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Abstract

We give an explicit raising operator formula for the modified Macdonald polynomials H 1(X;q,1t), which follows
from our recent formula for V on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified
Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of
symmetric functions A" (X; ¢, 1) that we call 1, --Macdonald polynomials, which reduce to a scalar multiple of
I:IM(X ;g,1) when n = 1. We conjecture that the coefficients of 1, n-Macdonald polynomials in terms of Schur
functions belong to N|[g, 7], generalizing Macdonald positivity.

1. Introduction

Tracing back to work of Young, raising operator formulas have been used as a powerful tool in classical
symmetric function theory through modern Schubert calculus — see, for example, [I, 8, 10, 12, 13,
16, 18, 19, 27, 33, 34, 38, 39, 41]. Their applications in symmetric function theory include formulas
for fundamental bases such as Schur functions and Schur Q-functions, as well as bases in the more
contemporary framework involving a parameter ¢, such as the modified Hall-Littlewood polynomials
[20, 31], given by the raising operator formula

zZH
H#(X;t):pOIXO-(HaijGR+(] _tZi/Zj)). v

Many research directions have emerged from modifications to classical raising operator formulas. For
example, other important families of symmetric functions, including the parabolic Hall-Littlewood
polynomials of Shimozono-Weyman [36], and k-Schur functions [8, 15], can be defined by generalizing
the formula (1).

The raising operator methodology lies at the foundation of Macdonald’s development in [29] of clas-
sical symmetric function theory and its one-parameter generalizations, including Hall-Littlewood poly-
nomials. However, for the two-parameter generalization to Macdonald polynomials, no raising operator
cornerstone similar to (1) has previously been known, forcing the theory of Macdonald polynomials to
be developed in a more indirect way.
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2 J. Blasiak et al.

Here, we establish a raising operator formula for the modified Macdonald polynomials H w(X;q,1),
which reduces at g = 0 to a previously known formula for Hall-Littlewood polynomials. Using notation
defined in §3.1, our formula reads

e I (1 - geme i+t Hleew i 2y (1_q,Z_i_)

N @i €R,\R %j " aijeR Zj
H,(X;q,t) =wpoly o etk 7 7 - . @
M(l-g=) I (1-t=)
@;jERy Zj @ijER* Zj

The proof begins with the Haglund-Haiman-Loehr formula [21] for H 1(X;q,1) as a weighted sum of
LLT polynomials. We then apply the operator V, which has H «(X;qg,1) as an eigenfunction, and use
the formula for V on an LLT polynomial established in our recent work [7].

A consequence of (2) is the emergence of an intriguing new family of higher Macdonald polynomials
I:IL’"(X; q,1), given by a formula similar to (2) with (z; - - - z;)" in place of z - - - z; — see Theorem 5.2.1.
We conjecture (Conjecture 5.2.2) that the coefficients of the resulting polynomials in terms of Schur
functions belong to N[g, ], generalizing Macdonald positivity. As we will see, this conjecture can be
formulated for all » simultaneously as the statement that the expression on the right-hand side of (2),
before applying w poly, has coeflicients in N[g, #] when regarded as an infinite series of GL; characters.

In §6, we also derive a new raising operator formula for the integral form Macdonald polynomials
Ju(X;q,1).

Other raising operator formulas for Macdonald polynomials have previously appeared in the literature.
Lassalle-Schlosser [28] inverted the Pieri formula for Macdonald polynomials Q , (X g, ) (which differ
from J,(X;q,t) by a scalar factor) to obtain a formula for Q,,(X;q,t) that can be interpreted as a
raising operator formula. Shiraishi [37] conjectured a similar raising operator formula for Q,(X; ¢q,1),
later proven by Noumi and Shiraishi in their work [32] on the bispectral problem of the Macdonald-
Ruijnesaars g-difference operators. However, these formulas are quite different and more intricate than
ours.

2. Background
2.1. Partitions and symmetric functions

The (French style) diagram of a partition g = (u; > -+ > pg > 0) is the set {(i,j) € Z> : 1 < j <
k, 1 <i < u;}. Weidentify (7, j) with the lattice square or box whose northeast corner has coordinates
(x,y) = (i, j) and refer to this box as being in column i and row j. We set |u| = puj + - - - + pi and let
£(u) = k be the number of nonzero parts of u. We write u* for the transpose of u. The arm and leg of a
box b € u are the number of boxes in y strictly east of b and strictly north of b, respectively.

Let A = A(X) be the algebra of symmetric functions in infinitely many variables X = x1, x5, . . ., with
coefficients in the field k = Q(qg, t). We follow Macdonald’s notation [29] for the graded bases of A,
and for the automorphism w: A — A given on Schur functions by ws, = s-. We also work with series
and symmetric functions in finitely many variables z = z, ..., z. If f(X) € A is a formal symmetric
function, then f(z) or f(z1,...,z;) denotes its specialization with X = z;,...,7;,0,0,....

Given a symmetric function f € A and any expression A involving indeterminates, the plethystic
evaluation f[A] is defined by writing f as a polynomial in the power-sums pj and evaluating with
pr — prlA], where pi[A] is the result of substituting a* for every indeterminate a occurring in A.
The variables g, t from our ground field k count as indeterminates.

By convention, the name of an alphabet X = x1,x,,... stands for x; + x, + - - - inside a plethystic
evaluation. Then f[X] = flx;+x2+---] = f(x1,x2,...) = f(X). For example, the evaluation
FIX/(1-t71)] is the image of f(X) under the k-algebra automorphism of A that sends py to px /(1-17%).
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The modified Macdonald polynomials H,, = H,,(X; q,t) of [17] are defined in terms of the Macdonald
polynomials O, (X; g, t) [29, VI (4.12)] or their integral forms J,(X; ¢, ¢) [29, VI (8.3)] by

_ X
Hy(X; g,0) = "0, | < _l;q,t’]] =t”(")(]—[(1—qarm“’)”t"eg(b)))Q,,[ _];q,t"], 3)
-1 beu 1-1¢
where
() = D= Dpi. O
i

The H (X g, 1) also have a direct combinatorial description [21], which we will recall in Theorem 4.2.2.
When g = 0, the modified Macdonald polynomials reduce to the modified Hall-Littlewood polyno-
mials

~ X
A, (X:0,0) = "0, | 7. )

where the Hall-Littlewood polynomials O, (X;t) are as defined in [29, III (2.11)]. Atf = 1 and ¢ = oo,
the A « (X0, t) specialize to the complete homogeneous symmetric functions H w(X;0,1) = hy(X) and
Schur functions t‘”(“)I:Iy (X;0,8)]1=c0 = 5,(X). We will also work with the following variant of the
modified Hall-Littlewood polynomials:

Hy(X:t) € 00 AL (X067 = 0 [X/(1-1)]. ©)

2.2. Weyl symmetrization and related operators

The Weyl symmetrization operator o for GL; is defined by

O'(f(Zl,...,Zl))z Zw(M): Zw(nf(Z],...,Zl) o

&\ T=2720) = & "\ Mayer T2/ )

where f € k[zfl, e, zlil] is a Laurent polynomial, S; acts by permuting the variables zy, . . ., z;, and
R: = R,(GL;) = {a;; : 1 <i < j <1} denotes the set of positive roots for GL;, with @;; = ¢, —€; € Zt.
When z” = z}'---z" for a dominant weight v (a weight v € Z' is dominant if vy > --- > v)),

o (z”) = y, is an irreducible GL; character. For an arbitrary weight y € Z/, either o(z¥) = +y, for a
suitable dominant weight v, or o-(z”) = 0. We extend o to an operator on formal k-linear combinations
2yez! Cy2” by applying it term by term, giving an infinite formal linear combination of irreducible GL,
characters ), ay xy = X, ez ¢,0(27). This makes sense because for each dominant weight v, the set
of monomials z” such that o-(z”) = +y;, is finite.

Recall that the polynomial characters of GL; are the irreducible characters y, for which v is a
partition, that is, v; > 0. Given any formal k-linear combination }, a, y, of irreducible GL; characters,
we define its polynomial truncation by

POIX(Z ava) = > ays,(X). ®)

v vy 20
In principle, the right-hand side is an infinite formal sum of symmetric functions, but, for instance,

if Y a,y, is homogeneous of degree d, then the right-hand side is an ordinary symmetric function,
homogeneous of degree d.
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We define a related operator hy on Laurent polynomials f(z) by

f(2)

M lf ) = polx O\ = e )

©))

where the factors (1 — z;/z j)‘l are expanded as geometric series in z;/z; before applying o. When f is
a monomial, it is well known [39] that

hx (27) = hy (X), (10)

where for any integer vector y € Z!, we define hy = hy, - -+ h,, to be the product of complete homoge-
neous symmetric functions, with h; for d < O interpreted as hg = 1, or hy = 0 for d < 0.

We again extend the definition to formal linear combinations of monomials, so thathx (3, ez ¢y27) =
2yezt Cyhy(X). With this interpretation, (9) still remains valid when f is a power series in z;/z; for
i < j. Aswith poly, in principle, hx (3, ¢,2”) is an infinite formal sum of symmetric functions, but for
instance, if ), ¢, 2” is homogeneous of degree d, then hx (X, ¢,2”) is an ordinary symmetric function,
homogeneous of degree d.

Remark 2.2.1. Below we will write other formulas involving o applied to an expression with denomina-
tor factors resembling those in (9). Our convention is always to expand denominator factors of the form
(1-czi/z;) forc € kandi < j as geometric series (1 —czl-/zj)_l =1+cz;/zj+- - before applying o.

2.3. Raising operator formulas for modified Hall-Littlewood polynomials

To set the stage for our raising operator formula for modified Macdonald polynomials, we review
two different raising operator formulas for the modified Hall-Littlewood polynomials. Both formulas
naturally reflect the geometry of the flag variety G/B; one realizes H 1 (X;0,1) as the graded Euler
characteristic of the cotangent bundle of G /B twisted by a line bundle of weight —u, while the other is
the graded Euler characteristic of the cotangent bundle of G/P,,, where P, is the parabolic subgroup
whose block sizes are the parts of u. See [11] and [36] for details.

The first raising operator formula for H,,(X; 0, ¢) is the one mentioned in the introduction, which we
reproduce here (see [29, III (6.3)] or [31, (4.28) and §2]):

n() £ -1 z
"MW H,(X;0,1 ):H,,(X;t)zpolxa(n . (l—tz'/z-))’ (11)
@;jE€ERy L4

where the denominator factors are expanded as geometric series in accordance with Remark 2.2.1.

A second raising operator formula follows from the work of Weyman and Shimozono-Weyman (see
[40, Theorem 6.10] and [36, §2.3 (2) and (2.3)—(2.5)]). In this formula, the input partition u appears in
the set of roots, instead of in the weight z#, as it does in formula (11). Given a partition u of I, consider
the set partition of {1,...,[} into intervals of lengths He(u)s - - -» M1, and let B, denote the set of roots
a;; such thati < j appear in distinct blocks of this partition. Then

12)

Fly(X;O,t)zwpolXO'( e )

[Majes, (1 —12i/2))

Here, we chose to take the parts of u in reverse order for compatibility with the formula (21) given later,
but the order does not actually matter in (12).
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Remark 2.3.1. Formulas such as (11) and (12) are traditionally written using an informal notation — as
in [29], [31, (4.28)], or [38, §2] — in which formula (11), for example, would be written as

"WA,(X;0,67") = Sy (13)

o, er, (1 -1R;))

with raising ‘operators’ R;; which act on the subscript of a Schur function s, by R;;y =y + € — €;.
Here, Schur functions indexed by non-partition weights are defined by s, (X) = poly o-(z"), which is
equal to O or to =1 times a Schur function of partition weight. Note that all the raising operators must be
applied before converting Schur functions of non-partition weights to ones indexed by partition weights.
The R;; are not true operators (e.g., R23s(1,1,1) = poly a'(zlzg) =0 but Ri2Rp35(1,1,1) = 5(2,1,0) # 0),
so we think of (13) as a convenient but informal version of (11).

Remark 2.3.2. Raising operators as used here should not be confused with the creation or vertex
operators of Bernstein (see, for example, [29, p. 96]) and Jing [25] for Schur functions and Hall-
Littlewood polynomials.

3. Raising operator formula for modified Macdonald polynomials
3.1. The formula

We in fact give many different raising operator formulas for H,,(X; g, t), one for each rearrangement j
of the parts of p*.
For 8= (B1,...,Bk) € ZX, we define the column diagram of f3 to be the set

B={(i,j)eZi: 1<i<k 1<j<B} (14)

We identify (i, j) with the box whose northeast corner has coordinates (x, y) = (i, j); we say that
this box is in column i and row j. The reading order on B is the total order < on the boxes of S given
by (i,j) < (i’,j)if j > j’,or j = j andi < i’. We let B[1], ..., B[l] denote the boxes of B listed
in increasing reading order, which is the list of boxes of B read by rows from left to right starting from
the top row, as shown in Example 3.1.5. For a box b = (i, j), south(b) = (i, j — 1) denotes the box
immediately south of b. Define subsets of R, = R,(GL;) by

Rg = {aij € R, : south(Bli]) € B, south(B[i]) < BLj1}. (15)

Rg = {aij € R, : south(B[i]) € B, south(B[i]) < BIj1}. (16)
For 8 € Z¥ and abox b = (i, j) € B with j > 1, define the arm and leg of b by

leg(b) = B; — j = (number of boxes strictly north of b), a7

arm(b) = [{i" e {1,....i-1}: j-1 < By < Biuf{i’ e {i+1,....k}:j < B < Bi}|- (18)

In words, arm(b) is the number of boxes strictly east of b in columns of height 8;; < B; or strictly west
of south(b) in columns of height 8 < ;.
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6 J. Blasiak et al.

Example 3.1.1. For 8 = (3,2,4,3,4,2, 1,3), the column diagram of 3 is displayed below, along with
the arm of box e = (4,2) where the a’s mark the boxes contributing to arm(e).

B = — arm(e) =3 (19)

a

Remark 3.1.2. When f3 is weakly decreasing (i.e., § is a partition), the column diagram f is the diagram
of the transpose of the partition 3, and the arms and legs of the boxes of S agree with the usual notions
for partition diagrams mentioned in §2.1.

Definition 3.1.3. For 8 € Z, define the Macdonald series by

Moy ckoks (1 — g BN+ plee Bl 7, /7 ) M, cR, (1-gqrzi/z;)
H(}’ijER+ (1 - qzl/zj) HaijERB (1 - tzl/z])

Hg(z:9.t) =0 , (20)

which we interpret as an infinite formal linear combination of irreducible GL; characters by expanding
the denominator factors as geometric series, in accordance with Remark 2.2.1.

We have the following raising operator formulas for the modified Macdonald polynomials H,, (X; g, 1).
The proof will be given in §4.

Theorem 3.1.4. For any partition u of | and any rearrangement 3 of u*,
H,(X;q,1) = wpoly (z1 -+~ 21 Hp(2; 1)), 2D
where poly is as defined in (§).
The case of Theorem 3.1.4 when 8 = u* is the formula (2) previewed in the introduction.

Example 3.1.5. (i) For 8 = (4,2), | = 6, we visualize the data for the series Hg below, with the subsets
of roots Rg and ﬁﬁ drawn in an [ X [ grid, labeled by matrix-style coordinates and specified by the
legend, and with large circles marking the presence of the factors involving arm and leg, which are

(1-qz1/22), (1 = gt 22/z3), (1 = ¢*t7%23/z5), (1 — qz4/2).

Bl1] a
BI2] qt™?
813 | Bl 2| R
Rg
15 | Ble (O arm-leg factors
reading order ~ ¢¥™tl¢les Hg

(ii) For g = (1,4,2,4), | = 11, we visualize the data for Hg with the same conventions; the factors
involving arm and leg, marked by the large circles, are (1 — g*z1/23), (1 — qz2/z4), (1 — ¢*t 'z3/25),
(1= q*t7 " z4/27), (1 = ¢*17%25/29), (1 = ¢*z6/210), (1 = ¢* 17227 /z11).
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B[1] B[2] 2 ,
B3] Bl4] 2ot 21 O
B[5] | Bl6] | BI7] 2| g2 |2 ~ O
Rg
B8] | Bl9] | Bl10] | B11] (O arm-leg factors
reading order garmtly—leg Hy

3.2. Specializations

It is instructive to see how the well-known specializations of Macdonald polynomials, A w(X51,1) =

ell” |(X ) and the Hall-Littlewood specialization A 1 (X;0,1), can be recovered from formula (21). This
can be done for general 8, but it is a little simpler when g is a partition. Accordingly, for this subsection,
we now consider only the case 8 = u*.

First, we consider the specialization ¢ = t = 1. After specializing, the arm-leg and (1 — g 2z;/z;)
numerator factors in the definition (20) of Hg cancel with the (1 — ¢ z;/z;) factors in the denominator.
Hence,

1

Hy(z:1,1) = o ) 22)
« (n(,,,e&(l ~2i/2))
Then, using (9) and (10), we recover the specialization

H,(X;1,1) =wpoly(z -+ zHg(z; 1, 1)) = ey = €. (23)

Now consider the specialization g = 0. After specializing (20), all numerator factors and the (1 —
qzi/z;) denominator factors reduce to 1. This gives

(24)

Zl__.ZlHﬁ(z;O,t)zo'( 21 )

nai_feRﬁ(l - tzi/zf)

Let B, be the set of roots defined before (12), which can also be described as the set of positive
roots above a block diagonal matrix with block sizes (), ..., 1. Now Rg is contained in B, and
B, \ Rp consists of triangular regions of roots between each pair of consecutive blocks. We reach the
Hall-Littlewood raising operator formula using the identity

O-(Haijei(l _thzi/zj)) ) O-(Ha,jjelj;(l —thZi/Zj))' (25)

This is proven by removing these triangular regions from B, one root at a time (starting with the
bottommost region), and using the following simplified version of [9, Lemma 8.9] to show that the
corresponding functions remain the same at each step.
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8 J. Blasiak et al.

Lemma 3.2.1. Let k € {1,...,] — 1} and suppose that B C R.(GLy;) is a set of roots such that
Hai,-EB(l — 12;/z;) is fixed by the simple reflection si. If B contains a root & = @41,j for some
Jj > k+1, then

0-( H“z’j ;1(.1. ;Z;Zi/zj) ) B 0-( HaijEBZ\tI.(II. iltZi/Zj) ) (26)

Combining (24) and (25) now shows that the raising operator formula (21) for modified Macdonald
polynomials reduces at ¢ = 0 to the raising operator formula (12) for Hall-Littlewood polynomials.

4. Proof of Theorem 3.1.4

We prove Theorem 3. 1.4 using two main ingredients: the Haglund-Haiman-Loehr formulas [21, 22] and
our recent formula for V on an LLT polynomial [7]. We explain these two ingredients after a recap of
LLT polynomials.

4.1. LLT polynomials

We recall the definition and basic properties of LLT polynomials [26], using the ‘attacking inversions’
formulation from [23].

A skew diagram is a difference v = A/u of partition diagrams u C A. The content of abox b = (i, j)
in row j, column i of a (skew) diagram is ¢(b) =i — j.

Let v = (v(1),...,V(k)) be a tuple of skew diagrams. We consider the set of boxes in v to be the
disjoint union of the sets of boxes in the v(;), and define the adjusted content of a box a € v; to be
é(a) = c(a) + ie, where € is a fixed positive number such that ke < 1.

A diagonal in v is the set of boxes of a fixed adjusted content — that is, a diagonal of fixed content in
one of the v;.

The reading order on v is the total ordering < on the boxes of v such that a < b = ¢(a) < é(b) and
boxes on each diagonal increase from southwest to northeast. See Example 4.2.3. An attacking pair is
an ordered pair of boxes (a, b) in v such that a < b in reading order and 0 < ¢(b) — é(a) < 1.

A semistandard tableau on the tuple v is amap 7: v — Z, which restricts to a semistandard Young
tableau on each component v ;). The set of these is denoted SSYT(v). An attacking inversion in T is an
attacking pair (a, b) such that T'(a) > T(b). The number of attacking inversions in 7 is denoted inv(T).

Definition 4.1.1. The LLT polynomial indexed by a tuple of skew diagrams v is the generating function

G(Xq) = Y, "X, (27)

T €SSYT(v)

where X! = [1,e, X7 (a)- By [23, 261, G, (X; ¢) is known to be symmetric.

4.2. The Haglund-Haiman-Loehr formula

Haglund-Haiman-Loehr [21] gave a formula for the modified Macdonald polynomials H,(X;q,t) as a
positive sum of LLT polynomials, and this was generalized in [22] to give many different expressions
for H,(X;q,t) as a positive sum of LLT polynomials, one for each rearrangement 8 of u*. We now
recall this formula.

A ribbon is a connected skew shape containing no 2 X 2 block of boxes.

For 8 € ZF, let Ve = {(Blil, BLj]) : BLj] = south(B[i])} be the set of ordered pairs of boxes that
form vertical dominoes in B.

https://doi.org/10.1017/fms.2025.8 Published online by Cambridge University Press
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Definition 4.2.1. For each S C Vg, define v(S) = (v(1), ..., v(x)) to be the k-tuple of ribbons where the
i-th ribbon v ;) is determined by

(i) v(;) has §; boxes, of contents —1,-2,...,-8;, and
(ii) the boxes of contents —j and —j + 1 in v(;) form a vertical domino if and only if the domino
((i,7), (i, j = 1)) in V3 belongs to S.

Theorem 4.2.2 [21, 22]. Let u be a partition and let B be any rearrangement of u*. Then

AuXiqn= Y (] am@ieEing, g (x:q). (28)
ScVp  (BLLBLIDES

Theorem 4.2.2 in the case that § is a partition is immediate from [21, Theorem 2.2, equation (23),
and Proposition 3.4], while the generalization to any composition S is addressed in [22, Theorem 5.1.1].
Note that our conventions for diagrams, arms, and legs are the same as those in [22] except that we have
reversed the order of the columns (which makes our notation consistent with that in [21]); we have also
used the symmetry property H,,(X; q,t) = H,:(X;1, ) to translate from the exact version stated in [22,
Theorem 5.1.1].

Example 4.2.3. For 8 = (2,3), the 8 summands appearing on the right-hand side of (28) are illus-
trated by drawing v(S) with boxes labeled in reading order and with the corresponding coefficient
[ prirprines ¢ ™BLD leeBLD+ peside it; the vertical dominoes of B are denoted v; = (B[1], B3]),
v = (B[2], B[4]), v3 = (B[3], B[S]). The arm and leg statistics for B are shown on the left.

[+ ]
6[1] | 1 3 315 |
B[2] | BI3] —
814l | D) gt ¢t
8 S ={v1,v3,v3} S ={ve,v3} S = {v1,v2} S ={v1,v3}

1 0 ] !
ol1(|oft1 : -

2
t gt q't 1
arms legs S = {Uz} S = {1}3} S = {Ul} S =

4.3. A formula for V on any LLT polynomial

The operator V, introduced in [2], is the linear operator on symmetric functions which acts diagonally
on the basis of modified Macdonald polynomials H,,(X;q,t) by VH, = q”(“*)t”(“)ﬂy.

In [7], we give a raising operator formula for V on any LLT polynomial. The formula takes a simpler
form in the case that the LLT polynomial is indexed by a tuple of ribbons. We state the result for
the tuple v(S) in Definition 4.2.1, making use of the notation Vg, Rg, }'?\/3 defined in §4.2, (15), and
(16). Also let Ag denote the number of attacking pairs in v(S), which depends only on 8 and not
onS C Vg.

https://doi.org/10.1017/fms.2025.8 Published online by Cambridge University Press



10 J. Blasiak et al.

Theorem 4.3.1 [7]. For B € ZX and S Vs, consider the tuple of ribbons v(S). We have the following
formula for the operator V applied to the LLT polynomial G,(s)(X; q):

zve -z grnpimevps 2i/2i o, er, (1 - at 2i/2;)
Mo er, (1= 4 2i/2j) Tayery (1= 12i/2))

VGy(s)(X:q) = wpoly o[ (—q1)!Ve\S1gAs

b}

(29)

where | = |B| and R, = R, (GL;).

Proof. Our raising operator formula [7, Corollary 9.4.1] for V on any LLT polynomial reduces to (29)
using the following facts which hold when the LLT polynomial is indexed by a tuple of ribbons.

(1) The magic number p(v(S)) of v(S) defined in [7, §8.2] is equal to the number of boxes of v(S)
which are not the first box in a row, which is the same as [Vg \ S|.

(2) The weight A in [7, Corollary 9.4.1], defined in [7, Definition 8.1.2], is obtained as follows in
the case that the tuple of skew shapes consists of ribbons: fill the boxes of each row of v(S) with
1,0,...,0,—1 or just O for a row of length 1, and then read this filling by increasing reading order. It is
then easily seen that z* = [T (g(11,p(;1)evj\s Zi/2)-

(3) Under the bijection f: 8 — v(S) which takes the i-th box B[i] of B in reading order to the i-th
box of ¥(S) in reading order, the set {(f(B[i]), f(B[j])) : aij € Rg} is exactly the set of non-attacking
pairs in v(S). Thus, R agrees with the set of roots denoted R, in [7, Definition 8.1.2 and Remark 8.1.3
@1 m

4.4. Proof of Theorem 3.1.4
Applying V to (28) and substituting (29) into this yields

'Y'na--EA ]—qt i/ .
2 ’ Rﬁ( zi/zj) )) 0

VH,(X;q,t) = wpoly 0'(
a Mayer, (1= q2i/2)) Mayery (1-12i/2;

where

Y= Z(_qt)wﬁ\squﬁ n gam(BIiD) fleg(Bli]+1 l—[ a2 31)
SV (Bli1.BL D es (BIi1.BLIDEVs\S

Defining d =Ag — n(u*) — Xp[i1.81j1) evs arm(Bli]) and using n(u) =2 (i1 g1 v, (leg(Bli]) + 1),
the quantity Y can be simplified as follows:

Yzqn(”*)m Mk Z ((_qt)|vﬁ\5| 1_[ qarm(ﬂ[i]) fleg(BliD-1
ScVg Blil.BLiD Vs

x 1_[ g am(BLD fleg(BliD+1 Z /Zj)
(BLi1.BLIN S (BLiLBLIDEVR\S
= g Y (= grmBUD+T e (LD /7

SCVs (Blil.BLI1EVp\S
_ s H (1 = g B+ ee il - )
(BLi1.BLIDEVs

Thus, plugging this back in for Y in (30) and recalling the definition of Hg(z; ¢, t) (Definition 3.1.3),
we have

VH,(X;q.t) = q”("*)mt”(")a}polx (z1---z1Hg(z;:q,1)).
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By the definition of V, this implies ﬁ# (X;q,1) = ¢%wpoly (z1 - z1Hg(z; ¢, 1)). It remains to show that
d = 0. This follows from the fact that the coefficient of s;:(X) = poly (z; - - - z7) in the Schur expansion
of both cuH,, (X;q,t) and poly (Z1 ---z1Hg(z; q, t)) is 1; the former is well known, while the latter can
be seen directly by expanding the series z; - - - z; Hg(z; g, t) to see that it is equal to o-(z1 - -~ z1) = yyt
plus terms of the form a, y, for v > 1/ in dominance order.

5. The m, n-Macdonald polynomials

For every pair of coprime positive integers (m, n), the action of the Burban-Schiffmann elliptic Hall
algebra £ on A(X) gives rise to a family of symmetric functions that we call m, n-Macdonald polynomi-
als. The subfamily of 1, n-Macdonald polynomials is closely connected with the Macdonald series Hg
from Definition 3.1.3. In this section, we will construct raising operator formulas for all m, n-Macdonald
polynomials, reducing to Theorem 3.1.4 in the case m = n = 1.

To define m, n-Macdonald polynomials we need to recall some facts about the algebra £, defined by
Burban and Schiffmann [14] in terms of Hall algebras of coherent sheaves on elliptic curves. For each
pair of coprime integers (m, n), the algebra £ contains a distinguished subalgebra A(X"") isomorphic
to the algebra of symmetric functions over k; these subalgebras generate £, subject to relations given in
[14]. There is also an action of £ on the space of symmetric functions A(X), constructed by Schiffmann
and Vasserot [35]. Our notation here is the same as in [4, 7, 5, 6] — in particular, we use the version of
the action of £ on A(X) given by [6, Proposition 3.3.1]. The translation between our notation and that
of [14, 35] can be found in [6, §§3.2-3.3]; the defining relations of £ written in our notation are given
in [5, §3.2].

Definition 5.1.1. Set M = (1 — ¢q)(1 — #) € k. For coprime positive integers m, n, define the m, n-
Macdonald polynomial H,;"" = H;"" (X; q,1) by

A = A, [-MX™ - 1, (32)

the symmetric function obtained by acting on 1 € A(X) with (a plethystic transformation of) a modified
Macdonald polynomial in the distinguished subalgebra A(X™") C £.

Remark 5.1.2. (i) For context, we note that e [-M X"""] - 1 defines the symmetric function side of the
(km, kn)-shuffle theorem of [3, 30].

(ii) I:IZ’" is a homogeneous symmetric function of degree n|u/|, as follows from the definition of the
action of the Schiffmann algebra on symmetric functions [6, Proposition 3.3.1].

5.2. The 1,n-Macdonald polynomials

By [7, Proposition 4.5.1], I:I'L':l’1 = I:I,,[—MX'”’I] -1 = V”’Flﬂ = qm"(”*)t’"”(“)l:lﬂ, so this case is
familiar. The 1, n-Macdonald polynomials, however, carry essentially the same data as the Macdonald
series Hg by the following theorem, which will be proven in §5.3 as part of a more general result (see
Remark 5.3.4 (ii)).

Theorem 5.2.1. For any partition u of | and any rearrangement 8 of u*,
A7 (X:,1) = wpoly (¢"4)1") (21 - 2)" Hp (2 4.1)). (33)

Hence, also Hg(z; q,1) = g " limy, oo (21 7)™ (wﬁ},’n)(m, c 7).

This also shows that Hg(z; ¢, t) depends only on the partition rearrangement p* of 3.

The Macdonald polynomial H,(X;q,t) is known [24] to be Schur positive (i.e., the coefficients
Ka,u(q, 1) in its Schur expansion are in N[g, ¢]). Based on extensive computations, we were led to the
following positivity conjecture for the 1, n-Macdonald polynomials, which generalizes the positivity
theorem for Macdonald polynomials.
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Conjecture 5.2.2. The 1, n-Macdonald polynomials Flllj" (X; q,t) are Schur positive.
Equivalently (by Theorem 5.2.1) for any partition u of | and rearrangement B of u*, the series
Hg(z; q,1) is a positive sum of irreducible GL; characters; that is, the coefficients in

Hp(z:q.1) = Z Ky u(q,0) xv (34)

are polynomials K,, ,,(q,t) € N[q, t] with nonnegative integer coefficients.
Remark 5.2.3. For m # 1 and n # 1, the m, n-Macdonald polynomials are typically not Schur positive.

Example 5.2.4. The Schur expansions of the 1, ~-Macdonald polynomials H ,l,” (X;q,t) forn = 2 and
|u| = 2,3, written as in (33), are

~21’2 =w 11(61254 +qs31+522)

~;iz = wt(t*sy +1531 +52)

1,7 =wq (q%s6 + (¢ + qY)ss1 + (6% + @ + ¢P)si2 + €533+ ¢ san + (6 + @)s31 + 5232)
ﬁ;iz =w qt(q2t256 + (g2t + qrY)ss1 + (g% + qt +12) 542 + q1 533 + qt sa11 + (g + 1) 5321 + 5222)
A7 = wtd (P56 + (22 + )51 + (1 + 12 + ) sp + Psaz + Bsann + (2 + 15301 + 5220).

Proposition 5.2.5. The m, n-Macdonald polynomials satisfy the same q,t symmetry property as ordi-
nary modified Macdonald polynomials: Hy"" (X;q,1) = FI:?"(X; t,q).

Proof. This follows from the symmetry property for Macdonald polynomials, H,(X;q,t) =
I:IM* (X;t,q), and the fact that for any symmetric function f with coefficients in Q, f[-MX™"] - 1
is symmetric in ¢ and ¢, which in turn follows from the description of the action of the Schiffmann
algebra on symmetric functions in [6, Proposition 3.3.1]. O

We obtain several specializations of the 1, n-Macdonald polynomials easily from the raising operator
formula in Theorem 5.2.1.

Proposition 5.2.6. Let u be a partition of I. The g =t = 1, ¢ = 1 and q = 0 specializations of the
1, n-Macdonald polynomials are given by

HY (X5 1,1) = e (X), (35)
(') () Fln _ (z1---2)"
g (X5 ,0) gm0 = w poly o : (36)
( H la X [Ta;en, (1 —12i/z))
Hi
A (X5 1,0 = 10 [ | wH e (X 1), (37)

r=1
where v = u*, H,(X;t) = t”(”)I:I#(X; 0,¢7") is as in (6), and B, is as defined before (12).

Remark 5.2.7. Like the familiar right-hand sides of (35) and (37), the right-hand side of (36) is also well
studied. Its Schur expansion coefficients are instances of the generalized Kostka polynomials introduced
by Shimozono-Weyman [36] corresponding to the sequence of rectangle shapes (n#¢),. .., (n*2), (n*1)
for € = €(u).

Proof. Throughout this proof, we only need the case 8 = y* = v of Theorem 5.2.1.

By the same argument as in §3.2, the ¢ = ¢t = 1 specialization of poly((z;---z;)"H,) is the
complete homogeneous symmetric function 4 ,,;). Hence, (35) follows from Theorem 5.2.1. Similarly,
(36) follows from Theorem 5.2.1 and from noting that poly ((z1 - - - z7)"H, (z;0,¢)) can be simplified
just as poly (z; - - - z; H,(z; 0,1)) was in §3.2.
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We now prove (37). By Theorem 5.2.1 and (9),

g W (X g =hy (@) [ (- zi/zply), (38)

a;j €R;

where ﬁv(z; g,1) is the expression inside the o(-) on the right side of (20), with B equal to v (so
that H, = o(H,)). Let Cy,...,C,, denote the columns of v and note that R, \ R, is equal to
|_|£';1{a/ij :v[j] = south(¥[i]), v[i] € C,}. Hence, setting ¢ = 1 in (38) yields

u . n _ ) — ¢ legliD ./,
tfn(p)wljll,n(X. 1 t) _ hx(l—ll (Hv[l]eCr Z; ) HaijERV\RV,V[l]eCr (1 t Zl/ZJ)) 39)
H 9 b
r=1 n(lijERV\R?‘,,V[i]ECr (1 - tZi/Zj)
£l . ((Hv[i]eCr z) o, cr\R, . vii1eC, (1- t_leg(y[i])Zi/Zj)) w0
= X ,
r=1 H(tijeRv\ﬁvv[i]eC, (1 - tzi/zj)

where the second equality follows from (10) and the fact that h, = hs for v, € Z! which are
rearrangements of each other.

The factor hy (+) in (40) for a given index r is equal to """ wH (li’:r) (X;1,1), by the computation
we have just done, but with the partition 1" in place of y. It follows that

M1
H}["(X;Lt)=1_[H(li'3r)(X;1,t). (41)
r=1

n

Finally, we will show that each A (llw) (X;1,¢) is essentially a Hall-Littlewood polynomial. Using the

particularly simple form of the series H, when u = (d) is a single row, Theorem 5.2.1 and (11) yield
d ~ ~ ~

q’(z)wH(ll’;)’ (X;q,1) = H,ay(X; q). By Proposition 5.2.5, H},’"(X; q,t) = HL;"(X; t,q), and thus,

d ~
z—(z)wH(I;Z)(X; g, 1) = Hpay(X;1). (42)

Formula (37) now follows from (41) and (42). m|

5.3. A raising operator formula for the m,n-Macdonald polynomials

We now give a raising operator formula for ﬁ,’f’” which generalizes the raising operator formula for
H,, in Theorem 3.1.4, and is derived in a similar way. Specifically, we combine the Haglund-Haiman-
Loehr formula (Theorem 4.2.2) with an m, n version of Theorem 4.3.1. This latter result requires some
notation involving the dilation of a column diagram.

For 8 € ZK, let mB = (mpy, ..., mpBy). We think of the column diagram m S of mf3 as the result of
dilating the column diagram g of g vertically by a factor of m, so that each box of B gives rise to m
boxes of m . To be more precise, define the map of boxes

mmB— B, (@)~ @G -1D/m]+1). (43)

Thus, in the dilation process, each box b of B gives rise to a set 7! (b) of m boxes of mp, called a
dilated box, which forms a contiguous subset of a column of m f3.

As in §3.1, we write B[1],..., B[d] for the boxes of B listed in increasing reading order and
mp[1],...,mpB[l] for the boxes of mf in increasing reading order, where d = |B| and [ = dm.
Define a map s: Vg — V3 which takes a vertical domino (B[i], B[j]) of B to the vertical domino
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(mpBli'],mB[j’]) of mp such that r(mB[i’]) = B[i] and 7(mB[j’]) = B[j]. Note that s(Vp) is the
set of vertical dominoes of the dilated diagram m 8 which straddle two dilated boxes.

Example 5.3.1. For m = 3 and 8 = (2, 1, 2), the dilated boxes of m are shown below along with the
labeling of the boxes of B and mf by reading order. To clarify the definitions of 7 and s, note that
1 (BI3]) = {mPB[7], mB[10], mB[13]} and s(Vp) = {(mPB[5], mPBI7]), (mBI6], mB[I])}.

mpB[1] mpB[2]
mpB[3] mpB[4]
mp[5] mpB[6]

T
B[1] B[2] ( mp@[10] | mB[11] | mB[12]
B[3] Bl4] B[5] mpB[13] | mB[14] | mB[15]

B m3 Dilated boxes of mg3

Given (m, n) € Z, X Z,, we define the sequence of m integers as in [7, (9.5)]
b(m,n); = [in/m] - [(i = D)n/m] (i=1,...,m). (44)

We then define, for any 8 € Z¥ of size d = |B|, a weight b(m, n, ) € Z9™ as follows: fill each dilated
box of m B with the sequence b(m, n) from north to south, and then read this filling by the reading order
on m . Equivalently, b(m, n, 8), = b(m, n),, where a is the integera € {1,...,m} suchthata = —j +1
(mod m) for j the row index of the r-th box of m 8 in reading order (i.e., mB[ r] = (i, j) for some i).

Theorem 5.3.2 [7]. Let m,n be coprime positive integers, let B € ZX, and set d = |B|, | = dm. For
S C Vg, let v(S) be the k-tuple of ribbons in Definition 4.2.1. The action of the LLT polynomial
Gy(s)[-MX"™"] € A(X"™") on 1 is given by

Gy(5) [=MX"™"] - 1 = wpoly o[ (—gr)V8\SlgAs+m=Dn(E golmnf)

npritmprineswps) 2i/2i My, ek, (L =4t 2i/2))
Mo er, o) (1= 42i/2)) Ty erps (1= 12i/2))

. (45

where Ag is the number of attacking pairs of v(S) as in §4.3, B* is the partition rearrangement of f3,
and Ryg, Rmp € R (GLy) are as in (15, 16).

Proof. This is obtained by combining [7, Theorem 9.3.1] and [4, Proposition 2.3.2] and specializing to
the case that the LLT polynomial is indexed by the tuple of ribbons ¥ (). The notation here and that in
[7, Theorem 9.3.1] are matched using the discussion in the proof of Theorem 4.3.1 and the following:
the weight b(m, n, 8) is the same as b defined in [7, Definition 9.2.1], and the weight A defined there
satisfies 2 = 28 T1 1) mp 1) es(vi\s) 212 O

We now give our raising operator formula for the m, n-Macdonald polynomials I:IZ’" (X;q,1).
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Theorem 5.3.3. Let m, n be coprime positive integers. Given 8 € Z¥ and setting d = |B| and | = dm,
define the m, n-Macdonald series by

H;"" (z;q,1) =
m.n.p) nl (1_qa:m<r<mﬂ[i]>>+1,—1eg<r<mﬂ[i])>ﬁ) 11 (1_qtﬁ)
(mpBlil.mB[j])es(Vg) 2 a1 €Rmp j
o 7 7 , (46)
(1=g7) T (1-17)
@;jERy (GL;) Zj @ijERmp 2y

which we regard as an infinite formal linear combination of irreducible GL; characters using the
convention of Remark 2.2.1. Then, for any partition u and any rearrangement f3 of p*,

A" (X5 ,1) = wpoly ("4 0 Hy" (2 ,1)). 7)

Remark 5.3.4. (i) In (46), the indices of z; correspond to the boxes of the dilated diagram m 8, while
the arm and leg are taken with respect to the original diagram S.

(i) Since b(1,n, B) = n!, H;,’" = (z1---21)"Hg, where Hg is the Macdonald series from Definition
3.1.3. Hence, Theorem 5.3.3 proves Theorem 5.2.1 by setting m = 1 with n arbitrary. It also specializes
to Theorem 3.1.4 when (m,n) = (1, 1).

(iii) Expanding on (ii), the series HZ’" simultaneously encodes the m, n-Macdonald polynomials

{H,’f’"' :n’ € (n+mZ) NZ,}, in the following sense:
Ammam = g poly (qm““‘*) 00 () Hg”"). (48)
This follows from Theorem 5.3.3 using that b(m,n + am, 8) = b(m,n, B) + a', which in turn holds by
b(m,n+am) =b(m,n) +a™.
Theorem 5.3.3 and Remark 5.3.4 (iii) have the following corollary.

Corollary 5.3.5. The m,n-Macdonald series H;';" depends only on the multiset of parts of B and not
on their order: HZ”" =H)"" for any rearrangement y of B.

Proof of Theorem 5.3.3. By a plethystic transformation and change of variables we can replace X in
(28) with —M X", Letting both sides act on 1 € A(X) and then substituting in (45) yields

b(m.n.B) .y . _ —atzil7
~ z Y[, ck,, (1 —4tzi/z))
H,[-MX™"] -1 = wpoly 0'( iy < mp ) (49)
ey er, (1= q2i/2j) Moy eryp (1= 12/2;)
where
Y = Z (—q1)Ve\S| gAs+(m=Dn(u") l_[ gmBLiD) flee(BliD+1 l_[ 2z, (50)
SCVp (Bli1.BL1)es (mBli].mBj])es(Vp\S)

The proof of Theorem 3.1.4 establishes that Ag = n(u*) + Z(ﬂ[i],ﬁ[j])evﬁ arm(pB[i]), as can also be
checked combinatorially. Using this, Y simplifies essentially the same way it did in that proof:

Y - qmn(“*)tn(”) 1—[ (1 _ anm(T(mﬂliJ))+lt_leg(T(mB[iJ))Z[/Zj)' (29
(mBli],mpB[j])es(Vp)

Plugging this back into (49) completes the proof. O

We obtain yet other expressions for the modified Macdonald polynomials from Theorem 5.3.3.
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Corollary 5.3.6. Let u be a partition of d and 8 a rearrangement of u*. The modified Macdonald
polynomial H (X5 q,1) can be expressed in terms of the m, 1-Macdonald series for any m as follows:

H,(X;9,1) = wpoly (¢~ Hy! (z; q,1)). (52)

Proof. By |7, Proposition 4.5.1], H, [-MX™1]-1 = V"™H,,. Substitute this into the left side of (47). O

6. A raising operator formula for the Macdonald polynomials Q,,(X; ¢,) and J,(X; q,t)

Our formulas for the modified Macdonald polynomials A 1 (X;q,1) can be converted into formulas for
the integral form Macdonald polynomials Ju(X;q, t) and for the Q,,(X; g, t) which differ from the J,
by a scalar factor. Recall that A, (X; q,1) = t”(")J [ 25,17 Tasin (3), hence H, [X(1-17");4,1] =

"W J,(X;q,t7"), or equivalently,

Ju(X;q,1) = "W H, [X(1 = 1);9,07"]. (53)
Let e} : k[zfl, R 11 — A denote the linear operator determined by
l Yi )
ek (2) = ey [X(1 =] = [ | DI (=t ey, s (X)h; (), (54)
i=1 j=0

where for y € Z!, we define e, = e, - - - ¢, to be the product of elementary symmetric functions, with
ey for d < 0 interpreted as ep = 1, or eq = 0 for d < 0. We extend e/, to an operator on formal linear
combinations of monomials just as we did for o and hy in §2.2. The operators e;( and hy are related as
follows: for a formal linear combination g = ¥, ¢z ¢,2” such that hx (g) is a symmetric function and
not just an infinite formal sum of symmetric functions, €} (g) = 6 o w o hx (g), where 6: A — A is the
automorphism sending f(X) to f[X(1 -1)].

Theorem 6.1.1. For any partition u of | and any rearrangement 3 of u*, the integral form Macdonald
polynomial J,,(X; q,t) is given by

Ju(X;q,1) = t”(")e;((m g l_[ (1-2zi/z;) Hg(z: q, f_l)), (55)

Qij €R,

where ﬁlg(z; q.,t) is the expression inside the o (-) on the right side of (20) (so that Hg = a(ﬁ/;)).
Alternatively, using informal notation similar to Remark 2.3.1,

Masyer, (1= Rif) [y, e, (1= a1 Rij)
[aijer. (1-4qRij) e, ery (1-1"Ryj)

x [ (1-gmm@uDt e BliDR ) . o) [x (1 -1)], (56)
(l,'jER[;\ﬁ[g

Ju(X5q,0) = t”(")(

where R;; acts on subscripts of e, [X(1 = 1)] by Rjjy =y + € — €;.
Proof. By Theorem 3.1.4 and (9),

(X5 q,0) = whx (217 [ | (1= 2i/z)) Hy). (57)

;i €ERy

The result then follows from (53) and the definition of e%. m|

We also record the consequence of Corollary 5.3.6 for the integral form Macdonald polynomials.
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Corollary 6.1.2. Let u be a partition of d and B a rearrangement of u*. Then for any m € Z,,

BXsqn = e ([ (1 -z B @), (58)
a;; €R,(GLy)

where | = dm and ﬁ;’;l (z; g, 1) is the expression inside o (-) on the right side of (46), with n set to 1.
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