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Abstract

We give an explicit raising operator formula for the modified Macdonald polynomials ÿ̃ÿ (ÿ; ÿ, ý), which follows

from our recent formula for ' on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified

Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of

symmetric functions ÿ̃1,ÿ (ÿ; ÿ, ý) that we call 1, ÿ-Macdonald polynomials, which reduce to a scalar multiple of

ÿ̃ÿ (ÿ; ÿ, ý) when ÿ = 1. We conjecture that the coefficients of 1, ÿ-Macdonald polynomials in terms of Schur

functions belong to N[ÿ, ý], generalizing Macdonald positivity.

1. Introduction

Tracing back to work of Young, raising operator formulas have been used as a powerful tool in classical

symmetric function theory through modern Schubert calculus – see, for example, [1, 8, 10, 12, 13,

16, 18, 19, 27, 33, 34, 38, 39, 41]. Their applications in symmetric function theory include formulas

for fundamental bases such as Schur functions and Schur Q-functions, as well as bases in the more

contemporary framework involving a parameter t, such as the modified Hall-Littlewood polynomials

[20, 31], given by the raising operator formula

ÿÿ (ÿ; ý) = polÿ ÿ

( zÿ∏
ÿÿ ÿ (ý+

(1 − ý ÿÿ/ÿ ÿ )

)
. (1)

Many research directions have emerged from modifications to classical raising operator formulas. For

example, other important families of symmetric functions, including the parabolic Hall-Littlewood

polynomials of Shimozono-Weyman [36], and k-Schur functions [8, 15], can be defined by generalizing

the formula (1).

The raising operator methodology lies at the foundation of Macdonald’s development in [29] of clas-

sical symmetric function theory and its one-parameter generalizations, including Hall-Littlewood poly-

nomials. However, for the two-parameter generalization to Macdonald polynomials, no raising operator

cornerstone similar to (1) has previously been known, forcing the theory of Macdonald polynomials to

be developed in a more indirect way.
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Here, we establish a raising operator formula for the modified Macdonald polynomials ÿ̃ÿ (ÿ; ÿ, ý),

which reduces at ÿ = 0 to a previously known formula for Hall-Littlewood polynomials. Using notation

defined in §3.1, our formula reads

ÿ̃ÿ (ÿ; ÿ, ý) = ÿ polÿ ÿ

������

ÿ1 · · · ÿý
∏

ÿÿ ÿ (ýÿ∗\ý̂ÿ∗

(
1 − ÿarm(ÿ∗ [ÿ ])+1 ý−leg(ÿ∗ [ÿ ]) ÿÿ

ÿ ÿ

) ∏
ÿÿ ÿ (ý̂ÿ∗

(
1 − ÿ ý

ÿÿ

ÿ ÿ

)
∏

ÿÿ ÿ (ý+

(
1 − ÿ

ÿÿ

ÿ ÿ

) ∏
ÿÿ ÿ (ýÿ∗

(
1 − ý

ÿÿ

ÿ ÿ

)
�����

. (2)

The proof begins with the Haglund-Haiman-Loehr formula [21] for ÿ̃ÿ (ÿ; ÿ, ý) as a weighted sum of

LLT polynomials. We then apply the operator ', which has ÿ̃ÿ (ÿ; ÿ, ý) as an eigenfunction, and use

the formula for ' on an LLT polynomial established in our recent work [7].

A consequence of (2) is the emergence of an intriguing new family of higher Macdonald polynomials

ÿ̃
1,ÿ
ÿ (ÿ; ÿ, ý), given by a formula similar to (2) with (ÿ1 · · · ÿý)

ÿ in place of ÿ1 · · · ÿý – see Theorem 5.2.1.

We conjecture (Conjecture 5.2.2) that the coefficients of the resulting polynomials in terms of Schur

functions belong to N[ÿ, ý], generalizing Macdonald positivity. As we will see, this conjecture can be

formulated for all n simultaneously as the statement that the expression on the right-hand side of (2),

before applying ÿ polÿ , has coefficients inN[ÿ, ý] when regarded as an infinite series of GLý characters.

In §6, we also derive a new raising operator formula for the integral form Macdonald polynomials

ýÿ (ÿ; ÿ, ý).

Other raising operator formulas for Macdonald polynomials have previously appeared in the literature.

Lassalle-Schlosser [28] inverted the Pieri formula for Macdonald polynomialsýÿ (ÿ; ÿ, ý) (which differ

from ýÿ (ÿ; ÿ, ý) by a scalar factor) to obtain a formula for ýÿ (ÿ; ÿ, ý) that can be interpreted as a

raising operator formula. Shiraishi [37] conjectured a similar raising operator formula for ýÿ (ÿ; ÿ, ý),

later proven by Noumi and Shiraishi in their work [32] on the bispectral problem of the Macdonald-

Ruijnesaars q-difference operators. However, these formulas are quite different and more intricate than

ours.

2. Background

2.1. Partitions and symmetric functions

The (French style) diagram of a partition ÿ = (ÿ1 ≥ · · · ≥ ÿý > 0) is the set {(ÿ, ÿ) ( Z2
+ : 1 ≤ ÿ ≤

ý, 1 ≤ ÿ ≤ ÿ ÿ }. We identify (ÿ, ÿ) with the lattice square or box whose northeast corner has coordinates

(ý, ÿ) = (ÿ, ÿ) and refer to this box as being in column i and row j. We set |ÿ | = ÿ1 + · · · + ÿý and let

ℓ(ÿ) = ý be the number of nonzero parts of ÿ. We write ÿ∗ for the transpose of ÿ. The arm and leg of a

box ÿ ( ÿ are the number of boxes in ÿ strictly east of b and strictly north of b, respectively.

Let Λ = Λ(ÿ) be the algebra of symmetric functions in infinitely many variables ÿ = ý1, ý2, . . ., with

coefficients in the field k = Q(ÿ, ý). We follow Macdonald’s notation [29] for the graded bases of Λ,

and for the automorphism ÿ : Λ → Λ given on Schur functions by ÿýÿ = ýÿ∗ . We also work with series

and symmetric functions in finitely many variables z = ÿ1, . . . , ÿý . If ÿ (ÿ) ( Λ is a formal symmetric

function, then ÿ (z) or ÿ (ÿ1, . . . , ÿý) denotes its specialization with ÿ = ÿ1, . . . , ÿý , 0, 0, . . ..

Given a symmetric function ÿ ( Λ and any expression A involving indeterminates, the plethystic

evaluation ÿ [ý] is defined by writing f as a polynomial in the power-sums ýý and evaluating with

ýý ↦→ ýý [ý], where ýý [ý] is the result of substituting ÿý for every indeterminate a occurring in A.

The variables ÿ, ý from our ground field k count as indeterminates.

By convention, the name of an alphabet ÿ = ý1, ý2, . . . stands for ý1 + ý2 + · · · inside a plethystic

evaluation. Then ÿ [ÿ] = ÿ [ý1 + ý2 + · · · ] = ÿ (ý1, ý2, . . .) = ÿ (ÿ). For example, the evaluation

ÿ [ÿ/(1−ý−1)] is the image of ÿ (ÿ) under the k-algebra automorphism ofΛ that sends ýý to ýý/(1−ý
−ý ).
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The modified Macdonald polynomials ÿ̃ÿ = ÿ̃ÿ (ÿ; ÿ, ý) of [17] are defined in terms of the Macdonald

polynomials ýÿ (ÿ; ÿ, ý) [29, VI (4.12)] or their integral forms ýÿ (ÿ; ÿ, ý) [29, VI (8.3)] by

ÿ̃ÿ (ÿ; ÿ, ý) = ýn(ÿ) ýÿ

[ ÿ

1 − ý−1
; ÿ, ý−1

]
= ýn(ÿ)

(∏
ÿ(ÿ

(1 − ÿarm(ÿ)+1ý−leg(ÿ) )
)
ýÿ

[ ÿ

1 − ý−1
; ÿ, ý−1

]
, (3)

where

n(ÿ) =
∑
ÿ

(ÿ − 1)ÿÿ . (4)

The ÿ̃ÿ (ÿ; ÿ, ý) also have a direct combinatorial description [21], which we will recall in Theorem 4.2.2.

When ÿ = 0, the modified Macdonald polynomials reduce to the modified Hall-Littlewood polyno-
mials

ÿ̃ÿ (ÿ; 0, ý) = ýn(ÿ)ýÿ

[ ÿ

1 − ý−1
; ý−1

]
, (5)

where the Hall-Littlewood polynomials ýÿ (ÿ; ý) are as defined in [29, III (2.11)]. At ý = 1 and ý = ∞,

the ÿ̃ÿ (ÿ; 0, ý) specialize to the complete homogeneous symmetric functions ÿ̃ÿ (ÿ; 0, 1) = ℎÿ (ÿ) and

Schur functions ý−n(ÿ) ÿ̃ÿ (ÿ; 0, ý) |ý=∞ = ýÿ (ÿ). We will also work with the following variant of the

modified Hall-Littlewood polynomials:

ÿÿ (ÿ; ý)
def
= ýn(ÿ) ÿ̃ÿ (ÿ; 0, ý−1) = ýÿ [ÿ/(1 − ý)] . (6)

2.2. Weyl symmetrization and related operators

The Weyl symmetrization operator ÿ for GLý is defined by

ÿ( ÿ (ÿ1, . . . , ÿý)) =
∑
ý (Sý

ý

(
ÿ (ÿ1, . . . , ÿý)∏
ÿ< ÿ (1 − ÿ ÿ/ÿÿ)

)
=

∑
ý (Sý

ý

(
ÿ (ÿ1, . . . , ÿý)∏
ÿÿ ÿ (ý+

(1 − ÿ ÿ/ÿÿ)

)
, (7)

where ÿ ( k[ÿ±1
1
, . . . , ÿ±1

ý
] is a Laurent polynomial, Sý acts by permuting the variables ÿ1, . . . , ÿý , and

ý+ = ý+(GLý) = {ÿÿ ÿ : 1 ≤ ÿ < ÿ ≤ ý} denotes the set of positive roots for GLý , with ÿÿ ÿ = ÿÿ − ÿ ÿ ( Z
ý .

When zÿ = ÿ
ÿ1

1
· · · ÿ

ÿý
ý

for a dominant weight ÿ (a weight ÿ ( Zý is dominant if ÿ1 ≥ · · · ≥ ÿý),

ÿ(zÿ) = ÿÿ is an irreducible GLý character. For an arbitrary weight ÿ ( Zý , either ÿ(zÿ) = ±ÿÿ for a

suitable dominant weight ÿ, or ÿ(zÿ) = 0. We extend ÿ to an operator on formal k-linear combinations∑
ÿ(Zý ýÿz

ÿ by applying it term by term, giving an infinite formal linear combination of irreducible GLý
characters

∑
ÿ ÿÿÿÿ =

∑
ÿ(Zý ýÿÿ(zÿ). This makes sense because for each dominant weight ÿ, the set

of monomials zÿ such that ÿ(zÿ) = ±ÿÿ is finite.

Recall that the polynomial characters of GLý are the irreducible characters ÿÿ for which ÿ is a

partition, that is, ÿý ≥ 0. Given any formal k-linear combination
∑
ÿ ÿÿÿÿ of irreducible GLý characters,

we define its polynomial truncation by

polÿ

(∑
ÿ

ÿÿ ÿÿ

)
=

∑
ÿý≥0

ÿÿ ýÿ (ÿ). (8)

In principle, the right-hand side is an infinite formal sum of symmetric functions, but, for instance,

if
∑
ÿÿÿÿ is homogeneous of degree d, then the right-hand side is an ordinary symmetric function,

homogeneous of degree d.
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We define a related operator hÿ on Laurent polynomials ÿ (z) by

hÿ ( ÿ (z)) = polÿ ÿ

(
ÿ (z)∏

ÿÿ ÿ (ý+
(1 − ÿÿ/ÿ ÿ )

)
, (9)

where the factors (1 − ÿÿ/ÿ ÿ )
−1 are expanded as geometric series in ÿÿ/ÿ ÿ before applying ÿ. When f is

a monomial, it is well known [39] that

hÿ (z
ÿ) = ℎÿ (ÿ), (10)

where for any integer vector ÿ ( Zý , we define ℎÿ = ℎÿ1
· · · ℎÿý to be the product of complete homoge-

neous symmetric functions, with ℎý for ý ≤ 0 interpreted as ℎ0 = 1, or ℎý = 0 for ý < 0.

We again extend the definition to formal linear combinations of monomials, so that hÿ (
∑
ÿ(Zý ýÿz

ÿ) =∑
ÿ(Zý ýÿℎÿ (ÿ). With this interpretation, (9) still remains valid when f is a power series in ÿÿ/ÿ ÿ for

ÿ < ÿ . As with polÿ , in principle, hÿ (
∑
ÿ ýÿz

ÿ) is an infinite formal sum of symmetric functions, but for

instance, if
∑
ÿ ýÿz

ÿ is homogeneous of degree d, then hÿ (
∑
ÿ ýÿz

ÿ) is an ordinary symmetric function,

homogeneous of degree d.

Remark 2.2.1. Below we will write other formulas involving ÿ applied to an expression with denomina-

tor factors resembling those in (9). Our convention is always to expand denominator factors of the form

(1− ý ÿÿ/ÿ ÿ ) for ý ( k and ÿ < ÿ as geometric series (1− ýÿÿ/ÿ ÿ )
−1

= 1+ ýÿÿ/ÿ ÿ + · · · before applying ÿ.

2.3. Raising operator formulas for modified Hall-Littlewood polynomials

To set the stage for our raising operator formula for modified Macdonald polynomials, we review

two different raising operator formulas for the modified Hall-Littlewood polynomials. Both formulas

naturally reflect the geometry of the flag variety ÿ/ý; one realizes ÿ̃ÿ (ÿ; 0, ý) as the graded Euler

characteristic of the cotangent bundle of ÿ/ý twisted by a line bundle of weight −ÿ, while the other is

the graded Euler characteristic of the cotangent bundle of ÿ/ÿÿ, where ÿÿ is the parabolic subgroup

whose block sizes are the parts of ÿ. See [11] and [36] for details.

The first raising operator formula for ÿ̃ÿ (ÿ; 0, ý) is the one mentioned in the introduction, which we

reproduce here (see [29, III (6.3)] or [31, (4.28) and §2]):

ýn(ÿ) ÿ̃ÿ (ÿ; 0, ý−1) = ÿÿ (ÿ; ý) = polÿ ÿ
( zÿ∏

ÿÿ ÿ (ý+
(1 − ý ÿÿ/ÿ ÿ )

)
, (11)

where the denominator factors are expanded as geometric series in accordance with Remark 2.2.1.

A second raising operator formula follows from the work of Weyman and Shimozono-Weyman (see

[40, Theorem 6.10] and [36, §2.3 (2) and (2.3)–(2.5)]). In this formula, the input partition ÿ appears in

the set of roots, instead of in the weight zÿ, as it does in formula (11). Given a partition ÿ of l, consider

the set partition of {1, . . . , ý} into intervals of lengths ÿℓ (ÿ) , . . . , ÿ1, and let ýÿ denote the set of roots

ÿÿ ÿ such that ÿ < ÿ appear in distinct blocks of this partition. Then

ÿ̃ÿ (ÿ; 0, ý) = ÿ polÿ ÿ
( ÿ1 · · · ÿý∏

ÿÿ ÿ (ýÿ
(1 − ý ÿÿ/ÿ ÿ )

)
. (12)

Here, we chose to take the parts of ÿ in reverse order for compatibility with the formula (21) given later,

but the order does not actually matter in (12).
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Remark 2.3.1. Formulas such as (11) and (12) are traditionally written using an informal notation – as

in [29], [31, (4.28)], or [38, §2] – in which formula (11), for example, would be written as

ýn(ÿ) ÿ̃ÿ (ÿ; 0, ý−1) =
1∏

ÿÿ ÿ (ý+

(
1 − ýRÿ ÿ

) · ýÿ , (13)

with raising ‘operators’ Rÿ ÿ which act on the subscript of a Schur function ýÿ by Rÿ ÿÿ = ÿ + ÿÿ − ÿ ÿ .

Here, Schur functions indexed by non-partition weights are defined by ýÿ (ÿ) = polÿ ÿ(zÿ), which is

equal to 0 or to ±1 times a Schur function of partition weight. Note that all the raising operators must be

applied before converting Schur functions of non-partition weights to ones indexed by partition weights.

The Rÿ ÿ are not true operators (e.g., R23ý (1,1,1) = polÿ ÿ(ÿ1ÿ
2
2
) = 0 but R12R23ý (1,1,1) = ý (2,1,0) ≠ 0),

so we think of (13) as a convenient but informal version of (11).

Remark 2.3.2. Raising operators as used here should not be confused with the creation or vertex

operators of Bernstein (see, for example, [29, p. 96]) and Jing [25] for Schur functions and Hall-

Littlewood polynomials.

3. Raising operator formula for modified Macdonald polynomials

3.1. The formula

We in fact give many different raising operator formulas for ÿ̃ÿ (ÿ; ÿ, ý), one for each rearrangement ÿ

of the parts of ÿ∗.

For ÿ = (ÿ1, . . . , ÿý ) ( Z
ý
+ , we define the column diagram of ÿ to be the set

ÿ =
{
(ÿ, ÿ) ( Z2

+ : 1 ≤ ÿ ≤ ý, 1 ≤ ÿ ≤ ÿÿ
}
. (14)

We identify (ÿ, ÿ) with the box whose northeast corner has coordinates (ý, ÿ) = (ÿ, ÿ); we say that

this box is in column i and row j. The reading order on ÿ is the total order ≺ on the boxes of ÿ given

by (ÿ, ÿ) ≺ (ÿ′, ÿ ′) if ÿ > ÿ ′, or ÿ = ÿ ′ and ÿ < ÿ′. We let ÿ[1], . . . , ÿ[ý] denote the boxes of ÿ listed

in increasing reading order, which is the list of boxes of ÿ read by rows from left to right starting from

the top row, as shown in Example 3.1.5. For a box ÿ = (ÿ, ÿ), south(ÿ) = (ÿ, ÿ − 1) denotes the box

immediately south of b. Define subsets of ý+ = ý+ (GLý) by

ýÿ =
{
ÿÿ ÿ ( ý+ : south(ÿ[ÿ]) ( ÿ, south(ÿ[ÿ]) � ÿ[ ÿ]

}
, (15)

ý̂ÿ =
{
ÿÿ ÿ ( ý+ : south(ÿ[ÿ]) ( ÿ, south(ÿ[ÿ]) ≺ ÿ[ ÿ]

}
. (16)

For ÿ ( Zý+ and a box ÿ = (ÿ, ÿ) ( ÿ with ÿ > 1, define the arm and leg of b by

leg(ÿ) = ÿÿ − ÿ = (number of boxes strictly north of ÿ), (17)

arm(ÿ) =
��{ÿ′ ( {1, . . . , ÿ − 1} : ÿ−1 ≤ ÿÿ′ < ÿÿ

}


{
ÿ′ ( {ÿ + 1, . . . , ý} : ÿ ≤ ÿÿ′ ≤ ÿÿ

}��. (18)

In words, arm(ÿ) is the number of boxes strictly east of b in columns of height ÿÿ′ ≤ ÿÿ or strictly west

of south(ÿ) in columns of height ÿÿ′ < ÿÿ .
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Example 3.1.1. For ÿ = (3, 2, 4, 3, 4, 2, 1, 3), the column diagram of ÿ is displayed below, along with

the arm of box • = (4, 2) where the a’s mark the boxes contributing to arm(•).

ÿ =

ÿ
ÿ ÿ•

arm(•) = 3 (19)

Remark 3.1.2. When ÿ is weakly decreasing (i.e., ÿ is a partition), the column diagram ÿ is the diagram

of the transpose of the partition ÿ, and the arms and legs of the boxes of ÿ agree with the usual notions

for partition diagrams mentioned in §2.1.

Definition 3.1.3. For ÿ ( Zý+ , define the Macdonald series by

Hÿ (z; ÿ, ý) = ÿ

(∏
ÿÿ ÿ (ýÿ\ý̂ÿ

(
1 − ÿarm(ÿ [ÿ ])+1 ý−leg(ÿ [ÿ ]) ÿÿ/ÿ ÿ

) ∏
ÿÿ ÿ (ý̂ÿ

(
1 − ÿ ý ÿÿ/ÿ ÿ

)
∏
ÿÿ ÿ (ý+

(
1 − ÿ ÿÿ/ÿ ÿ

) ∏
ÿÿ ÿ (ýÿ

(
1 − ý ÿÿ/ÿ ÿ

)
)
, (20)

which we interpret as an infinite formal linear combination of irreducible GLý characters by expanding

the denominator factors as geometric series, in accordance with Remark 2.2.1.

We have the following raising operator formulas for the modified Macdonald polynomials ÿ̃ÿ (ÿ; ÿ, ý).

The proof will be given in §4.

Theorem 3.1.4. For any partition ÿ of l and any rearrangement ÿ of ÿ∗,

ÿ̃ÿ (ÿ; ÿ, ý) = ÿ polÿ
(
ÿ1 · · · ÿý Hÿ (z; ÿ, ý)

)
, (21)

where polÿ is as defined in (8).

The case of Theorem 3.1.4 when ÿ = ÿ∗ is the formula (2) previewed in the introduction.

Example 3.1.5. (i) For ÿ = (4, 2), ý = 6, we visualize the data for the series Hÿ below, with the subsets

of roots ýÿ and ý̂ÿ drawn in an ý × ý grid, labeled by matrix-style coordinates and specified by the

legend, and with large circles marking the presence of the factors involving arm and leg, which are

(1 − ÿ ÿ1/ÿ2), (1 − ÿý−1ÿ2/ÿ3), (1 − ÿ2ý−2ÿ3/ÿ5), (1 − ÿ ÿ4/ÿ6).

(ii) For ÿ = (1, 4, 2, 4), ý = 11, we visualize the data for Hÿ with the same conventions; the factors

involving arm and leg, marked by the large circles, are (1 − ÿ2 ÿ1/ÿ3), (1 − ÿÿ2/ÿ4), (1 − ÿ2ý−1ÿ3/ÿ5),

(1 − ÿ2ý−1 ÿ4/ÿ7), (1 − ÿ4ý−2 ÿ5/ÿ9), (1 − ÿ2 ÿ6/ÿ10), (1 − ÿ3ý−2 ÿ7/ÿ11).
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3.2. Specializations

It is instructive to see how the well-known specializations of Macdonald polynomials, ÿ̃ÿ (ÿ; 1, 1) =

ÿ
|ÿ |

1
(ÿ) and the Hall-Littlewood specialization ÿ̃ÿ (ÿ; 0, ý), can be recovered from formula (21). This

can be done for general ÿ, but it is a little simpler when ÿ is a partition. Accordingly, for this subsection,

we now consider only the case ÿ = ÿ∗.

First, we consider the specialization ÿ = ý = 1. After specializing, the arm-leg and (1 − ÿ ý ÿÿ/ÿ ÿ )

numerator factors in the definition (20) of Hÿ cancel with the (1 − ý ÿÿ/ÿ ÿ ) factors in the denominator.

Hence,

Hÿ (z; 1, 1) = ÿ
( 1∏

ÿÿ ÿ (ý+
(1 − ÿÿ/ÿ ÿ )

)
. (22)

Then, using (9) and (10), we recover the specialization

ÿ̃ÿ (ÿ; 1, 1) = ÿ polÿ (ÿ1 · · · ÿýHÿ (z; 1, 1)) = ÿ1ý = ÿý1. (23)

Now consider the specialization ÿ = 0. After specializing (20), all numerator factors and the (1 −

ÿÿÿ/ÿ ÿ ) denominator factors reduce to 1. This gives

ÿ1 · · · ÿý Hÿ (z; 0, ý) = ÿ
( ÿ1 · · · ÿý∏

ÿÿ ÿ (ýÿ
(1 − ý ÿÿ/ÿ ÿ )

)
. (24)

Let ýÿ be the set of roots defined before (12), which can also be described as the set of positive

roots above a block diagonal matrix with block sizes ÿℓ (ÿ) , . . . , ÿ1. Now ýÿ is contained in ýÿ and

ýÿ \ ýÿ consists of triangular regions of roots between each pair of consecutive blocks. We reach the

Hall-Littlewood raising operator formula using the identity

ÿ

( ÿ1 · · · ÿý∏
ÿÿ ÿ (ýÿ

(1 − ý ÿÿ/ÿ ÿ )

)
= ÿ

( ÿ1 · · · ÿý∏
ÿÿ ÿ (ýÿ

(1 − ý ÿÿ/ÿ ÿ )

)
. (25)

This is proven by removing these triangular regions from ýÿ one root at a time (starting with the

bottommost region), and using the following simplified version of [9, Lemma 8.9] to show that the

corresponding functions remain the same at each step.
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Lemma 3.2.1. Let ý ( {1, . . . , ý − 1} and suppose that ý ⊆ ý+(GLý) is a set of roots such that∏
ÿÿ ÿ (ý (1 − ýÿÿ/ÿ ÿ ) is fixed by the simple reflection ýý . If B contains a root ÿ = ÿý+1, ÿ for some

ÿ > ý + 1, then

ÿ
( ÿ1 · · · ÿý∏

ÿÿ ÿ (ý (1 − ý ÿÿ/ÿ ÿ )

)
= ÿ

( ÿ1 · · · ÿý∏
ÿÿ ÿ (ý\ÿ (1 − ý ÿÿ/ÿ ÿ )

)
. (26)

Combining (24) and (25) now shows that the raising operator formula (21) for modified Macdonald

polynomials reduces at ÿ = 0 to the raising operator formula (12) for Hall-Littlewood polynomials.

4. Proof of Theorem 3.1.4

We prove Theorem 3.1.4 using two main ingredients: the Haglund-Haiman-Loehr formulas [21, 22] and

our recent formula for ' on an LLT polynomial [7]. We explain these two ingredients after a recap of

LLT polynomials.

4.1. LLT polynomials

We recall the definition and basic properties of LLT polynomials [26], using the ‘attacking inversions’

formulation from [23].

A skew diagram is a difference ÿ = ÿ/ÿ of partition diagrams ÿ ⊆ ÿ. The content of a box ÿ = (ÿ, ÿ)

in row j, column i of a (skew) diagram is ý(ÿ) = ÿ − ÿ .

Let ÿ = (ÿ (1) , . . . , ÿ (ý) ) be a tuple of skew diagrams. We consider the set of boxes in ÿ to be the

disjoint union of the sets of boxes in the ÿ (ÿ) , and define the adjusted content of a box ÿ ( ÿ (ÿ) to be

ý̃(ÿ) = ý(ÿ) + ÿÿ , where ÿ is a fixed positive number such that ýÿ < 1.

A diagonal in ÿ is the set of boxes of a fixed adjusted content – that is, a diagonal of fixed content in

one of the ÿ (ÿ) .

The reading order on ÿ is the total ordering < on the boxes of ÿ such that ÿ < ÿ ⇒ ý̃(ÿ) ≤ ý̃(ÿ) and

boxes on each diagonal increase from southwest to northeast. See Example 4.2.3. An attacking pair is

an ordered pair of boxes (ÿ, ÿ) in ÿ such that ÿ < ÿ in reading order and 0 < ý̃(ÿ) − ý̃(ÿ) < 1.

A semistandard tableau on the tuple ÿ is a map ÿ : ÿ → Z+ which restricts to a semistandard Young

tableau on each component ÿ (ÿ) . The set of these is denoted SSYT(ÿ). An attacking inversion in T is an

attacking pair (ÿ, ÿ) such that ÿ (ÿ) > ÿ (ÿ). The number of attacking inversions in T is denoted inv(ÿ).

Definition 4.1.1. The LLT polynomial indexed by a tuple of skew diagrams ÿ is the generating function

Gÿ (ÿ; ÿ) =
∑

ÿ (SSYT(ÿ)

ÿinv(ÿ )xÿ , (27)

where xÿ =
∏
ÿ(ÿ ýÿ (ÿ) . By [23, 26], Gÿ (ÿ; ÿ) is known to be symmetric.

4.2. The Haglund-Haiman-Loehr formula

Haglund-Haiman-Loehr [21] gave a formula for the modified Macdonald polynomials ÿÿ (ÿ; ÿ, ý) as a

positive sum of LLT polynomials, and this was generalized in [22] to give many different expressions

for ÿÿ (ÿ; ÿ, ý) as a positive sum of LLT polynomials, one for each rearrangement ÿ of ÿ∗. We now

recall this formula.

A ribbon is a connected skew shape containing no 2 × 2 block of boxes.

For ÿ ( Zý+ , let ýÿ = {(ÿ[ÿ], ÿ[ ÿ]) : ÿ[ ÿ] = south(ÿ[ÿ])} be the set of ordered pairs of boxes that

form vertical dominoes in ÿ.
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Definition 4.2.1. For each ÿ ⊆ ýÿ , define ÿ(ÿ) = (ÿ (1) , . . . , ÿ (ý) ) to be the k-tuple of ribbons where the

i-th ribbon ÿ (ÿ) is determined by

(i) ÿ (ÿ) has ÿÿ boxes, of contents −1,−2, . . . ,−ÿÿ , and

(ii) the boxes of contents − ÿ and − ÿ + 1 in ÿ (ÿ) form a vertical domino if and only if the domino

((ÿ, ÿ), (ÿ, ÿ − 1)) in ýÿ belongs to S.

Theorem 4.2.2 [21, 22]. Let ÿ be a partition and let ÿ be any rearrangement of ÿ∗. Then

ÿ̃ÿ (ÿ; ÿ, ý) =
∑
ÿ⊆ýÿ

( ∏
(ÿ [ÿ ],ÿ [ ÿ ]) (ÿ

ÿ−arm(ÿ [ÿ ]) ýleg(ÿ [ÿ ])+1
)
Gÿ (ÿ) (ÿ; ÿ). (28)

Theorem 4.2.2 in the case that ÿ is a partition is immediate from [21, Theorem 2.2, equation (23),

and Proposition 3.4], while the generalization to any composition ÿ is addressed in [22, Theorem 5.1.1].

Note that our conventions for diagrams, arms, and legs are the same as those in [22] except that we have

reversed the order of the columns (which makes our notation consistent with that in [21]); we have also

used the symmetry property ÿÿ (ÿ; ÿ, ý) = ÿÿ∗ (ÿ; ý, ÿ) to translate from the exact version stated in [22,

Theorem 5.1.1].

Example 4.2.3. For ÿ = (2, 3), the 8 summands appearing on the right-hand side of (28) are illus-

trated by drawing ÿ(ÿ) with boxes labeled in reading order and with the corresponding coefficient∏
(ÿ [ÿ ],ÿ [ ÿ ]) (ÿ ÿ

−arm(ÿ [ÿ ]) ýleg(ÿ [ÿ ])+1 beside it; the vertical dominoes of ÿ are denoted v1 = (ÿ[1], ÿ[3]),

v2 = (ÿ[2], ÿ[4]), v3 = (ÿ[3], ÿ[5]). The arm and leg statistics for ÿ are shown on the left.

4.3. A formula for ' on any LLT polynomial

The operator ', introduced in [2], is the linear operator on symmetric functions which acts diagonally

on the basis of modified Macdonald polynomials ÿ̃ÿ (ÿ; ÿ, ý) by 'ÿ̃ÿ = ÿn(ÿ∗) ýn(ÿ) ÿ̃ÿ.

In [7], we give a raising operator formula for ' on any LLT polynomial. The formula takes a simpler

form in the case that the LLT polynomial is indexed by a tuple of ribbons. We state the result for

the tuple ÿ(ÿ) in Definition 4.2.1, making use of the notation ýÿ , ýÿ , ý̂ÿ defined in §4.2, (15), and

(16). Also let ýÿ denote the number of attacking pairs in ÿ(ÿ), which depends only on ÿ and not

on ÿ ⊆ ýÿ .
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Theorem 4.3.1 [7]. For ÿ ( Zý+ and ÿ ⊆ ýÿ , consider the tuple of ribbons ÿ(ÿ). We have the following
formula for the operator ' applied to the LLT polynomial Gÿ (ÿ) (ÿ; ÿ):

'Gÿ (ÿ) (ÿ; ÿ) = ÿ polÿ ÿ

(
(−ÿý) |ýÿ\ÿ |ÿýÿ

ÿ1 · · · ÿý
∏

(ÿ [ÿ ],ÿ [ ÿ ]) (ýÿ\ÿ ÿÿ/ÿ ÿ
∏
ÿÿ ÿ (ý̂ÿ

(
1 − ÿ ý ÿÿ/ÿ ÿ

)
∏
ÿÿ ÿ (ý+

(
1 − ÿ ÿÿ/ÿ ÿ

) ∏
ÿÿ ÿ (ýÿ

(
1 − ý ÿÿ/ÿ ÿ

) )
,

(29)

where ý = |ÿ | and ý+ = ý+(GLý).

Proof. Our raising operator formula [7, Corollary 9.4.1] for ' on any LLT polynomial reduces to (29)

using the following facts which hold when the LLT polynomial is indexed by a tuple of ribbons.

(1) The magic number ý(ÿ(ÿ)) of ÿ(ÿ) defined in [7, §8.2] is equal to the number of boxes of ÿ(ÿ)

which are not the first box in a row, which is the same as |ýÿ \ ÿ |.

(2) The weight ÿ in [7, Corollary 9.4.1], defined in [7, Definition 8.1.2], is obtained as follows in

the case that the tuple of skew shapes consists of ribbons: fill the boxes of each row of ÿ(ÿ) with

1, 0, . . . , 0,−1 or just 0 for a row of length 1, and then read this filling by increasing reading order. It is

then easily seen that zÿ =
∏

(ÿ [ÿ ],ÿ [ ÿ ]) (ýÿ\ÿ ÿÿ/ÿ ÿ .

(3) Under the bijection ÿ : ÿ → ÿ(ÿ) which takes the i-th box ÿ[ÿ] of ÿ in reading order to the i-th
box of ÿ(ÿ) in reading order, the set {( ÿ (ÿ[ÿ]), ÿ (ÿ[ ÿ])) : ÿÿ ÿ ( ýÿ} is exactly the set of non-attacking

pairs in ÿ(ÿ). Thus, ýÿ agrees with the set of roots denoted ýý in [7, Definition 8.1.2 and Remark 8.1.3

(i)]. �

4.4. Proof of Theorem 3.1.4

Applying ' to (28) and substituting (29) into this yields

'ÿ̃ÿ (ÿ; ÿ, ý) = ÿ polÿ ÿ

( ÿ1 · · · ÿý · Υ ·
∏
ÿÿ ÿ (ý̂ÿ

(
1 − ÿ ý ÿÿ/ÿ ÿ

)
∏
ÿÿ ÿ (ý+

(
1 − ÿ ÿÿ/ÿ ÿ

) ∏
ÿÿ ÿ (ýÿ

(
1 − ý ÿÿ/ÿ ÿ

) ) , (30)

where

Υ =

∑
ÿ⊆ýÿ

(−ÿý) |ýÿ\ÿ |ÿýÿ

∏
(ÿ [ÿ ],ÿ [ ÿ ]) (ÿ

ÿ−arm(ÿ [ÿ ]) ýleg(ÿ [ÿ ])+1
∏

(ÿ [ÿ ],ÿ [ ÿ ]) (ýÿ\ÿ

ÿÿ/ÿ ÿ . (31)

Defining ý = ýÿ − n(ÿ∗) −
∑

(ÿ [ÿ ],ÿ [ ÿ ]) (ýÿ arm(ÿ[ÿ]) and using n(ÿ) =
∑

(ÿ [ÿ ],ÿ [ ÿ ]) (ýÿ (leg(ÿ[ÿ]) + 1),

the quantity Υ can be simplified as follows:

Υ = ÿn(ÿ∗)+ý ýn(ÿ)
∑
ÿ⊆ýÿ

(
(−ÿý) |ýÿ\ÿ |

∏
(ÿ [ÿ ],ÿ [ ÿ ]) (ýÿ

ÿarm(ÿ [ÿ ]) ý−leg(ÿ [ÿ ])−1

×
∏

(ÿ [ÿ ],ÿ [ ÿ ]) (ÿ

ÿ−arm(ÿ [ÿ ]) ýleg(ÿ [ÿ ])+1
∏

(ÿ [ÿ ],ÿ [ ÿ ]) (ýÿ\ÿ

ÿÿ/ÿ ÿ

)

= ÿn(ÿ∗)+ý ýn(ÿ)
∑
ÿ⊆ýÿ

∏
(ÿ [ÿ ],ÿ [ ÿ ]) (ýÿ\ÿ

(
− ÿarm(ÿ [ÿ ])+1 ý−leg(ÿ [ÿ ]) ÿÿ/ÿ ÿ

)

= ÿn(ÿ∗)+ý ýn(ÿ)
∏

(ÿ [ÿ ],ÿ [ ÿ ]) (ýÿ

(
1 − ÿarm(ÿ [ÿ ])+1 ý−leg(ÿ [ÿ ]) ÿÿ/ÿ ÿ

)
.

Thus, plugging this back in for Υ in (30) and recalling the definition of Hÿ (z; ÿ, ý) (Definition 3.1.3),

we have

'ÿ̃ÿ (ÿ; ÿ, ý) = ÿn(ÿ∗)+ý ýn(ÿ)ÿ polÿ
(
ÿ1 · · · ÿý Hÿ (z; ÿ, ý)

)
.

https://doi.org/10.1017/fms.2025.8 Published online by Cambridge University Press



Forum of Mathematics, Sigma 11

By the definition of', this implies ÿ̃ÿ (ÿ; ÿ, ý) = ÿýÿ polÿ
(
ÿ1 · · · ÿý Hÿ (z; ÿ, ý)

)
. It remains to show that

ý = 0. This follows from the fact that the coefficient of ý1ý (ÿ) = polÿ (ÿ1 · · · ÿý) in the Schur expansion

of both ÿÿ̃ÿ (ÿ; ÿ, ý) and polÿ
(
ÿ1 · · · ÿý Hÿ (z; ÿ, ý)

)
is 1; the former is well known, while the latter can

be seen directly by expanding the series ÿ1 · · · ÿý Hÿ (z; ÿ, ý) to see that it is equal to ÿ(ÿ1 · · · ÿý) = ÿ1ý

plus terms of the form ÿÿÿÿ for ÿ > 1ý in dominance order.

5. The ÿ, ÿ-Macdonald polynomials

For every pair of coprime positive integers (ÿ, ÿ), the action of the Burban-Schiffmann elliptic Hall

algebra E on Λ(ÿ) gives rise to a family of symmetric functions that we call ÿ, ÿ-Macdonald polynomi-

als. The subfamily of 1, ÿ-Macdonald polynomials is closely connected with the Macdonald series Hÿ
from Definition 3.1.3. In this section, we will construct raising operator formulas for all ÿ, ÿ-Macdonald

polynomials, reducing to Theorem 3.1.4 in the case ÿ = ÿ = 1.

To define ÿ, ÿ-Macdonald polynomials we need to recall some facts about the algebra E , defined by

Burban and Schiffmann [14] in terms of Hall algebras of coherent sheaves on elliptic curves. For each

pair of coprime integers (ÿ, ÿ), the algebra E contains a distinguished subalgebra Λ(ÿÿ,ÿ) isomorphic

to the algebra of symmetric functions over k; these subalgebras generate E , subject to relations given in

[14]. There is also an action of E on the space of symmetric functions Λ(ÿ), constructed by Schiffmann

and Vasserot [35]. Our notation here is the same as in [4, 7, 5, 6] – in particular, we use the version of

the action of E on Λ(ÿ) given by [6, Proposition 3.3.1]. The translation between our notation and that

of [14, 35] can be found in [6, §§3.2–3.3]; the defining relations of E written in our notation are given

in [5, §3.2].

Definition 5.1.1. Set ý = (1 − ÿ) (1 − ý) ( k. For coprime positive integers ÿ, ÿ, define the ÿ, ÿ-
Macdonald polynomial ÿ̃ÿ,ÿÿ = ÿ̃

ÿ,ÿ
ÿ (ÿ; ÿ, ý) by

ÿ̃ÿ,ÿÿ = ÿ̃ÿ [−ýÿÿ,ÿ] · 1, (32)

the symmetric function obtained by acting on 1 ( Λ(ÿ) with (a plethystic transformation of) a modified

Macdonald polynomial in the distinguished subalgebra Λ(ÿÿ,ÿ) ⊆ E .

Remark 5.1.2. (i) For context, we note that ÿý [−ýÿÿ,ÿ] · 1 defines the symmetric function side of the

(ýÿ, ýÿ)-shuffle theorem of [3, 30].

(ii) ÿ̃
ÿ,ÿ
ÿ is a homogeneous symmetric function of degree ÿ|ÿ |, as follows from the definition of the

action of the Schiffmann algebra on symmetric functions [6, Proposition 3.3.1].

5.2. The 1, ÿ-Macdonald polynomials

By [7, Proposition 4.5.1], ÿ̃
ÿ,1
ÿ = ÿ̃ÿ [−ýÿÿ,1] · 1 = 'ÿÿ̃ÿ = ÿÿn(ÿ∗) ýÿn(ÿ) ÿ̃ÿ, so this case is

familiar. The 1, ÿ-Macdonald polynomials, however, carry essentially the same data as the Macdonald

series Hÿ by the following theorem, which will be proven in §5.3 as part of a more general result (see

Remark 5.3.4 (ii)).

Theorem 5.2.1. For any partition ÿ of l and any rearrangement ÿ of ÿ∗,

ÿ̃1,ÿ
ÿ (ÿ; ÿ, ý) = ÿ polÿ

(
ÿn(ÿ∗) ýn(ÿ) (ÿ1 · · · ÿý)

ÿ Hÿ (z; ÿ, ý)
)
. (33)

Hence, also Hÿ (z; ÿ, ý) = ÿ−n(ÿ∗) ý−n(ÿ) limÿ→∞ (ÿ1 · · · ÿý)
−ÿ (ÿÿ̃1,ÿ

ÿ ) (ÿ1, . . . , ÿý).

This also shows that Hÿ (z; ÿ, ý) depends only on the partition rearrangement ÿ∗ of ÿ.

The Macdonald polynomial ÿ̃ÿ (ÿ; ÿ, ý) is known [24] to be Schur positive (i.e., the coefficients

ÿ̃ÿ,ÿ (ÿ, ý) in its Schur expansion are in N[ÿ, ý]). Based on extensive computations, we were led to the

following positivity conjecture for the 1, ÿ-Macdonald polynomials, which generalizes the positivity

theorem for Macdonald polynomials.

https://doi.org/10.1017/fms.2025.8 Published online by Cambridge University Press



12 J. Blasiak et al.

Conjecture 5.2.2. The 1, ÿ-Macdonald polynomials ÿ̃1,ÿ
ÿ (ÿ; ÿ, ý) are Schur positive.

Equivalently (by Theorem 5.2.1) for any partition ÿ of l and rearrangement ÿ of ÿ∗, the series
Hÿ (z; ÿ, ý) is a positive sum of irreducible GLý characters; that is, the coefficients in

Hÿ (z; ÿ, ý) =
∑
ÿ

Kÿ,ÿ (ÿ, ý) ÿÿ (34)

are polynomials Kÿ,ÿ (ÿ, ý) ( N[ÿ, ý] with nonnegative integer coefficients.

Remark 5.2.3. For ÿ ≠ 1 and ÿ ≠ 1, the ÿ, ÿ-Macdonald polynomials are typically not Schur positive.

Example 5.2.4. The Schur expansions of the 1, ÿ-Macdonald polynomials ÿ̃
1,ÿ
ÿ (ÿ; ÿ, ý) for ÿ = 2 and

|ÿ | = 2, 3, written as in (33), are

ÿ̃
1,2
2

= ÿ ÿ
(
ÿ2ý4 + ÿ ý31 + ý22

)
ÿ̃

1,2
11

= ÿ ý
(
ý2ý4 + ý ý31 + ý22

)
ÿ̃

1,2
3

= ÿ ÿ3
(
ÿ6ý6 + (ÿ5 + ÿ4)ý51 + (ÿ4 + ÿ3 + ÿ2)ý42 + ÿ3ý33 + ÿ3ý411 + (ÿ2 + ÿ)ý321 + ý222

)
ÿ̃

1,2
21

= ÿ ÿý
(
ÿ2ý2ý6 + (ÿ2ý + ÿý2)ý51 + (ÿ2 + ÿý + ý2)ý42 + ÿý ý33 + ÿý ý411 + (ÿ + ý)ý321 + ý222

)
ÿ̃

1,2
111

= ÿ ý3
(
ý6ý6 + (ý5 + ý4)ý51 + (ý4 + ý3 + ý2)ý42 + ý3ý33 + ý3ý411 + (ý2 + ý)ý321 + ý222

)
.

Proposition 5.2.5. The ÿ, ÿ-Macdonald polynomials satisfy the same ÿ, ý symmetry property as ordi-
nary modified Macdonald polynomials: ÿ̃ÿ,ÿÿ (ÿ; ÿ, ý) = ÿ̃

ÿ,ÿ
ÿ∗

(ÿ; ý, ÿ).

Proof. This follows from the symmetry property for Macdonald polynomials, ÿ̃ÿ (ÿ; ÿ, ý) =

ÿ̃ÿ∗ (ÿ; ý, ÿ), and the fact that for any symmetric function f with coefficients in Q, ÿ [−ýÿÿ,ÿ] · 1

is symmetric in q and t, which in turn follows from the description of the action of the Schiffmann

algebra on symmetric functions in [6, Proposition 3.3.1]. �

We obtain several specializations of the 1, ÿ-Macdonald polynomials easily from the raising operator

formula in Theorem 5.2.1.

Proposition 5.2.6. Let ÿ be a partition of l. The ÿ = ý = 1, ÿ = 1 and ÿ = 0 specializations of the
1, ÿ-Macdonald polynomials are given by

ÿ̃1,ÿ
ÿ (ÿ; 1, 1) = ÿ (ÿý) (ÿ), (35)

(
ÿ−n(ÿ∗) ý−n(ÿ) ÿ̃1,ÿ

ÿ (ÿ; ÿ, ý)
)
|ÿ=0 = ÿ polÿ ÿ

( (ÿ1 · · · ÿý)
ÿ∏

ÿÿ ÿ (ýÿ
(1 − ý ÿÿ/ÿ ÿ )

)
, (36)

ÿ̃1,ÿ
ÿ (ÿ; 1, ý) = ýn(ÿ)

ÿ1∏
ÿ=1

ÿÿ(ÿÿÿ ) (ÿ; ý), (37)

where ÿ = ÿ∗, ÿÿ (ÿ; ý) = ýn(ÿ) ÿ̃ÿ (ÿ; 0, ý−1) is as in (6), and ýÿ is as defined before (12).

Remark 5.2.7. Like the familiar right-hand sides of (35) and (37), the right-hand side of (36) is also well

studied. Its Schur expansion coefficients are instances of the generalized Kostka polynomials introduced

by Shimozono-Weyman [36] corresponding to the sequence of rectangle shapes (ÿÿℓ ), . . . , (ÿÿ2 ), (ÿÿ1 )

for ℓ = ℓ(ÿ).

Proof. Throughout this proof, we only need the case ÿ = ÿ∗ = ÿ of Theorem 5.2.1.

By the same argument as in §3.2, the ÿ = ý = 1 specialization of polÿ ((ÿ1 · · · ÿý)
ÿHÿ) is the

complete homogeneous symmetric function ℎ (ÿý ) . Hence, (35) follows from Theorem 5.2.1. Similarly,

(36) follows from Theorem 5.2.1 and from noting that polÿ ((ÿ1 · · · ÿý)
ÿHÿ (z; 0, ý)) can be simplified

just as polÿ (ÿ1 · · · ÿý Hÿ (z; 0, ý)) was in §3.2.
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We now prove (37). By Theorem 5.2.1 and (9),

ÿ−n(ÿ∗) ý−n(ÿ)ÿÿ̃1,ÿ
ÿ (ÿ; ÿ, ý) = hÿ

(
(ÿ1 · · · ÿý)

ÿ
∏
ÿÿ ÿ (ý+

(1 − ÿÿ/ÿ ÿ )Ĥÿ

)
, (38)

where Ĥÿ (z; ÿ, ý) is the expression inside the ÿ(·) on the right side of (20), with ÿ equal to ÿ (so

that Hÿ = ÿ(Ĥÿ)). Let ÿ1, . . . , ÿÿ1
denote the columns of ÿ and note that ýÿ \ ý̂ÿ is equal to⊔ÿ1

ÿ=1
{ÿÿ ÿ : ÿ[ ÿ] = south(ÿ[ÿ]), ÿ[ÿ] ( ÿÿ }. Hence, setting ÿ = 1 in (38) yields

ý−n(ÿ)ÿÿ̃1,ÿ
ÿ (ÿ; 1, ý) = hÿ

( ÿ1∏
ÿ=1

( ∏
ÿ [ÿ ] (ÿÿ

ÿÿ
ÿ

) ∏
ÿÿ ÿ (ýÿ\ý̂ÿ , ÿ [ÿ ] (ÿÿ

(
1 − ý−leg(ÿ [ÿ ]) ÿÿ/ÿ ÿ

)
∏
ÿÿ ÿ (ýÿ\ý̂ÿ , ÿ [ÿ ] (ÿÿ

(
1 − ýÿÿ/ÿ ÿ

) )
(39)

=

ÿ1∏
ÿ=1

hÿ

( (∏
ÿ [ÿ ] (ÿÿ

ÿÿ
ÿ

) ∏
ÿÿ ÿ (ýÿ\ý̂ÿ , ÿ [ÿ ] (ÿÿ

(
1 − ý−leg(ÿ [ÿ ]) ÿÿ/ÿ ÿ

)
∏
ÿÿ ÿ (ýÿ\ý̂ÿ ÿ [ÿ ] (ÿÿ

(
1 − ýÿÿ/ÿ ÿ

) )
, (40)

where the second equality follows from (10) and the fact that ℎÿ = ℎÿ for ÿ, ÿ ( Zý which are

rearrangements of each other.

The factor hÿ (·) in (40) for a given index r is equal to ý−n(1ÿÿ )ÿÿ̃
1,ÿ

(1ÿÿ )
(ÿ; 1, ý), by the computation

we have just done, but with the partition 1ÿÿ in place of ÿ. It follows that

ÿ̃1,ÿ
ÿ (ÿ; 1, ý) =

ÿ1∏
ÿ=1

ÿ̃
1,ÿ

(1ÿÿ )
(ÿ; 1, ý). (41)

Finally, we will show that each ÿ̃
1,ÿ

(1ÿÿ )
(ÿ; 1, ý) is essentially a Hall-Littlewood polynomial. Using the

particularly simple form of the series Hÿ when ÿ = (ý) is a single row, Theorem 5.2.1 and (11) yield

ÿ−(
ý
2)ÿÿ̃

1,ÿ

(ý)
(ÿ; ÿ, ý) = ÿ(ÿý) (ÿ; ÿ). By Proposition 5.2.5, ÿ̃

1,ÿ
ÿ (ÿ; ÿ, ý) = ÿ̃

1,ÿ
ÿ∗

(ÿ; ý, ÿ), and thus,

ý−(
ý
2)ÿÿ̃

1,ÿ

(1ý)
(ÿ; ÿ, ý) = ÿ(ÿý) (ÿ; ý). (42)

Formula (37) now follows from (41) and (42). �

5.3. A raising operator formula for the ÿ, ÿ-Macdonald polynomials

We now give a raising operator formula for ÿ̃
ÿ,ÿ
ÿ which generalizes the raising operator formula for

ÿ̃ÿ in Theorem 3.1.4, and is derived in a similar way. Specifically, we combine the Haglund-Haiman-

Loehr formula (Theorem 4.2.2) with an ÿ, ÿ version of Theorem 4.3.1. This latter result requires some

notation involving the dilation of a column diagram.

For ÿ ( Zý+ , let ÿÿ = (ÿÿ1, . . . , ÿÿý ). We think of the column diagram ÿÿ of ÿÿ as the result of

dilating the column diagram ÿ of ÿ vertically by a factor of m, so that each box of ÿ gives rise to m
boxes of ÿÿ. To be more precise, define the map of boxes

ÿ : ÿÿ → ÿ, (ÿ, ÿ) ↦→ (ÿ, �( ÿ − 1)/ÿ� + 1). (43)

Thus, in the dilation process, each box b of ÿ gives rise to a set ÿ−1(ÿ) of m boxes of ÿÿ, called a

dilated box, which forms a contiguous subset of a column of ÿÿ.

As in §3.1, we write ÿ[1], . . . , ÿ[ý] for the boxes of ÿ listed in increasing reading order and

ÿÿ[1], . . . ,ÿÿ[ý] for the boxes of ÿÿ in increasing reading order, where ý = |ÿ | and ý = ýÿ.

Define a map s : ýÿ → ýÿÿ which takes a vertical domino (ÿ[ÿ], ÿ[ ÿ]) of ÿ to the vertical domino
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(ÿÿ[ÿ′],ÿÿ[ ÿ ′]) of ÿÿ such that ÿ(ÿÿ[ÿ′]) = ÿ[ÿ] and ÿ(ÿÿ[ ÿ ′]) = ÿ[ ÿ]. Note that s(ýÿ) is the

set of vertical dominoes of the dilated diagram ÿÿ which straddle two dilated boxes.

Example 5.3.1. For m = 3 and ÿ = (2, 1, 2), the dilated boxes of ÿÿ are shown below along with the

labeling of the boxes of ÿ and ÿÿ by reading order. To clarify the definitions of ÿ and s, note that

ÿ−1(ÿ[3]) = {mÿ[7], mÿ[10], mÿ[13]} and s(Vÿ) = {(mÿ[5], mÿ[7]), (mÿ[6], mÿ[9])}.

Given (ÿ, ÿ) ( Z+ × Z+, we define the sequence of m integers as in [7, (9.5)]

b(ÿ, ÿ)ÿ = �ÿÿ/ÿ� − �(ÿ − 1)ÿ/ÿ� (ÿ = 1, . . . , ÿ). (44)

We then define, for any ÿ ( Zý+ of size ý = |ÿ |, a weight b(ÿ, ÿ, ÿ) ( Zýÿ as follows: fill each dilated

box of ÿÿ with the sequence b(ÿ, ÿ) from north to south, and then read this filling by the reading order

on ÿÿ. Equivalently, b(ÿ, ÿ, ÿ)ÿ = b(ÿ, ÿ)ÿ, where a is the integer ÿ ( {1, . . . , ÿ} such that ÿ ≡ − ÿ +1

(mod ÿ) for j the row index of the r-th box of ÿÿ in reading order (i.e., ÿÿ[ ÿ] = (ÿ, ÿ) for some i).

Theorem 5.3.2 [7]. Let ÿ, ÿ be coprime positive integers, let ÿ ( Zý+ , and set ý = |ÿ |, ý = ýÿ. For
ÿ ⊆ ýÿ , let ÿ(ÿ) be the k-tuple of ribbons in Definition 4.2.1. The action of the LLT polynomial
Gÿ (ÿ) [−ýÿÿ,ÿ] ( Λ(ÿÿ,ÿ) on 1 is given by

Gÿ (ÿ) [−ýÿÿ,ÿ] · 1 = ÿ polÿ ÿ

(
(−ÿý) |ýÿ\ÿ |ÿýÿ+(ÿ−1)n(ÿ+)zb(ÿ,ÿ,ÿ)

×

∏
(ÿÿ [ÿ ],ÿÿ [ ÿ ]) (s(ýÿ\ÿ) ÿÿ/ÿ ÿ

∏
ÿÿ ÿ (ý̂ÿÿ

(
1 − ÿ ý ÿÿ/ÿ ÿ

)
∏
ÿÿ ÿ (ý+ (GLý)

(
1 − ÿ ÿÿ/ÿ ÿ

) ∏
ÿÿ ÿ (ýÿÿ

(
1 − ý ÿÿ/ÿ ÿ

) )
, (45)

where ýÿ is the number of attacking pairs of ÿ(ÿ) as in §4.3, ÿ+ is the partition rearrangement of ÿ,

and ýÿÿ , ý̂ÿÿ ⊆ ý+(GLý) are as in (15, 16).

Proof. This is obtained by combining [7, Theorem 9.3.1] and [4, Proposition 2.3.2] and specializing to

the case that the LLT polynomial is indexed by the tuple of ribbons ÿ(ÿ). The notation here and that in

[7, Theorem 9.3.1] are matched using the discussion in the proof of Theorem 4.3.1 and the following:

the weight b(ÿ, ÿ, ÿ) is the same as b̃ defined in [7, Definition 9.2.1], and the weight ÿ defined there

satisfies zÿ = zb(ÿ,ÿ,ÿ)
∏

(ÿÿ [ÿ ],ÿÿ [ ÿ ]) (s(ýÿ\ÿ) ÿÿ/ÿ ÿ . �

We now give our raising operator formula for the ÿ, ÿ-Macdonald polynomials ÿ̃
ÿ,ÿ
ÿ (ÿ; ÿ, ý).
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Theorem 5.3.3. Let ÿ, ÿ be coprime positive integers. Given ÿ ( Zý+ and setting ý = |ÿ | and ý = ýÿ,
define the ÿ, ÿ-Macdonald series by

H
ÿ,ÿ
ÿ

(z; ÿ, ý) =

ÿ

������

zb(ÿ,ÿ,ÿ)
∏

(ÿÿ [ÿ ],ÿÿ [ ÿ ]) (s(ýÿ)

(
1 − ÿarm(ÿ (ÿÿ [ÿ ]))+1 ý−leg(ÿ (ÿÿ [ÿ ])) ÿÿ

ÿ ÿ

) ∏
ÿÿ ÿ (ý̂ÿÿ

(
1 − ÿ ý

ÿÿ

ÿ ÿ

)
∏

ÿÿ ÿ (ý+ (GLý)

(
1 − ÿ

ÿÿ

ÿ ÿ

) ∏
ÿÿ ÿ (ýÿÿ

(
1 − ý

ÿÿ

ÿ ÿ

)
�����

, (46)

which we regard as an infinite formal linear combination of irreducible GLý characters using the
convention of Remark 2.2.1. Then, for any partition ÿ and any rearrangement ÿ of ÿ∗,

ÿ̃ÿ,ÿÿ (ÿ; ÿ, ý) = ÿ polÿ

(
ÿÿn(ÿ∗) ýn(ÿ) H

ÿ,ÿ
ÿ

(z; ÿ, ý)
)
. (47)

Remark 5.3.4. (i) In (46), the indices of ÿÿ correspond to the boxes of the dilated diagram ÿÿ, while

the arm and leg are taken with respect to the original diagram ÿ.

(ii) Since b(1, ÿ, ÿ) = ÿý , H
1,ÿ
ÿ

= (ÿ1 · · · ÿý)
ÿHÿ , where Hÿ is the Macdonald series from Definition

3.1.3. Hence, Theorem 5.3.3 proves Theorem 5.2.1 by setting ÿ = 1 with n arbitrary. It also specializes

to Theorem 3.1.4 when (ÿ, ÿ) = (1, 1).

(iii) Expanding on (ii), the series H
ÿ,ÿ
ÿ

simultaneously encodes the ÿ, ÿ-Macdonald polynomials

{ÿÿ,ÿ
′

ÿ : ÿ′ ( (ÿ + ÿZ) ∩ Z+}, in the following sense:

ÿ̃ÿ,ÿ+ÿÿÿ = ÿ polÿ

(
ÿÿn(ÿ∗) ýn(ÿ) (ÿ1 · · · ÿý)

ÿH
ÿ,ÿ
ÿ

)
. (48)

This follows from Theorem 5.3.3 using that b(ÿ, ÿ + ÿÿ, ÿ) = b(ÿ, ÿ, ÿ) + ÿý , which in turn holds by

b(ÿ, ÿ + ÿÿ) = b(ÿ, ÿ) + ÿÿ.

Theorem 5.3.3 and Remark 5.3.4 (iii) have the following corollary.

Corollary 5.3.5. The ÿ, ÿ-Macdonald series H
ÿ,ÿ
ÿ

depends only on the multiset of parts of ÿ and not

on their order: H
ÿ,ÿ
ÿ

= H
ÿ,ÿ
ÿ for any rearrangement ÿ of ÿ.

Proof of Theorem 5.3.3. By a plethystic transformation and change of variables we can replace X in

(28) with −ýÿÿ,ÿ. Letting both sides act on 1 ( Λ(ÿ) and then substituting in (45) yields

ÿ̃ÿ [−ýÿÿ,ÿ] · 1 = ÿ polÿ ÿ

( zb(ÿ,ÿ,ÿ) · Υ ·
∏
ÿÿ ÿ (ý̂ÿÿ

(
1 − ÿ ý ÿÿ/ÿ ÿ

)
∏
ÿÿ ÿ (ý+

(
1 − ÿ ÿÿ/ÿ ÿ

) ∏
ÿÿ ÿ (ýÿÿ

(
1 − ý ÿÿ/ÿ ÿ

) ) , (49)

where

Υ =

∑
ÿ⊆ýÿ

(−ÿý) |ýÿ\ÿ |ÿýÿ+(ÿ−1)n(ÿ∗)
∏

(ÿ [ÿ ],ÿ [ ÿ ]) (ÿ

ÿ−arm(ÿ [ÿ ]) ýleg(ÿ [ÿ ])+1
∏

(ÿÿ [ÿ ],ÿÿ [ ÿ ]) (s(ýÿ\ÿ)

ÿÿ/ÿ ÿ . (50)

The proof of Theorem 3.1.4 establishes that ýÿ = n(ÿ∗) +
∑

(ÿ [ÿ ],ÿ [ ÿ ]) (ýÿ arm(ÿ[ÿ]), as can also be

checked combinatorially. Using this, Υ simplifies essentially the same way it did in that proof:

Υ = ÿÿn(ÿ∗) ýn(ÿ)
∏

(ÿÿ [ÿ ],ÿÿ [ ÿ ]) (s(ýÿ )

(
1 − ÿarm(ÿ (ÿÿ [ÿ ]))+1 ý−leg(ÿ (ÿÿ [ÿ ])) ÿÿ/ÿ ÿ

)
. (51)

Plugging this back into (49) completes the proof. �

We obtain yet other expressions for the modified Macdonald polynomials from Theorem 5.3.3.
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Corollary 5.3.6. Let ÿ be a partition of d and ÿ a rearrangement of ÿ∗. The modified Macdonald
polynomial ÿ̃ÿ (ÿ; ÿ, ý) can be expressed in terms of the ÿ, 1-Macdonald series for any m as follows:

ÿ̃ÿ (ÿ; ÿ, ý) = ÿ polÿ
(
ý (−ÿ+1)n(ÿ) H

ÿ,1
ÿ

(z; ÿ, ý)
)
. (52)

Proof. By [7, Proposition 4.5.1], ÿ̃ÿ [−ýÿÿ,1] ·1 = 'ÿÿ̃ÿ. Substitute this into the left side of (47). �

6. A raising operator formula for the Macdonald polynomials ýÿ (ÿ; ÿ, ý) and ýÿ (ÿ; ÿ, ý)

Our formulas for the modified Macdonald polynomials ÿ̃ÿ (ÿ; ÿ, ý) can be converted into formulas for

the integral form Macdonald polynomials ýÿ (ÿ; ÿ, ý) and for the ýÿ (ÿ; ÿ, ý) which differ from the ýÿ
by a scalar factor. Recall that ÿ̃ÿ (ÿ; ÿ, ý) = ýn(ÿ) ýÿ [

ÿ
1−ý−1 ; ÿ, ý−1] as in (3), hence ÿ̃ÿ [ÿ (1− ý

−1); ÿ, ý] =

ýn(ÿ) ýÿ (ÿ; ÿ, ý−1), or equivalently,

ýÿ (ÿ; ÿ, ý) = ýn(ÿ) ÿ̃ÿ [ÿ (1 − ý); ÿ, ý−1] . (53)

Let e′
ÿ

: k[ÿ±1
1
, . . . , ÿ±1

ý
] → Λ denote the linear operator determined by

e′ÿ (z
ÿ) = ÿÿ [ÿ (1 − ý)] =

ý∏
ÿ=1

ÿÿ∑
ÿ=0

(−ý) ÿÿÿÿ− ÿ (ÿ)ℎ ÿ (ÿ), (54)

where for ÿ ( Zý , we define ÿÿ = ÿÿ1
· · · ÿÿý to be the product of elementary symmetric functions, with

ÿý for ý ≤ 0 interpreted as ÿ0 = 1, or ÿý = 0 for ý < 0. We extend e′
ÿ

to an operator on formal linear

combinations of monomials just as we did for ÿ and hÿ in §2.2. The operators e′
ÿ

and hÿ are related as

follows: for a formal linear combination ý =
∑
ÿ(Zý ýÿz

ÿ such that hÿ (ý) is a symmetric function and

not just an infinite formal sum of symmetric functions, e′
ÿ
(ý) = ÿ ◦ÿ ◦ hÿ (ý), where ÿ : Λ → Λ is the

automorphism sending ÿ (ÿ) to ÿ [ÿ (1 − ý)].

Theorem 6.1.1. For any partition ÿ of l and any rearrangement ÿ of ÿ∗, the integral form Macdonald
polynomial ýÿ (ÿ; ÿ, ý) is given by

ýÿ (ÿ; ÿ, ý) = ýn(ÿ)e′ÿ

(
ÿ1 · · · ÿý

∏
ÿÿ ÿ (ý+

(1 − ÿÿ/ÿ ÿ ) Ĥÿ (z; ÿ, ý−1)
)
, (55)

where Ĥÿ (z; ÿ, ý) is the expression inside the ÿ(·) on the right side of (20) (so that Hÿ = ÿ(Ĥÿ)).
Alternatively, using informal notation similar to Remark 2.3.1,

ýÿ (ÿ; ÿ, ý) = ýn(ÿ)

( ∏
ÿÿ ÿ (ý+

(1 − Rÿ ÿ )
∏
ÿÿ ÿ (ý̂ÿ

(
1 − ÿ ý−1

Rÿ ÿ

)
∏
ÿÿ ÿ (ý+

(
1 − ÿ Rÿ ÿ

) ∏
ÿÿ ÿ (ýÿ

(
1 − ý−1 Rÿ ÿ

)
)

×
∏

ÿÿ ÿ (ýÿ\ý̂ÿ

(
1 − ÿarm(ÿ [ÿ ])+1 ýleg(ÿ [ÿ ])

Rÿ ÿ

)
· ÿ1ý [ÿ (1 − ý)], (56)

where Rÿ ÿ acts on subscripts of ÿÿ [ÿ (1 − ý)] by Rÿ ÿÿ = ÿ + ÿÿ − ÿ ÿ .

Proof. By Theorem 3.1.4 and (9),

ÿ̃ÿ (ÿ; ÿ, ý) = ÿhÿ
(
ÿ1 · · · ÿý

∏
ÿÿ ÿ (ý+

(1 − ÿÿ/ÿ ÿ ) Ĥÿ
)
. (57)

The result then follows from (53) and the definition of e′
ÿ

. �

We also record the consequence of Corollary 5.3.6 for the integral form Macdonald polynomials.
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Corollary 6.1.2. Let ÿ be a partition of d and ÿ a rearrangement of ÿ∗. Then for any ÿ ( Z+,

ýÿ (ÿ; ÿ, ý) = ýÿn(ÿ)e′ÿ

( ∏
ÿÿ ÿ (ý+ (GLý)

(1 − ÿÿ/ÿ ÿ ) Ĥ
ÿ,1
ÿ

(z; ÿ, ý−1)
)
, (58)

where ý = ýÿ and Ĥ
ÿ,1
ÿ

(z; ÿ, ý) is the expression inside ÿ(·) on the right side of (46), with n set to 1.
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