

RESEARCH ARTICLE

A raising operator formula for Macdonald polynomials

J. Blasiak ¹, M. Haiman ², J. Morse ³, A. Pun ⁴ and G. H. Seelinger ⁵

¹Dept. of Mathematics, Drexel University, Philadelphia, PA; E-mail: jblasiak@gmail.com.

²Dept. of Mathematics, University of California, Berkeley, CA; E-mail: mhaiman@math.berkeley.edu.

³Dept. of Mathematics, University of Virginia, Charlottesville, VA; E-mail: morsej@virginia.edu.

⁴Dept. of Mathematics, Baruch College (CUNY), New York, NY; E-mail: anna.pun@baruch.cuny.edu.

⁵Dept. of Mathematics, University of Michigan, Ann Arbor, MI; E-mail: ghseel@umich.edu (corresponding author).

Received: 17 January 2024; **Revised:** 30 December 2024; **Accepted:** 25 January 2025

2020 Mathematics Subject Classification: *Primary* – 05E05; *Secondary* – 33D52

Abstract

We give an explicit raising operator formula for the modified Macdonald polynomials $\tilde{H}_\mu(X; q, t)$, which follows from our recent formula for ∇ on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of symmetric functions $\tilde{H}^{1,n}(X; q, t)$ that we call $1, n$ -Macdonald polynomials, which reduce to a scalar multiple of $\tilde{H}_\mu(X; q, t)$ when $n = 1$. We conjecture that the coefficients of $1, n$ -Macdonald polynomials in terms of Schur functions belong to $\mathbb{N}[q, t]$, generalizing Macdonald positivity.

1. Introduction

Tracing back to work of Young, raising operator formulas have been used as a powerful tool in classical symmetric function theory through modern Schubert calculus – see, for example, [1, 8, 10, 12, 13, 16, 18, 19, 27, 33, 34, 38, 39, 41]. Their applications in symmetric function theory include formulas for fundamental bases such as Schur functions and Schur Q -functions, as well as bases in the more contemporary framework involving a parameter t , such as the modified Hall-Littlewood polynomials [20, 31], given by the raising operator formula

$$H_\mu(X; t) = \text{pol}_X \sigma \left(\frac{\mathbf{z}^\mu}{\prod_{\alpha_{ij} \in R_+} (1 - t z_i / z_j)} \right). \quad (1)$$

Many research directions have emerged from modifications to classical raising operator formulas. For example, other important families of symmetric functions, including the parabolic Hall-Littlewood polynomials of Shimozono-Weyman [36], and k -Schur functions [8, 15], can be defined by generalizing the formula (1).

The raising operator methodology lies at the foundation of Macdonald's development in [29] of classical symmetric function theory and its one-parameter generalizations, including Hall-Littlewood polynomials. However, for the two-parameter generalization to Macdonald polynomials, no raising operator cornerstone similar to (1) has previously been known, forcing the theory of Macdonald polynomials to be developed in a more indirect way.

Here, we establish a raising operator formula for the modified Macdonald polynomials $\tilde{H}_\mu(X; q, t)$, which reduces at $q = 0$ to a previously known formula for Hall-Littlewood polynomials. Using notation defined in §3.1, our formula reads

$$\tilde{H}_\mu(X; q, t) = \omega \text{pol}_X \sigma \left(\frac{z_1 \cdots z_l \prod_{\alpha_{ij} \in R_{\mu^*} \setminus \widehat{R}_{\mu^*}} (1 - q^{\text{arm}(\mu^*[i])+1} t^{-\text{leg}(\mu^*[i])}) \frac{z_i}{z_j}}{\prod_{\alpha_{ij} \in R_+} (1 - q \frac{z_i}{z_j}) \prod_{\alpha_{ij} \in R_{\mu^*}} (1 - t \frac{z_i}{z_j})} \right). \quad (2)$$

The proof begins with the Haglund-Haiman-Loehr formula [21] for $\tilde{H}_\mu(X; q, t)$ as a weighted sum of LLT polynomials. We then apply the operator ∇ , which has $\tilde{H}_\mu(X; q, t)$ as an eigenfunction, and use the formula for ∇ on an LLT polynomial established in our recent work [7].

A consequence of (2) is the emergence of an intriguing new family of higher Macdonald polynomials $\tilde{H}_\mu^{1,n}(X; q, t)$, given by a formula similar to (2) with $(z_1 \cdots z_l)^n$ in place of $z_1 \cdots z_l$ – see Theorem 5.2.1. We conjecture (Conjecture 5.2.2) that the coefficients of the resulting polynomials in terms of Schur functions belong to $\mathbb{N}[q, t]$, generalizing Macdonald positivity. As we will see, this conjecture can be formulated for all n simultaneously as the statement that the expression on the right-hand side of (2), before applying ωpol_X , has coefficients in $\mathbb{N}[q, t]$ when regarded as an infinite series of GL_l characters.

In §6, we also derive a new raising operator formula for the integral form Macdonald polynomials $J_\mu(X; q, t)$.

Other raising operator formulas for Macdonald polynomials have previously appeared in the literature. Lassalle-Schlosser [28] inverted the Pieri formula for Macdonald polynomials $Q_\mu(X; q, t)$ (which differ from $J_\mu(X; q, t)$ by a scalar factor) to obtain a formula for $Q_\mu(X; q, t)$ that can be interpreted as a raising operator formula. Shiraishi [37] conjectured a similar raising operator formula for $Q_\mu(X; q, t)$, later proven by Noumi and Shiraishi in their work [32] on the bispectral problem of the Macdonald-Ruijenaars q -difference operators. However, these formulas are quite different and more intricate than ours.

2. Background

2.1. Partitions and symmetric functions

The (French style) diagram of a partition $\mu = (\mu_1 \geq \cdots \geq \mu_k > 0)$ is the set $\{(i, j) \in \mathbb{Z}_+^2 : 1 \leq j \leq k, 1 \leq i \leq \mu_j\}$. We identify (i, j) with the lattice square or *box* whose northeast corner has coordinates $(x, y) = (i, j)$ and refer to this box as being in *column* i and *row* j . We set $|\mu| = \mu_1 + \cdots + \mu_k$ and let $\ell(\mu) = k$ be the number of nonzero parts of μ . We write μ^* for the transpose of μ . The *arm* and *leg* of a box $b \in \mu$ are the number of boxes in μ strictly east of b and strictly north of b , respectively.

Let $\Lambda = \Lambda(X)$ be the algebra of symmetric functions in infinitely many variables $X = x_1, x_2, \dots$, with coefficients in the field $\mathbf{k} = \mathbb{Q}(q, t)$. We follow Macdonald's notation [29] for the graded bases of Λ , and for the automorphism $\omega: \Lambda \rightarrow \Lambda$ given on Schur functions by $\omega s_\lambda = s_{\lambda^*}$. We also work with series and symmetric functions in finitely many variables $\mathbf{z} = z_1, \dots, z_l$. If $f(X) \in \Lambda$ is a formal symmetric function, then $f(\mathbf{z})$ or $f(z_1, \dots, z_l)$ denotes its specialization with $X = z_1, \dots, z_l, 0, 0, \dots$

Given a symmetric function $f \in \Lambda$ and any expression A involving indeterminates, the plethystic evaluation $f[A]$ is defined by writing f as a polynomial in the power-sums p_k and evaluating with $p_k \mapsto p_k[A]$, where $p_k[A]$ is the result of substituting a^k for every indeterminate a occurring in A . The variables q, t from our ground field \mathbf{k} count as indeterminates.

By convention, the name of an alphabet $X = x_1, x_2, \dots$ stands for $x_1 + x_2 + \cdots$ inside a plethystic evaluation. Then $f[X] = f[x_1 + x_2 + \cdots] = f(x_1, x_2, \dots) = f(X)$. For example, the evaluation $f[X/(1-t^{-1})]$ is the image of $f(X)$ under the \mathbf{k} -algebra automorphism of Λ that sends p_k to $p_k/(1-t^{-k})$.

The *modified Macdonald polynomials* $\tilde{H}_\mu = \tilde{H}_\mu(X; q, t)$ of [17] are defined in terms of the Macdonald polynomials $Q_\mu(X; q, t)$ [29, VI (4.12)] or their integral forms $J_\mu(X; q, t)$ [29, VI (8.3)] by

$$\tilde{H}_\mu(X; q, t) = t^{\mathfrak{n}(\mu)} J_\mu \left[\frac{X}{1-t^{-1}}; q, t^{-1} \right] = t^{\mathfrak{n}(\mu)} \left(\prod_{b \in \mu} (1 - q^{\text{arm}(b)+1} t^{-\text{leg}(b)}) \right) Q_\mu \left[\frac{X}{1-t^{-1}}; q, t^{-1} \right], \quad (3)$$

where

$$\mathfrak{n}(\mu) = \sum_i (i-1)\mu_i. \quad (4)$$

The $\tilde{H}_\mu(X; q, t)$ also have a direct combinatorial description [21], which we will recall in Theorem 4.2.2.

When $q = 0$, the modified Macdonald polynomials reduce to the *modified Hall-Littlewood polynomials*

$$\tilde{H}_\mu(X; 0, t) = t^{\mathfrak{n}(\mu)} Q_\mu \left[\frac{X}{1-t^{-1}}; t^{-1} \right], \quad (5)$$

where the Hall-Littlewood polynomials $Q_\mu(X; t)$ are as defined in [29, III (2.11)]. At $t = 1$ and $t = \infty$, the $\tilde{H}_\mu(X; 0, t)$ specialize to the complete homogeneous symmetric functions $\tilde{H}_\mu(X; 0, 1) = h_\mu(X)$ and Schur functions $t^{-\mathfrak{n}(\mu)} \tilde{H}_\mu(X; 0, t)|_{t=\infty} = s_\mu(X)$. We will also work with the following variant of the modified Hall-Littlewood polynomials:

$$H_\mu(X; t) \stackrel{\text{def}}{=} t^{\mathfrak{n}(\mu)} \tilde{H}_\mu(X; 0, t^{-1}) = Q_\mu[X/(1-t)]. \quad (6)$$

2.2. Weyl symmetrization and related operators

The *Weyl symmetrization operator* σ for GL_l is defined by

$$\sigma(f(z_1, \dots, z_l)) = \sum_{w \in \mathcal{S}_l} w \left(\frac{f(z_1, \dots, z_l)}{\prod_{i < j} (1 - z_j/z_i)} \right) = \sum_{w \in \mathcal{S}_l} w \left(\frac{f(z_1, \dots, z_l)}{\prod_{\alpha_{ij} \in R_+} (1 - z_j/z_i)} \right), \quad (7)$$

where $f \in \mathbf{k}[z_1^{\pm 1}, \dots, z_l^{\pm 1}]$ is a Laurent polynomial, \mathcal{S}_l acts by permuting the variables z_1, \dots, z_l , and $R_+ = R_+(\text{GL}_l) = \{\alpha_{ij} : 1 \leq i < j \leq l\}$ denotes the set of positive roots for GL_l , with $\alpha_{ij} = \epsilon_i - \epsilon_j \in \mathbb{Z}^l$.

When $\mathbf{z}^\nu = z_1^{\nu_1} \cdots z_l^{\nu_l}$ for a dominant weight ν (a weight $\nu \in \mathbb{Z}^l$ is dominant if $\nu_1 \geq \cdots \geq \nu_l$), $\sigma(\mathbf{z}^\nu) = \chi_\nu$ is an irreducible GL_l character. For an arbitrary weight $\gamma \in \mathbb{Z}^l$, either $\sigma(\mathbf{z}^\gamma) = \pm \chi_\nu$ for a suitable dominant weight ν , or $\sigma(\mathbf{z}^\gamma) = 0$. We extend σ to an operator on formal \mathbf{k} -linear combinations $\sum_{\gamma \in \mathbb{Z}^l} c_\gamma \mathbf{z}^\gamma$ by applying it term by term, giving an infinite formal linear combination of irreducible GL_l characters $\sum_\nu a_\nu \chi_\nu = \sum_{\gamma \in \mathbb{Z}^l} c_\gamma \sigma(\mathbf{z}^\gamma)$. This makes sense because for each dominant weight ν , the set of monomials \mathbf{z}^γ such that $\sigma(\mathbf{z}^\gamma) = \pm \chi_\nu$ is finite.

Recall that the *polynomial characters* of GL_l are the irreducible characters χ_ν for which ν is a partition, that is, $\nu_l \geq 0$. Given any formal \mathbf{k} -linear combination $\sum_\nu a_\nu \chi_\nu$ of irreducible GL_l characters, we define its *polynomial truncation* by

$$\text{pol}_X \left(\sum_\nu a_\nu \chi_\nu \right) = \sum_{\nu_l \geq 0} a_\nu s_\nu(X). \quad (8)$$

In principle, the right-hand side is an infinite formal sum of symmetric functions, but, for instance, if $\sum a_\nu \chi_\nu$ is homogeneous of degree d , then the right-hand side is an ordinary symmetric function, homogeneous of degree d .

We define a related operator \mathbf{h}_X on Laurent polynomials $f(\mathbf{z})$ by

$$\mathbf{h}_X(f(\mathbf{z})) = \text{pol}_X \sigma \left(\frac{f(\mathbf{z})}{\prod_{\alpha_{ij} \in R_+} (1 - z_i/z_j)} \right), \quad (9)$$

where the factors $(1 - z_i/z_j)^{-1}$ are expanded as geometric series in z_i/z_j before applying σ . When f is a monomial, it is well known [39] that

$$\mathbf{h}_X(\mathbf{z}^\gamma) = h_\gamma(X), \quad (10)$$

where for any integer vector $\gamma \in \mathbb{Z}^l$, we define $h_\gamma = h_{\gamma_1} \cdots h_{\gamma_l}$ to be the product of complete homogeneous symmetric functions, with h_d for $d \leq 0$ interpreted as $h_0 = 1$, or $h_d = 0$ for $d < 0$.

We again extend the definition to formal linear combinations of monomials, so that $\mathbf{h}_X(\sum_{\gamma \in \mathbb{Z}^l} c_\gamma \mathbf{z}^\gamma) = \sum_{\gamma \in \mathbb{Z}^l} c_\gamma h_\gamma(X)$. With this interpretation, (9) still remains valid when f is a power series in z_i/z_j for $i < j$. As with pol_X , in principle, $\mathbf{h}_X(\sum_\gamma c_\gamma \mathbf{z}^\gamma)$ is an infinite formal sum of symmetric functions, but for instance, if $\sum_\gamma c_\gamma \mathbf{z}^\gamma$ is homogeneous of degree d , then $\mathbf{h}_X(\sum_\gamma c_\gamma \mathbf{z}^\gamma)$ is an ordinary symmetric function, homogeneous of degree d .

Remark 2.2.1. Below we will write other formulas involving σ applied to an expression with denominator factors resembling those in (9). Our convention is always to expand denominator factors of the form $(1 - cz_i/z_j)$ for $c \in \mathbf{k}$ and $i < j$ as geometric series $(1 - cz_i/z_j)^{-1} = 1 + cz_i/z_j + \cdots$ before applying σ .

2.3. Raising operator formulas for modified Hall-Littlewood polynomials

To set the stage for our raising operator formula for modified Macdonald polynomials, we review two different raising operator formulas for the modified Hall-Littlewood polynomials. Both formulas naturally reflect the geometry of the flag variety G/B ; one realizes $\tilde{H}_\mu(X; 0, t)$ as the graded Euler characteristic of the cotangent bundle of G/B twisted by a line bundle of weight $-\mu$, while the other is the graded Euler characteristic of the cotangent bundle of G/P_μ , where P_μ is the parabolic subgroup whose block sizes are the parts of μ . See [11] and [36] for details.

The first raising operator formula for $\tilde{H}_\mu(X; 0, t)$ is the one mentioned in the introduction, which we reproduce here (see [29, III (6.3)] or [31, (4.28) and §2]):

$$t^{\mathbf{n}(\mu)} \tilde{H}_\mu(X; 0, t^{-1}) = H_\mu(X; t) = \text{pol}_X \sigma \left(\frac{\mathbf{z}^\mu}{\prod_{\alpha_{ij} \in R_+} (1 - t z_i/z_j)} \right), \quad (11)$$

where the denominator factors are expanded as geometric series in accordance with Remark 2.2.1.

A second raising operator formula follows from the work of Weyman and Shimozono-Weyman (see [40, Theorem 6.10] and [36, §2.3 (2) and (2.3)–(2.5)]). In this formula, the input partition μ appears in the set of roots, instead of in the weight \mathbf{z}^μ , as it does in formula (11). Given a partition μ of l , consider the set partition of $\{1, \dots, l\}$ into intervals of lengths $\mu_{\ell(\mu)}, \dots, \mu_1$, and let B_μ denote the set of roots α_{ij} such that $i < j$ appear in distinct blocks of this partition. Then

$$\tilde{H}_\mu(X; 0, t) = \omega \text{pol}_X \sigma \left(\frac{z_1 \cdots z_l}{\prod_{\alpha_{ij} \in B_\mu} (1 - t z_i/z_j)} \right). \quad (12)$$

Here, we chose to take the parts of μ in reverse order for compatibility with the formula (21) given later, but the order does not actually matter in (12).

Remark 2.3.1. Formulas such as (11) and (12) are traditionally written using an informal notation – as in [29], [31, (4.28)], or [38, §2] – in which formula (11), for example, would be written as

$$t^{\mathbf{n}(\mu)} \tilde{H}_\mu(X; 0, t^{-1}) = \frac{1}{\prod_{\alpha_{ij} \in R_+} (1 - t \mathbf{R}_{ij})} \cdot s_\mu, \quad (13)$$

with raising ‘operators’ \mathbf{R}_{ij} which act on the subscript of a Schur function s_γ by $\mathbf{R}_{ij}\gamma = \gamma + \epsilon_i - \epsilon_j$. Here, Schur functions indexed by non-partition weights are defined by $s_\gamma(X) = \text{pol}_X \sigma(\mathbf{z}^\gamma)$, which is equal to 0 or to ± 1 times a Schur function of partition weight. Note that all the raising operators must be applied before converting Schur functions of non-partition weights to ones indexed by partition weights. The \mathbf{R}_{ij} are not true operators (e.g., $\mathbf{R}_{23}s_{(1,1,1)} = \text{pol}_X \sigma(z_1 z_2^2) = 0$ but $\mathbf{R}_{12}\mathbf{R}_{23}s_{(1,1,1)} = s_{(2,1,0)} \neq 0$), so we think of (13) as a convenient but informal version of (11).

Remark 2.3.2. Raising operators as used here should not be confused with the creation or vertex operators of Bernstein (see, for example, [29, p. 96]) and Jing [25] for Schur functions and Hall-Littlewood polynomials.

3. Raising operator formula for modified Macdonald polynomials

3.1. The formula

We in fact give many different raising operator formulas for $\tilde{H}_\mu(X; q, t)$, one for each rearrangement β of the parts of μ^* .

For $\beta = (\beta_1, \dots, \beta_k) \in \mathbb{Z}_+^k$, we define the *column diagram* of β to be the set

$$\beta = \{(i, j) \in \mathbb{Z}_+^2 : 1 \leq i \leq k, 1 \leq j \leq \beta_i\}. \quad (14)$$

We identify (i, j) with the box whose northeast corner has coordinates $(x, y) = (i, j)$; we say that this box is in column i and row j . The *reading order* on β is the total order \prec on the boxes of β given by $(i, j) \prec (i', j')$ if $j > j'$, or $j = j'$ and $i < i'$. We let $\beta[1], \dots, \beta[l]$ denote the boxes of β listed in increasing reading order, which is the list of boxes of β read by rows from left to right starting from the top row, as shown in Example 3.1.5. For a box $b = (i, j)$, $\text{south}(b) = (i, j-1)$ denotes the box immediately south of b . Define subsets of $R_+ = R_+(\text{GL}_l)$ by

$$R_\beta = \{\alpha_{ij} \in R_+ : \text{south}(\beta[i]) \in \beta, \text{south}(\beta[i]) \leq \beta[j]\}, \quad (15)$$

$$\widehat{R}_\beta = \{\alpha_{ij} \in R_+ : \text{south}(\beta[i]) \in \beta, \text{south}(\beta[i]) \prec \beta[j]\}. \quad (16)$$

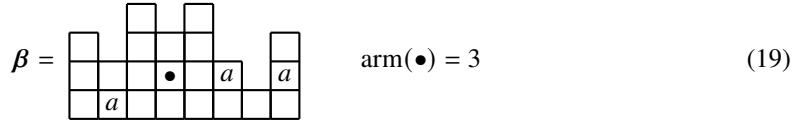
For $\beta \in \mathbb{Z}_+^k$ and a box $b = (i, j) \in \beta$ with $j > 1$, define the *arm* and *leg* of b by

$$\text{leg}(b) = \beta_i - j = (\text{number of boxes strictly north of } b), \quad (17)$$

$$\text{arm}(b) = |\{i' \in \{1, \dots, i-1\} : j-1 \leq \beta_{i'} < \beta_i\} \sqcup \{i' \in \{i+1, \dots, k\} : j \leq \beta_{i'} \leq \beta_i\}|. \quad (18)$$

In words, $\text{arm}(b)$ is the number of boxes strictly east of b in columns of height $\beta_{i'} \leq \beta_i$ or strictly west of $\text{south}(b)$ in columns of height $\beta_{i'} < \beta_i$.

Example 3.1.1. For $\beta = (3, 2, 4, 3, 4, 2, 1, 3)$, the column diagram of β is displayed below, along with the arm of box $\bullet = (4, 2)$ where the a 's mark the boxes contributing to $\text{arm}(\bullet)$.



Remark 3.1.2. When β is weakly decreasing (i.e., β is a partition), the column diagram β is the diagram of the transpose of the partition β , and the arms and legs of the boxes of β agree with the usual notions for partition diagrams mentioned in §2.1.

Definition 3.1.3. For $\beta \in \mathbb{Z}_+^k$, define the *Macdonald series* by

$$\mathbf{H}_\beta(\mathbf{z}; q, t) = \sigma \left(\frac{\prod_{\alpha_{ij} \in R_\beta \setminus \widehat{R}_\beta} (1 - q^{\text{arm}(\beta[i])+1} t^{-\text{leg}(\beta[i])} z_i/z_j) \prod_{\alpha_{ij} \in \widehat{R}_\beta} (1 - qt z_i/z_j)}{\prod_{\alpha_{ij} \in R_+} (1 - q z_i/z_j) \prod_{\alpha_{ij} \in R_\beta} (1 - t z_i/z_j)} \right), \quad (20)$$

which we interpret as an infinite formal linear combination of irreducible GL_l characters by expanding the denominator factors as geometric series, in accordance with Remark 2.2.1.

We have the following raising operator formulas for the modified Macdonald polynomials $\tilde{H}_\mu(X; q, t)$. The proof will be given in §4.

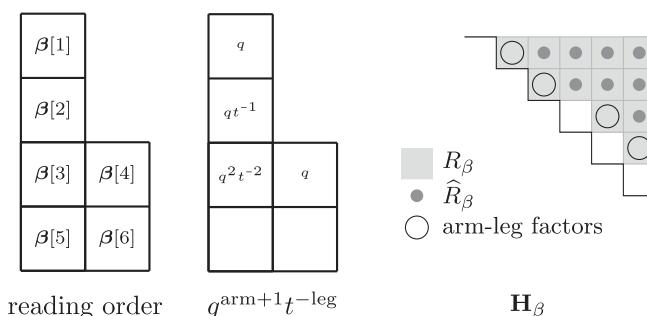
Theorem 3.1.4. For any partition μ of l and any rearrangement β of μ^* ,

$$\tilde{H}_\mu(X; q, t) = \omega \text{pol}_X(z_1 \cdots z_l \mathbf{H}_\beta(\mathbf{z}; q, t)), \quad (21)$$

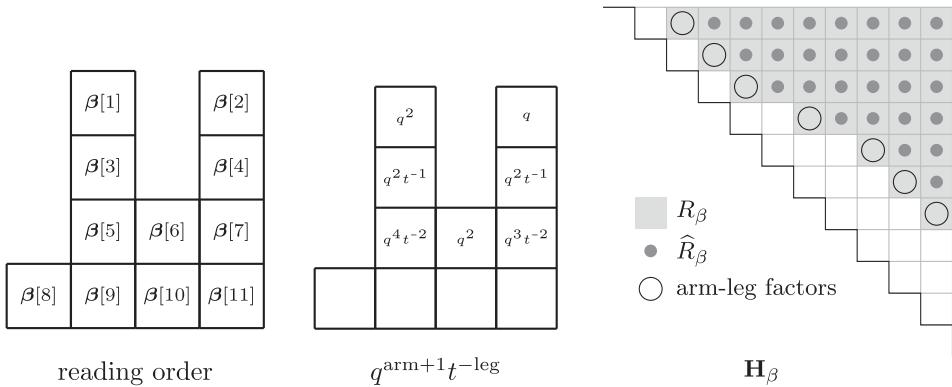
where pol_X is as defined in (8).

The case of Theorem 3.1.4 when $\beta = \mu^*$ is the formula (2) previewed in the introduction.

Example 3.1.5. (i) For $\beta = (4, 2)$, $l = 6$, we visualize the data for the series \mathbf{H}_β below, with the subsets of roots R_β and \widehat{R}_β drawn in an $l \times l$ grid, labeled by matrix-style coordinates and specified by the legend, and with large circles marking the presence of the factors involving arm and leg, which are $(1 - q z_1/z_2)$, $(1 - qt^{-1} z_2/z_3)$, $(1 - q^2 t^{-2} z_3/z_5)$, $(1 - q z_4/z_6)$.



(ii) For $\beta = (1, 4, 2, 4)$, $l = 11$, we visualize the data for \mathbf{H}_β with the same conventions; the factors involving arm and leg, marked by the large circles, are $(1 - q^2 z_1/z_3)$, $(1 - q z_2/z_4)$, $(1 - q^2 t^{-1} z_3/z_5)$, $(1 - q^2 t^{-1} z_4/z_7)$, $(1 - q^4 t^{-2} z_5/z_9)$, $(1 - q^2 z_6/z_{10})$, and $(1 - q^3 t^{-2} z_7/z_{11})$.



3.2. Specializations

It is instructive to see how the well-known specializations of Macdonald polynomials, $\tilde{H}_\mu(X; 1, 1) = e_1^{|\mu|}(X)$ and the Hall-Littlewood specialization $\tilde{H}_\mu(X; 0, t)$, can be recovered from formula (21). This can be done for general β , but it is a little simpler when β is a partition. Accordingly, for this subsection, we now consider only the case $\beta = \mu^*$.

First, we consider the specialization $q = t = 1$. After specializing, the arm-leg and $(1 - q t z_i / z_j)$ numerator factors in the definition (20) of \mathbf{H}_β cancel with the $(1 - t z_i / z_j)$ factors in the denominator. Hence,

$$\mathbf{H}_\beta(\mathbf{z}; 1, 1) = \sigma\left(\frac{1}{\prod_{\alpha_{ij} \in R_+} (1 - z_i / z_j)}\right). \quad (22)$$

Then, using (9) and (10), we recover the specialization

$$\tilde{H}_\mu(X; 1, 1) = \omega \text{pol}_X(z_1 \cdots z_l \mathbf{H}_\beta(\mathbf{z}; 1, 1)) = e_{1^\ell} = e_1^\ell. \quad (23)$$

Now consider the specialization $q = 0$. After specializing (20), all numerator factors and the $(1 - q z_i / z_j)$ denominator factors reduce to 1. This gives

$$z_1 \cdots z_l \mathbf{H}_\beta(\mathbf{z}; 0, t) = \sigma\left(\frac{z_1 \cdots z_l}{\prod_{\alpha_{ij} \in R_\beta} (1 - t z_i / z_j)}\right). \quad (24)$$

Let B_μ be the set of roots defined before (12), which can also be described as the set of positive roots above a block diagonal matrix with block sizes $\mu_{\ell(\mu)}, \dots, \mu_1$. Now R_β is contained in B_μ and $B_\mu \setminus R_\beta$ consists of triangular regions of roots between each pair of consecutive blocks. We reach the Hall-Littlewood raising operator formula using the identity

$$\sigma\left(\frac{z_1 \cdots z_l}{\prod_{\alpha_{ij} \in B_\mu} (1 - t z_i / z_j)}\right) = \sigma\left(\frac{z_1 \cdots z_l}{\prod_{\alpha_{ij} \in R_\beta} (1 - t z_i / z_j)}\right). \quad (25)$$

This is proven by removing these triangular regions from B_μ one root at a time (starting with the bottommost region), and using the following simplified version of [9, Lemma 8.9] to show that the corresponding functions remain the same at each step.

Lemma 3.2.1. Let $k \in \{1, \dots, l-1\}$ and suppose that $B \subseteq R_+(\mathrm{GL}_l)$ is a set of roots such that $\prod_{\alpha_{ij} \in B} (1 - tz_i/z_j)$ is fixed by the simple reflection s_k . If B contains a root $\alpha = \alpha_{k+1,j}$ for some $j > k+1$, then

$$\sigma\left(\frac{z_1 \cdots z_l}{\prod_{\alpha_{ij} \in B} (1 - tz_i/z_j)}\right) = \sigma\left(\frac{z_1 \cdots z_l}{\prod_{\alpha_{ij} \in B \setminus \alpha} (1 - tz_i/z_j)}\right). \quad (26)$$

Combining (24) and (25) now shows that the raising operator formula (21) for modified Macdonald polynomials reduces at $q = 0$ to the raising operator formula (12) for Hall-Littlewood polynomials.

4. Proof of Theorem 3.1.4

We prove Theorem 3.1.4 using two main ingredients: the Haglund-Haiman-Loehr formulas [21, 22] and our recent formula for ∇ on an LLT polynomial [7]. We explain these two ingredients after a recap of LLT polynomials.

4.1. LLT polynomials

We recall the definition and basic properties of LLT polynomials [26], using the ‘attacking inversions’ formulation from [23].

A *skew diagram* is a difference $\nu = \lambda/\mu$ of partition diagrams $\mu \subseteq \lambda$. The *content* of a box $b = (i, j)$ in row j , column i of a (skew) diagram is $c(b) = i - j$.

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew diagrams. We consider the set of boxes in ν to be the disjoint union of the sets of boxes in the $\nu_{(i)}$, and define the *adjusted content* of a box $a \in \nu_{(i)}$ to be $\tilde{c}(a) = c(a) + i\epsilon$, where ϵ is a fixed positive number such that $k\epsilon < 1$.

A *diagonal* in ν is the set of boxes of a fixed adjusted content – that is, a diagonal of fixed content in one of the $\nu_{(i)}$.

The *reading order* on ν is the total ordering $<$ on the boxes of ν such that $a < b \Rightarrow \tilde{c}(a) \leq \tilde{c}(b)$ and boxes on each diagonal increase from southwest to northeast. See Example 4.2.3. An *attacking pair* is an ordered pair of boxes (a, b) in ν such that $a < b$ in reading order and $0 < \tilde{c}(b) - \tilde{c}(a) < 1$.

A *semistandard tableau* on the tuple ν is a map $T: \nu \rightarrow \mathbb{Z}_+$ which restricts to a semistandard Young tableau on each component $\nu_{(i)}$. The set of these is denoted $\mathrm{SSYT}(\nu)$. An *attacking inversion* in T is an attacking pair (a, b) such that $T(a) > T(b)$. The number of attacking inversions in T is denoted $\mathrm{inv}(T)$.

Definition 4.1.1. The *LLT polynomial* indexed by a tuple of skew diagrams ν is the generating function

$$\mathcal{G}_\nu(X; q) = \sum_{T \in \mathrm{SSYT}(\nu)} q^{\mathrm{inv}(T)} \mathbf{x}^T, \quad (27)$$

where $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$. By [23, 26], $\mathcal{G}_\nu(X; q)$ is known to be symmetric.

4.2. The Haglund-Haiman-Loehr formula

Haglund-Haiman-Loehr [21] gave a formula for the modified Macdonald polynomials $H_\mu(X; q, t)$ as a positive sum of LLT polynomials, and this was generalized in [22] to give many different expressions for $H_\mu(X; q, t)$ as a positive sum of LLT polynomials, one for each rearrangement β of μ^* . We now recall this formula.

A *ribbon* is a connected skew shape containing no 2×2 block of boxes.

For $\beta \in \mathbb{Z}_+^k$, let $V_\beta = \{(\beta[i], \beta[j]) : \beta[j] = \mathrm{south}(\beta[i])\}$ be the set of ordered pairs of boxes that form vertical dominoes in β .

Definition 4.2.1. For each $S \subseteq V_\beta$, define $\nu(S) = (\nu_{(1)}, \dots, \nu_{(k)})$ to be the k -tuple of ribbons where the i -th ribbon $\nu_{(i)}$ is determined by

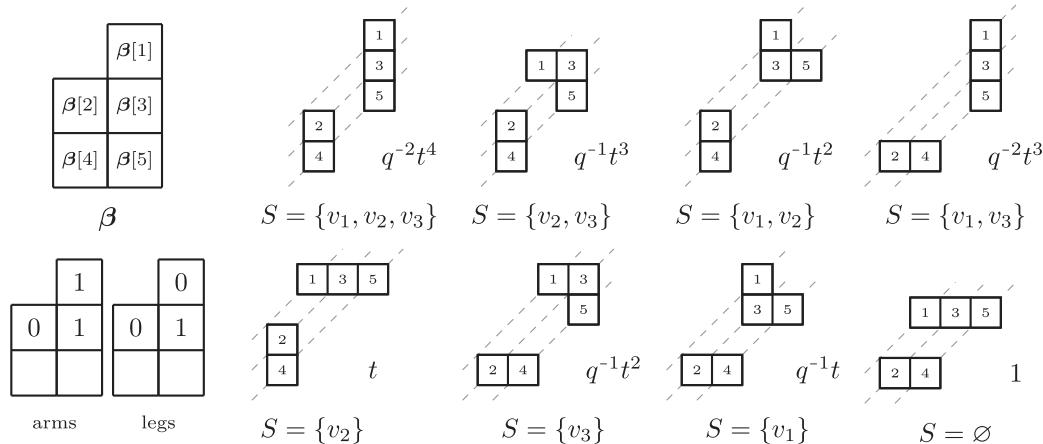
- (i) $\nu_{(i)}$ has β_i boxes, of contents $-1, -2, \dots, -\beta_i$, and
- (ii) the boxes of contents $-j$ and $-j + 1$ in $\nu_{(i)}$ form a vertical domino if and only if the domino $((i, j), (i, j - 1))$ in V_β belongs to S .

Theorem 4.2.2 [21, 22]. *Let μ be a partition and let β be any rearrangement of μ^* . Then*

$$\tilde{H}_\mu(X; q, t) = \sum_{S \subseteq V_\beta} \left(\prod_{(\beta[i], \beta[j]) \in S} q^{-\text{arm}(\beta[i])} t^{\text{leg}(\beta[i]) + 1} \right) \mathcal{G}_{\nu(S)}(X; q). \quad (28)$$

Theorem 4.2.2 in the case that β is a partition is immediate from [21, Theorem 2.2, equation (23), and Proposition 3.4], while the generalization to any composition β is addressed in [22, Theorem 5.1.1]. Note that our conventions for diagrams, arms, and legs are the same as those in [22] except that we have reversed the order of the columns (which makes our notation consistent with that in [21]); we have also used the symmetry property $H_\mu(X; q, t) = H_{\mu^*}(X; t, q)$ to translate from the exact version stated in [22, Theorem 5.1.1].

Example 4.2.3. For $\beta = (2, 3)$, the 8 summands appearing on the right-hand side of (28) are illustrated by drawing $\nu(S)$ with boxes labeled in reading order and with the corresponding coefficient $\prod_{(\beta[i], \beta[j]) \in S} q^{-\text{arm}(\beta[i])} t^{\text{leg}(\beta[i]) + 1}$ beside it; the vertical dominoes of β are denoted $v_1 = (\beta[1], \beta[3])$, $v_2 = (\beta[2], \beta[4])$, $v_3 = (\beta[3], \beta[5])$. The arm and leg statistics for β are shown on the left.



4.3. A formula for ∇ on any LLT polynomial

The operator ∇ , introduced in [2], is the linear operator on symmetric functions which acts diagonally on the basis of modified Macdonald polynomials $\tilde{H}_\mu(X; q, t)$ by $\nabla \tilde{H}_\mu = q^{n(\mu^*)} t^{n(\mu)} \tilde{H}_\mu$.

In [7], we give a raising operator formula for ∇ on any LLT polynomial. The formula takes a simpler form in the case that the LLT polynomial is indexed by a tuple of ribbons. We state the result for the tuple $\nu(S)$ in Definition 4.2.1, making use of the notation $V_\beta, R_\beta, \widehat{R}_\beta$ defined in §4.2, (15), and (16). Also let A_β denote the number of attacking pairs in $\nu(S)$, which depends only on β and not on $S \subseteq V_\beta$.

Theorem 4.3.1 [7]. For $\beta \in \mathbb{Z}_+^k$ and $S \subseteq V_\beta$, consider the tuple of ribbons $\nu(S)$. We have the following formula for the operator ∇ applied to the LLT polynomial $\mathcal{G}_{\nu(S)}(X; q)$:

$$\nabla \mathcal{G}_{\nu(S)}(X; q) = \omega \operatorname{pol}_X \sigma \left((-qt)^{|V_\beta \setminus S|} q^{A_\beta} \frac{z_1 \cdots z_l \prod_{(\beta[i], \beta[j]) \in V_\beta \setminus S} z_i/z_j \prod_{\alpha_{ij} \in \widehat{R}_\beta} (1 - qt z_i/z_j)}{\prod_{\alpha_{ij} \in R_+} (1 - q z_i/z_j) \prod_{\alpha_{ij} \in R_\beta} (1 - t z_i/z_j)} \right), \quad (29)$$

where $l = |\beta|$ and $R_+ = R_+(\operatorname{GL}_l)$.

Proof. Our raising operator formula [7, Corollary 9.4.1] for ∇ on any LLT polynomial reduces to (29) using the following facts which hold when the LLT polynomial is indexed by a tuple of ribbons.

(1) The magic number $p(\nu(S))$ of $\nu(S)$ defined in [7, §8.2] is equal to the number of boxes of $\nu(S)$ which are not the first box in a row, which is the same as $|V_\beta \setminus S|$.

(2) The weight λ in [7, Corollary 9.4.1], defined in [7, Definition 8.1.2], is obtained as follows in the case that the tuple of skew shapes consists of ribbons: fill the boxes of each row of $\nu(S)$ with $1, 0, \dots, 0, -1$ or just 0 for a row of length 1, and then read this filling by increasing reading order. It is then easily seen that $\mathbf{z}^\lambda = \prod_{(\beta[i], \beta[j]) \in V_\beta \setminus S} z_i/z_j$.

(3) Under the bijection $f: \beta \rightarrow \nu(S)$ which takes the i -th box $\beta[i]$ of β in reading order to the i -th box of $\nu(S)$ in reading order, the set $\{(f(\beta[i]), f(\beta[j])) : \alpha_{ij} \in R_\beta\}$ is exactly the set of non-attacking pairs in $\nu(S)$. Thus, R_β agrees with the set of roots denoted R_t in [7, Definition 8.1.2 and Remark 8.1.3 (i)]. \square

4.4. Proof of Theorem 3.1.4

Applying ∇ to (28) and substituting (29) into this yields

$$\nabla \tilde{H}_\mu(X; q, t) = \omega \operatorname{pol}_X \sigma \left(\frac{z_1 \cdots z_l \cdot \Upsilon \cdot \prod_{\alpha_{ij} \in \widehat{R}_\beta} (1 - qt z_i/z_j)}{\prod_{\alpha_{ij} \in R_+} (1 - q z_i/z_j) \prod_{\alpha_{ij} \in R_\beta} (1 - t z_i/z_j)} \right), \quad (30)$$

where

$$\Upsilon = \sum_{S \subseteq V_\beta} (-qt)^{|V_\beta \setminus S|} q^{A_\beta} \prod_{(\beta[i], \beta[j]) \in S} q^{-\operatorname{arm}(\beta[i])} t^{\operatorname{leg}(\beta[i]) + 1} \prod_{(\beta[i], \beta[j]) \in V_\beta \setminus S} z_i/z_j. \quad (31)$$

Defining $d = A_\beta - \mathsf{n}(\mu^*) - \sum_{(\beta[i], \beta[j]) \in V_\beta} \operatorname{arm}(\beta[i])$ and using $\mathsf{n}(\mu) = \sum_{(\beta[i], \beta[j]) \in V_\beta} (\operatorname{leg}(\beta[i]) + 1)$, the quantity Υ can be simplified as follows:

$$\begin{aligned} \Upsilon &= q^{\mathsf{n}(\mu^*) + d} t^{\mathsf{n}(\mu)} \sum_{S \subseteq V_\beta} \left((-qt)^{|V_\beta \setminus S|} \prod_{(\beta[i], \beta[j]) \in V_\beta \setminus S} q^{\operatorname{arm}(\beta[i])} t^{-\operatorname{leg}(\beta[i]) - 1} \right. \\ &\quad \times \left. \prod_{(\beta[i], \beta[j]) \in S} q^{-\operatorname{arm}(\beta[i])} t^{\operatorname{leg}(\beta[i]) + 1} \prod_{(\beta[i], \beta[j]) \in V_\beta \setminus S} z_i/z_j \right) \\ &= q^{\mathsf{n}(\mu^*) + d} t^{\mathsf{n}(\mu)} \sum_{S \subseteq V_\beta} \prod_{(\beta[i], \beta[j]) \in V_\beta \setminus S} (-q^{\operatorname{arm}(\beta[i]) + 1} t^{-\operatorname{leg}(\beta[i])} z_i/z_j) \\ &= q^{\mathsf{n}(\mu^*) + d} t^{\mathsf{n}(\mu)} \prod_{(\beta[i], \beta[j]) \in V_\beta} (1 - q^{\operatorname{arm}(\beta[i]) + 1} t^{-\operatorname{leg}(\beta[i])} z_i/z_j). \end{aligned}$$

Thus, plugging this back in for Υ in (30) and recalling the definition of $\mathbf{H}_\beta(\mathbf{z}; q, t)$ (Definition 3.1.3), we have

$$\nabla \tilde{H}_\mu(X; q, t) = q^{\mathsf{n}(\mu^*) + d} t^{\mathsf{n}(\mu)} \omega \operatorname{pol}_X (z_1 \cdots z_l \mathbf{H}_\beta(\mathbf{z}; q, t)).$$

By the definition of ∇ , this implies $\tilde{H}_\mu(X; q, t) = q^d \omega \text{pol}_X(z_1 \cdots z_l \mathbf{H}_\beta(\mathbf{z}; q, t))$. It remains to show that $d = 0$. This follows from the fact that the coefficient of $s_{1^l}(X) = \text{pol}_X(z_1 \cdots z_l)$ in the Schur expansion of both $\omega \tilde{H}_\mu(X; q, t)$ and $\text{pol}_X(z_1 \cdots z_l \mathbf{H}_\beta(\mathbf{z}; q, t))$ is 1; the former is well known, while the latter can be seen directly by expanding the series $z_1 \cdots z_l \mathbf{H}_\beta(\mathbf{z}; q, t)$ to see that it is equal to $\sigma(z_1 \cdots z_l) = \chi_{1^l}$ plus terms of the form $a_\nu \chi_\nu$ for $\nu > 1^l$ in dominance order.

5. The m, n -Macdonald polynomials

For every pair of coprime positive integers (m, n) , the action of the Burban-Schiffmann elliptic Hall algebra \mathcal{E} on $\Lambda(X)$ gives rise to a family of symmetric functions that we call m, n -Macdonald polynomials. The subfamily of $1, n$ -Macdonald polynomials is closely connected with the Macdonald series \mathbf{H}_β from Definition 3.1.3. In this section, we will construct raising operator formulas for all m, n -Macdonald polynomials, reducing to Theorem 3.1.4 in the case $m = n = 1$.

To define m, n -Macdonald polynomials we need to recall some facts about the algebra \mathcal{E} , defined by Burban and Schiffmann [14] in terms of Hall algebras of coherent sheaves on elliptic curves. For each pair of coprime integers (m, n) , the algebra \mathcal{E} contains a distinguished subalgebra $\Lambda(X^{m, n})$ isomorphic to the algebra of symmetric functions over \mathbf{k} ; these subalgebras generate \mathcal{E} , subject to relations given in [14]. There is also an action of \mathcal{E} on the space of symmetric functions $\Lambda(X)$, constructed by Schiffmann and Vasserot [35]. Our notation here is the same as in [4, 7, 5, 6] – in particular, we use the version of the action of \mathcal{E} on $\Lambda(X)$ given by [6, Proposition 3.3.1]. The translation between our notation and that of [14, 35] can be found in [6, §§3.2–3.3]; the defining relations of \mathcal{E} written in our notation are given in [5, §3.2].

Definition 5.1.1. Set $M = (1 - q)(1 - t) \in \mathbf{k}$. For coprime positive integers m, n , define the m, n -Macdonald polynomial $\tilde{H}_\mu^{m, n} = \tilde{H}_\mu^{m, n}(X; q, t)$ by

$$\tilde{H}_\mu^{m, n} = \tilde{H}_\mu[-MX^{m, n}] \cdot 1, \quad (32)$$

the symmetric function obtained by acting on $1 \in \Lambda(X)$ with (a plethystic transformation of) a modified Macdonald polynomial in the distinguished subalgebra $\Lambda(X^{m, n}) \subseteq \mathcal{E}$.

Remark 5.1.2. (i) For context, we note that $e_k[-MX^{m, n}] \cdot 1$ defines the symmetric function side of the (km, kn) -shuffle theorem of [3, 30].

(ii) $\tilde{H}_\mu^{m, n}$ is a homogeneous symmetric function of degree $n|\mu|$, as follows from the definition of the action of the Schiffmann algebra on symmetric functions [6, Proposition 3.3.1].

5.2. The $1, n$ -Macdonald polynomials

By [7, Proposition 4.5.1], $\tilde{H}_\mu^{1, n} = \tilde{H}_\mu[-MX^{1, n}] \cdot 1 = \nabla^m \tilde{H}_\mu = q^{m n(\mu^*)} t^{m n(\mu)} \tilde{H}_\mu$, so this case is familiar. The $1, n$ -Macdonald polynomials, however, carry essentially the same data as the Macdonald series \mathbf{H}_β by the following theorem, which will be proven in §5.3 as part of a more general result (see Remark 5.3.4 (ii)).

Theorem 5.2.1. For any partition μ of l and any rearrangement β of μ^* ,

$$\tilde{H}_\mu^{1, n}(X; q, t) = \omega \text{pol}_X\left(q^{n(\mu^*)} t^{n(\mu)} (z_1 \cdots z_l)^n \mathbf{H}_\beta(\mathbf{z}; q, t)\right). \quad (33)$$

Hence, also $\mathbf{H}_\beta(\mathbf{z}; q, t) = q^{-n(\mu^*)} t^{-n(\mu)} \lim_{n \rightarrow \infty} (z_1 \cdots z_l)^{-n} (\omega \tilde{H}_\mu^{1, n})(z_1, \dots, z_l)$.

This also shows that $\mathbf{H}_\beta(\mathbf{z}; q, t)$ depends only on the partition rearrangement μ^* of β .

The Macdonald polynomial $\tilde{H}_\mu(X; q, t)$ is known [24] to be *Schur positive* (i.e., the coefficients $\tilde{K}_{\lambda, \mu}(q, t)$ in its Schur expansion are in $\mathbb{N}[q, t]$). Based on extensive computations, we were led to the following positivity conjecture for the $1, n$ -Macdonald polynomials, which generalizes the positivity theorem for Macdonald polynomials.

Conjecture 5.2.2. *The $1, n$ -Macdonald polynomials $\tilde{H}_\mu^{1,n}(X; q, t)$ are Schur positive.*

Equivalently (by Theorem 5.2.1) for any partition μ of l and rearrangement β of μ^ , the series $\mathbf{H}_\beta(\mathbf{z}; q, t)$ is a positive sum of irreducible GL_l characters; that is, the coefficients in*

$$\mathbf{H}_\beta(\mathbf{z}; q, t) = \sum_{\nu} \mathbf{K}_{\nu, \mu}(q, t) \chi_\nu \quad (34)$$

are polynomials $\mathbf{K}_{\nu, \mu}(q, t) \in \mathbb{N}[q, t]$ with nonnegative integer coefficients.

Remark 5.2.3. For $m \neq 1$ and $n \neq 1$, the m, n -Macdonald polynomials are typically not Schur positive.

Example 5.2.4. The Schur expansions of the $1, n$ -Macdonald polynomials $\tilde{H}_\mu^{1,n}(X; q, t)$ for $n = 2$ and $|\mu| = 2, 3$, written as in (33), are

$$\begin{aligned} \tilde{H}_2^{1,2} &= \omega q (q^2 s_4 + q s_{31} + s_{22}) \\ \tilde{H}_{11}^{1,2} &= \omega t (t^2 s_4 + t s_{31} + s_{22}) \\ \tilde{H}_3^{1,2} &= \omega q^3 (q^6 s_6 + (q^5 + q^4) s_{51} + (q^4 + q^3 + q^2) s_{42} + q^3 s_{33} + q^3 s_{411} + (q^2 + q) s_{321} + s_{222}) \\ \tilde{H}_{21}^{1,2} &= \omega q t (q^2 t^2 s_6 + (q^2 t + q t^2) s_{51} + (q^2 + q t + t^2) s_{42} + q t s_{33} + q t s_{411} + (q + t) s_{321} + s_{222}) \\ \tilde{H}_{111}^{1,2} &= \omega t^3 (t^6 s_6 + (t^5 + t^4) s_{51} + (t^4 + t^3 + t^2) s_{42} + t^3 s_{33} + t^3 s_{411} + (t^2 + t) s_{321} + s_{222}). \end{aligned}$$

Proposition 5.2.5. *The m, n -Macdonald polynomials satisfy the same q, t symmetry property as ordinary modified Macdonald polynomials: $\tilde{H}_\mu^{m,n}(X; q, t) = \tilde{H}_{\mu^*}^{m,n}(X; t, q)$.*

Proof. This follows from the symmetry property for Macdonald polynomials, $\tilde{H}_\mu(X; q, t) = \tilde{H}_{\mu^*}(X; t, q)$, and the fact that for any symmetric function f with coefficients in \mathbb{Q} , $f[-MX^{m,n}] \cdot 1$ is symmetric in q and t , which in turn follows from the description of the action of the Schiffmann algebra on symmetric functions in [6, Proposition 3.3.1]. \square

We obtain several specializations of the $1, n$ -Macdonald polynomials easily from the raising operator formula in Theorem 5.2.1.

Proposition 5.2.6. *Let μ be a partition of l . The $q = t = 1$, $q = 1$ and $q = 0$ specializations of the $1, n$ -Macdonald polynomials are given by*

$$\tilde{H}_\mu^{1,n}(X; 1, 1) = e_{(n^l)}(X), \quad (35)$$

$$(q^{-n(\mu^*)} t^{-n(\mu)} \tilde{H}_\mu^{1,n}(X; q, t))|_{q=0} = \omega \mathrm{pol}_X \sigma \left(\frac{(z_1 \cdots z_l)^n}{\prod_{\alpha_{ij} \in B_\mu} (1 - t z_i / z_j)} \right), \quad (36)$$

$$\tilde{H}_\mu^{1,n}(X; 1, t) = t^{n(\mu)} \prod_{r=1}^{\mu_1} \omega H_{(n^{r \nu})}(X; t), \quad (37)$$

where $\nu = \mu^*$, $H_\mu(X; t) = t^{n(\mu)} \tilde{H}_\mu(X; 0, t^{-1})$ is as in (6), and B_μ is as defined before (12).

Remark 5.2.7. Like the familiar right-hand sides of (35) and (37), the right-hand side of (36) is also well studied. Its Schur expansion coefficients are instances of the generalized Kostka polynomials introduced by Shimozono-Weyman [36] corresponding to the sequence of rectangle shapes $(n^{\mu_\ell}), \dots, (n^{\mu_2}), (n^{\mu_1})$ for $\ell = \ell(\mu)$.

Proof. Throughout this proof, we only need the case $\beta = \mu^* = \nu$ of Theorem 5.2.1.

By the same argument as in §3.2, the $q = t = 1$ specialization of $\mathrm{pol}_X((z_1 \cdots z_l)^n \mathbf{H}_\nu)$ is the complete homogeneous symmetric function $h_{(n^l)}$. Hence, (35) follows from Theorem 5.2.1. Similarly, (36) follows from Theorem 5.2.1 and from noting that $\mathrm{pol}_X((z_1 \cdots z_l)^n \mathbf{H}_\nu(\mathbf{z}; 0, t))$ can be simplified just as $\mathrm{pol}_X(z_1 \cdots z_l \mathbf{H}_\nu(\mathbf{z}; 0, t))$ was in §3.2.

We now prove (37). By Theorem 5.2.1 and (9),

$$q^{-n(\mu^*)} t^{-n(\mu)} \omega \tilde{H}_\mu^{1,n}(X; q, t) = \mathbf{h}_X \left((z_1 \cdots z_l)^n \prod_{\alpha_{ij} \in R_+} (1 - z_i/z_j) \widehat{\mathbf{H}}_\nu \right), \quad (38)$$

where $\widehat{\mathbf{H}}_\nu(\mathbf{z}; q, t)$ is the expression inside the $\sigma(\cdot)$ on the right side of (20), with β equal to ν (so that $\mathbf{H}_\nu = \sigma(\widehat{\mathbf{H}}_\nu)$). Let C_1, \dots, C_{μ_1} denote the columns of ν and note that $R_\nu \setminus \widehat{R}_\nu$ is equal to $\bigsqcup_{r=1}^{\mu_1} \{\alpha_{ij} : \nu[j] = \text{south}(\nu[i]), \nu[i] \in C_r\}$. Hence, setting $q = 1$ in (38) yields

$$t^{-n(\mu)} \omega \tilde{H}_\mu^{1,n}(X; 1, t) = \mathbf{h}_X \left(\prod_{r=1}^{\mu_1} \frac{\left(\prod_{\nu[i] \in C_r} z_i^n \right) \prod_{\alpha_{ij} \in R_\nu \setminus \widehat{R}_\nu, \nu[i] \in C_r} (1 - t^{-\text{leg}(\nu[i])} z_i/z_j)}{\prod_{\alpha_{ij} \in R_\nu \setminus \widehat{R}_\nu, \nu[i] \in C_r} (1 - t z_i/z_j)} \right) \quad (39)$$

$$= \prod_{r=1}^{\mu_1} \mathbf{h}_X \left(\frac{\left(\prod_{\nu[i] \in C_r} z_i^n \right) \prod_{\alpha_{ij} \in R_\nu \setminus \widehat{R}_\nu, \nu[i] \in C_r} (1 - t^{-\text{leg}(\nu[i])} z_i/z_j)}{\prod_{\alpha_{ij} \in R_\nu \setminus \widehat{R}_\nu, \nu[i] \in C_r} (1 - t z_i/z_j)} \right), \quad (40)$$

where the second equality follows from (10) and the fact that $h_\gamma = h_\delta$ for $\gamma, \delta \in \mathbb{Z}^l$ which are rearrangements of each other.

The factor $\mathbf{h}_X(\cdot)$ in (40) for a given index r is equal to $t^{-n(1^{\nu_r})} \omega \tilde{H}_{(1^{\nu_r})}^{1,n}(X; 1, t)$, by the computation we have just done, but with the partition 1^{ν_r} in place of μ . It follows that

$$\tilde{H}_\mu^{1,n}(X; 1, t) = \prod_{r=1}^{\mu_1} \tilde{H}_{(1^{\nu_r})}^{1,n}(X; 1, t). \quad (41)$$

Finally, we will show that each $\tilde{H}_{(1^{\nu_r})}^{1,n}(X; 1, t)$ is essentially a Hall-Littlewood polynomial. Using the particularly simple form of the series \mathbf{H}_ν when $\mu = (d)$ is a single row, Theorem 5.2.1 and (11) yield $q^{-\binom{d}{2}} \omega \tilde{H}_{(d)}^{1,n}(X; q, t) = H_{(n^d)}(X; q)$. By Proposition 5.2.5, $\tilde{H}_\mu^{1,n}(X; q, t) = \tilde{H}_{\mu^*}^{1,n}(X; t, q)$, and thus,

$$t^{-\binom{d}{2}} \omega \tilde{H}_{(1^d)}^{1,n}(X; q, t) = H_{(n^d)}(X; t). \quad (42)$$

Formula (37) now follows from (41) and (42). \square

5.3. A raising operator formula for the m, n -Macdonald polynomials

We now give a raising operator formula for $\tilde{H}_\mu^{m,n}$ which generalizes the raising operator formula for \tilde{H}_μ in Theorem 3.1.4, and is derived in a similar way. Specifically, we combine the Haglund-Haiman-Loehr formula (Theorem 4.2.2) with an m, n version of Theorem 4.3.1. This latter result requires some notation involving the dilation of a column diagram.

For $\beta \in \mathbb{Z}_+^k$, let $m\beta = (m\beta_1, \dots, m\beta_k)$. We think of the column diagram $\mathbf{m}\beta$ of $m\beta$ as the result of dilating the column diagram β of β vertically by a factor of m , so that each box of β gives rise to m boxes of $\mathbf{m}\beta$. To be more precise, define the map of boxes

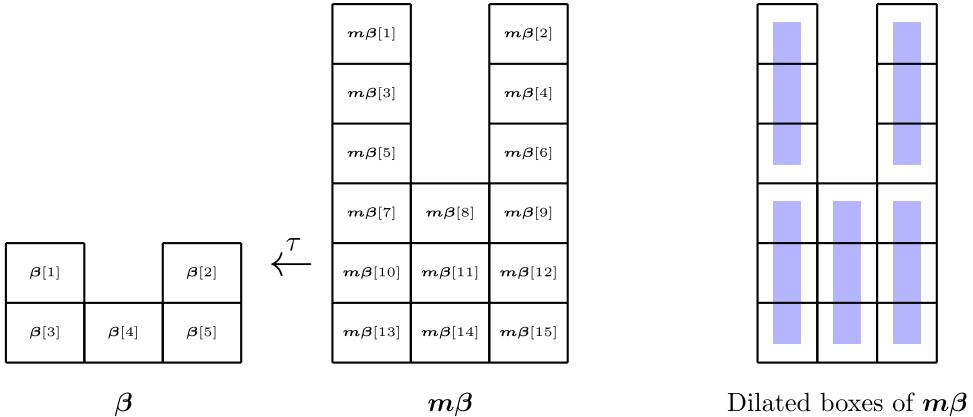
$$\tau: \mathbf{m}\beta \rightarrow \beta, \quad (i, j) \mapsto (i, \lfloor (j-1)/m \rfloor + 1). \quad (43)$$

Thus, in the dilation process, each box b of β gives rise to a set $\tau^{-1}(b)$ of m boxes of $\mathbf{m}\beta$, called a *dilated box*, which forms a contiguous subset of a column of $\mathbf{m}\beta$.

As in §3.1, we write $\beta[1], \dots, \beta[d]$ for the boxes of β listed in increasing reading order and $\mathbf{m}\beta[1], \dots, \mathbf{m}\beta[l]$ for the boxes of $\mathbf{m}\beta$ in increasing reading order, where $d = |\beta|$ and $l = dm$. Define a map $\mathbf{s}: V_\beta \rightarrow V_{m\beta}$ which takes a vertical domino $(\beta[i], \beta[j])$ of β to the vertical domino

$(m\beta[i'], m\beta[j'])$ of $m\beta$ such that $\tau(m\beta[i']) = \beta[i]$ and $\tau(m\beta[j']) = \beta[j]$. Note that $s(V_\beta)$ is the set of vertical dominoes of the dilated diagram $m\beta$ which straddle two dilated boxes.

Example 5.3.1. For $m = 3$ and $\beta = (2, 1, 2)$, the dilated boxes of $m\beta$ are shown below along with the labeling of the boxes of β and $m\beta$ by reading order. To clarify the definitions of τ and s , note that $\tau^{-1}(\beta[3]) = \{m\beta[7], m\beta[10], m\beta[13]\}$ and $s(V_\beta) = \{(m\beta[5], m\beta[7]), (m\beta[6], m\beta[9])\}$.



Given $(m, n) \in \mathbb{Z}_+ \times \mathbb{Z}_+$, we define the sequence of m integers as in [7, (9.5)]

$$\mathbf{b}(m, n)_i = \lceil in/m \rceil - \lceil (i-1)n/m \rceil \quad (i = 1, \dots, m). \quad (44)$$

We then define, for any $\beta \in \mathbb{Z}_+^k$ of size $d = |\beta|$, a weight $\mathbf{b}(m, n, \beta) \in \mathbb{Z}^{dm}$ as follows: fill each dilated box of $m\beta$ with the sequence $\mathbf{b}(m, n)$ from north to south, and then read this filling by the reading order on $m\beta$. Equivalently, $\mathbf{b}(m, n, \beta)_r = \mathbf{b}(m, n)_a$, where a is the integer $a \in \{1, \dots, m\}$ such that $a \equiv -j+1 \pmod{m}$ for j the row index of the r -th box of $m\beta$ in reading order (i.e., $m\beta[r] = (i, j)$ for some i).

Theorem 5.3.2 [7]. *Let m, n be coprime positive integers, let $\beta \in \mathbb{Z}_+^k$, and set $d = |\beta|$, $l = dm$. For $S \subseteq V_\beta$, let $\nu(S)$ be the k -tuple of ribbons in Definition 4.2.1. The action of the LLT polynomial $\mathcal{G}_{\nu(S)}[-MX^{m,n}] \in \Lambda(X^{m,n})$ on 1 is given by*

$$\begin{aligned} \mathcal{G}_{\nu(S)}[-MX^{m,n}] \cdot 1 &= \omega \text{pol}_X \sigma \left((-qt)^{|V_\beta \setminus S|} q^{A_\beta + (m-1)n(\beta^+)} \mathbf{z}^{\mathbf{b}(m,n,\beta)} \right. \\ &\quad \times \left. \frac{\prod_{(m\beta[i], m\beta[j]) \in s(V_\beta \setminus S)} z_i/z_j \prod_{\alpha_{ij} \in \widehat{R}_{m\beta}} (1 - qt z_i/z_j)}{\prod_{\alpha_{ij} \in R_+(\text{GL}_l)} (1 - q z_i/z_j) \prod_{\alpha_{ij} \in R_{m\beta}} (1 - t z_i/z_j)} \right), \end{aligned} \quad (45)$$

where A_β is the number of attacking pairs of $\nu(S)$ as in §4.3, β^+ is the partition rearrangement of β , and $R_{m\beta}$, $\widehat{R}_{m\beta} \subseteq R_+(\text{GL}_l)$ are as in (15, 16).

Proof. This is obtained by combining [7, Theorem 9.3.1] and [4, Proposition 2.3.2] and specializing to the case that the LLT polynomial is indexed by the tuple of ribbons $\nu(S)$. The notation here and that in [7, Theorem 9.3.1] are matched using the discussion in the proof of Theorem 4.3.1 and the following: the weight $\mathbf{b}(m, n, \beta)$ is the same as $\tilde{\mathbf{b}}$ defined in [7, Definition 9.2.1], and the weight λ defined there satisfies $\mathbf{z}^\lambda = \mathbf{z}^{\mathbf{b}(m,n,\beta)} \prod_{(m\beta[i], m\beta[j]) \in s(V_\beta \setminus S)} z_i/z_j$. \square

We now give our raising operator formula for the m, n -Macdonald polynomials $\tilde{H}_\mu^{m,n}(X; q, t)$.

Theorem 5.3.3. Let m, n be coprime positive integers. Given $\beta \in \mathbb{Z}_+^k$ and setting $d = |\beta|$ and $l = dm$, define the m, n -Macdonald series by

$$\mathbf{H}_\beta^{m,n}(\mathbf{z}; q, t) = \sigma \left(\frac{\mathbf{z}^{\mathbf{b}(m,n,\beta)} \prod_{(\mathbf{m}\beta[i], \mathbf{m}\beta[j]) \in \mathbf{s}(V_\beta)} (1 - q^{\text{arm}(\tau(\mathbf{m}\beta[i]))+1} t^{-\text{leg}(\tau(\mathbf{m}\beta[i]))} \frac{z_i}{z_j}) \prod_{\alpha_{ij} \in \widehat{R}_{m\beta}} (1 - qt \frac{z_i}{z_j})}{\prod_{\alpha_{ij} \in R_+(\text{GL}_l)} (1 - q \frac{z_i}{z_j}) \prod_{\alpha_{ij} \in R_{m\beta}} (1 - t \frac{z_i}{z_j})} \right), \quad (46)$$

which we regard as an infinite formal linear combination of irreducible GL_l characters using the convention of Remark 2.2.1. Then, for any partition μ and any rearrangement β of μ^* ,

$$\tilde{H}_\mu^{m,n}(X; q, t) = \omega \text{pol}_X \left(q^{m\mathbf{n}(\mu^*)} t^{\mathbf{n}(\mu)} \mathbf{H}_\beta^{m,n}(\mathbf{z}; q, t) \right). \quad (47)$$

Remark 5.3.4. (i) In (46), the indices of z_i correspond to the boxes of the dilated diagram $\mathbf{m}\beta$, while the arm and leg are taken with respect to the original diagram β .

(ii) Since $\mathbf{b}(1, n, \beta) = n^l$, $\mathbf{H}_\beta^{1,n} = (z_1 \cdots z_l)^n \mathbf{H}_\beta$, where \mathbf{H}_β is the Macdonald series from Definition 3.1.3. Hence, Theorem 5.3.3 proves Theorem 5.2.1 by setting $m = 1$ with n arbitrary. It also specializes to Theorem 3.1.4 when $(m, n) = (1, 1)$.

(iii) Expanding on (ii), the series $\mathbf{H}_\beta^{m,n}$ simultaneously encodes the m, n -Macdonald polynomials $\{H_\mu^{m,n'} : n' \in (n + m\mathbb{Z}) \cap \mathbb{Z}_+\}$, in the following sense:

$$\tilde{H}_\mu^{m,n+am} = \omega \text{pol}_X \left(q^{m\mathbf{n}(\mu^*)} t^{\mathbf{n}(\mu)} (z_1 \cdots z_l)^a \mathbf{H}_\beta^{m,n} \right). \quad (48)$$

This follows from Theorem 5.3.3 using that $\mathbf{b}(m, n + am, \beta) = \mathbf{b}(m, n, \beta) + a^l$, which in turn holds by $\mathbf{b}(m, n + am) = \mathbf{b}(m, n) + a^m$.

Theorem 5.3.3 and Remark 5.3.4 (iii) have the following corollary.

Corollary 5.3.5. The m, n -Macdonald series $\mathbf{H}_\beta^{m,n}$ depends only on the multiset of parts of β and not on their order: $\mathbf{H}_\beta^{m,n} = \mathbf{H}_\gamma^{m,n}$ for any rearrangement γ of β .

Proof of Theorem 5.3.3. By a plethystic transformation and change of variables we can replace X in (28) with $-MX^{m,n}$. Letting both sides act on $1 \in \Lambda(X)$ and then substituting in (45) yields

$$\tilde{H}_\mu[-MX^{m,n}] \cdot 1 = \omega \text{pol}_X \sigma \left(\frac{\mathbf{z}^{\mathbf{b}(m,n,\beta)} \cdot \Upsilon \cdot \prod_{\alpha_{ij} \in \widehat{R}_{m\beta}} (1 - qt z_i/z_j)}{\prod_{\alpha_{ij} \in R_+} (1 - q z_i/z_j) \prod_{\alpha_{ij} \in R_{m\beta}} (1 - t z_i/z_j)} \right), \quad (49)$$

where

$$\Upsilon = \sum_{S \subseteq V_\beta} (-qt)^{|V_\beta \setminus S|} q^{A_\beta + (m-1)\mathbf{n}(\mu^*)} \prod_{(\beta[i], \beta[j]) \in S} q^{-\text{arm}(\beta[i])} t^{\text{leg}(\beta[i])+1} \prod_{(\mathbf{m}\beta[i], \mathbf{m}\beta[j]) \in \mathbf{s}(V_\beta \setminus S)} z_i/z_j. \quad (50)$$

The proof of Theorem 3.1.4 establishes that $A_\beta = \mathbf{n}(\mu^*) + \sum_{(\beta[i], \beta[j]) \in V_\beta} \text{arm}(\beta[i])$, as can also be checked combinatorially. Using this, Υ simplifies essentially the same way it did in that proof:

$$\Upsilon = q^{m\mathbf{n}(\mu^*)} t^{\mathbf{n}(\mu)} \prod_{(\mathbf{m}\beta[i], \mathbf{m}\beta[j]) \in \mathbf{s}(V_\beta)} (1 - q^{\text{arm}(\tau(\mathbf{m}\beta[i]))+1} t^{-\text{leg}(\tau(\mathbf{m}\beta[i]))} z_i/z_j). \quad (51)$$

Plugging this back into (49) completes the proof. \square

We obtain yet other expressions for the modified Macdonald polynomials from Theorem 5.3.3.

Corollary 5.3.6. *Let μ be a partition of d and β a rearrangement of μ^* . The modified Macdonald polynomial $\tilde{H}_\mu(X; q, t)$ can be expressed in terms of the $m, 1$ -Macdonald series for any m as follows:*

$$\tilde{H}_\mu(X; q, t) = \omega \text{pol}_X(t^{(-m+1)\mathbf{n}(\mu)} \mathbf{H}_\beta^{m,1}(\mathbf{z}; q, t)). \quad (52)$$

Proof. By [7, Proposition 4.5.1], $\tilde{H}_\mu[-MX^{m,1}] \cdot 1 = \nabla^m \tilde{H}_\mu$. Substitute this into the left side of (47). \square

6. A raising operator formula for the Macdonald polynomials $Q_\mu(X; q, t)$ and $J_\mu(X; q, t)$

Our formulas for the modified Macdonald polynomials $\tilde{H}_\mu(X; q, t)$ can be converted into formulas for the integral form Macdonald polynomials $J_\mu(X; q, t)$ and for the $Q_\mu(X; q, t)$ which differ from the J_μ by a scalar factor. Recall that $\tilde{H}_\mu(X; q, t) = t^{\mathbf{n}(\mu)} J_\mu[\frac{X}{1-t^{-1}}; q, t^{-1}]$ as in (3), hence $\tilde{H}_\mu[X(1-t^{-1}); q, t] = t^{\mathbf{n}(\mu)} J_\mu(X; q, t^{-1})$, or equivalently,

$$J_\mu(X; q, t) = t^{\mathbf{n}(\mu)} \tilde{H}_\mu[X(1-t); q, t^{-1}]. \quad (53)$$

Let $\mathbf{e}'_X : \mathbf{k}[z_1^{\pm 1}, \dots, z_l^{\pm 1}] \rightarrow \Lambda$ denote the linear operator determined by

$$\mathbf{e}'_X(\mathbf{z}^\gamma) = e_\gamma[X(1-t)] = \prod_{i=1}^l \sum_{j=0}^{\gamma_i} (-t)^j e_{\gamma_i-j}(X) h_j(X), \quad (54)$$

where for $\gamma \in \mathbb{Z}^l$, we define $e_\gamma = e_{\gamma_1} \cdots e_{\gamma_l}$ to be the product of elementary symmetric functions, with e_d for $d \leq 0$ interpreted as $e_0 = 1$, or $e_d = 0$ for $d < 0$. We extend \mathbf{e}'_X to an operator on formal linear combinations of monomials just as we did for σ and \mathbf{h}_X in §2.2. The operators \mathbf{e}'_X and \mathbf{h}_X are related as follows: for a formal linear combination $g = \sum_{\gamma \in \mathbb{Z}^l} c_\gamma \mathbf{z}^\gamma$ such that $\mathbf{h}_X(g)$ is a symmetric function and not just an infinite formal sum of symmetric functions, $\mathbf{e}'_X(g) = \theta \circ \omega \circ \mathbf{h}_X(g)$, where $\theta : \Lambda \rightarrow \Lambda$ is the automorphism sending $f(X)$ to $f[X(1-t)]$.

Theorem 6.1.1. *For any partition μ of l and any rearrangement β of μ^* , the integral form Macdonald polynomial $J_\mu(X; q, t)$ is given by*

$$J_\mu(X; q, t) = t^{\mathbf{n}(\mu)} \mathbf{e}'_X \left(z_1 \cdots z_l \prod_{\alpha_{ij} \in R_+} (1 - z_i/z_j) \widehat{\mathbf{H}}_\beta(\mathbf{z}; q, t^{-1}) \right), \quad (55)$$

where $\widehat{\mathbf{H}}_\beta(\mathbf{z}; q, t)$ is the expression inside the $\sigma(\cdot)$ on the right side of (20) (so that $\mathbf{H}_\beta = \sigma(\widehat{\mathbf{H}}_\beta)$). Alternatively, using informal notation similar to Remark 2.3.1,

$$\begin{aligned} J_\mu(X; q, t) &= t^{\mathbf{n}(\mu)} \left(\frac{\prod_{\alpha_{ij} \in R_+} (1 - \mathsf{R}_{ij}) \prod_{\alpha_{ij} \in \widehat{R}_\beta} (1 - qt^{-1} \mathsf{R}_{ij})}{\prod_{\alpha_{ij} \in R_+} (1 - q \mathsf{R}_{ij}) \prod_{\alpha_{ij} \in R_\beta} (1 - t^{-1} \mathsf{R}_{ij})} \right) \\ &\times \prod_{\alpha_{ij} \in R_\beta \setminus \widehat{R}_\beta} (1 - q^{\text{arm}(\beta[i])+1} t^{\text{leg}(\beta[i])} \mathsf{R}_{ij}) \cdot e_{1^l}[X(1-t)], \end{aligned} \quad (56)$$

where R_{ij} acts on subscripts of $e_\gamma[X(1-t)]$ by $\mathsf{R}_{ij}\gamma = \gamma + \epsilon_i - \epsilon_j$.

Proof. By Theorem 3.1.4 and (9),

$$\tilde{H}_\mu(X; q, t) = \omega \mathbf{h}_X(z_1 \cdots z_l \prod_{\alpha_{ij} \in R_+} (1 - z_i/z_j) \widehat{\mathbf{H}}_\beta). \quad (57)$$

The result then follows from (53) and the definition of \mathbf{e}'_X . \square

We also record the consequence of Corollary 5.3.6 for the integral form Macdonald polynomials.

Corollary 6.1.2. *Let μ be a partition of d and β a rearrangement of μ^* . Then for any $m \in \mathbb{Z}_+$,*

$$J_\mu(X; q, t) = t^{m n(\mu)} \mathbf{e}'_X \left(\prod_{\alpha_{ij} \in R_+(\mathrm{GL}_l)} (1 - z_i/z_j) \widehat{\mathbf{H}}_\beta^{m,1}(\mathbf{z}; q, t^{-1}) \right), \quad (58)$$

where $l = dm$ and $\widehat{\mathbf{H}}_\beta^{m,1}(\mathbf{z}; q, t)$ is the expression inside $\sigma(\cdot)$ on the right side of (46), with n set to 1.

Competing interest. The authors have no competing interest to declare.

Financial support. Authors were supported by NSF Grants DMS-1855784 (J. B.), DMS-1855804 (J. M., A. P. and G. S.), DMS-2303175 (G. S.) and Simons Foundation-821999 (J. M.).

References

- [1] D. Anderson and W. Fulton, ‘Chern class formulas for classical-type degeneracy loci’, *Compos. Math.* **154**(8) (2018), 1746–1774.
- [2] F. Bergeron, A. M. Garsia, M. Haiman and G. Tesler, ‘Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions’, *Methods Appl. Anal.* **6**(3) (1999), 363–420, Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part III.
- [3] F. Bergeron, A. Garsia, E. S. Leven and G. Xin, ‘Compositional (km, kn) -shuffle conjectures’, *Int. Math. Res. Not. IMRN* **14** (2016), 4229–4270.
- [4] J. Blasiak, M. Haiman, J. Morse, A. Pun and G. H. Seelinger, ‘Dens, nests and the Loehr-Warrington conjecture’, Preprint, 2021, [arXiv:2112.07070](https://arxiv.org/abs/2112.07070) [math.CO].
- [5] J. Blasiak, M. Haiman, J. Morse, A. Pun and G. H. Seelinger, ‘A proof of the extended delta conjecture’, *Forum Math. Pi* **11** (2023), Paper No. e6, 28.
- [6] J. Blasiak, M. Haiman, J. Morse, A. Pun and G. H. Seelinger, ‘A shuffle theorem for paths under any line’, *Forum Math. Pi* **11** (2023), Paper No. e5, 38.
- [7] J. Blasiak, M. Haiman, J. Morse, A. Pun and G. H. Seelinger, ‘LLT polynomials in the Schiffmann algebra’, *J. Reine Angew. Math.* **811** (2024), 93–133.
- [8] J. Blasiak, J. Morse, A. Pun and D. Summers, ‘Catalan functions and k -Schur positivity’, *J. Amer. Math. Soc.* **32**(4) (2019), 921–963.
- [9] J. Blasiak, J. Morse, A. Pun and D. Summers, ‘ k -Schur expansions of Catalan functions’, *Adv. Math.* **371** (2020), 107209, 39.
- [10] J. Blasiak, J. Morse and G. H. Seelinger, ‘ K -theoretic Catalan functions’, *Adv. Math.* **404** (2022), Paper No. 108421, 39.
- [11] B. Broer, ‘Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety’, in *Lie Theory and Geometry* (Progr. Math.) vol. 123 (Birkhäuser Boston, Boston, MA, 1994), 1–19.
- [12] A. Skovsted Buch, A. Kresch and H. Tamvakis, ‘A Giambelli formula for even orthogonal Grassmannians’, *J. Reine Angew. Math.* **708** (2015), 17–48.
- [13] A. Skovsted Buch, A. Kresch and H. Tamvakis, ‘A Giambelli formula for isotropic Grassmannians’, *Selecta Math. (N.S.)* **23**(2) (2017), 869–914.
- [14] I. Burban and O. Schiffmann, ‘On the Hall algebra of an elliptic curve, I’, *Duke Math. J.* **161**(7) (2012), 1171–1231.
- [15] L.-C. Chen, ‘Skew-linked partitions and a representation theoretic model for k -schur functions’, PhD thesis, U.C. Berkeley, 2010.
- [16] A. M. Garsia, ‘Raising operators and Young’s rule’, in *Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985)* (Lecture Notes in Math.) vol. 1234 (Springer, Berlin, 1986), 91–105.
- [17] A. M. Garsia and M. Haiman, ‘Some natural bigraded S_n -modules and q, t -Kostka coefficients’, *Electron. J. Combin.* **3**(2) (1996), Research Paper 24, approx. 60 pp. (electronic), The Foata Festschrift.
- [18] A. M. Garsia and J. Remmel, ‘On the raising operators of Alfred Young’, in *Relations Between Combinatorics and Other Parts of Mathematics (Proc. Sympos. Pure Math., Ohio State Univ., Columbus, Ohio, 1978)* (Proc. Sympos. Pure Math.) vol. XXXIV (Amer. Math. Soc., Providence, RI, 1979), 181–198.
- [19] A. M. Garsia and J. Remmel, ‘Symmetric functions and raising operators’, *Linear and Multilinear Algebra* **10**(1) (1981), 15–23.
- [20] A. M. Garsia, ‘Orthogonality of Milne’s polynomials and raising operators’, *Discrete Math.* **99**(1–3) (1992), 247–264.
- [21] J. Haglund, M. Haiman and N. Loehr, ‘A combinatorial formula for Macdonald polynomials’, *J. Amer. Math. Soc.* **18**(3) (2005), 735–761 (electronic).
- [22] J. Haglund, M. Haiman and N. Loehr, ‘A combinatorial formula for nonsymmetric Macdonald polynomials’, *Amer. J. Math.* **130**(2) (2008), 359–383.
- [23] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel and A. Ulyanov, ‘A combinatorial formula for the character of the diagonal coinvariants’, *Duke Math. J.* **126**(2) (2005), 195–232.

- [24] M. Haiman, ‘Hilbert schemes, polygraphs and the Macdonald positivity conjecture’, *J. Amer. Math. Soc.* **14**(4) (2001), 941–1006 (electronic).
- [25] N. H. Jing, ‘Vertex operators and Hall-Littlewood symmetric functions’, *Adv. Math.* **87**(2) (1991), 226–248.
- [26] A. Lascoux, B. Leclerc and J.-Y. Thibon, ‘Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties’, *J. Math. Phys.* **38**(2) (1997), 1041–1068.
- [27] A. Lascoux and H. Naruse, ‘Finite sum Cauchy identity for dual Grothendieck polynomials’, *Proc. Japan Acad. Ser. A Math. Sci.* **90**(7) (2014), 87–91.
- [28] M. Lassalle and M. Schlosser, ‘Inversion of the Pieri formula for Macdonald polynomials’, *Adv. Math.* **202**(2) (2006), 289–325.
- [29] I. G. Macdonald, *Symmetric Functions and Hall Polynomials*, second edn. (The Clarendon Press, Oxford University Press, New York, 1995). With contributions by A. Zelevinsky, Oxford Science Publications.
- [30] A. Mellit, ‘Toric braids and (m, n) -parking functions’, *Duke Math. J.* **170**(18) (2021), 4123–4169.
- [31] S. C. Milne, ‘Classical partition functions and the $U(n+1)$ Rogers-Selberg identity’, *Discrete Math.* **99**(1–3) (1992), 199–246.
- [32] M. Noumi and J. Shiraishi, ‘A direct approach to the bispectral problem for the Ruijsenaars-Macdonald q-difference operators’, Preprint, 2012, [arXiv:1206.5364](https://arxiv.org/abs/1206.5364) [math.QA].
- [33] P. Pragacz, ‘Enumerative geometry of degeneracy loci’, *Ann. Sci. École Norm. Sup. (4)* **21**(3) (1988), 413–454.
- [34] P. Pragacz, ‘Algebro-geometric applications of Schur S- and Q-polynomials’, in *Topics in Invariant Theory (Paris, 1989/1990)* (Lecture Notes in Math.) vol. 1478 (Springer, Berlin, 1991), 130–191.
- [35] O. Schiffmann and E. Vasserot, ‘The elliptic Hall algebra and the K-theory of the Hilbert scheme of A^2 ’, *Duke Math. J.* **162**(2) (2013), 279–366.
- [36] M. Shimozono and J. Weyman, ‘Graded characters of modules supported in the closure of a nilpotent conjugacy class’, *European J. Combin.* **21**(2) (2000), 257–288.
- [37] J. Shiraishi, ‘A conjecture about raising operators for Macdonald polynomials’, *Lett. Math. Phys.* **73**(1) (2005), 71–81.
- [38] H. Tamvakis, ‘Giambelli, Pieri, and tableau formulas via raising operators’, *J. Reine Angew. Math.* **652** (2011), 207–244.
- [39] G. P. Thomas, ‘A note on Young’s raising operator’, *Canadian J. Math.* **33** (1) (1981), 49–54.
- [40] J. Weyman, ‘The equations of conjugacy classes of nilpotent matrices’, *Invent. Math.* **98**(2) (1989), 229–245.
- [41] A. Young, ‘The collected papers of Alfred Young (1873–1940)’, in *Mathematical Expositions* vol. 21 (University of Toronto Press, Toronto, Ont.-Buffalo, N.Y., 1977). With a foreword by G. de B. Robinson and a biography by H. W. Turnbull.