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ABSTRACT: Electrophysiology studies of secondary active transporters have revealed quantitative mechanistic insights over many
decades of research. However, the emergence of new experimental and analytical approaches calls for investigation of the capabilities
and limitations of the newer methods. We examine the ability of solid-supported membrane electrophysiology (SSME) to
characterize discrete-state kinetic models with >10 rate constants. We use a Bayesian framework applied to synthetic data for three
tasks: to quantify and check (i) the precision of parameter estimates under different assumptions, (ii) the ability of computation to
guide the selection of experimental conditions, and (iii) the ability of our approach to distinguish among mechanisms based on
SSME data. When the general mechanism, i.e., event order, is known in advance, we show that a subset of kinetic parameters can be
“practically identified” within ∼1 order of magnitude, based on SSME current traces that visually appear to exhibit simple
exponential behavior. This remains true even when accounting for systematic measurement bias and realistic uncertainties in
experimental inputs (concentrations) are incorporated into the analysis. When experimental conditions are optimized or different
experiments are combined, the number of practically identifiable parameters can be increased substantially. Some parameters remain
intrinsically difficult to estimate through SSME data alone, suggesting that additional experiments are required to fully characterize
parameters. We also demonstrate the ability to perform model selection and determine the order of events when that is not known in
advance, comparing Bayesian and maximum-likelihood approaches. Finally, our studies elucidate good practices for the increasingly
popular but subtly challenging Bayesian calculations for structural and systems biology.

■ INTRODUCTION
Transporters are a type of biological molecular machine that
help regulate cellular homeostasis by pumping molecules across
a membrane and maintaining ion gradients.1,2 As such,
transporters play an essential role in cellular processes such as
the uptake of nutrients and expelling of waste. These protein
systems operate in a stochastic molecular environment, which
suggests that they could exhibit some degree of stochasticity in
their mechanism, a concept recently emerging as “pathway
heterogeneity”,3−6 but which has been implicit in reports of
noninteger stoichiometry of secondary active transport over
many years.7−11 In a recent example, analysis of the small
Escherichia coli multidrug transporter12 points to utilization of
different sequences of biochemical steps that enable a wide range
of behaviors including 2:1 and 1:1 transport stoichiometry.4,13

Despite significant study, the precise mechanisms of transport,

i.e., the states visited, the allowed order(s) of transitions, and the
associated rate constants, remain difficult to characterize.
Traditional electrophysiology techniques14,15 have performed

an essential role in many important discoveries related to
membrane transport, such as determining the kinetics of ion
channels16,17 and neuronal transmission,15 and have a long-
standing history within the transporter research community.18,19

They provide dynamic information regarding the transport of
ions across a membrane under various external conditions,
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which can be used to estimate specific kinetic parameters, such
as net transport rates. Solid-supported membrane electro-
physiology (SSME)20,21 extends traditional electrophysiology
methods by introducing a fixed membrane embedded with
reconstituted proteoliposomes that are perturbed under differ-
ent external concentrations. This approach yields an averaged
and aggregated transient current trace with a large signal relative
to the noise and is stable across multiple perturbation
concentrations in sequence, such as the three-stage reversal
assay (see methods and work by Thomas et al.).22 However, it is
unknown how well SSME can recapture microscopic
information from the generated macroscopic data set. That is,
how much information is contained in these data sets?
We address the question of inferring mechanistic details from

SSME data by using Bayesian inference (BI). We are not aware
of prior applications of BI to transporter parameter or
mechanism inference. BI provides a well-established and robust

framework for estimating model parameters and their
uncertainties from noisy data sets, as well as for distinguishing
among models. Briefly, BI23 is a powerful statistical method that
generates a “posterior” probability distribution of model
parameters, given the data set and prior beliefs about the
model. The approach is computationally expensive compared to
alternative frequentist methods such as maximum likelihood
estimation (MLE)23 but provides a comprehensive posterior
distribution that contains most likely parameter estimates,
uncertainties, and correlations, in addition to enabling
comparison among models. In practice, the posterior distribu-
tion of parameters is estimated usingMarkov chainMonte Carlo
(MCMC),24−26 which may prove challenging to converge with
many systems of interest that are multidimensional and embody
complex sampling landscapes, akin to rough energy landscapes.
Here, we utilize a recently developed sampling approach that
combines powerful ideas from physics (annealing) and from

Figure 1. Overview of data analysis pipelines for transporter research. (A) BI is used with synthetic SSME assay data to generate parameter estimate
distributions for reaction rate constants and other nuisance parameters (e.g., noise variance). (B) Different assay conditions are simulated from the
same model, with the difference between the posterior and prior distributions quantified by the Kullback−Leibler (KL) divergence in order to
approximate the information contained in each data set. (C) Likelihoods of different transporter reaction cycles are compared using the same data set
for model selection.
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machine-learning (normalizing flows)27 to overcome conver-
gence challenges.
Building on related work for ion channels28,29 and methods

developed for computational systems biology,30,31 and molec-
ular biophysics,32−34 we implement a BI data analysis pipeline
(Figure 1) to address the gap in knowledge about membrane
transporter mechanisms and SSME data sets. To our knowledge,
this is the first application of BI for the transporter mechanism.
We use ordinary differential equation (ODE) models of
transporter reaction cycles and SSME-like conditions to
generate synthetic data. The synthetic data enable a cost-
effective and controlled environment with known ground truth
values for methods development, but at the cost of potential
simplifications and biases not found in experimental data.
Synthetic data also can be used hand-in-hand with exper-
imentation to design more informative experiments, as detailed
below.
In this study, we demonstrate the effectiveness of BI for three

important tasks in analyzing SSME data: parameter and
uncertainty estimation; optimization of experimental condi-
tions; and inference of mechanism, i.e., model selection. Using a
(known) default model and data set, after validating our
pipeline, we examine the practical identifiability issue: the
precision with which each of >10 model rate constants can be
determined. We consider the important, but often overlooked,
effects of uncertainties in “known” experimental conditions,
namely, species concentrations. We next consider an array of
experimental conditions to ascertain which experiments and
experiment combinations are the most informative for
parameter inference. Finally, we use a Bayesian model selection
strategy for four 1:1 transport cycles to ascertain the data
required to distinguish the underlying model, when that is not
known in advance. We also examined MLE results for model
selection.
We find that the BI pipeline is well suited for these key tasks in

SSME-based transporter research, generating highly informative
posterior distributions across the various models and synthetic
assays studied. The results reveal that most model rate constants
can be determined within ∼1 order-of-magnitude precision with
suitable data, starting from a six order-of-magnitude range, but
that certain rate constants are intrinsically less identifiable and
may require independent measurements. The experiment
optimization ranking reveals which SSME conditions contain
the most information, typically with those with large pH/
concentration changes, as well as combinations of different
assays. Also, we found that high-information data sets enable
distinguishing among four possible mechanistic models, whereas
low-information data sets could not. These results illustrate the
likely utility of BI in studying transporter mechanisms, giving
insight into optimal experimental design and suggesting
experiments that may be able to fully determine the reaction
pathways of membrane transporters. Comparison of MLE
calculations for model selection with BI results shows that
certain MLE algorithms, properly tuned, can be successful, but
BI may be a more robust approach overall. Finally, we also
describe our experiences, and lessons learned, in MCMC
sampling for BI calculations.

■ METHODS
In the following section, we describe the computational methods
used to model membrane transporters, simulate SSME assays,
and perform data analysis. A more comprehensive description of

the methods with implementation details can be found in the
Supporting Information.

Modeling Membrane Transporters. Building on the
foundational work by Mitchell35 and Jardetzky,36 we model
membrane transport using the alternating access model. We
represent these models using biochemical networks, with the
dynamics determined by ODEs governed by mass action
kinetics.37 There are four idealized 1:1 antiporter models38 that
transport a single ion (H) and substrate (S) in opposite
directions across the membrane. With two conformations,
outward-facing (OF) and inward-facing (IF), there are six
reaction states, with a unique set of reactions and conforma-
tional states distinguishing the models, as illustrated in Figure 7.
These differences lead to a unique order of reaction events. For
example, in cycles 1 and 3, k1f corresponds to an ion binding rate
constant, but in cycles 2 and 4, k1f corresponds to a substrate
unbinding rate constant. The different physical processes arise
from the different states used in the model, such as with an
unbound OF state used for cycles 1 and 3, and a doubly bound
OF conformation in cycles 2 and 4. We primarily use the “Cycle
1” model in this study, with the exception of the model selection
results, which utilize all four models.
The rate constants use an Arrhenius-like formulation,39,40

which naturally accommodates a dynamic membrane potential
using an idealized capacitor model (see Supporting Information
eqs 1 and 2). However, we found empirically that the membrane
voltage had a negligible effect on the rate constants and observed
current for the SSME conditions studied (see Supporting
Information Figures 1 and 2), which in turn were motivated by
experimental conditions.22 (Under more physiological con-
ditions, i.e., larger membrane potentials, we confirmed that our
formulation produced a significant adjustment in the rate
constants as expected.) Therefore, we use a fixed membrane
voltage of zero in order to reduce the computational complexity
of our model. We also assume that the rate constants do not vary
under different pH values. Furthermore, to ensure detailed
balance, one of the 12 rate constants is necessarily constrained
by thermodynamic consistency.41 Their governing ODEs along
with further simulation and parameter details are described in
the Supporting Information.

Generating Synthetic SSME-Like Data. As described
previously, SSME experiments20 consist of many proteolipo-
somes with reconstituted proteins deposited on a solid
membrane. This system is placed in a bath of chemical species
and, when perturbed, creates a gradient that drives ion transport
across the membrane that is measured. After an initial
equilibration stage, the concentrations are perturbed (i.e.,
activated) and the system relaxes to a new steady-state
condition. In a three-stage reversal assay,22 the external
concentrations are adjusted back to the initial values in the
final stage, switching the gradient and driving transport in the
opposite direction (i.e., reversal). Importantly, due to the
stability of SSME, multiple assays can be performed in sequence
under different perturbation amounts. Figure 3 shows an
idealized diagram of an SSME experiment, with synthetic data
traces shown in Figures 4, 5, and Supporting Information Figure
3.
We numerically simulate these assays by integrating the

transporter cycle of the ODEs, with conditions changed for
equilibration, activation, and reversal stages at t = 0, 1, and 2 s
(and additional stages as needed). During each assay stage, the
external concentrations of the ion and substrate in the bath
solution are held fixed. We use a stiff ODE solver (CVODES)42
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with a low tolerance to improve numerical stability. The net
current is calculated from the change in internal ion
concentrations of a single liposome, converting from the change
in molar concentration to current and multiplying by the
number of liposomes in the experiment.

i
k
jjjjj

y
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zzzzz= = [ ]+

I t I t N
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N z N( ) ( )

d
d

Volnet liposome liposomes
in

in Av liposomes

(1)

where Volin is the internal volume of a single liposome
embedded with transporters, NAv is Avogadro’s constant, z is
the elementary charge of an H+ ion, and Nliposomes is the total
number of liposomes in the SSME assay. Here, we assume a
known constant liposome volume and number liposomes as well
as uniformity across the aggregate of liposomes. We note that
while our data generating function in eq 1 is a relatively simple
macroscopic observable with few parameters, the change in the

ion concentration [ ]+H
t

d
d

in is coupled to the other differential

equations that have latent parameters (i.e., microscopic rate
constants).

BI and Parameter Estimation. The predicted SSME-like
data are used in the Bayesian pipeline to estimate the probability
of the model parameters given the data, as given by Bayes’
theorem

| = | ·
P D

P D P
P D

( )
( ) ( )

( ) (2)

where

|

|

P D
D

P D D

P

P D D

( ) is the posterior probability of the model
parameters given the observed data .

( ) is the likelihood of observing the data given the
model parameters .

( ) is the prior probability of the model parameters .

( ) is the evidence, the probability of the data .

We use a standard log-likelihood function that assumes
Gaussian experimental noise

Figure 2. 1:1 transport cycle (antiport/exchange). Starting from the
topmost fully unbound OF state and proceeding clockwise, an outside
proton (H) binds, followed by conformational eversion to the IF state,
then binding of an inside substrate (S), and so on. Note that binding
and unbinding events are implicit in the state transitions. The time
evolution of each state is described by a system of ODEs given in
Methods, with rate constants shown at transitions. This “Cycle 1”
model is used to generate the synthetic data used in the study.

Figure 3. Schematic of SSME experiments. In SSME experiments generally (A), transporters embedded on liposomes transfer ions under a driving
gradient, inducing a current. The bottom panel (B) shows a three-stage reversal assay: after an initial equilibration phase with matching concentrations
inside and outside liposomes, the concentrations of the external species are perturbed to new fixed values in an activation phase to induce a transient
current of ions across the membrane, and the external perturbation is subsequently reversed. During these perturbations, the electrochemical potential
difference of the ion drives transport that relaxes in an exponential-like curve.
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Here, our synthetic observation data over multiple time
points, D = (D1, D2, ..., Dn), are generated from eq 1 by solving
the governing ODEs with a set of reference (“ground truth”)
reaction rate constants, compartment volumes, number of
liposomes, and initial concentrations and then adding Gaussian
white noise. During inference calculations, one set of trial
parameters at a time, i.e., the vector θ, is used to generate the
“predicted” data,Dpred, and evaluated in (eq 3) using a candidate
Gaussian noise variance σ2. Additional nuisance parameters, for
concentration uncertainties and experimental bias, are sub-
sumed into θ.
The reaction rate constants are represented on a log 10 scale

with wide uniform prior distributions covering 6 orders of
magnitude to reduce bias in our analysis. Furthermore, we
incorporate several nuisance parameters for the noise variance,
initial species concentrations, and a multiplicative biasing factor
for the overall current, each with uniform priors.
We use the “pocoMC” package for Monte Carlo sampling,

which combines a physically motivated adaptive annealing
protocol with a machine-learning accelerated preconditioned
Monte Carlo sampler developed by Karamanis et al.27,43 The
annealed importance sampling framework,44,45 in the context of
BI, employs a pseudotemperature parameter to transition from
effectively infinite temperature (uniform sampling) to the
posterior distribution of interest. At each intermediate “temper-
ature”, a neural network is trained using normalizing flows46 via
specialized autoencoder neural networks47,48 to simplify the
geometry of the sampling space. We found this method to have
improved performance over alternative Bayesian and MLE
methods (see Supporting Information Figure 18−21).
Information Quantification and Experiment Optimi-

zation. For experiment optimization and recommendation, we
are primarily interested in screening for protocols that yield
high-information data and reduce the variance of our parameter
estimates. In a Bayesian context, we quantify the information
gained from a given data set by evaluating the Kullback-Leibler
(KL) divergence49 between the posterior and prior distribu-
tions.50 This approach quantifies the distance between two
probability distributions. We use this to evaluate the difference
between the updated beliefs once the data have been observed
(posterior distribution) and the prior beliefs before the data
were observed (prior distribution). For a large number of
samples, the discrete form of the KL divergence is

i
k
jjjjj

y
{
zzzzz

=
D P Q

N
P x
Q x

( )
1

log
( )
( )i

N
i

i
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1 (4)

where

D P Q Q P

P x i

Q x i

N

( ) is the KL divergence from to ,

( ) is the posterior probability of the sample ,

( ) is the prior probability of the sample ,

is the total number of samples.

i

i

KL

To overcome the issue of low sample number and the ‘noise’
in the posterior distribution, we utilize a Gaussian mixture
model51 to estimate a smooth approximation of the estimated

posterior, which is tuned using the Bayesian information
criterion.52 This workflow is illustrated in Figure SI 4.
Additionally, we quantify the improved precision of parameter

estimates between two posterior distributions using the sum of
the standard deviations. Specifically, we compare the sum of
standard deviations across the marginalized posterior for
different data sets

=
=

isum of standard deviations for data set
j

M

i j
1

,
(5)

where σi,j is the standard deviation of the samples for the jth
parameter (M total) based on the posterior for the ith data set.
Note that these standard deviations of the posterior marginals
differ from σ of eq 3 which models noise in the data values.

Model Selection. In order to compare between possible
transporter reaction cycles, we examine the log-likelihoods (3),
which in our formulation describe the scaledmean-squared error
of the residuals. With BI, we generate a distribution of log-
likelihoods, which correspond to the log probability of the data
given the model parameters. Note that the likelihood function is
simply proportional to the posterior in our implementation
because of the uniform priors used. The ability to discern the
most likely model depends on the separation of these log-
likelihood distributions: if all models are equally likely, then their
log-likelihood distributions will be overlapping, and if onemodel
is more likely, then its log-likelihood distribution will contain the
maximum and be separated from the others. Additionally, the
model evidence, P(D) can be estimated using sequential Monte
Carlo methods and provides an alternative metric for model
comparison53 (shown in Supporting Information).

Implementation. We use the Tellurium package54 in
python55 to build human-readable systems biological markup
language56 files using Antimony57 and simulate the ODEs using
libroadrunner.58 For improved reproducibility, we use a.yaml59

configuration file to specify the relevant model and data files, as
well as the simulated assay conditions and model calibration
settings. BI with preconditioned Monte Carlo is done using the
pocoMC package,60 affine invariant ensemble sampling using
the emcee package61 andMLE is done using the Scipy Optimize
package.62 Plots for figures are generated usingMatplotlib,63 and
numerics are done using numpy.64 For BI and MLE, multiple
replicas are used to check for convergence. The code is available
on GitHub: github.com/ZuckermanLab/Bayesian_Transport-
er, with data available upon request.

■ RESULTS
We present results for transporter parameter inference from
SSME data, for comparison of the informativeness of different
experimental protocols for parameter inference and for
determination of the transport mechanism (event order). We
focus on 1:1 exchangers (antiporters) based on the classical
alternating access paradigm,35,36 described via a system of ODEs
along with Gaussian noise. Throughout, we use synthetic data
for 1:1 ion/substrate exchange generated using the ODE model
for “Cycle 1” (Figure 2) described in Methods. The model has
12 rate constants, of which 11 are independent due to the
thermodynamic cycle constraint.41 Synthetic data enable
validation of the calculations and by itself represent a significant
challenge for MCMC sampling. Alternative mechanisms for 1:1
transport, i.e., different event orders, are considered below.
The synthetic SSME current data models a three-stage

protocol,22 shown in Figure 3, with current values from the
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activation and reversal phases used in analysis. After the system
is equilibrated in the initial stage, the external solution is
adjusted to a new fixed composition in the second “activation”
stage, creating an electrochemical potential difference that drives
transport and relaxes in an exponential-like manner to a new
steady state. In the third “reversal” stage, the external solution
reverts to the initial concentrations, driving the system toward
the equilibrium point of the first stage and generating a
corresponding current trace. The results shown are based on
computations neglecting voltage effects for simplicity because
even when rate constants are formulated to account for voltage
(Supporting Information Section 1.2), the modeled condi-
tions�which are based on SSME experiments22�lead to
negligible ∼μV-scale voltages (Supporting Information Section
1.3). Different experimental protocols considered here corre-

spond to activation by different external substrate concen-
trations and pH values.
Importantly, our BI calculations start from extremely

noninformative prior ranges: rate constants are assumed to be
unknown, and equally likely, within a range of 6 orders of
magnitude. This breadth of parameter space makes the
calculations challenging but is important in avoiding implicit
foreknowledge of the true parameter values. MCMC sampling is
performed with the pocoMC package, which uses an unbiased
annealing process in combination with the “normalizing flows”
approach.27

Parameter Estimation and Comparison of Limited and
More Realistic Experimental Uncertainties. A central issue
in the analysis of experimental data is accounting for
measurement noise and potential bias, not only for the output
of the experiment, e.g., the current in electrophysiology, but also

Figure 4. Parameter inference, comparing the effect of simple and more realistic parametrizations (Experiment 1). The estimated parameter
distributions for two different model assumptions are shown based on multiple MCMC sampling replicas, with ground truth values (vertical lines) for
reference. Here, the 12D model (red) parameters consists of 11 rate constants and Gaussian noise standard deviation. The 16D model (blue)
additionally includes uncertainty in the initial assay concentrations and a measurement bias term. The horizontal range for each distribution matches
the width of the uniform prior, notably 6 orders of magnitude for rate constants. Only data from “Experiment 1” were analyzed here, as shown in the
bottom panel for reference. The 12D model used 3 MCMC sampling replicas, while the 16D model used 4 sampling replicas.
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Figure 5. Posterior marginal distribution comparisons. The estimated parameter distributions for various synthetic assay protocols are shown based on
multiple MCMC sampling replicas, with ground truth values (vertical lines) for reference. (Top) A single three-stage perturbation assay (blue, Exp. 1)
is compared against a sequence of two three-stage perturbations assays (red, Exp. 1 + 2). The introduction of a second unique three-stage perturbation
assay into the data set yields significant reductions in estimate variances. The experiment 1 protocol was analyzed via 4MCMC sampling replicas, while
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in “known” control parameters such as the concentrations of
molecular and ionic species. Previous work analyzing calorim-
etry data has demonstrated the importance of accounting for
possible measurement error in concentrations and, in some
cases, shown that BI evidently can correct concentrations when a
physical model for the system is known.33,65

We therefore characterized the parameters for the Cycle 1
antiporter (Figure 2) using both a simplified and more realistic
set of parameters. We first considered a 12-parameter set (12D
model) consisting of the 11 independent rate constants of Cycle
1 plus a single “nuisance” parameter σ for the noise in the current
measurement. We also studied a 16D model, which included
four additional nuisance parameters: f bias representing a
systematic linear bias in the current to account for uncertainty

intrinsic to SSME measurements66 and f protein, f Hout, and f Sout
representing uncertainties in concentrations of transporters, ion
(or proton, H), and substrate (S) following our prior work.33

The four additional parameters are represented as dimensionless
scaling factors; see Methods.
Our initial analysis is based on the (synthetic) “Experiment 1”

data set, which represents an SSME three-stage protocol run a
single time. This experiment consists of an initial equilibration
phase (external pH 7) followed by an activation phase (external
pH 7.3) and a final relaxation phase (external pH = 7). The
external substrate concentration is held fixed at 1 mM for the
duration of the experiment. Additional synthetic experiments,
analyzed below, vary the external substrate concentrations. See
the Methods and Supporting Information for further details. As

Figure 5. continued

the experiment 1 + 2 protocol used 3 sampling replicas. (Middle) A single three-stage perturbation assay (blue, Exp. 1 × 4) is replicated four times in
sequence, and compared against a sequence of four unique three-stage perturbation assays (red, Exp. 1 + 2 + 3 + 4). The introduction of additional
three-stage perturbation assays into the data set yields a significant reduction in estimate variance as compared to technical replicas. The experiment 1
× 4 protocol used 5 sampling replicas, while the experiment 1 + 2 + 3 + 4 protocol used 3 sampling replicas. (Bottom) Traces of the synthetic SSME-
like data used.

Figure 6. Quantifying information across experimental protocols. (Top) Median KL divergence between the posterior and uninformative uniform
priors across multiple replicas, with error bars spanning the minimum to maximum values. (Bottom) The median sum of standard deviations of the
parameter distributions, across multiple replicas is shown with error bars denoting the range from minimum to maximum. The introduction of
additional experiments significantly increases the information gained as compared to a single experiment or technical replicas. The sum of standard
deviations is correlated with the KL divergence and indicates an improvement in parameter precision as additional experiments are introduced. We
note that KL divergence is dimensionless, but can be expressed in terms of nats. Similarly, the sum of standard deviations does not correspond to a
physical quantity, but rather is a composite measure used to compare the relative estimated precision across varying conditions.
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will be seen, the Experiment 1 data set is relatively uninformative
by comparison to other sets.
The estimated posterior distribution is shown in Figure 4,

projected as one-dimensional (1D) marginals of the multi-
dimensional joint distribution. These marginal distributions
determine the “credibility regions” (uncertainty ranges) of each
parameter individually, providing low dimensional insight into a
complex multidimensional distribution. We note that the modes
of each individual marginal distribution do not necessarily
correspond to the global optimal parameter set(s) due to the
complex correlations among variables in the full joint posterior
distribution. That is, the most globally likely parameter set could
be offset from the peaks of the 1D marginals. Overall, only a few
parameters can be determined precisely from the simple
Experiment 1 data set analyzed; however, below, we will see
significant improvement in parameter identifiability with
improved data sets. When BI is able to find distributions that
are narrow compared to the prior (full ranges shown), those
include the known true parameter values. Furthermore, general
consistency among independent MCMC replicas suggests that
the posteriors are well sampled.
Most important here is the comparison between 12D and 16D

parametrizations, which is indicative of the “cost” of including
realistic nuisance parameters for experimental uncertainties, as
well as the feasibility of MCMC sampling in the more complex
case. Although the distributions for the rate constants are slightly
broader in the 16D case, we see that inclusion of the additional
nuisance parameters does not dramatically degrade parameter
identifiability. Furthermore, the sampling is slightly worse in the
16D case, but the replicas are consistent enough overall to
distinguish which parameters are practically identifiable, i.e.,
determined within ∼1 order of magnitude. These results are
further supported by examining the sum of standard deviations,

which indicates a modest decrease in the estimated precision of
the model parameters when using the 16D model (shown in
Figure SI 13).
Going forward, we employ only the more realistic 16D

parametrization.
Information Quantification Across Simulated SSME

Assay Conditions and Data Sets. Next, we examine
optimizing the design of experiments by quantifying the gain
in information and parameter precision when different data sets
are employed, reflecting different experimental conditions and/
or replicates. This is done by using the 16D model described
above to generate data sets from several different assay protocols
(detailed in Supporting Information) based on four different
sets of experimental conditions. As before, multiple replicas of a
sequential Monte Carlo27 BI algorithm with broad uniform
priors and a standard Gaussian-noise log-likelihood are run for
each data set.
Posterior distributions comparing different data sets are

shown in Figure 5 and provide strong evidence for improved
parameter identifiability compared with the data set considered
previously in Figure 4. As data from more diverse experimental
conditions are included, the posterior marginals become
narrower. In the best case examined, the combination of
Experiments 1 + 2 + 3 + 4 leads to the effective identification
(within ∼1 order of magnitude) of six out of 11 rate constants.
Figure 5 also shows the effect of including “technical replicates”
of Experiment 1, which leads to better precision for many rate
constants, but only to a slight degree. Generally, rate constants
for conformational transitions were better determined than
(un)binding rates, and there was not a major difference between
ion and substrate parameter identifiability. It is notable that two-
dimensional posterior marginals (Figure SI 12) show strong
correlations among the IF binding and unbinding steps,

Figure 7. Four tightly coupled 1:1 antiporter reaction cycles. Each cycle transports an ion (H) and a substrate (S) in opposite directions via alternating
access (OF and IF) conformations. Each network has a unique set of six reaction states, which represent different reaction event orders. The ion
(un)binding reactions are highlighted in blue, with the substrate (un)binding reactions highlighted in orange, with each cycle having a unique
combination of ion and substrate reactions. The binding and unbinding (i.e., dissociation) events are shown implicitly for improved visual clarity.
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effectively identifying the dissociation constants for steps 3 and
4. In the present data, by comparing MCMC replicates for the
same experimental protocol, we see that sampling is not fully
converged, but it does appear to be sufficient to support
conclusions about parameter identifiability.
We can quantify information content of the various protocols

via the KL divergence49 of the posterior distribution relative to
the prior distribution50 for each data set. This effectively
estimates the separation between two distributions and is used
as a proxy for the information gained from our data set as
compared to an uninformative prior. Furthermore, we calculate
the sum of standard deviations of each parameter in the
marginalized posterior distributions for each data set to quantify
the precision of the parameter estimates. These results are
shown in Figure 6. As expected from the posterior distributions,
the combination of unique experimental conditions contains the
more information and higher precision than a single experiment
alone or technical replicas. Also, these results show a correlation
between the “information gained” and practical identifiability of
parameters.
Transporter Mechanism Identification (Model Selec-

tion). We now examine whether SSME current traces are
sufficient to select among different event orders, i.e.,
mechanisms. We consider the four 1:1 antiport pathways
shown in Figure 7, which includes the previously considered
cycle (Figure 2) along with three additional mechanisms; see
Methods for details. For comparison to BI calculations, we use
MLE23 with the differential evolution algorithm,67 which was
found empirically to perform well on a test (simpler) data set
after hyper-parameter tuning (see Supporting Information). We
examine the log-likelihoods for each model and data set, using
both Bayesian and MLE methods, as shown in Figure 8. Finally,
these results are compared with the estimated marginal

likelihood (i.e., model evidence) values generated during
sampling.
Inferring which mechanism generated a given data set, the

task of “model selection” requires the most informative data set
explored for parameter inference. The BI results show a general
overlap between each reaction cycle log-likelihood distribution
when the less informative data set (Expt 1) is used, but a clear
separation between distributions when the informative data set
(Expt 1 + 2 + 3 + 4) is used. The results correctly identify “Cycle
1” as the most likely model by many orders of magnitude when
using the informative data set, but with the uninformative data
set, all the models have a similarly high likelihood. The
maximum likelihood results fail to reliably converge to the
expected maximum likelihood across the conditions studied,
despite tuning of hyperparameters as described in the
Supporting Information. Additional Bayesian posterior distri-
butions for the cycles and data sets are shown in Figure SI 5−11.
Our results comparing the log-likelihoods are further

supported when examining the marginal likelihood (i.e.,
model evidence) for each model under an informative and
uninformative data set, as shown in the Supporting Information
Figure 14. We find that the marginal likelihoods for each model
have small relative differences when using an uninformative data
set. In contrast, when an informative data set is used, there is a
significant relative difference between the marginal likelihoods
for each model-with the ground truth model having the highest
evidence.

■ DISCUSSION
Understanding detailed mechanisms of molecular processes is a
central goal of modern structural biology, and here, we have
applied Bayesian inference (BI) to study the mechanism of
driven biological transport, apparently for the first time.We have

Figure 8. Transporter mechanism selection. (Top row) The Bayesian log-likelihood distributions of four transporter reaction cycles using less (left)
and more (right) informative data sets, based on multiple MCMC sampling replicas. The less informative data set yields a large overlap between the
model likelihood distributions, while the more informative data set yields a large divergence between the likelihoods, suggesting a single most likely
model given the data. (Bottom row) The maximum log-likelihood values determined from repeated optimization trials for four transporter reaction
cycles using less (left) and more (right) informative data sets, across multiple replicas. TheMLE optimization approach generates a range of likelihood
values across models and data sets, but fails to reliably converge on the maximum likelihood. We note that the “Cycle 1” (blue) transporter mechanism
is used as a ground truth and is expected to have the largest likelihood.
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examined the recently developed SSME approach, which is
designed for the (relatively) high throughput study of
transporters with high signal-to-noise.22,66 Synthetic SSME
data allowed us to study one of the simplest realistic systems, a
1:1 antiporter based on ground-truth reference values, and also
enabled facile assessment of the potential value of additional
experiments; as detailed below, BI computations even for
synthetic data represent a significant challenge. Our approach
accounted for important, often overlooked facets of exper-
imental uncertainty, including both concentration measurement
uncertainty33 and potential systematic measurement bias for
electrophysiological currents.66

Our study revealed both striking findings and challenges for
quantifying the mechanism in transporters. First, it is surprising
how much information about individual model parameters
resides in SSME data, despite the simple exponential-like visual
appearance of the data. The BI results (Figure 5) show that 6 out
of 11 rate constants of a 1:1 transport model are “identifiable”�
estimated within an order of magnitude (or less)�starting from
a highly permissive six order-of-magnitude prior range for every
rate constant. Furthermore, the correlation structure of the BI
posterior (Figure SI 12) for the remaining unidentified rate
constants implicitly determines two dissociation constants, i.e.,
rate-constant ratios, and provides effective guidance on which
parameters should be determined from independent experi-
ments. With the experimental data used, the conformational
transition rate constants generally are better determined than
on- and off-rates, but neither substrate nor ion (un)binding rates
have a clear advantage for identifiability.
In comparing mechanistic pathways in a “model selection”

task, the results (Figure 8) suggest that a well-chosen set of
experiments can enable successful model selection, more than a
single experiment or technical replicates, revealing the sequence
of mechanistic steps. These results demonstrate the potential of
BI to determine an unknown transporter mechanism from
SSME data, or to eliminate unlikely candidate mechanisms.
While we modeled each cycle individually, the Bayesian
framework is compatible with and could be extended for
mixed and hierarchical models (i.e., combinations of multiple
pathways). As such, this study provides a foundation to
systematically determine the mechanisms of more complex
transporter cycles such as the proposed model for EmrE.13

The technical challenges involved with both BI and maximum
likelihood (MLE) computations for synthetic data sets were
significant. The less-than-ideal agreement among replica
MCMC runs (Figure 5) highlights the sampling challenge
despite our use of a sophisticated and highly parallelized MC
sampling approach (pocoMC),27,60 which required approx-
imately 24 h of computing per replicate. During the course of
this study, we examined quite a few MCMC methods, none of
which could provide the performance of pocoMC; for reference,
we show a comparison to the affine-invariant ensemble
sampler61 in Figures SI 20 and 21. Likewise, we examined a
series of maximum likelihoodmethods, andmost of themethods
failed to optimize our systems even after tuning of hyper-
parameters (Figures SI 15−18); theMLE data shown in Figure 8
are from the differential evolution algorithm,67 which were the
best performer. We found that the BI methods were the most
computationally expensive but had a comparable efficiency
(number of likelihood calculations per second) asMLEmethods
such as differential evolution (see Figure SI 19), while
generating full posterior distributions rather than point
estimates. On the whole, our data on what might be considered

a simple model with synthetic data clearly demonstrate the
technical challenges of BI30,68 and highlight the need for careful
evaluation of MCMC sampling and MLE optimization.
While the synthetic SSME data studied here were motivated

by experimental assay conditions and parameters22,69 and we
accounted for concentration uncertainty and bias, experimental
data will present new challenges. Higher ion/substate
stoichiometry will introduce additional parameters and path-
ways, which may require model simplification.39 As noted
elsewhere, we used a simplified zero-voltage assumption due to
the specific sets of conditions studied, justified by negligible peak
voltages (Supporting Information Section 1.3). This is not a
fundamental limitation, as the full, voltage-dependent for-
mulation (Supporting Information Section 1.2) uses a dynamic
membrane voltage adjustment term for the rate constants based
on a capacitor model, which accounts for time-dependent
membrane electrical properties70,71 found in ion channels. This
formulation was consistent with physiological expectations
under large membrane voltages (Supporting Information
Section 1.3). A correction term (and parameter) for changes
in rate constants due to significant differences in pH values may
also be required. Furthermore, issues of transporter polarity and
uniformity across liposomes, time delays from the mechanics of
fluid mixing, and the effects of membrane capacitive coupling66

may require additional “nuisance” parameters in models.
Our Bayesian approach included minimal assumptions about

parameter values but did require a set of prior parameter ranges
as well as a fixed reaction network structure with known states
and transitions. While our choice of uniform priors introduces
very little bias into the model, it may scale poorly for large
dimensions or lead to overfitting if the model structure is not
known, in which case, more informative data or priors may be
required. Formore complex systems, such as with increased ion/
substate stoichiometry, there may be a mixture of pathways.4−6

The BI workflow can be adapted to model this in several ways,
based on: one large network model containing all possible
elementary reactions,38 a mixturemodel of separate pathways, or
a simplified representation of the model.39 Unlike single-cycle
models, more complexmodelsmay exhibit multimodal posterior
distributions. The MCMC sampling algorithm employed,
preconditioned Monte Carlo,27 is well suited for sampling
challenges as it is highly parallelized and uses an adaptive
simulated annealing procedure capable of sampling multimodal
distributions. Finally, as we have demonstrated, BI is able to
compare mechanisms, which enables the identification of more
and less probable models, given the available data.
Future work will aim to address the abovementioned

challenges through close collaboration with experimentalists
and any necessary extensions of our current modeling
framework. We emphasize nevertheless that a Bayesian
framework “self reports” on parameter and model uncertainty
and hence can indicate when additional data are needed for BI
and/or whether independent measurements of certain param-
eters are required. Although this study was limited to SSME-like
data, the generic approach should be applicable to many other
measurements.

■ CONCLUSIONS
This work has attempted to shed new light on the study of
transporter proteins through the use of Bayesian inference (BI)
and information theory to compare mechanisms, determine rate
constants for elementary steps, and guide the experiment design.
We performed a systematic BI study for 1:1 ion/substrate
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secondary active transporters based on the emerging SSME
experimental approach. Because the task of transporter
mechanistic inference involves a combination of complex
mechanisms, experiments under a potentially wide range of
conditions, and numerically demanding analysis, we employed
synthetic SSME data to understand the experimental
information content and data requirements. Encouragingly, we
found that a majority of the rate constants for individual
mechanistic steps could be determined from well-designed
SSME experiments and that the order of events could also be
inferred. Although we found that BI was more reliable for model
selection than maximum-likelihood approaches, our results also
underscored the challenges of sampling for BI and the need for
careful assessment. Taken as a whole, the study is a necessary
step toward a more complete understanding of complex
transporter reaction mechanisms, enabling effective model
comparison, precise parameter estimation, and informed
experimental design.
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