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ABSTRACT: A series of idealized numerical simulations is used to examine the generation of mode-one superinertial
coastally trapped waves (CTWs). In the first set of simulations, CTWs are resonantly generated when freely propagating
mode-one internal tides are incident on the coast such that the angle of incidence of the internal wave causes the projected
wavenumber of the tide on the coast to satisfy a triad relationship with the wavenumbers of the bathymetry and the CTW.
In the second set of simulations, CTWs are generated by the interaction of the barotropic tide with topography that has the
same scales as the CTW. Under resonant conditions, superinertial coastally trapped waves are a leading order coastal pro-
cess, with alongshore current magnitudes that can be larger than the barotropic or internal tides from which they are
generated.

KEYWORDS: Continental shelf/slope; Inertia–gravity waves; Internal waves; Kelvin waves; Topographic effects;
Wave properties

1. Introduction

Diapycnal mixing associated with breaking internal waves
plays an important role in the physical dynamics of the ocean
as, to leading order, it determines its interior stratification,
with consequences for large-scale circulation and climate (de
Lavergne et al. 2022). In the deep ocean, the astronomically
forced tidal wave}well approximated by a Kelvin wave}
interacts with rough topography to generate freely propagat-
ing internal tides, which radiate energy throughout the ocean
basin predominantly in the form of vertical mode-one inertia–
gravity waves1 (Simmons et al. 2004). At the coast, cross-
isobath currents associated with the topographically modified
Kelvin wave (equivalently called the gravest coastal trapped
wave) can generate significant internal tides that radiate into
the ocean’s interior (Baines 1982). The energy pathway to-
ward dissipation for low-mode internal tides is not well quan-
tified, though in the open ocean it is thought that both
topographic scattering (St. Laurent and Garrett 2002) and
nonlinear wave–wave interactions (MacKinnon and Winters
2005) are important. Significant low-mode energy is incident
on coastal boundaries where the waves may reflect, scatter, or
dissipate. In an analytic study that decomposed the global
coasts into two-dimensional cross-shelf/depth slices with no

alongshore variability, Kelly et al. (2013) predicted that glob-
ally around 40% of freely propagating mode-one internal
tides incident on a uniform alongshore coast scatter to high
vertical modes, with the precise scattering fraction depending
on the slope steepness, height, and curvature. However, by al-
lowing for alongshelf topographic variability, wave scattering
at the coast can also generate alongshore propagating coast-
ally trapped waves, a process that has been analyzed for un-
stratified fluids by Howe and Mysak (1973) and observed in
stratified simulations of the Tasman Shelf, where they are pre-
dicted to locally account for a significant fraction of the local
energy budget (Klymak et al. 2016).

In this paper, we consider the effect of alongshore topo-
graphic variability on both a topographically modified Kelvin
wave propagating along the coast and an incident vertical
mode-one inertia–gravity wave, with a focus on the scattering
of wave energy into superinertial mode-one coastally trapped
waves (CTWs). This scattering represents a pathway for
superinertial tidal energy to move toward small scales in the
coastal ocean. Superinertial CTW can exist along a continen-
tal shelf when HyNbot/f . 1 (where Hy is the bottom slope of
the continental slope in the offshore direction, Nbot is the bot-
tom stratification frequency, and f is the Coriolis frequency)
(Huthnance 1978; Chapman 1983). These waves are coupled
to the freely propagating inertia–gravity waves of the ocean
interior, “leaking” energy into offshore radiating waves while
propagating along the coast (Dale and Sherwin 1996; Dale
et al. 2001).

The scattering of barotropic shelf waves into either higher
mode barotropic shelf waves or freely propagating inertia–
gravity waves has been examined before. Scattering into other
barotropic shelf waves by coastal irregularities has been con-
sidered within the context of wind-driven waves, though it is
directly applicable to subinertial surface tides, for example,
the diurnal tides at latitudes poleward of 308N (Chao et al.
1979; Brink 1980). In particular, Brink (1980) found that the
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rate of energy loss due to frictional damping of a barotropic
CTW is comparable to scattering, where the scattering pro-
cess is determined by a wave triad resonance between the to-
pographic wavelength, and incident and scattered CTW. The
stratified case has been examined by Brink (1986), and more
recently by Kelly and Ogbuka (2022), who has made esti-
mates of the generation of CTW by scattering from the sub-
inertial surface tide at coastal promontories and along the
Oregon shelf. As in the unstratified case, scattering into
higher modes satisfies a resonance condition, occurring pref-
erentially when the scales of the topography match those of
the CTW. The scattering of barotropic shelf waves into freely
propagating inertia–gravity waves at coastal irregularities has
also been examined by Yankovsky and Zhang (2017), who
found that changes in shelf width can generate large internal
tides as the tidal Kelvin wave adjusts to alongshore changes.

In the open ocean, the scattering of inertia–gravity waves
from small, subcritical bottom topography was considered by
Müller and Xu (1992), who showed that scattering tends to
transfer energy to smaller scales where it is more likely to
steepen and break, contributing to ocean turbulence and mix-
ing. Similar physics underlies the interaction of a corrugated
vertical coastline with incident inertia–gravity waves in an un-
stratified fluid as considered by Howe and Mysak (1973), who
found that under certain conditions, energy is readily trans-
ferred from the incident inertia–gravity wave to both a ran-
dom field of scattered inertia–gravity waves and Kelvin waves
trapped to the vertical coast. These studies demonstrate that
scattering occurs when the incident wave, scattered wave, and
bathymetry have wavenumbers such that a resonance condi-
tion is satisfied:

kincident 1 ktopo 5 kscattered, (1)

where the sign of kscattered is restricted by the nature of the
CTW to propagate with shallow water to the right (left) in the
Northern (Southern) Hemisphere. As the topography is sta-
tionary in time, wave scattering from topography requires
that the frequencies of the incident and scattered waves are
identical.

Here, we extend the results of Howe and Mysak (1973) to
the stratified ocean using idealized numerical simulations of
mode-one inertia–gravity waves incident on a corrugated
coast. We also explore the scattering of the Kelvin wave into
a mode-one CTW at superinertial frequencies. We find that in
both cases, the generation of CTW can be well predicted ac-
cording to Eq. (1), and that even though the energy scattered
into CTW may be relatively small, their current amplitudes
are comparable to those of the generating waves, meaning
that they are likely to be locally important.

Section 2 details the linear physics of flat-bottom and coast-
ally trapped waves, section 3 describes the simulation setups
and energetic analyses that are performed, and sections 4 and 5
present the results from simulations of flat-bottom mode-one
waves and Kelvin waves incident at a corrugated coast. We
discuss the implications of these results on realistic bathym-
etry in section 6 and discuss broader context and implica-
tions in section 7.

2. Linear physics

a. Internal tides in a flat-bottom ocean

In a horizontally uniform ocean, spatially separable solu-
tions to the linearized, inviscid Navier–Stokes equations can
be found by solving

d2ŵ
dz2

1 |k|2 N
2 2 s2

s2 2 f 2
ŵ 5 0, (2)

where w5 ŵ(z)ei(k ?x2st) is the vertical velocity (Gill 1982),
k 5 (k, l) is the horizontal wavenumber vector, and s is the
wave frequency. For a flat-bottom ocean with a rigid lid, the
boundary conditions are

ŵ(0) 5 ŵ(2h) 5 0: (3)

Solutions to this Sturm–Liouville problem are inertia–gravity
waves in the form of flat-bottom vertical modes. The vertical
modes are one dimensional, with higher modes characterized
by having more zero crossings. Without the loss of generality,
the wave can be aligned with the x axis, and the structure of the
horizontal currents û can be derived from ŵ by employing the
continuity equation:

û 5
i
k
dŵ
dz

: (4)

Flat-bottom modes are frequently used to represent internal
tides in the open ocean, where bathymetric variations are
small on the horizontal scales of low-mode internal tides. For
f 5 1 3 1024 rad s21 and an idealized stratification profile
N(z), with a peak at the pycnocline (Fig. 1b), the first three
flat-bottom modes [found by discretizing and solving Eq. (2)
as an eigenvalue problem] are shown in Fig. 1c. The wave-
length of the mode-one wave with a frequency of 1.36 3 1024

rad s21 is 335 km.

b. Internal tides at the coast

At the coast, cross-shelf bathymetric variations are signifi-
cant enough that the cross-shelf and vertical dimensions can-
not be separated. Assuming alongshelf (x) wave propagation,
the linearized governing equations for the two-dimensional
structure in the y–z plane across the coastal margin can be
written as follows:

­2p̂
­y2

1 ( f 2 2 s 2) ­
­z

1
N2

­p̂
­z

2 k2p̂ 5 0, (5)

where p(x, t)5 p̂(y, z)ei(kx2st) is the pressure mode and k is
the alongshore wavenumber. This equation is solved subject
to the no normal flow boundary condition at the bottom:

1
N 2

­p̂
­z

52
Hy

f 2 2 s2

­p̂
­y

1
kf
s
p̂

( )
at z 52H(x), (6)

a linearized free surface:
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w̃ 5 is
p̂
gr0

at z 5 0, (7)

no flow through the coastal boundary:

­p̂
­y

52
fk
s
p̂ at x 5 0, (8)

and, for subinertial frequencies, a decaying signal far offshore:

p̂ " 0 at y " ‘: (9)

Solutions are two-dimensional coastally trapped waves, with
higher modes having more zero crossings in the offshore
direction.

Under certain conditions, when the parameter HyNbot/f �1,
coastally trapped waves can exist at superinertial frequencies
(Huthnance 1978; Chapman 1983). In this case, solutions are sub-
ject to an offshore boundary condition of a superposition of radi-
ating flat-bottom modes, such that

p(x, z) 5∑
n
anp̂n(z)exp(iknx) (10)

(Dale and Sherwin 1996). This enables coastally trapped
waves to “leak” energy into radiating inertia–gravity waves,
thus losing energy as they propagate along a coastal bound-
ary. Mathematically, this appears as a complex alongshore
wavenumber kn, causing the amplitude of the coastally trapped
component to decay with distance alongshore. In this sense,
the coastal “modes” are coupled to the inertia–gravity wave
continuum.

Equation 5 is solved numerically following the u–p method
described in Dale et al. (2001), which avoids spurious singu-
larities near s 5 f. A forcing with specified frequency and

alongshelf wavelength is added to the homogeneous equation,
and the amplitude of the model response is calculated. In this
manner, a resonance scan is undertaken, spanning frequencies
and wavenumbers. We have solved these equations using the
stratification and topographic profile shown in Fig. 1. Both
flat-bottom inertia–gravity wave (IGW) modes and CTW modes
appear as lines of elevated resonance, tracing the wave dispersion
curves (see Fig. 2). Mode-one and higher CTW dispersion curves
start at zero frequency and wavenumber, crossing the inertial pe-
riod with wavelengths of 330 km (k . 1.9 3 1025 rad m21) and
smaller. Freely propagating flat-bottom IGW modes are also
present in the resonance scan and are traced by red dashed
curves in the figure. Refractively trapped edge waves bifur-
cate from the mode-one vertical mode at periods shorter
than around 6 h, with the relatively high frequencies aris-
ing due to the short shelf width used in this study (Ke and
Yankovsky 2010).

The presence of the coastal boundary supports the propa-
gation of waves at both sub- and superinertial frequencies. At
subinertial frequencies, only CTW can propagate; however, at
superinertial frequencies, both freely propagating IGW and
CTW can exist. Superinertial CTWs are coupled to the flat-
bottom IGW vertical modes, which form the offshore bound-
ary condition and enable the radiation of energy into the
open ocean. Some limitations on the spectrum and propaga-
tion angles of the vertical modes to which the CTW can
couple can be determined from Fig. 2, as the horizontal wave-
lengths of the vertical modes must be smaller than those of
the CTW, and their propagation angles are determined by
matching the alongshore component of the wave to the CTW
wavelength. For example, for the stratification and bathyme-
try used to create Fig. 2, the mode-one CTW along a uniform
shelf can couple only with mode two and higher flat-bottom
IGWmodes, which would have to propagate at oblique angles

FIG. 1. (a) Topographic profile and (b) stratification used in models; (c) vertical velocity structure of first three flat-bottom modes associ-
ated with this stratification.
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with respect to the bathymetry such that their alongshelf
scales match that of the CTW.

In what follows, we pick a nominal frequency of s 5 1.36f,
where f 5 1 3 1024 rad s21. The chosen wave frequency is
superinertial and subcritical with respect to the topographic
profile. For s/f 5 1.36, the alongshelf wavenumber of the
mode-one CTW is 2.75 3 1025 rad m21, or about 228 km,
and of mode two is 7.5 3 1025 rad m21, or about 83 km.
The group velocity of the mode-one CTW at s/f 5 1.36 is
calculated from the slope of the resonant line to be cg 5

Ds/Dl 5 2.28 3 1025/0.64 3 1025 5 3.56 m s21.

3. Model setup and analyses

We perform a series of numerical simulations that are de-
signed to explore the scattering of wave energy at corrugated
coastal topography. Simulations are run using a primitive
equation numerical model, the MITgcm (Marshall et al.
1997), with stratification and cross-shelf bathymetric profile as
shown in Fig. 1.

Two types of simulation are performed. In the first, we
examine the interaction of a flat-bottom mode-one IGW in-
cident on a corrugated coast at a range of angles of inci-
dence, representing the interaction of the low-mode internal
tide with the coast. In the second set of simulations, we ex-
amine the scattering of the topographically modified Kelvin
wave (the gravest alongshelf propagating CTW mode) into
CTW mode one at the same corrugations, representing the
interaction of the barotropic tide with corrugated coastal
bathymetry. In both sets of experiments, the wavelengths of
the topographic corrugations are systematically varied be-
tween simulations.

a. Simulation setup for incident internal tides on a
corrugated coast

These simulations are designed to model the interaction of
a low-mode internal tide with the coastal boundary at a range
of incident angles, as varying the angle of incidence causes the
alongshelf projection of the incident wavelength to change. In
each simulation, the alongshelf corrugations in the coastal
boundary are sinusoidal, with topographic wavelengths rang-
ing from 20 to 700 km.

The simulations are configured for a coast in the Northern
Hemisphere, where the y direction is offshore, and coastally
trapped waves are expected to propagate in the positive x di-
rection (Fig. 3). The vertical structure and wavenumber of
the mode-one IGW in the stratification profile (Fig. 1) are
calculated by numerical solution to Eq. (2) at a frequency of
s 5 1.36 3 1024 rad s21. Two mode-one IGW wavelengths
(around 670 km) offshore of the coast, we define a 1200-km-
long forcing line where forcing terms are added to the u- and
y -momentum equations to generate currents consistent with
the modal structure. The alongshelf wavenumber on the forc-
ing line is determined from the relation

kuIGW 5 |k|sinu, (11)

where u is the angle of propagation of the generated wave
with respect to a line perpendicular to the coast and |k| is the
wavenumber magnitude of the mode-one IGW. Simulations
are performed with u 5 [2608, 2408, 2208, 08, 208, 408, 608],
where positive u corresponds to the alongshelf component of
the incident wave in the direction of CTW propagation (for-
ward simulation) and negative u corresponds to the alongshelf
component of the incident wave in the opposite direction of

FIG. 2. Resonance scan from linear theory, following Dale et al. (2001). (a) Free modes are identified by peaks in
model variance, appearing as darker lines in s–k space. Red dashed lines indicate the predicted dispersion curves for
the deep ocean offshore flat-bottom modes 1–3 for this stratification. The blue dashed line is the inertial frequency.
(b) The pressure response of the model at a range of wavenumbers for s 5 1.36 3 1024 rad s21 [indicated by solid
blue line in (a)] is given in the right panel, showing peaks for CTW modes 0, 1, and 2 and flat-bottom modes 2 and 3.
Vertical red dashed lines indicate predicted flat-bottom mode 1–3 wavenumbers.
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CTW propagation (backward simulations). The velocities along
the forcing line are prescribed as follows:

u 5 u0û(z)cos(kuIGWx 2 st),

y 5 u0û(z)
f
s
sin(kuIGWx 2 st):

The incident mode-one currents have magnitudes of around
0.003 m s21, so nonlinear effects in the model are negligible.
The currents that are forced along this line generate waves
that radiate in both directions: toward and away from the
coast. The waves that propagate offshore are damped by a
sponge layer at the domain boundaries, while the waves that

FIG. 3. Horizontal grid resolution in the (a) alongshelf and (b) cross-shelf directions for simula-
tions. Snapshots of alongshelf surface currents at resonance for (c) u 5 208 and ltopo 5 277 km;
(d) u 5 2208 and ltopo 5 184 km; and (e) u 5 08 and ltopo 5 231 km. Shaded regions indicate
where numerical sponging is applied.
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propagate toward the coast have angles of incidence equal to
u; three examples of the simulation setup are shown in Fig. 3
for u 5 2208, 08, and 208. The zonal location of corrugations
along the coast is moved for different values of u so that the
corrugations remain located within the main beam of the inci-
dent internal waves.

The group velocity of the incident mode-one IGW is used
to calculate the time required for the generated wave to reach
the shelf. Simulations are run for five wave periods after the
wave impacts the shelf (ranging from 183 h for u 5 660 to
123 h for u 5 0).

Lateral corrugations in the shelf break are generated by dis-
placing the cross-shelf profile from the coast by a sinusoid
with amplitudes of 20 km for the main runs (spanning all u).
A further pair of simulations with promontory amplitudes of
10 and 40 km were undertaken for u 5 208 to test the impact
of promontory amplitude on scattering. This mechanism for
generating the coastal corrugations forms a series of promon-
tories, whose “sides” are steeper than the rest of the slope.
For each angle of incidence, 30 simulations are run with the
wavelengths of the corrugations ltopo spanning 20–700 km in
increments of 23 km (we note that the 20-km simulation
is only marginally resolved at the horizontal grid resolution
of our simulations). Integer multiples of corrugation wave-
lengths are used to avoid the formation of discontinuities in
the bathymetry at the edge of the corrugations. As the beam
has a width of around 1200 km, the number of topographic
corrugations that can fit within the beam depends on the to-
pographic length scale: short length scales have around 60
promontories within the beam, while the longest length scales
only have one. In total, 240 simulations were performed span-
ning all values of u, ltopo, and promontory amplitude.

To identify and separate the incident, reflected, and scat-
tered wave components, several complementary simulations
were also run. In the no-shelf (NS) simulations, the coast is re-
moved entirely, and the domain is extended to the south with
a numerical sponge such that all incident energy is absorbed.
The no-corrugation simulations retain the coast and shelf ba-
thymetry but remove the coastal corrugations. Both sets of
simulations are run for all angles of incident wave energy.

To prevent the influence of reflected wave energy from the
open boundaries of the domain, the grids are telescoped near
the edges and numerical sponges are applied. Derived quanti-
ties such as wave flux are calculated in the interior of the do-
main away from regions of telescoping and sponging. The
interior horizontal resolution is 5 km, and the vertical resolu-
tion varies from 25 m near the surface to 300 m at depth. Sim-
ulations are run in hydrostatic mode with free-slip boundaries
at the topography. Model diffusivities and viscosities are set to
maintain numerical stability, taking values of 1 3 103 m2 s21 in
the horizontal, and 1 3 1021 m2 s21 for viscosity in the vertical,
and 13 1026 m2 s21 for diffusivity in the vertical.

b. Simulation setup for incident Kelvin wave on a
corrugated coast

A further 30 simulations were performed to quantify the in-
teraction of the topographically modified Kelvin wave with

corrugations of varying length scales. The bathymetry was
created in the same manner as for the incident internal tide
simulations, but in this case, a Kelvin wave is forced in a re-
gion upwave (i.e., to the west of the corrugations in this
Northern Hemisphere simulation) of the corrugations and al-
lowed to propagate into the corrugated region (Fig. 4). Depth
uniform alongshore currents in the forcing region are speci-
fied to have the structure of a Kelvin wave along a straight
vertical coast of depthH:

u 5 u0e
2y/LD , (12)

where LD 5
�����
gH

√
/f is the deformation radius. The forcing re-

gion is one Kelvin wavelength long (2pcp/v 5 9150 km) and
is located one wavelength west of the corrugations. The Kel-
vin wave structure is a very close approximation to that of the
gravest (mode-zero) CTW along this sloping bathymetry, and
the currents adjust to a dynamically consistent freely propa-
gating structure as the wave propagates out of the forcing re-
gion before impacting the corrugations. Alongshore currents
have magnitudes of around 0.025 m s21, thus maintaining lin-
ear dynamics. The simulations are run for 3.2 days, during
which time the Kelvin waves develop in the forcing region
and propagate across the corrugated region to the downwave
boundary where they are dissipated in numerical sponges.

c. Analysis and resonance scans

The wave energy flux is defined as

F 5
1
Tp

�T

T2Tp

�0

2h
up dzdt, (13)

where Tp is the wave period. We anticipate that incident
mode-one IGW wave energy will both reflect and scatter into
different wave modes, including higher IGW modes and
CTW. On a uniform coast, wave scattering to high modes oc-
curs when the coast deviates from a straight vertical wall
(Kelly et al. 2013). To make estimates of the fraction of inci-
dent internal tide energy scattered into CTW by the corruga-
tions, we linearly decompose the currents and pressures into
the incident wave, straight-coast, and corrugated-coast com-
ponents, denoted by subscripts i, rs, and rc, respectively:

u 5 ui 1 urs 1 urc, (14)

p 5 pi 1 prs 1 prc: (15)

Subsets of the decomposed fields are derived by differences
from the NS and no-corrugation (NC) simulations. The
currents and pressures associated with the NS simulations
(uNS, pNS) are associated with the incident wave:

uNS 5 ui, (16)

pNS 5 pi: (17)

The currents and pressures associated with the reflected and
scattered wave field from a straight coast (subscript rs) can be
computed using the NC and NS simulations such that
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urs 5 uNC 2 ui, (18)

prs 5 pNC 2 pi: (19)

The rs field includes both scattered (i.e., to high vertical
modes) and specularly reflected components. The decomposi-
tion between the full and incident fields is not defined over
the shelf and slope region, where the bathymetry has different
depths between the NS, NC, and full simulations; as such, we
take care to ensure that the rs field is only considered away
from the coastal bathymetry where the depths in all simula-
tions are identical.

The currents and pressures associated only with the effects
of the corrugations are found as the difference between the
full and no-corrugation simulations:

urc 5 u 2 uNC, (20)

prc 5 p 2 pNC: (21)

We refer to these as scattered waves, as most specular reflec-
tion occurring in the simulations is accounted for along the
straight coast. However, we note that the specularly reflected
component is expected to be smaller in the full simulation
compared to the no-corrugation simulation both due to in-
creased viscous dissipation at the corrugated coast (with
greater impact at smaller length scales) and due to the effects
of resonance, where some of the incident wave energy is scat-
tered rather than reflected. As a result, the scattered wave
field calculated using this approach underestimates the flux in

regions when viscous dissipation along the corrugations is large
and where specular reflection is nonzero, i.e., offshore of the
coast. Alternative approaches to calculating the CTW flux would
be to fit the fields downstream of the corrugations to the pre-
dicted CTW from section 2 (e.g., Kelly and Ogbuka 2022), or to
isolate the topographic (nondivergent) CTW modes by decom-
posing the flow into rotating and divergent components, as pro-
posed by Tanaka (2023). Though these methods may have some
advantages over the present approach, in the idealized scenario
considered here, our approach of considering differences be-
tween the various simulations is sufficient.

With the decomposition defined in Eq. (15), the flux becomes

hupi 5 huipi i 1 huiprs i 1 huiprci
1 hursprs i 1 hurspi i 1 hursprci
1 hurcprc i 1 hurcprs i 1 hurcpii ? (22)

Angle brackets indicate depth integrals, while overlines are
time averages over the final period of the simulation. It will
be shown that the cross terms are nonnegligible for these sim-
ulations, as the wave fields are not well represented by plane
waves.

The energy flux components are calculated for each simula-
tion. An estimate of the integrated scattered coastally trapped
wave flux is determined by evaluating

F CTW 5

�250km

0
hurc prci|x5xflux

dy, (23)

FIG. 4. MITgcm model setup for Kelvin wave incident on corrugated shelf. Horizontal grid res-
olution in the (a) alongshelf and (b) cross-shelf directions for simulations. Red and blue colors
are alongshelf currents after 3 days for simulation with ltopo 5 300 km, with a color axis range of
60.025 m s21. Shaded regions indicate where numerical sponging is applied.
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where xflux is located 70-km downwave (i.e., to the east) of
where the corrugations stop, a location far enough away from
the evanescent currents around the corrugations (Fig. 3). The
incident mode-one inertia–gravity wave flux is defined as

F IGWi 52

�Lx

0
hy ipii|y5250kmdx, (24)

where Lx is the length of the computational domain (integra-
tion lines are indicated in magenta in Fig. 5).

A similar decomposition is undertaken for the simulations
of an incident Kelvin wave on the corrugations, but this time
only one additional simulation, the no-corrugation simulation,
is required. We then define the scattered wave field as Eq. (21),
with ui 5 uNC in this case. The total flux is

hupi 5 huipi i 1 huiprc i 1 hurcpi i 1 hurcprci, (25)

and the CTW flux is calculated to the east of the corrugations
using Eq. (23) as for the incident internal wave simulations.
The incident flux is computed at x 5 31 200 km, about 120-km
upwave of the corrugations:

F KWi 5

�250km

0
h(ui 1 urc)(pi 1 prc)i|x531200kmdy: (26)

As for the decomposition for incident internal tides, the inter-
pretation of hurcprci as the scattered flux is not strictly accu-
rate, as the “background” Kelvin wave field that is being
removed is overestimated in the no-corrugation simulations
compared to the corrugated simulations, where some of the
incident energy has both been dissipated at the corrugations
and scattered into coastal trapped waves (at resonance). As
such, hurcprci is anticipated to be an underestimate of the scat-
tered flux.

4. The reflection and scattering of an incident mode-one
inertia–gravity wave at a corrugated coast

The interaction of the incident IGW with the coastal ba-
thymetry includes reflected and scattered components that su-
perpose with the incident waves to generate a complex wave
pattern and energy flux field (Figs. 3 and 5a). The incident
flux is calculated directly from the no-shelf simulation (Fig. 5b)
and shows inhomogeneities in the incident beam at scales of hun-
dreds of kilometers. The flux calculated as the difference be-
tween the no-shelf and no-corrugation fields hursprs i shows
specular reflection, with the outward beam having a smaller am-
plitude and radiating away from the coast at an angle (Fig. 5c).
The cross terms, huiprs i and hurspi i (Figs. 5e,g), have compo-
nents that tend to mostly cancel one another in the offshore di-
rection and reinforce one another in the alongshore direction,
creating an alternating pattern of alongshore flux that is banded
in the offshore direction, as would be expected for a partially
standing wave arising from the interaction of the incident and re-
flected waves.

The flux components associated with the rc field specifically re-
late to the impacts of topographic corrugations on the wave field
and mostly represents the scattered field (though interpretations

as such are inaccurate in regions where the specularly reflected
component is nonzero (see section 3c). The wave flux hurcprc i
shows clear enhancement downwave of the corrugations for cer-
tain topographic length scales and angles of incidence, corre-
sponding to the generation of superinertial coastally trapped
waves (Fig. 5d). Away from the coast, the wave field is directed
offshore with inhomogeneities in flux amplitude corresponding to
corrugation scales.As for the reflected flux, the cross terms arising
from the interaction of the scattered and incident wave field
huiprc i and hurcpi i (Figs. 5f,j) generate a standing wave pattern
with bands of alternating alongshore flux in the offshore direction.
The interaction between the reflected and scattered waves, which
both propagate offshore but at different angles, is captured in the
cross terms hurcprs i and hursprc i. Both terms are associated with
onshore flux, reducing the total offshore flux associated with the
reflected and scattered fields (Figs. 5h,i).

The influence of changing wave incidence angle and
corrugation wavelengths on CTW generation

The alongshelf scattered flux associated with the corruga-
tions F CTW is enhanced for specific resonant topographic
wavelengths, with peak fluxes occurring at wavelengths that
become larger as the angle of incidence varies from 2608 to
1608 (Fig. 6). CTW fluxes are larger for backward incident in-
ternal waves compared to forward incident waves, where for
promontories of 20-km amplitude, up to approximately 5% of
the incident internal gravity wave energy is scattered into
coastally trapped waves that transfer energy along the coast.
Though these fluxes are small compared to the incident inter-
nal waves, the CTWs are a leading order process over the
shelf and shelf-break, with currents on the shelf having similar
magnitudes to the incident internal wave (Fig. 3).

Similar to Howe and Mysak (1973), the resonant topo-
graphic wavelength at which an obliquely incident internal
wave generates mode-one coastally trapped waves is deter-
mined by the relationship as follows:

kCTW 5 ktopo 1 kuIGW, (27)

where kuIGW is the alongshore wavenumber projected onto the
coast at an angle of incidence u [see Eq. (11)]. The angle of
incidence of the internal wave determines its alongshelf wave-
length such that |kuIGW |# |kIGW |. For backward incident waves,
kuIGW , 0, while for a normally incident wave, kuIGW 5 0. In the
latter case, CTWs are predicted to be generated when the topo-
graphic length scales match those of the generated wave. For a
given bathymetric profile, the wavelengths of the coastally
trapped wave modes are determined as solutions to Eqs. (5)–(9),
and in this configuration, the mode-one CTW has been deter-
mined through the linear analysis in section 2b to have a wave-
length of 228 km. For each of the resonant simulations (identified
as peaks in Fig. 6), the wavelength of the generated CTWwas cal-
culated as the distance between the first two peaks in surface cur-
rents downwave of the topographic corrugations along a line at
y 5 60 km. These compare favourably to the values predicted in
section 2b (Fig. 7); as the angle of incidence of the internal gravity
wave changes, the topographic length scales required to satisfy
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Eq. (27) also change in a manner that is well described by this
equation.

The energy fluxes presented in Fig. 6 were calculated over
the final period of the simulation, which was set to be five pe-
riods after the incident IGW reached the coast. However, cal-
culations of flux over each successive period since the wave

reached the coast show that the flux was not at steady state by
the fifth period. Using the predicted group velocity of the
CTW from section 2b (cg 5 3.56 m s21), the distance over
which CTW energy can propagate in five periods (around
64 h) is estimated to be 820 km, around 70% of the 1200-km
width of the forcing region. As such, not all wave energy that

FIG. 5. Wave fluxes for u 5 2208 and ltopo 5 184 km, where a resonantly generated CTW occurs. Magenta lines in-
dicate the boundaries along which fluxes are computed. Regions in gray indicate where the flux component is not well
defined. (a) Total wave flux from full simulation; (b)–(j) each of the cross terms computed from fields derived from
NS and NC simulations. Note that panels (d), (f), and (h)–(j) are scaled by 3 to make features clear on a common
color scale.
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was generated along the corrugations (specifically those gen-
erated at the western end of the corrugations) had enough
time to reach xflux by the time the simulation ended. To ex-
plore the sensitivity of our simulations on the number of coast-
line corrugations, a parallel simulation was run for u 5 2208 at
the resonant wavenumber, ktopo 5 3.4 3 1025 rad s21, but
with half of the number of corrugations compared to the stan-
dard run (i.e., three rather than six bumps). In this case, wave
energy generated at the westernmost point of the corrugations
is predicted to take less than four periods to propagate a dis-
tance of 600 km at the group speed to reach xflux. Wave flux
calculations from the simulation were steady after four peri-
ods, consistent with this prediction. Assuming the flux in the
standard simulations after five periods is around 70% of what
it would be at steady state, we find that the CTW flux nor-
malized by the total incident IGW flux over the corrugated
region is the same as when the number of corrugations is
halved. This is expected for CTWs that are generated only
along the corrugated region of the shelf and gives us confi-
dence that the normalized fluxes presented in Fig. 6 are in-
dependent of the length of the corrugated region, or the
number of bumps included.

In our simulations, CTW flux is nonzero for small topographic
wavelengths even away from the resonant peak, especially so for
backscattered simulations with large oblique angles. In these
cases, the sharp transition from corrugations to noncorrugations
along the shelf is spectrally broad, containing variance at all
scales including the resonant scales. The generation mechanism
here is analogous to the generation of shelf waves at a corner as
noted in Klymak et al. (2016).

In addition to predicting the resonance condition, other
predictions made for inertia–gravity waves in an unstratified
ocean by Howe and Mysak (1973) may be verified in these
stratified simulations. Howe and Mysak (1973) predict that
the energy of scattered waves will increase linearly with prom-
ontory amplitude. Though we do not explore this extensively,
by comparing the CTW flux at u 5 208 for promontory ampli-
tudes of 10, 20, and 40 km, we find that the flux increases very

close to linearly as predicted (Fig. 8). Furthermore, the rela-
tively larger and narrower energy flux associated with backward
scattering compared to forward scattering is also consistent with
predictions inferred from considering the Howe and Mysak en-
ergy fluxes scattered from a coastal bathymetry having a Gauss-
ian spectrum.

5. The scattering of the gravest CTW at coastal
corrugations

The impact of astronomical forcing on the ocean induces
tides that propagate as the gravest CTW, very closely ap-
proximating barotropic Kelvin wave solutions at a vertical
wall. However, minor deviations from the Kelvin wave
structure arise due to both the presence of nonvertical
coastal boundaries and alongshelf coastal corrugations, and
these contribute to internal tides both in the open ocean
and at the coast.

Currents are nudged toward a Kelvin wave structure in the
forcing region, which then propagates into the unforced region
downwave along the coast, evolving into the gravest coastally
trapped wave structure that is consistent with the cross-shelf
bathymetric profile and stratification, having a wavelength of close
to 9000 km as predicted by the resonance scans of section 2b
(Fig. 2b). Offshore propagating internal tides are generated,
radiating energy out of the leaky mode into the ocean interior
(Fig. 4), consistent with predictions for internal tide generation at
the coastal boundary (Baines 1982; Chapman 1983; Zemskova
et al. 2024). The gravest CTW has current amplitudes of around

FIG. 6. Alongshelf CTW fluxes F CTW downstream of the corru-
gations at xflux. Fluxes are normalized by the incident mode-one
IGW fluxF IGWi. FIG. 7. Comparison of MITgcm model results to CTW scattering

theory based on Howe and Mysak (1973). Blue dots show the along-
shore wavenumber of the incident mode-one IGW (kuIGW 5 |k|sinu).
Green dots show the topographic wavenumber ktopo for which the
CTW response is maximum (see Fig. 6). Black dots are the measured
wavenumber of the CTW downwave of the corrugations at reso-
nance. The horizontal black dashed line shows kCTW for the simula-
tion forcing frequency (s 5 1.363 1024 rad s21) based on linear the-
ory (Fig. 2; kCTW 5 2.83 3 1025 rad m21). Magenta stars show the
predicted kCTW based on scattering theory (kCTW 5 ktopo 1 kuIGW).
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0.025 m s21 and a corresponding alongshelf wave flux of 64 GW
calculated just upstream of the corrugations.

Downstream of the corrugations, we compute the CTW
fields by subtracting the wave currents and pressures associ-
ated with an uncorrugated shelf from those in the corrugated
simulations. The CTW flux is computed as the time-averaged,
depth-integrated product of the pressure and currents of the
residual field [Eq. (23)], and resonance scans are created by
integrating the alongshore flux at xflux, located 70-km down-
wave of where the corrugations stop, out to 250-km offshore
(Fig. 9). A clear peak appears at topographic scales of’230 km,
matching the wavelength of the mode-one coastally trapped
wave. The resonance condition equivalent to that for the incident
inertia–gravity wave simulation [Eq. (27)] becomes

kCTW ’ ktopo, (28)

as kKW ,, ktopo. This leads to resonance when the mode-one
CTW and topographic scales match, as for the case of a nor-
mally incident flat-bottom mode (section 4a). The waves are
apparent as perturbations to the large-scale currents associated
with the gravest CTW close to and downwave of the corrugated
bathymetry (Fig. 4).

As for the incident IGW cases, alongshore fluxes in these
simulations are nonzero for small topographic wavelengths,
even away from resonance (e.g., for corrugation scales less than
200 km). These fluxes are associated with the generation of a
mode-one CTW at the transition from the corrugated to uncor-
rugated region, which is increasingly abrupt for shorter com-
pared to larger topographic wavelengths. The spectral content
of this transition is broad for short topographic wavelengths, in-
cluding variance at a wide range of scales, resulting in the weak
generation of CTW in our simulations.

6. Scales in realistic coastal bathymetry

The highly idealized bathymetry of the previous sections ena-
bles the identification of the underlying triad interactions on
wave scattering at the coast; however, realistic bathymetries are

much more complex, including a range of alongshelf length
scales and cross-shelf slope profiles. As a first step toward as-
sessing the relevance of this work to general oceanic conditions,
we used the bathymetry of the West Coast of the United States
and Canada to determine the length scales present in realistic
bathymetry (Fig. 10). The bathymetry was derived by extracting
the 500-m isobath from General Bathymetric Chart of the
Oceans (GEBCO; GEBCO Compilation Group 2020) and
then low-pass filtering the latitudes and longitudes of the co-
ordinates over scales of around 340 km. The distances be-
tween the smoothed and original contour (Fig. 10b) were
calculated as a function of distance along the contour, giving
an estimate of the depth of the corrugations and their along-
shelf length scales. Corrugations have amplitudes with typi-
cal values of 20–30 km and alongshelf wavelengths of
around 100 km (though this value is dependent on the filter
length). The power spectrum of the isobath corrugations has
a slope a little steeper than 22, with no significant peaks. The
range of scales present in the shelf bathymetry makes it likely
that internal tides incident at almost any angle could excite
CTW at some point along the coast. Close to the Mendocino
Ridge (near 408N), the most likely incidence angle is near obli-
que, as generation here leads to internal tides propagating north
and south from this feature (Althaus et al. 2003). However, fur-
ther to the north and south of the ridge, it is difficult to make
any general predictions about the angles of incidence of the in-
ternal tide, especially in the presence of mesoscale variability,
which will tend to refract the waves. This will alter both the am-
plitude and angle of incidence of the internal tide at any particu-
lar location along the coast in time, leading to intermittency in
the generation of resonant CTW by this mechanism.

To the north of the ridge, forward scattering is anticipated
as incident internal tides propagate in the same direction as
coastally trapped waves, and as such topographic scales that
are larger than those of the CTW would be expected to be
generators, with rather less efficiency than if the waves were
propagating with a southward component along the coast
(Howe and Mysak 1973). To the south of the ridge, however,
incident internal tides propagate in the opposite direction of
CTW (backward scattering), and as such CTW would be ex-
pected to be relatively larger, occurring at topographic scales
smaller than the CTW wavelength.

FIG. 8. As in Fig. 6, but for different amplitude promontories with
u 5 208.

FIG. 9. Scattered alongshelf CTW flux integrated from y5 0–250 km
at x5 xflux and normalized by the upstream Kelvin wave flux (in-
tegrated out to the same distance) located to the west of the
corrugations.
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7. Discussion

In this paper, we have used idealized numerical simulations
to demonstrate the generation of a superinertial mode-one
CTW through the scattering of tidal motions at corrugated ba-
thymetry. The stratification and cross-shelf bathymetric pro-
file is such that the CTW dispersion curve reaches and passes
above the inertial frequency. For this case, we have demon-
strated that superinertial coastally trapped waves can be gen-
erated by the following:

1) The scattering of energy from a Kelvin wave at coastal
corrugations that have length scales close to those of the
CTW.

2) The scattering of energy from an incident mode-one
IGW, such as those associated with the majority of energy
in the internal tide, when the alongshelf wavenumber of
the incident wave kuIGW, topographic wavenumber ktopo,
and CTW wavenumber kCTW satisfy a resonance condi-
tion: kCTW 5 ktopo 1 kuIGW.

In both cases, the generated CTWs have currents that are
comparable to the incident wave, forming a leading order pro-
cess in the shelf/slope region. Calculations of the energy flux
in the CTW account for less than 5% of the incident flux on
the coast, but we emphasize the tremendous differences in
length scales of the generating waves compared to the CTW
that give rise to this apparently small value. Finally, we note
that a third resonant case is predicted to occur along a uni-
form coast when the incident internal tide occurs at an angle

such that kIGW 5 kCTW. In general, for the same mode,
kIGW , kCTW such that this condition can only be met by a
higher-mode IGW generating a lower mode CTW (e.g., a
mode-two IGW generating a mode-one CTW). In this case,
the matching of vertical scales may affect the efficiency of the
scattering process.

Though we have not explicitly considered it here, we antici-
pate that where shelf widths are wider, the transition of the
tidal Kelvin wave to a mode-zero edge wave will affect reso-
nant dynamics. In this case, the bathymetric profile and strati-
fication may no longer support superinertial CTWs, and even
if it does, the wave flux is concentrated over the shelf rather
than the slope as for Kelvin waves (Ke and Yankovsky 2010).
For mode-zero edge waves, changes in alongshelf bathymetry
have been shown to give rise to the generation of freely prop-
agating internal tides that transfer tidal energy away from the
shelf (Yankovsky and Zhang 2017). Whether mode-one
CTWs could also be resonantly generated in this case speaks
to the broader question of the extent to which the unstratified
results of Howe and Mysak (1973) can be applied in the strati-
fied ocean and warrants a separate investigation.

The mechanisms discussed here may play a role in the loss
of energy from low-mode incident internal tides at the coast,
as well as the generation of coastal internal tides. As has been
found in other studies examining the scattering of low-mode
internal tide energy at topography (e.g., Müller and Xu 1992;
St. Laurent and Garrett 2002), the fluxes carried by these
waves are small compared to the generating flux, accounting

FIG. 10. (a) Bathymetry of the West Coast of the United States and Canada from GEBCO, (b) 500-m isobath in full resolution (blue) and
’340-km smoothed (red), and (c) cross-shelf perturbations of 500-m isobath.
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for less than 5% of the incident wave energy at resonance.
However, the current amplitudes associated with the waves
are comparable to the generating currents, and locally they
are a leading order process (Fig. 3). Unlike the inertia–gravity
waves considered in other scattering studies, superinertial
CTWs are largely constrained to dissipate their energy along
the coast, though some energy can “leak” back into the
ocean’s interior. The energy that propagates along the coast is
susceptible to both boundary layer turbulence or further scat-
tering as the waves propagate along a continually varying coast-
line, with direct implications for coastal mixing.

Our results are consistent with predictions made by Howe
and Mysak (1973), who derived analytic expressions for the
scattering of an incident inertia–gravity wave at a corrugated
coast in an unstratified ocean. That theory makes predictions
that we have not extensively tested, such as the relative mag-
nitude of the scattered field being dependent on the parame-
ter b 5 (z2 )1/2f /cp, where z2 is the variance in the coastal
corrugations (see Fig. 8) and cp is the phase speed of the Kel-
vin wave (or, by analogy in the stratified case, the phase speed
of the wave into which energy is being scattered). At different
latitudes or for waves with different phase speeds (e.g., associ-
ated with deeper or shallower bathymetry), we anticipate that
the scattering efficiency may be different. However, a key lim-
itation of the application to the theory described by Howe
and Mysak (1973) to the stratified ocean is the vertical struc-
ture inherent in the stratified waves that we have considered
in this work. Inertia–gravity wave scattering generally re-
quires that both the vertical and horizontal wavenumbers as
well as wave frequency must satisfy triad conditions. Our sim-
ulations have demonstrated that resonance occurs when the
horizontal wavenumbers satisfy the triad condition for low-
mode stratified waves, but further work is required to under-
stand the efficiency of this process across all parameter space,
in particular where the vertical scales of the IGW and CTW
may be very different.

The generation of superinertial CTWs was found in the
simulations of Klymak et al. (2016), who modeled the interac-
tion of an incident mode-one wave on the Tasman Shelf. In
those simulations, a shelf wave was excited in simulations
with either realistic or idealized bathymetry. In the latter case,
the CTW was generated at a corner of the idealized topogra-
phy, irrespective of the angle of incidence of the internal tide.
Our results are consistent with these findings, as such a corner
includes a range of length scales that are capable of resonating
with a broad range of angles associated with the incident in-
ternal waves. Similarly to Klymak et al. (2016), we used com-
plementary no-corrugation and no-shelf simulations to isolate
the wave fields associated with the incident and reflected/scat-
tered signals. However, as discussed by Klymak et al. (2016),
the presence of nonnegligible cross terms lends some ambigu-
ity to our definitions of incident and reflected wave energy, as
the cross terms that arise from the interactions of the wave
fields also carry energy. The complex flux patterns that arise
often resemble partially standing waves, with large alongshore
components that are not associated with a single dynamic
entity.

The generation of CTWs by both Kelvin waves and inci-
dent internal tides provides some insight on when and where
these phenomena may be generated along a realistic coastline.
Generation by the alongshelf propagation of a low-mode
CTW occurs predictably at topographic promontories having
the similar length scales to that of the higher mode CTWs,
and thus, based on the structure of stratified CTWs predicted
by linear theory, one might anticipate that generation will oc-
cur at relatively wider promontories on narrower shelves,
compared to broader shelves. However, the locations and
magnitude of generation by an incident shoaling internal tide
are likely to be much more variable, depending sensitively on
the length scales present in the coast and the angle of incident
of the internal tide. Observations show that internal tides at
the coast are highly intermittent, with the intermittency aris-
ing from the shoaling of remotely generated internal tides
that propagate long distances through a time-varying meso-
scale field (Nash et al. 2012). This intermittency changes not
only the amplitude of the incident internal wave along the
coast but also the angle of incidence, with the implication that
the generation efficiency of superinertial CTWs along realistic
coasts is expected to be similarly intermittent. Nevertheless,
our results suggest that the scattering of barotropic and inter-
nal tides to CTWs should be considered as an integral compo-
nent of internal tide dynamics in coastal regions.
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