effort to improve
959 interlaboratory standardization of the carbonate clumped isotope thermometer
960 using carbonate standards. *Geochemistry, Geophysics, Geosystems* **22**,
961 e2020GC009588 (2021).

962

963 96. Anderson N, *et al.* A unified clumped isotope thermometer calibration (0.5-
964 1,100 C) using carbonate- based standardization. *Geophysical Research
965 Letters* **48**, e2020GL092069 (2021).

966

967 97. Hopmans EC, Schouten S, Damsté JSS. The effect of improved
968 chromatography on GDGT-based palaeoproxies. *Organic Geochemistry* **93**, 1-
969 6 (2016).

970

971 98. Mackenzie AS, Patience RL, Maxwell JR, Vandebroucke M, Durand B.
972 Molecular parameters of maturation in the Toarcian shales, Paris Basin,
973 France—I. Changes in the configurations of acyclic isoprenoid alkanes,
974 steranes and triterpanes. *Geochimica et Cosmochimica Acta* **44**, 1709-1721
975 (1980).

976

977 99. Schouten S, Hopmans EC, Sinninghe Damsté JS. The effect of maturity and
978 depositional redox conditions on archaeal tetraether lipid palaeothermometry.
979 *Organic Geochemistry* **35**, 567-571 (2004).

980

981 100. Kim J-H, *et al.* New indices and calibrations derived from the distribution of
982 crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface
983 temperature reconstructions. *Geochimica et Cosmochimica Acta* **74**, 4639-
984 4654 (2010).

985

986 101. Ridgwell A, Schmidt DN. Past constraints on the vulnerability of marine
987 calcifiers to massive carbon dioxide release. *Nature Geoscience* **3**, 196-200
988 (2010).

989

990 102. Bice KL, Barron EJ, Peterson WH. Reconstruction of realistic early Eocene
991 paleobathymetry and ocean GCM sensitivity to specified basin configuration.
992 *Oxford Monographs on Geology and Geophysics* **39**, 227-250 (1998).

993

994 103. Kirtland Turner S, Ridgwell A. Development of a novel empirical framework
995 for interpreting geological carbon isotope excursions, with implications for the
996 rate of carbon injection across the PETM. *Earth and Planetary Science Letters*
997 **435**, 1-13 (2016).

998

999 104. Yong T. Lithofacies and Paleogeography of The Late Cretaceous-Early
1000 Tertiary of the Tarim Platform (in Chinese with English abstract).
1001 *Experimental Petroleum Geology* **6**, 9-17 (1984).

1002

1003 105. Lippert PC, van Hinsbergen DJJ, Dupont-Nivet G. Early Cretaceous to present
1004 latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with
1005 implications for Cenozoic tectonics, paleogeography, and climate of Asia. In:
1006 *Toward an Improved Understanding of Uplift Mechanisms and the Elevation*
1007 *History of the Tibetan Plateau* (eds Nie J, Horton BK, Hoke GD). Geological
1008 Society of America (2014).

1009

1010

1011

1012 **Acknowledgments**

1013 We thank Zhilin Yang for field assistance, and Hong Su for providing technical
1014 support and Isabel M. Fendley for discussions on mercury data interpretation. S.J. and
1015 Y.W. are supported by the National Key R&D Program of China (2022YFF0800800)
1016 and NSFC grants 41888101 & 41976045 & 42206047, Y.C. is supported by NSF
1017 Award 2002370. J.W. thanks the Agouron Institute for support. B.D.A.N. thanks the
1018 NERC (contract no. NE/V003917/1) and funding from the European Research
1019 Council under the European Union's Seventh Framework Programme (FP/2007-2013)
1020 and European Research Council Grant Agreement number 340923 for partial funding
1021 of the National Environmental Isotope Facility and GC-MS, GC-C-IRMS, and HPLC-
1022 MS capabilities at the OGU in Bristol. B.D.A.N. was funded through a Royal Society
1023 Tata University Research Fellowship. A.R. acknowledges support from NSF (EAR
1024 2121165 and MG&G 2244897). This manuscript is a contribution to IGCP 739
1025 project.

1026

1027 **Author contributions**

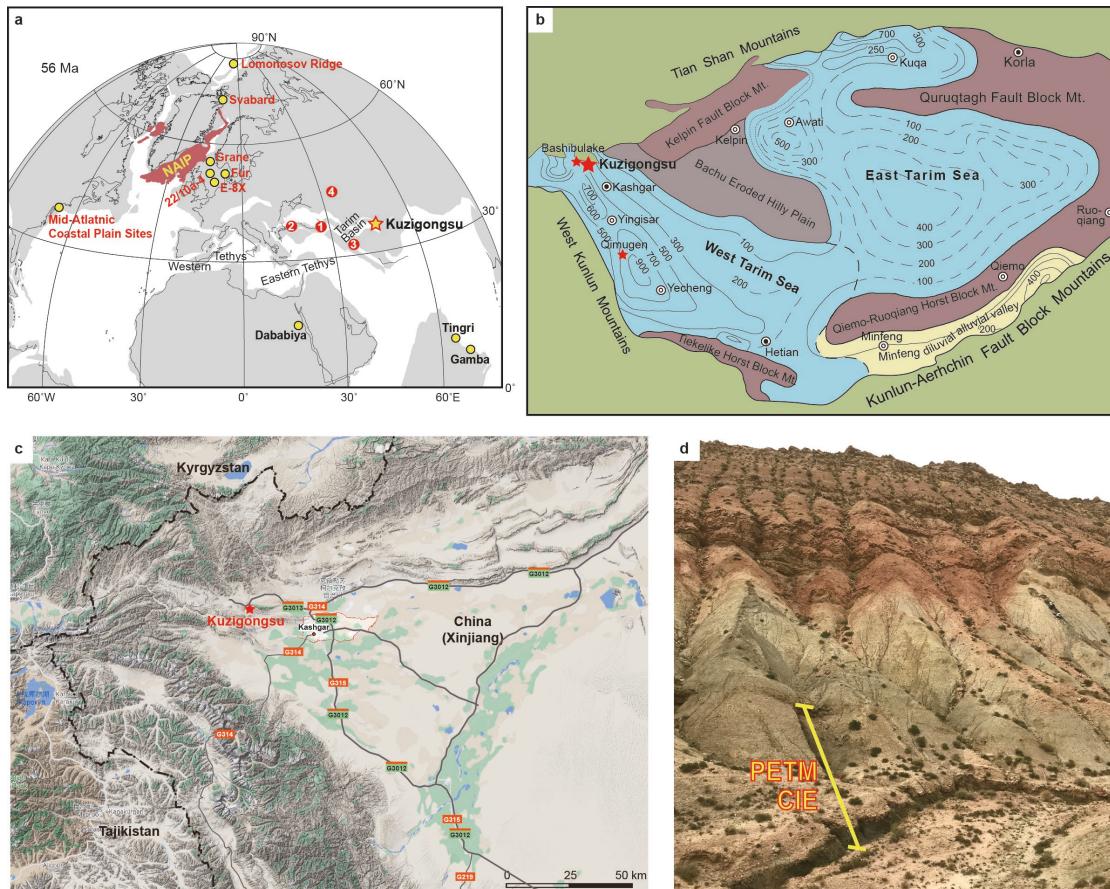
1028 S.J. and Y.C. designed the study and interpreted the data. Y.C., M.D.P. and A.R.
1029 performed and analyzed cGENIE modeling experiments. B.D.A.N. and Y.H. led the
1030 biomarker data acquisition. Y.W., S.J. and Y.G. interpreted the calcareous nannofossil
1031 biostratigraphy and performed XRF analysis, H.W. and R.C. performed age model,
1032 J.J. and X.H. conducted sedimentology. M.I. performed clumped isotope analysis. S.J.

1033 and Y.C. wrote the manuscript with inputs from T.B., A.R., J.Z., B.D.A.N., J.W.,

1034 H.W., R.C., S.Y., and M.I.

1035

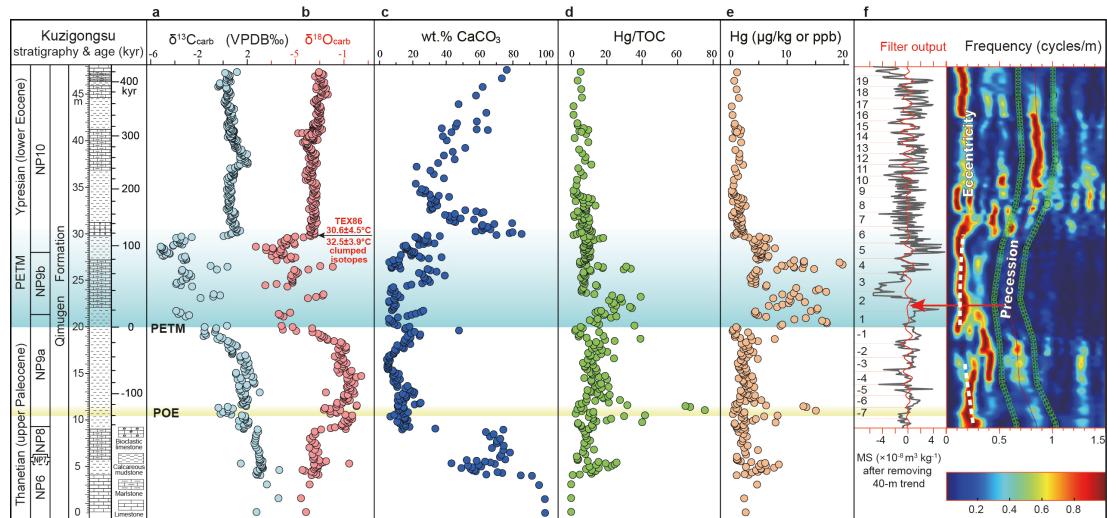
1036 **Competing interests**


1037 The authors declare that they have no competing interests.

1038

1039

1040


Figure captions

1041

1042 **Figure 1. (a, b)**, Paleogeographic setting of the study area in the early Paleogene¹⁰⁴,
 1043 ¹⁰⁵, (c), present location of the study site Kuzigongsu Section and (d), a photo of the
 1044 outcrop. Panel (a) also shows other shallow water PETM records in Aktumsuk (1),
 1045 Kheu River and Guru-Fatima (2-3), West Siberian Well 10 (4), southern Tibet (Tingri
 1046 and Gamba), Tarim Basin, Denmark (E-8X, 22/10a-4, Grane, and Fur), Svalbard,
 1047 Arctic (Lomonosov Ridge), and Mid-Atlantic Coastal Plain Sites (Ancora, Wilson
 1048 Lake, Clayton, and Millville located in the New Jersey, and South Dover Bridge or
 1049 SDB and Cambridge-Dorchester Airport located in the Salisbury Embayment in
 1050 Maryland). References associated with these sites are listed in Table S3.

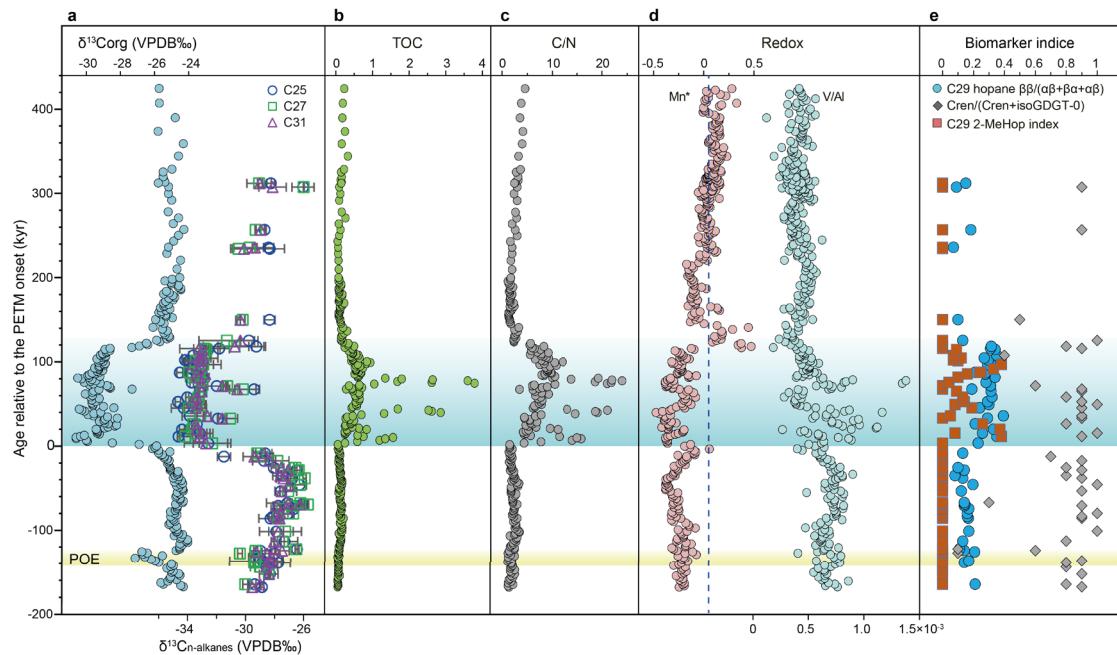
1051

1052

1053 **Figure 2.** Characteristics of the PETM and POE records at the Kuzigongsu section,

1054 eastern Tethys. (a, b), $\delta^{13}\text{C}_{\text{carb}}$ and $\delta^{18}\text{O}_{\text{carb}}$ from Wang et al. (2022)³². Note the two

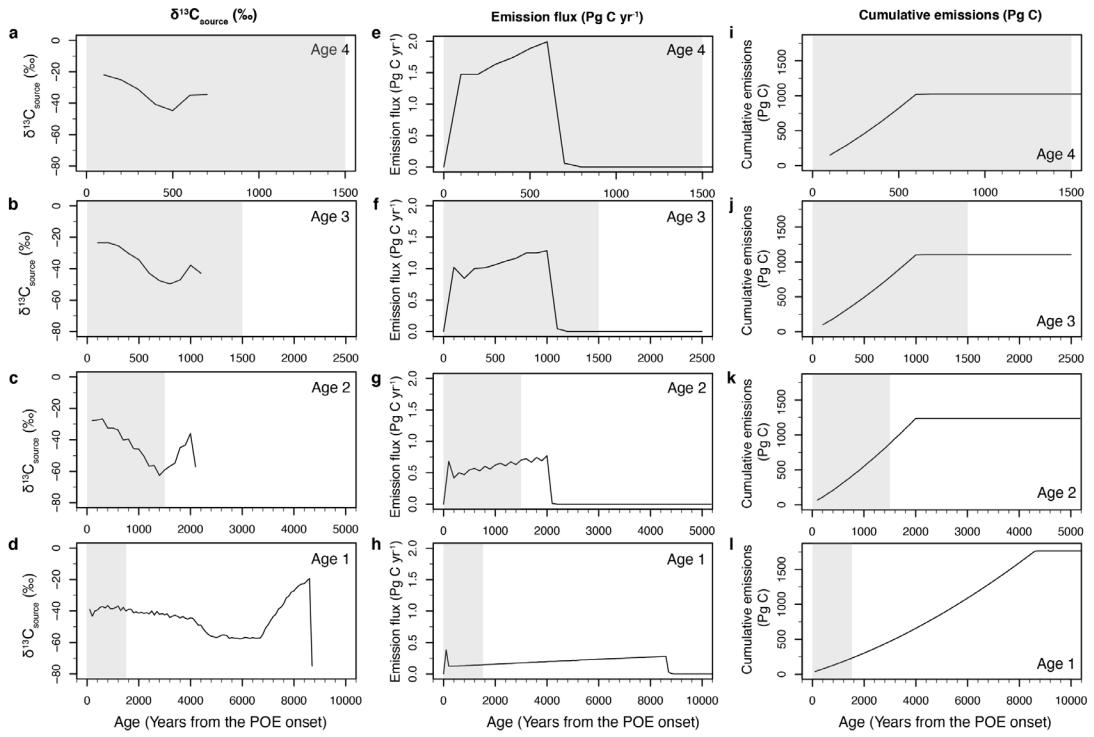
1055 novel sea surface temperature estimates based on oyster fossil Δ_{47} and $\text{TEX}_{86}^{\text{H}}$ at 29.8


1056 m depth. (c), wt.% CaCO_3 . (d), Hg/TOC ratio. (e), Hg concentration. (f),

1057 astronomically tuned age model based on magnetic susceptibility (MS) across the

1058 POE and PETM. The color bar represents spectral power and the green band

1059 represents the bandwidth of the precession cycles. Numbers in (f) indicate precession


1060 cycles assignments.

1061
1062

1063 **Figure 3.** Proxy-based reconstruction of environmental changes across the PETM and
1064 POE at the Kuzigongsu section, eastern Tethys. Relative age from the onset of the
1065 PETM is based on an astronomically tuned age model described in SI. (a) $\delta^{13}\text{C}_{\text{org}}$
1066 from bulk organic matter and $\delta^{13}\text{C}_{n\text{-alkanes}}$ from long-chain n -alkanes ($n\text{C}_{25}$ in blue
1067 circles, $n\text{C}_{27}$ in green squares, and $n\text{C}_{31}$ in purple triangles); (b) Total organic carbon
1068 content (TOC); (c) organic carbon to nitrogen ratio (C/N); (d) Mn* (pink circles)⁶⁴
1069 and V/Al ratio (orange circles) as redox proxies; (e) Biomarker indices based on C_{29}
1070 hopane $\beta\beta/(\alpha\beta+\beta\alpha+\alpha\beta)$ (blue circles), $\text{Crenarchaeol}/(\text{Crenarchaeol}+\text{isoGDGT-0})$ or
1071 $\text{Cren}/(\text{Cren}+\text{isoGDGT-0})$ (dark blue diamond), and C_{29} 2-Methylhopane index (2-
1072 MeHop) (red squares).

1073

1074

1075 **Figure 4.** Data assimilation results from our cGENIE Earth system modeling based
 1076 on the pH- $\delta^{13}\text{C}_{\text{DIC}}$ double inversion of four scenarios based on different assumptions
 1077 of POE onset duration. **(a-d)**, $\delta^{13}\text{C}_{\text{source}}$ values of the diagnosed carbon source for the
 1078 four age models (see age model interpretation in the main text). **(e-h)**, Model-
 1079 diagnosed rates of CO_2 emission for the four age models. **(i-l)**, Cumulative amount of
 1080 CO_2 emitted for the four age models. The gray shaded area represents 1,500 years.
 1081