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Abstract

Geologic records support a short-lived carbon release, known as the pre-onset
excursion (POE), occurred shortly before the Paleocene-Eocene Thermal Maximum
(PETM; ~56 Ma). However, the source and pace of the POE carbon release and its
relationship to the PETM remain unresolved. Here we show a high-temporal-
resolution stratigraphic record spanning the POE and PETM from the eastern Tethys

Ocean that documents the evolution of surface ocean carbon cycle, redox and
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eutrophication, confirming the global nature of the POE. Biomarkers extracted from
the sedimentary record indicate a smaller environmental perturbation during the POE
than that during the PETM in the eastern Tethys Ocean. Earth system modeling
constrained by observed §'3C and pH data indicates that the POE was driven by a
largely thermogenic COz source, likely associated with sill intrusions prior to the
main eruption phase of the North Atlantic Igneous Province and possibly

biogeochemical feedbacks involving the release of biogenic methane.

Introduction

A holistic understanding of the carbon-climate dynamics of past warming events has
important implications for CO2-induced anthropogenic climate change. The
Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) represents the largest
disruption of the global carbon cycle in the Cenozoic', which led to 5-6 °C global

warming? 3, ocean acidification*, ocean deoxygenation®> 78

, and intensified tropical
cyclones’ !°. The prominent 3—6%o negative carbon isotope excursion (CIE) registered
in both terrestrial and marine sections is consistent with major emissions (~2,000

to >13,000 Pg C) of '3C-depleted carbon to the atmosphere and/or ocean and on a
time-scale of a few to no more than ca. 20 kyr!'!: 2. Recent work suggests that the
North Atlantic Igneous Province (NAIP) and associated CO2 emissions may have
triggered the PETM'> 1415 followed by carbon sequestration through organic carbon

116

burial'® and silicate weathering!’. The PETM was proceeded by a transient warming
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accompanied by a smaller CIE'®*—known as the pre-onset excursion (POE) and which
is recorded in terrestrial records from the Wyoming Bighorn Basin'® together with
only a few shallow marine sections (Atlantic coastal plain, southwest Pacific Ocean,
the North Sea and the Pyrenean foreland basins)'®-2% 212223 The POE is a short-lived
warming event that occurred about 38 kyr to >100 kyr?* prior to the PETM onset with
an estimated duration of no more than a few centuries' to millennia®*. As an
environmental precursor to the PETM, the POE is absent in deep-sea sedimentary
records because its short duration may have limited its preservation to surface and
shallow water records'®. Resolving a global POE signal could be further complicated
by bioturbation, sediment mixing, and chemical burndown of deep-sea carbonates* 2°,
which could only be understood by studying shallow marine and terrestrial sections.
The POE warming may represent an early warning signal on the instability of carbon
reservoirs and set the stage for a climatic threshold crossing occurred during the
PETM. Previous studies suggest that the PETM is modulated by astronomical

26.27.28 and linked with the POE via repeated, catastrophic CO2 release®*, such

forcing
as methane hydrate dissociation'®, either as a direct response of the warming or via
positive feedback mechanisms. Furthermore, the close timing between the initial stage
of the NAIP and the POE suggests that volcanism and magmatism may also serve as a
viable trigger®’. However, the global extent of the POE, its relationship with the

PETM and exact mechanisms that triggered the POE—whether from methane hydrate

release, volcanic activity, or orbital drivers—remain debated.
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Here we report ultra-high-resolution biogeochemical records from a recently
discovered coastal shallow marine section in the eastern Tethys that span both the
POE and the PETM (Fig. 1). The Kuzigongsu section (39°45°10” N, 75°17°29” E) is
located in the western Xinjiang Uygur Autonomous Region of China, which was
covered by the Turan Sea—an arm of the Tethys Ocean during the early Paleogene
(Fig. S1). The eastern Tethys was a restricted shallow-water carbonate platform

t*0, and a critical site for the formation of warm and saline intermediate

environmen
water and the burial of organic matter’!. Abundant calcareous nannofossils*? and well-
preserved organic matter and oyster shells (Fig. S2) allow for an integrated
sedimentological, biogeochemical, isotopic, organic geochemical, and global carbon
cycle modeling approach to unravel the paleoenvironmental evolution of the eastern

Tethys during the POE and PETM, thus filling a critical spatial data gap and

advancing knowledge on forcing and recovery mechanisms of ancient hyperthermals.

Results and Discussion

Astronomically tuned high-resolution PETM and POE records from the
understudied eastern Tethys

The presence of the PETM within the Kuzigongsu section has been confirmed by
calcareous nannofossil biostratigraphy®? (the NP9/NP10 boundary). It occurs at 19.9
m (on a depth scale of 0 to 48 meters in Fig. 2) and corresponds to a ~ 6—8%o negative

carbon isotope excursion (CIE)—among the largest CIEs observed in shallow marine



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

sites'. The CIE magnitude is ~ 6.3%o in carbonate®?, ~ 6.0%o in organic matter, and
somewhat amplified in long-chain n-alkanes (~ 7.8%o), which is likely a result of an
enhanced hydrological cycle® and elevated pCO2!% 34, The primary 8'*Cecarb signal
should be well preserved, on the basis of: 1) the strong covariation between §'*Cecarb
and 83 Corg (> = 0.75, p < 0.001; Fig. S3); 2) that most 8'*Ccarb and 8'30carv data plots
within the area of primary carbonates®® (Fig. S3), and 3) the existence of only a weak
correlation (r? = 0.18, p < 0.001, Fig. S3) between 8'*Ccarb and Mn/Sr (a strong
correlation is an indicator of diagenetic alteration®).

The POE is found at ~ 8.4 m below the PETM onset within lower nannofossil
Zone NP9a* and occurs in a 1.2-meter-thick interval (10.3 to 11.5 m) characterized
by a—1 to —2.5%o CIE (Fig. 2). Specifically, we observed CIEs of —2.5%o in carbonate
and —2.1%o in organic matter, but in contrast to the PETM, only ~ —1%o in long-chain
n-alkanes. The relatively smaller recorded magnitude in the n-alkane record is likely
due to the lack of data at 10.8 m depth where §'*Cearb and 8'*Corg values reach their
minima (Fig. 2).

Power spectrum analysis of the detrended magnetic susceptibility (MS) data
series shows significant peaks in wavelength at 0.8, 1.2, 1.9, 3, 5, 6.5, and 9.8 m (see
Methods, SI and Figs. S4-S6), with the filtered 1.2—1.9 m cycles interpreted as
precession signal with an assumed 21 kyr duration and the filtered 5 to 9.8 m cycles
as short eccentricity (~ 100 kyr). Spectral analysis revealed sedimentation rates

averaging between 6.0 and 8.3 cm kyr ! (Fig. S5) and suggests that the durations of
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the PETM and the POE at our study site are ~ 127 kyr and ~ 21 kyr, respectively (age
model option 1; see SI and Table S2 for details). The PETM and POE are separated
by ~ 144 kyr (£ 21 kyr). The estimated PETM duration of 127 kyr is shorter than

137 and Zeebe and

inferred from the deep sea sites (e.g., ~ 170 kyr from Rohl et a
Lourens*®), likely due to incomplete preservation of the entire PETM at Kuzigongsu
with a change in lithology that truncates the recovery phase. The POE onset duration
of ~7.0 kyr (age model option 1) is similar to, but slightly longer than the 2 to 5.5 kyr
estimated by Bowen et al.'® (Fig. 4). An alternative age model option 2 that accounts
for the significant drop in wt.% CaCOs3 and a likely truncation assumes the filtered 6—
10 m cycles represent ~20 kyr precessional signal. This age model option provides a
duration of ~39 kyr for the PETM, ~4 kyr for the POE and ~54 kyr between the
PETM and POE, which suggests the study site only preserves the PETM onset and the
plateau, rather than the recovery (see SI for detailed discussion). However, due to the
uncertainty in the astronomically tuned age model, we assume that the POE onset
duration ranges from 500 to 7,000 years to cover the full range of reported values in

the literature'®> 24,

Paleoenvironment of the eastern Tethys during the POE and PETM
We use a multi-proxy approach to reconstruct the paleoenvironmental evolution of the
eastern Tethys during the POE and PETM. Our records (Figs. 2, 3) include C/N ratios

as indicators of organic matter source, weight percent (wt.%) CaCOs3 as a proxy for
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ocean acidification and detrital dilution, trace element geochemistry for marine
nutrient and chemical weathering proxies, organic biomarkers as proxies for marine
microbial communities, and mercury content as a possible indicator of NAIP activity.
Together, our new data suggest that the shallow eastern Tethys experienced profound
environmental changes, including extreme warmth, eutrophication, and biological
turnover. Furthermore, the moderately high sedimentation rates (optimal
sedimentation rate fluctuates between ~ 6-8 cm kyr'; Figs. S4, S5) at this shallow
site (estimated water depth is ~ 30—50 m based on microfacies analysis and
foraminifera indicators*®) yield highly expanded records that provide unique details
on the relationship between the PETM and the POE. Such details are generally
obscured in deep-sea sites because of lower sedimentation rates, dissolution, and
bioturbation® *°.

The section is characterized by a rapid decrease in wt.% CaCOs3 from >80
wt.% to near 0 wt.% at ~9 m—a shift which precedes the POE and PETM and may be
attributed to significant reduction of carbonate production, detrital dilution, or shallow
ocean acidification® *’. The sharp decrease in oxygen isotopes of marine carbonate
values (8'Ocarb) (the magnitude of §'®Ocarb excursion is 2.5%o, from —3.6%o to —6.1%o,
which corresponds to a temperature rise of 12.8 °C, much larger than the estimated
global temperature change of ~ 5.4-5.9 °C, ref. 3), while consistent with an abrupt
and significant warming during the POE and PETM (Fig. 2b), could be due to

diagenetic overprinting. Alternatively, the §'Ocar> decrease may represent a decline in
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local salinity as the 8'®Osw at epeiric sites can be strongly influenced by freshwater
input from surrounding continents?. Clumped isotope data from a well-preserved
oyster specimen (at 29.8 m; Fig. S2) indicate that the eastern Tethys surface water
temperature was around 32.5 + 1.5 °C (10) at the recovery phase of the PETM (Fig.
2). This estimate is similar to our independent temperature estimate of 30.6 +4.5°C
(1o) based on the TEXL, proxy*! for the sample at the same depth. However, the
thermal maturity is relatively high for this section and the cyclized isoGDGTs
abundance is low, preventing us from obtaining a high-resolution and precise TEXE,
temperature record at the site (Fig. 2).

In the organic matter fraction, peak TOC and C/N ratios coincide with the
lowest 8'3Corg values during the PETM, suggesting increased terrestrial organic matter
input at the study site, a likely consequence of intensified continental weathering
and/or higher terrestrial primary production*?. The inferred increase in terrestrial
weathering is supported by the higher values of Ti/Al and K/Al ratios*. Elevated C9
hopane Bp/(af+Pat+ap) ratios (average = 0.3) during the PETM indicate increased
input of fresh organic matter either due to higher primary productivity or increased
flux of fresh terrestrial organic matter into the basin (Fig. 3¢). Lower C29 hopane
BP/(af+Potap) ratios (average = 0.1) in the pre- and post-PETM samples suggest
relatively low primary production in the surface waters with background input of
reworked and more mature organic matter from the surrounding continents*?,

Similarly, Crenarchaeol/(Crenarchaeol+isoGDGT-0) ratios range from 0.1 to 1.0,
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with a significant decrease during the POE and PETM. Crenarchaeol (with four
cyclopentane rings and one cyclohexane ring) is considered as a biomarker for
Thaumarchaeota*. The lower Cren/(Cren+isoGDGT-0) ratios during the POE and
PETM therefore likely reflect a reduction in marine Thaumarchaeota, which may be
attributed to warmer surface ocean temperature and lower dissolved oxygen
concentration®’. The occurrence of 2-methylhopanes (2-MeHop) in the PETM interval
indicates a transient perturbation of surface ocean characteristics (Fig. 3). The Cz9 2-
MeHop Index, calculated as 100 x (C29 2-MeHop)/(C29 2-MeHop + C29 Hop)*,
ranges from ~ 0—38% with two prominent peaks, at 20.9 m and 28.5 m respectively,
corresponding to the peak values of TOC and C/N ratios. Several studies reported that
the occurrence of 2-MeHop in the sedimentary record can be viewed as indicators of
stress responses to the capacity of microbial respiration under hypoxia*’, nitrogen
fixation*®, increased productivity®’, and changes in pH>, corroborating the
interpretations of elevated primary productivity discussed above. Furthermore, the
anomalously high C29 2-MeHop Index during the PETM may be attributed to marine
nitrogen cycle perturbation as a result of biogeochemical changes. This is similar to
observations of other major carbon cycle perturbations of the Phanerozoic, such as the
end-Permian mass extinction event’!, the end-Triassic extinction event’?, and the
Mesozoic Oceanic Anoxic Events® >4,

Ocean deoxygenation may have been strengthened by increased primary

productivity from elevated nutrient input due to enhanced terrestrial weathering. This

10
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suggestion is supported by negative Mn* values (Eq. 1) from the POE to the PETM
(Fig. 3), which are associated with more reducing conditions due to significant redox-
related changes in the solubility of Fe and Mn>>.

Mn* = log[(Mnsample/Mnshales)/(F €sample/Feshates) ] (D
The values used for the Mnshates and Feshales are 600 and 46,150 ppm, respectively>®.
Furthermore, the inferred surface ocean deoxygenation is consistent with elevated
V/Al ratios over the same interval (Fig. 3) because V ions (+4 and +5 valence) are
closely coupled with the redox cycle of Mn®’. Widespread deoxygenation is well
documented in many ocean basins across the globe during the PETM> 8, including
the North Sea*’, the Arctic Ocean®, the Atlantic and Caribbean®" %%, and the
northwestern Tethyan margins®’. However, no significant changes in these redox
indicators were observed across the POE®, suggesting relatively stable redox
conditions in the eastern Tethys at this time.

Mercury content (or Hg concentration normalized as a ratio to organic carbon
content—Hg/TOC) has been used as a signal of NAIP activity by several previous
studies'> %°. Our site exhibits two prominent Hg/TOC peaks that show a small lead in
time relative to the onset of the POE (~ 11 kyr) and the PETM (~ 26 kyr) (Fig. 2),
supporting a pulsed Hg input and a possible link between Hg source and the '3C-
depleted carbon source. However, because of the overall low Hg concentrations at the
study site, establishing a direct link between the NAIP and the Hg peaks is not

straightforward. Low Hg is likely due to dilution by carbonate and detrital input, the
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long distance of the site relative to Hg source, and/or Hg transport via oceanic waters
rather than global atmospheric transport!®. Increased Hg concentrations across the
POE and PETM compared to background values suggest that multiple possible
sources and processes may have been at play in addition to the NAIP activity. For
example, variations in Hg concentrations in the sedimentary records can be caused by
changes in river runoff, weathering, transport of terrestrial materials, primary
productivity, source of organic matter, and post-depositional processes (e.g.,
diagenesis and dissolution)'”, which could become more important at the study site
because of its restricted carbonate platform setting®. Deoxygenation and changes in
organic matter preservation and transport cannot fully account for the excess Hg as
shown by the steeper Hg gradient to TOC within the PETM and POE interval at our
site (Fig. S7). Moreover, Hg fluxes associated with wildfire (e.g., Arctic region®’,
northeastern US margin®, and England®) may have been far less than the Hg fluxes

associated with a large igneous province event’”

, and therefore cannot provide
sufficient Hg into the study site. Principal component analysis (PCA) suggests that Hg
is most closely related to C/N ratios (higher C/N ratio indicates more terrestrial
organic source) and 8'*Corg during the PETM, which reflect changes in source of
organic matter and '3C-depleted COz emissions (Fig. S7). The C/N ratio exhibits no
significant change across the POE, suggesting the increase in Hg and Hg/TOC ratio is

unrelated to changes in source of organic matter. On the other hand, C/N ratio shows

a large increase across the PETM, which indicates that changes in source of organic
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matter may have contributed to the increased Hg concentrations. These potential
processes do not preclude volcanic involvement, however, especially via more
complex pathways than simple atmospheric loading and deposition’!. Despite these
potential complex sources of Hg, we cannot completely exclude direct and indirect
involvement of the NAIP in driving the Hg changes in the study section’?. For
example, the NAIP was active as early as 62 Ma’?, and its peak activity may have
encompassed both the POE and the PETM"* 7+ 7576 A negative shift in '¥’0Os/!%%0s
ratios has been observed prior to the PETM in several sites globally? %7778 lending
support to the occurrence of LIP activity prior to the PETM. Furthermore,
hydrothermal vent complexes in the northeast Atlantic region’® *° further support that

the NAIP activity can at least partially explain the observed Hg records.

Thermogenic CO; emissions associated with NAIP activity during the POE

The PETM carbon emission history has been extensively modeled in the past, with
estimated carbon emission rates ranging from 0.3 to 1.7 Pg C yr”! for a CIE onset
duration from 3,000 to 20,000 years and cumulative amount of carbon added ranging
from 2,500 to 13,000 Pg C!!12.18.80.81.82 ‘Becayse the carbon emission history
preceding the PETM has not been systematically quantified in an Earth system model
and very little is yet known about the CO: source during this time'®, we then focused

our model analysis on the POE (Table S3 and Fig. 4). Our new high-resolution
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geochemical data, together with an orbitally tuned astronomical age model, provide a
unique opportunity to assess the effects of CO2 emissions during the POE.

We quantify carbon emissions over the POE using a data assimilation
approach that considers paired 8'*Cpic-pH variation across the POE within an Earth
system model of intermediate complexity cGENIE, following the approach detailed in
Gutjahr et al.'. In this, changes with time in annual global mean surface ocean pH
(derived from 8''B proxy data from the Mid-Atlantic Coastal Plain with a change of ~
—0.1 to —0.3 pH units'®) constrain the emission rate of COz to the atmosphere.
Similarly, the change with time in observed 8'°C of annual global mean surface ocean
DIC (8'3Cbic) (reconstructed by applying an anomaly derived from the §'°C data of a
global compilation; Fig. S8) refines the §'3C value of the (pH-constrained) CO2
emissions. The novelty of this approach is that it offers a unique solution of the mean
8'3Csource Without having to make a specific assumption about the carbon source (e.g.,
compare with Cui et al.!'; see Methods and SI for detailed model results and
sensitivity tests). To account for the uncertainty in the POE onset duration, we place
our records on four different age models, including age model option 1 and 2 from

1."8 and an

this study, an age model from the Bighorn Basin based on Bowen et a
assumed age of 500 years based on Babila et al.! (a summary of our model results
and sensitivity analyses for the POE is listed in Table S3). (Fig. 4).

The flux-weighted 8'*Csource values across the entire emission duration vary

between —30.8 and —44.5%o for the four age models used in our simulations with the
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minimum change in pH suggested by Babila et al.', consistent with a thermogenic
CO2 source®® (=30 to —65%o; Fig. 4a-d and Table S5a). Longer POE duration (e.g.,
Age 1 associated with ~7,000 year POE onset) necessitates lower flux-weighted

813 Csource values (—44.5%o) over the entire emission interval (Fig. 4a) at slower
emission rate (~ 0.2 Pg C yr~!). We note that the §'*Csource values become
progressively lower from the POE onset, likely resulting from a faster rate of change
toward its minimum values in the 8'*C forcing. This may represent a shift from
thermogenic methane to biogenic methane (~ —34 to < —70%0** 3%) emissions during
the development of the POE. The average carbon emission rate over the entire
emission period ranges from 0.2 to 1.3 Pg C yr~! (Fig. 4e-h), comparable to those
estimated for the PETM from sill-degassed CO2 and thermogenic methane (0.2 to 0.5
Pg C yr~! from Jones et al.'*; 0.6 Pg C yr~! from Frieling et al.?%). Larger magnitude of
pH changes (e.g., ApH = ~0.2 to 0.3) yield overall larger average peak CO2 emission
flux (2.9 Pg C yr!) and higher average 8'*Csource values (—=19.5%o) (Table S3), still
consistent with largely thermogenic methane source. The pH change for the POE has
only been documented at a single location utilizing a novel approach to measuring
boron isotopes (5''B) and thus has a high uncertainty'®. Considering the smaller
magnitude of §'3C excursion, smaller degree of warming, its shorter duration, and
minor ecological responses, the changes in pH during the POE is unlikely to exceed

that during the PETM (ApH = ~0.3)3¢. Higher average carbon emission rate is
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associated with shorter POE onset duration (Fig. 4e), which represents a combined
feature of the imposed ApH forcing and age models used (Fig. S8).

The cumulative CO2 emission during the POE ranges from ~1,030 to 1,765 Pg
C (Fig. 4i-1), with peak pCOz reaching ~1,180 to ~1,220 ppm—a rise of ~350 to ~390
ppm above ~830 ppm (Fig. S9). The modeled cumulative carbon emitted during the
POE falls within the range of the 400 to 1,600 Pg C suggested by Babila et al.'” using
similar ApH. However, if the actual ApH was at the lower end (lower than ~0.1), it is
more likely that the carbon source was primarily biogenic methane. Associated with
the diagnosed carbon emissions is a modelled global sea surface temperature rise (AT)
of ~1.1 to ~1.3 °C (Fig. S9). Although the paleotemperature history of the POE is
currently poorly known, existing Mg/Ca ratios of planktonic foraminifera from the
mid-Atlantic coastal plain suggest that the surface ocean temperature increase was ~2
°C with an uncertainty of + 1 °C due to salinity variations'®, consistent with our
modeled temperature changes within uncertainty. The POE warming may also help
explain the observed increase in warm-water coccolithophore taxa in the eastern
Tethys*2.

Thermogenic COz related to the NAIP activities may have been the dominant
carbon sources during the POE via contact metamorphism by intrusive activity
through hydrothermal vent complexes’. It should be noted that mantle convection
models suggest that a peak NAIP carbon emission flux at ~0.5 Pg C yr~! could occur

between 1 and 20 kyr'®, comparable to those simulated in our inversion experiments,
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despite the geochronology of the NAIP continental flood basalt sequences being not
very well constrained’”. It is also important to note that a caveat of cGENIE in
interpreting our results is the lack of terrestrial biosphere and potential changes in
orbital forcing, which could impact the climate responses and lead to uncertainties in
carbon emission estimates. Although this study provides a range of estimates on the
carbon source and emission flux during the POE, more precise §''B-based global
surface pH records, detailed history of the sill intrusion of the NAIP, sea surface
temperature records from across different latitudes, and better-constrained
geochronology of the NAIP activity are clearly needed to reduce the uncertainty of
the estimated thermogenic carbon emission fluxes from the NAIP.

The evolution of mean core-top carbonate (CaCO3) with time in the model
exhibits a smaller magnitude of 8'*C decrease for simulations with bioturbation turned
on compared to those without bioturbation (Fig. S10). Similarly, core-top CaCO3
wt.% also exhibits smaller degree of dissolution for experiments with bioturbation on
(Fig. S10). Longer experiment duration allows for a larger CIE magnitude regardless
of whether bioturbation is on. This is due to the combined effects of bioturbation and
dissolution as a result of the cumulative carbon emission (Fig. S10 and Fig. 4i-1),

supported by a comparable Eocene hyperthermal event®’

. These experiments support
the inference that short POE onset duration (less than millennial timescale) and

bioturbation are the main causes of the lack of POE signal in the deep-sea

sedimentary records.
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In conclusion, we report astronomically tuned, ultrahigh-resolution PETM and POE
stratigraphic records from a recently discovered site in the eastern Tethys.
Geochemical proxies based on carbonate, bulk organic matter, and biomarkers
suggest that the eastern Tethys experienced profound carbon cycle perturbations
during the POE and PETM. Our integrated stratigraphic data and Earth system
modeling together suggest that the millennial time-scale POE may be attributed to
mainly thermogenic CO2 emission associated with sill intrusion prior to the main
eruption phase of the NAIP, with contributions from amplifying feedbacks such as
biogenic methane release. The POE may have set the stage for the ecosystem
threshold crossing and the extreme carbon cycle disruption occurred during the

PETM.
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Methods

Cyclostratigraphy and astronomically tuned age model

Magnetic susceptibility measurements: A total of 480 samples at 10 cm intervals
spanning both the POE and the PETM weighing 4 to 8 grams were measured for bulk
mass-normalized magnetic susceptibility (MS or ) using KLY-4S Kappabridge after
being crushed in a copper rock hammer and placed in a 2x2x2 ¢cm? cubic plastic
holder. The MS measurements were conducted at the Paleomagnetism and
Environmental Magnetism Laboratory at the China University of Geoscience
(Beijing). Measurements were made at room temperature with an applied field
amplitude of 200 A/m and frequency of 976 Hz. Each measurement is corrected for
the contribution of the plastic sample holder. Each sample was measured three times,
with the average value corrected by mass to obtain y in units of m® kg™!. Relative
standard deviations between the three runs were smaller than 0.5%.

Time series analysis: Time-series analysis was conducted using MS data with the
open-source software Acycle V2.4% because MS measures the magnetic mineral
concentration, and is considered as a proxy for detrital fluxes from land to the ocean®’.
The MS data series was first detrended by subtracting a 40-m “loess” trend (locally
estimated scatterplot smoothing, a non-parametric method for a series of data
smoothing with a default window size of 35%) to remove non-periodic or high-
amplitude long-term trends following the procedures described in Li et al.”’. The

multi-taper method (MTM)°! with 2x tapers was used to estimate the spectrum for the
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detrended MS series and confidence levels (mean, 90%, 95%, and 99%) were
provided to test against robust first-order autoregressive model AR(1) red noise in
order to reveal the MS series’ dominant wavelength. The evolutionary power spectra
were calculated with “Evolutionary Spectral Analysis” function in Acycle with a
sliding window of 10 m and a step of 0.1 m to identify any secular trend in dominant
frequencies, which may be attributed to variations in sedimentation rates. The time
scale optimization (TimeOpt; Meyers®?) and correlation coefficient (COCO; Li et
al.3%) methods were used to identify the optimal sedimentation rate using Acycle’s
“COCO” and “TimeOpt” functions, which use 2,000 Monte Carlo statistical
simulations to test the null hypothesis of no orbital forcing. The evolutionary versions
of COCO and TimeOpt functions (i.e., eCOCO and eTimeOpt) were used to track
changes in sedimentation rates. In addition, the “Spectral Moments” function was
used to estimate variable sedimentation rates based on a periodogram with two
spectral moments: evolutionary mean frequency (uf) and evolutionary bandwidth (B)
(Figs. S4, S5). Subsequently, “Dynamic Filtering” function was used to apply
dynamic filtering and isolate interpreted precession cycles from the MS data series.
Since the power of long-term cycles (i.e., short eccentricity cycles) may have muted
the manifestation of precession cycles in the evolutive harmonic analysis (EHA), we
remove the > 4 m cycles that may be associated with eccentricity cycles to reveal
precession-related cycles as the most prominent signal in the EHA spectrogram (Fig.

S6). The significant power of the interpreted precession cycles in the EHA
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spectrogram allows us to effectively isolate this signal from EHA (Fig. S4). We then
use the precession cycles to construct an astrochronological timescale for the study
interval. Analyses of TimeOpt and COCO indicate alternation of optimal
sedimentation rates (i.e., 6.0 cm kyr! and 8.3 cm kyr™") (Fig. S4). Spectral Moments,
eTimeOpt and eCOCO together suggest the estimated sedimentation rate ranges from
4.2 to 10.6 cm kyr™! with increased sedimentation rate during the PETM body (Figs.

35-S6).

Stable carbon isotopes of bulk organic matter and wt.% CaCQO3

HCl-treated carbonate-free powders were measured for total organic carbon
(TOC) and total nitrogen (TN) concentrations on a Vario EL-III elemental analyzer,
and the §'3Corg analyses were made using a thermo DELTA plus XL mass
spectrometer at State Key Laboratory of Organic Geochemistry, Guangzhou Institute
of Geochemistry, Chinese Academy of Sciences. Three reference materials were used
to monitor the measurement of carbon isotopic ratio of bulk organic carbon, which
included black carbon (-22.43%o), Urea#1 (-34.13%o), and Urea#2 (-8.02%o).
Precision based on repeated measurement of these three standards were 0.12%o,
0.08%o, and 0.09%o, respectively. §'*Corg values were reported in VPDB and analytical
precision was better than +0.1%o based on replicate analyses of the standards
processed with each batch of samples. Weight percent (wt.%) CaCO3 was measured

using a modified acid soluble weight-loss method®>.
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Carbonate clumped isotope geochemistry

The carbonate clumped isotope thermometer is based on the thermodynamic
stability of C—O bonds at varying temperature, in which “clumping” of the rare, heavy
isotopes of carbon and oxygen (!*C and '"*0) occurs more frequently at lower
temperatures’. The excess occurrence of the *C!'30'°0 isotopologue of CO: relative
to a stochastic distribution of the heavy isotopes among all CO2 molecules is referred

47
to as the mass 47 anomaly and notated as A47, in which Ay, = (—R) X 1000 where

.
4R = [BC10B0+12C70B0+13C0,]/[12C'%02] and * denotes a stochastic
distribution of isotopes. Clumped isotope thermometry presents a significant
innovation over oxygen isotope-based thermometry because the temperature estimate
is independent of the bulk isotopic composition, and thus requires no assumptions
about §'®Ocarb or 8'®Owater. This mineral formation temperature can be used to
calculate 3'0 of ancient waters when paired with §'%Ocarb values of the same sample,
which is measured concurrently with A47.

Carbonate clumped isotope measurements of one Eocene fossil oyster
(Crassostrea sp.) and one modern oyster specimen (Crassostrea hongkongensis)
collected from northern South China Sea (21°42'7.89" N, 111°55'44.61" E) in 2022
were made at the Pennsylvania State University in April 2022 (see SI).

Approximately 8 mg of pure carbonate powder was digested in a 105% phosphoric

acid common acid bath at 90 °C to yield COz. Evolved CO2 was passed through a
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Protium Isotope Batch Extraction (IBEX) carbonate preparation line to purify the
sample gas. The gas is passed through a cryogenic trap to separate CO2 from water, a
silver wool-packed borosilicate column to trap sulfides, and a gas chromatography
column packed with Poropak to separate CO2 from other compounds with a He carrier
gas. The purified CO2 gas is once more frozen into a cryogenic trap before being
frozen into a microvolume, and passed through a polished nickel capillary to the MAT
253 Plus bellows. Purified CO2 sample gas was analyzed on a Thermo MAT253 Plus
dual inlet IRMS relative to an Oztech working gas.

A47values versus the working gas were projected to the Intercarb-Carbon
Dioxide Equilibrium Scale® (I-CDES) using a carbonate standard-based empirical
transfer function. ETH 1, 2, 3, and 4 were measured to build the reference frame and
for interlaboratory comparison, and IAEA-C2 and Carrara Marble were treated as
unknowns. Individual replicates were averaged to create final sample A47 values and
reported with a 95% confidence interval. Temperatures were calculated using the T-
A47 calibration of Anderson et al.’®. The average measured A47 value for the oyster
fossil is 0.573 £ 0.011 (20), while the A47 value for the modern oyster specimen is
0.604 £ 0.028 (20). The calculated sea surface temperature in the eastern Tethys
based on early Eocene oyster fossil is 32.5 = 3.9 °C (206). The calculated modern sea
surface temperature based on modern oyster specimen is 21.6 + 8.7 °C (20), falling in
the range of the observed average annual sea surface temperature (24.1 + 5.6 °C) in

northern South China Sea in 2022.

23



474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

Biomarker and stable carbon isotopes of long-chain n-alkanes

Around 11 grams of dried and powdered sample were extracted for their
biomarker content using a microwave system (Milestone Ethos EX) and using 20 ml
of a dichloromethane and methanol mixture (9:1). The total lipid extract was
separated using silica flash chromatography and elution with hexane:DCM (9:1) for
the apolar and DCM:MeOH (2:1) for the polar fraction. The apolar fractions were
characterized on a Thermo Scientific ISQ single quadrupole mass spectrometer (MS)
coupled to a gas chromatograph (GC). Compounds were separated using a fused silica
column (50 m x 0.32 mm) with a ZB1 stationary phase and helium as the carrier gas.
The GC was programmed for: injection at 70 °C (1 min hold), ramp to 130 °C at
20 °C/min, followed by a ramp to 300 °C at 4 °C/min (20 min hold). The MS
continuously scanned between m/z 650-50. The apolar fractions were subsequently
analyzed using an Isoprime 100 combustion isotope ratio mass spectrometer, coupled
to an Agilent GC, to determine the §'*C of the long-chain n-alkanes. We used the
same type of column and temperature program as used for the GC-MS analyses.
Samples were measured in duplicate on the GC-C-IRMS, and the average is reported
here. An in-house CO: reference gas was used to calculate compound specific §'°C
values relative to Vienna Pee Dee Belemnite (VPDB). §'3C values of the C29 n-alkane

are not reported here due to possible co-elution with other lipids. All biomarker and
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stable carbon isotopes of long-chain n-alkane analyses were performed at the

University of Bristol.

Methods for GDGTs

Polar fractions were filtered through a 0.45 um filter at the university of
Bristol. The filtered polar fractions were redissolved in hexane:iso-propanol (99:1)
and analyzed using a high-pressure liquid chromatography atmospheric pressure
chemical ionization mass spectrometer for their GDGT distribution. We used two
ultra-high performance liquid chromatography silica columns to separate compounds,
following Hopmans et al. (2016)°7, and analyses were performed in selective ion
monitoring (SIM) mode.

The thermal maturity of the organic matter in this section was estimated using
the hopane isomerisation index: C29 PB/(af+Ba+ PP)’. The results indicate that the
thermal maturity changes across the section, but the C29 BB/(af+pa+pp) ratio is
consistently below 0.4 (Fig. 3). This is indicative for an elevated thermal maturity, but
well below the oil window. Although this level of thermal maturity will not affect
apolar compounds like hopanoids or n-alkanes, it is likely to impact more labile
biomarkers such as glycerol dialkyl glycerol tetracthers (GDGTs)”. We determined
the GDGT distribution in all samples. As expected with this level of thermal maturity,
GDGT concentrations were low and, in most samples, branched (br)GDGTs were

absent, as were isoprenoidal (iso0)GDGTs containing cyclopentane rings. However, a
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few samples did have isoprenoidal (iso)GDGTs with cyclopentane rings. This
includes the sample at depth 29.8 m that hosts the well-preserved oyster shell fossil.
This sample has a TEXss value of 0.76, which results in an SST of 30.6 + 4.5 °C using
the TEXEL calibration'®. Although we treat this estimate cautious as thermal maturity
might have impacted the GDGTs distribution, this TEXses-based SST is consistent
with the clumped isotope data from well-preserved oyster shell fossils from the same
sample, adding confidence that we are able to constrain the SSTs at this site during

the recovery phase of the PETM.

Earth system modeling

The carbon-centric Grid Enabled Integrated Earth system model (cGENIE) is
an intermediate complexity climate model that couples a 3D ocean (36%36 grid, 16
levels) with a 2D atmosphere that has the capability to track biogeochemical cycling
of elements, stable carbon isotopes, marine sediments, and continental weathering'®
101 ‘Bathymetry, paleogeography, planetary albedo, and wind fields are configured for
the late Paleocene-early Eocene with the same initial and boundary conditions as
Gutjahr et al.'?. For example, the §'°C value of late Paleocene-early Eocene
atmospheric CO2 (8'°Ccoz) is set as ~ —5%o, and the atmospheric pCO2 is set as ~830
ppmv. The moderately high pCO2 allows for a small buildup of sea ice (0.5%) in the
northern polar regions. We then run a number of ‘double inversion’ experiments in

which 8'3C of surface ocean dissolved inorganic carbon (8'*Cpic) and surface ocean

26



536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

pH' are used as the two data assimilation constraints for the POE. The 3'*Cpic
forcing is based on the high-temporal-resolution §'*Ccars data from the shallow Tethys
Kuzigongsu section using astronomically tuned age models. For our inversion
experiments, the model was first spun up for 20 kyr to establish the basic ocean
circulation and climatic state under published late Paleocene-early Eocene boundary
conditions, including paleogeography and paleobathymetry!®® 1%, This is followed by
an open-system spin-up of 200 kyr to allow the long-term 8'*C cycle to reach balance.
A range of inversion experiments were carried out (Table S3; Figs. S§8-10). Although
uncertainty exists for pre-PETM &''B, the surface ocean pH at the end of the open-
system spinup is 7.75, same as those used in Gutjahr et al. (2017)'2, which is adapted
as the initial surface ocean pH forcing in the “double inversion” experiment.

First, the “double-inversion” modeling takes the observed pH data, which
constrains the flux and magnitude of CO2 emissions, and the observed 8'*C values of
the dissolved inorganic carbon of the surface ocean, which simultaneously determines
the source of the emitted carbon by computing the §'3C values of the carbon source.
At each model time step, a pulse of COz is emitted to the atmosphere at a given rate if
the 5'3C value is lower than the previous time step, and the modeled surface DIC §'*C
values and the observed §'3C values at the Kuzigongsu section are compared. If the
current modeled surface DIC §'3C value is higher than the data value, the §'*C value
of the emitted CO: is assigned a value of —100%o. In contrast, if the current modeled

surface DIC §'3C value is lower than the data value, the §'3C value of the emitted CO2

27



557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

is assigned a value of 0%o. 5'°C values of the emitted CO2 between —100%o and 0%o
can be achieved by binning the emission fluxes in time and averaging flux-weighted
813C values. Justification for the choice of these end-member §'3C values of the

1.'2. During the experiments, cGENIE

emitted CO:z is provided in Gutjahr et a
continually adjusts the rate and §'3C value of emitted CO2 into the atmosphere in
order to simultaneously reproduce the two proxy records as a function of time. In
these experiments, we assume that the POE onset occurred as a linear decline in both
8'3C and pH simultaneously (Fig. 4a, b). We use the same “double-inversion”
methodology in both the main experiments and the sensitivity experiments, both
starting from the same open-system spin-up state (Table S3).
Sensitivity experiments and analyses

We carried out sensitivity experiments to explore the importance of the
duration of the POE onset (~7,000, ~1,600, ~850, and ~500 years based on age model
option 1, age model option 2, Bowen et al. (2016), and Babila et al. (2022),
respectively) using a global compilation of marine carbonate 3'*Ccars records (Table
S3; Fig. S8). We also tested the effect of larger pH decrease (i.e., —0.24 and —0.32 pH
unit) in combination with each of the four assumed age model (Table S3).

Additionally, we test the role of bioturbation on the carbon isotope excursion

magnitude of core-top carbonates (Fig. S10).
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Data availability. Bulk carbonate, organic matter and compound specific stable
isotope data can be found in Supplementary Information. All modelling-related data

are included as part of the cGENIE model code distribution (see above).

Code availability. The code for the version of the ‘muffin’ release of the cGENIE
Earth system model used in this paper, is tagged as vxxx, and is assigned a DOI: xxx.
Configuration files for the specific experiments presented in the paper can be found in
the directory: genie-userconfigs/PUBS/submitted/Jiang et al.NC.2022. Details of the
experiments, plus the command line needed to run each one, are given in the
readme.txt file in that directory. All other configuration files and boundary conditions
are provided as part of the code release. A manual detailing code installation, basic
model configuration, tutorials covering various aspects of model configuration,
experimental design, and output, plus the processing of results, is assigned a DOI:

XXX.
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Figure captions

Figure 1. (a, b), Paleogeographic setting of the study area in the early Paleogene!**
105 (¢), present location of the study site Kuzigongsu Section and (d), a photo of the
outcrop. Panel (a) also shows other shallow water PETM records in Aktumsuk (1),
Kheu River and Guru-Fatima (2-3), West Siberian Well 10 (4), southern Tibet (Tingri
and Gamba), Tarim Basin, Denmark (E-8X, 22/10a-4, Grane, and Fur), Svalbard,
Arctic (Lomonosov Ridge), and Mid-Atlantic Coastal Plain Sites (Ancora, Wilson
Lake, Clayton, and Millville located in the New Jersey, and South Dover Bridge or
SDB and Cambridge-Dorchester Airport located in the Salisbury Embayment in

Maryland). References associated with these sites are listed in Table S3.
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Figure 2. Characteristics of the PETM and POE records at the Kuzigongsu section,
eastern Tethys. (a, b), 8"*Ceab and §'®0carb from Wang et al. (2022)*2. Note the two
novel sea surface temperature estimates based on oyster fossil A47 and TEXL, at 29.8
m depth. (¢), wt.% CaCO:s. (d), Hg/TOC ratio. (e), Hg concentration. (f),
astronomically tuned age model based on magnetic susceptibility (MS) across the
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Figure 4. Data assimilation results from our cGENIE Earth system modeling based

on the pH-8"3Cpic double inversion of four scenarios based on different assumptions

of POE onset duration. (a-d), 8'*Csource values of the diagnosed carbon source for the

four age models (see age model interpretation in the main text). (e-h), Model-

diagnosed rates of CO2 emission for the four age models. (i-1), Cumulative amount of

CO2 emitted for the four age models. The gray shaded area represents 1,500 years.





