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ABSTRACT

Protein language models, like the popular ESM2, are widely used tools for extract-
ing evolution-based protein representations and have achieved significant success
on downstream biological tasks. Representations based on sequence and struc-
ture models, however, show significant performance differences depending on the
downstream task. A major open problem is to obtain representations that best
capture both the evolutionary and structural properties of proteins in general. Here
we introduce Implicit Structure Model (ISM), a sequence-only input model with
structurally-enriched representations that outperforms state-of-the-art sequence
models on several well-studied benchmarks including mutation stability assess-
ment and structure prediction. Our key innovations are a microenvironment-based
autoencoder for generating structure tokens and a self-supervised training objective
that distills these tokens into ESM2’s pre-trained model. We have made ISM’s
structure-enriched weights easily available: integrating ISM into any application
using ESM2 requires changing only a single line of code. Our code is available at
https://github.com/jozhang97/ISM.

1 INTRODUCTION

Protein language models (pLMs) are versatile feature extractors with proven success across numerous
downstream applications (Elnaggar et al., 2021; Brandes et al., 2022; Rives et al., 2019; Lin et al.,
2022). Their accessibility has significantly democratized protein research, enabling biologists with
limited computational expertise to apply advanced machine learning techniques to their specific
protein domain. The method’s success comes from its exclusive use of sequences, bypassing costly,
unreliable, or infeasible structure computations and sophisticated data-engineering pipelines.

The tradeoff is that pLMs are often lack structural context and underperform (relative to structure-
based models) on tasks that typically require structural insight (Su et al., 2023; Yang et al., 2023;
Zhang et al., 2024; Gaujac et al., 2024; Frolova et al., 2024; Li et al., 2024; Kulikova et al., 2023;
Allman et al., 2024). Longstanding biological research (Anfinsen, 1973) does suggest that the amino
acid sequence is solely responsible for the folding of the structure. Indeed, sequence-only models
trained using masked language modeling learn to extract structure features encoded in evolutionary
co-variations (Lin et al., 2022). However, current state-of-the-art frameworks, such as AlphaFold,
require the protein’s evolutionary history as an additional input, demonstrating that sequence-only
models fail to extract all the structural information within a multiple sequence alignment (MSA).
Building a single-sequence model (without additional MSA input) that leads to structurally-informed
representations remains a challenging open problem.

In this paper, we introduce Implicit Structure Model (ISM), a sequence-only protein language
model that is trained to implicitly capture structural information. Our key contribution is a new
self-supervised pre-training objective, structure-tuning, where the sequence model learns to distill
features derived from structure-based models (see Figure 1). As a result, ISM outperforms sequence-
only models and is competitive with pLM frameworks that explicitly take the protein structure as
an additional input. For example, on the CAMEO protein structure prediction benchmark ISM
outperforms its ESM2 counterpart with a GDT-TS score of 0.67 versus 0.64 (see Table 1). For S669
AAG prediction, ISM surpasses ESM2 in AUC (0.76 vs 0.72) and even matches specialized models
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Figure 1: Structure-tuning a protein language model. Implicit Structure Model (ISM) is a sequence-
only protein model (right) supervised by structure tokens derived from a structure model (left). For
every residue, a takes the atoms of a residue’s microenvironment as input and
produces a structural representation. We discretize these representations into tokens using a codebook
extracted via k-means clustering. The learns to predict these structure tokens.

that process atomic environments (0.76 vs 0.75, see Table 2). Our results align with prior works that
show multiple modalities enhance model performance (Gong et al., 2024; Hayes et al., 2024).

Structure-tuning is a fine-tuning technique where a sequence-only model is trained to predict structure
tokens — rather than masked amino acids — for each protein residue (see Figure 1). Our structure
tokens, derived from our Atomic Autoencoder and MutRank (Gong et al., 2024), capture key chemical
interactions that underpin the protein’s tertiary structure. Structure-tuning distills these structural
representations into ISM, as demonstrated by the significant improvement in predicting long-range
tertiary interactions (0.49 vs 0.35, see Table 1).

2 RELATED WORK

Protein Language Models. These models take an amino acid sequence as input and produce a deep
representation for each amino acid conditioned on the entire sequence. Commonly-used models
such as ProtBERT, ProteinBERT, ESM 1b, and ESM2 use transformer-based architectures and are
trained to maximize wildtype accuracy (i.e., reconstruct masked amino acids) (Elnaggar et al., 2021;
Brandes et al., 2022; Rives et al., 2019; Lin et al., 2022).

One of the motivations behind ESM2 was to build a single-sequence variant of AlphaFold that does
not require the computationally expensive task of generating MSAs. The resulting model, ESMFold,
is a widely used tool but generally underperforms when compared to AlphaFold in terms of predicted
structural quality. This demonstrates that ESM2 does not fully capture the epistatic landscape induced
during evolution. This has motivated research on augmenting sequence models with a structural
modality, and we describe some of these works below.

Sequence models with structure loss. The ESM2-s sequence model incorporates structural infor-
mation by fine-tuning ESM2 to predict a protein’s structural fold (Zhang et al., 2024). The fold of a
protein, however, is biologically coarse-grained information. /SM achieves superior performance by
using the more fine-grained approach of training at the residue level. More specifically, in our training
objective, each residue is tasked with predicting its corresponding local structural environment.
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S-PLM and “Structure-infused protein language models (SIPLM)” use a type of CLIP training to
align sequence and structural features (Wang et al., 2023; Pefiaherrera & Koes, 2023). This technique
is also coarse-grained because its training objective does not operate at a residue level (we do not
include SIPLM in our tables of results due to its relatively weak performance on our benchmarks).

AlphaFold also learns structural representations from sequences (Jumper et al., 2021). However, it
requires a multiple sequence alignment as input, which is expensive to compute and often unavailable
for many practical applications. Furthermore, prior works have shown that Evoformer, the feature
extractor for AlphaFold, underperforms ESM2 on various downstream tasks that involve less structural
information (Hu et al., 2022). On these tasks, ISM still achieves comparable performance to ESM2.

Sequence models with structure inputs. These models extend sequence models by using the
structure as an additional input. SaProt (Su et al., 2023) and ProstT5 (Heinzinger et al., 2023) use
the VQVAE from FoldSeek (van Kempen et al., 2022) to extract per-residue structure tokens as
additional inputs to a protein language model. MULAN (Frolova et al., 2024) extends these works to
include structural features (torsion angles) as additional inputs. Similarly, ProSST (Li et al., 2024)
also takes structural tokens as inputs. However, instead of using FoldSeek tokens, ProSST trains
a Denoising Autoencoder to extract per-residue features, which are then tokenized into a structure
sequence using K-means clustering. All these models require a protein structure as input at inference
time. There are well-known drawbacks to frameworks requiring structure as input. In addition to
requiring a more sophisticated data engineering pipeline, there are some cases where the structure
has not been experimentally resolved and cannot be accurately modeled using computational tools
(e.g., antibody-antigen complexes, conformer specific protein-protein interactions, post-translation
modification-dependent conformations, interfaces, etc).

Protein Structure Autoencoders. These autoencoders are structure-based models that take the
backbone atom coordinates as input and encode each residue into a discrete token (Gaujac et al., 2024;
Hayes et al., 2024). The sequence of discrete tokens is used to reconstruct the positions of backbone
atoms using coordinate losses (e.g., frame aligned point error, distogram classification). Protein
structure denoising Autoencoders take a noisy variant of the protein backbone as input and then learn
a latent embedding that decodes the backbone atoms (Pefiaherrera & Koes, 2023; Li et al., 2024).
Foldseek (van Kempen et al., 2022) extracts features for a residue given the backbone geometry of
its nearest neighbors. Unlike our approach, these works use only the protein backbone as input. We
also train a structural autoencoder, but instead of reconstructing the local backbone of a protein, we
reconstruct the coordinates of all atoms within the local chemical environment surrounding a masked
residue (masked microenvironment).

3 PRELIMINARIES

Let sq = (z1,...,21) be a protein sequence of L amino acids where each amino acid residue
xz; € {A,C,...,Y}. The atoms defined by this sequence fold into an energetically favorable 3-
dimensional structure Tgwee = {(pi, €4, ci)}iil where each atom ¢ consists of residue sequence
position p; € {1,..., L}, an element type e; € {C,H,N, O, P, S, X} and coordinates c; € R3.

3.1 PROTEIN SEQUENCE MODELS

A protein language model pLM takes a protein sequence T4 as input and produces a latent
representation pLIM (&) € RE*D for downstream tasks. Most models use a transformer archi-
tecture and are pre-trained via a masked language modeling (MLM) loss. During training, a subset

. . - k ifi e M
M c {1, ..., L} of the sequence is replaced with the [mask] token Z; = { [mask] b e

T; otherwise
with &q = (Z1, ..., £1,). The model learns to reconstruct the masked tokens with
1 -
Lyvim = M Z ECE(CS/[—LMPLM(wseq)h z;), (D
ieM

for the cross entropy loss {cg, indexed feature pLM (&sq): € RP at position ¢, and a linear
classification head Cyyy that predicts the amino acid type. While the backbone pL M is used for
downstream tasks, Cyyy is only used for pre-training.
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3.2 PROTEIN STRUCTURE MODELS

An all-atom protein structure model pSIM computes an atom-level feature representation from the
local geometric description of each residue. It starts from a microenvironment ! that contains

microenv

all atoms in a radius r = 10A around o, € R3, the coordinates of the «-carbon of residue {:
:cfmcmenv = {(e;,¢;) : Vi € {1,..., N} such that ||c; — ]| < 7}.

A common backbone for protein structure models is a Graph Transformer G (Ying et al., 2021).
The graph transformer G (2. ;.0.nv) €mbeds each atom’s element type e; in a set e = {eq, ..., €' },
where n’ is the number of atoms in the microenvironment. In attention updates, the graph transformer
adds an attention bias B}; = [|¢; — ¢;]| based on the pairwise distance between atoms i and j. This

attention bias B' is the only structural information given to the transformer. The graph transformer
then produces a set of output features {z!, ..., zL,} = G(2!; ,oeny)> ONE per input atom e;. The graph
transformer is commonly trained on the downstream task using a supervised learning objective (Ying
et al., 2021). In this work, we use the Graph Transformer directly to train a structure model on atomic

reconstructions of proteins in our pre-training dataset.

MutComputeX-GT (Diaz et al., 2024) pre-trains a Graph Transformer using a structural analog of
masked language modeling. They define a masked microenvironment !,y .q microenv that contains all
atoms of other residues p; # [

a:fnasked_micmenv = {(e;,¢;): Vi € {1,...,N} such that p; # [ and ||c; — ey|| < 7},

and pool all-atom level features into a single residue level embedding 2! = 137 2! for

l l _ l . . . .
{21, ., 21} = G(%) aked-microeny) Where 7 is the number of atoms in the masked microenvironment.

They then predict the masked-out amino acid type x;:
Lia = len(Ciaz' @), (2)
where Ca, is a linear classification head.

MutRank (Gong et al., 2024) uses the EvoRank self-supervised training objective to learn the
evolutionary mutational landscape of a residue from the masked microenvironment. More specifically,
it learns to predict an evolutionary score derived from the protein’s multiple sequence alignment.

4 METHOD

ISM is a sequence model that takes as input only an amino acid sequence €q = (1, ..., 1) butis
trained to implicitly capture structural information. We start by training an Atomic Autoencoder,
based on a Graph Transformer, on protein structures. The autoencoder is trained with a geometric
reconstruction loss and the MutComputeX-GT objective £}, ,. We then cluster the resultant features
into one of K structure tokens. We use the sequence s = (s1,...,sy) of structure tokens s; €
{1, ..., K'} as additional supervisory signal for the sequence-only Implicit Structure Model (ISM).

4.1 ATOMIC AUTOENCODER

Atomic Autoencoder uses an encoder-decoder architecture with a Graph Transformer encoder and
a plain transformer decoder. The encoder takes the masked microenvironment @’ .o . ag
input and produces atomic representations {2}, ..., 2/, }. The decoder takes atomic representations
in and produces features {f}, ..., f.} which linearly project to atomic coordinates {¢!, ..., é.}
(See Figure 2). This might seem like a trivial task, after all the inputs @' ... . contain the
regression targets. However, since the Graph Transformer only uses relative positions, and only in
an attention bias B’, the prediction tasks are quite difficult and require reasoning about the local
structure of the microenvironment.

To obtain a residue-level feature representation, we average the atom-level features of the Graph
Transformer z! = 13", 2! following Diaz et al. (2024). To train this representation, we add z'
into all atomic representations before the decoder. Mathematically, the transformer decoder takes
{2z} + 2!, ..., 2zl + 2!} as input. We also found that adding this 2 directly to the decoder architecture
improves training stability. See Figure 5 for full architecture.


https://doi.org/10.1101/2024.11.08.622579
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.11.08.622579; this version posted November 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
. available under aCC-BY 4.0 International license.
Preprint

|:| (Pre-Train Only)
m =)
=
g [ |8
Pool
/ Structure Token
; Cluster
Masked Microenvironment DR — [struct_id 42]

Figure 2: Atomic Autoencoder learns a structural representation of a residue’s microenviron-
ment. The Autoencoder takes atom element types and pairwise distances as input and reconstructs
all atomic coordinates. The encoder is a graph transformer that uses the pairwise distances to bias the
attention mechanism to learn rich atomic representations. The atomic representations are pooled to
form a microenvironment embedding. The decoder takes the atomic representations and microenvi-
ronment embedding as input to decode the coordinates for all atoms. The learned microenvironment
embeddings are discretized via K-means into structure tokens, which supervise the fine-tuning of a
protein language model. See Figure 5 for architectural details.

Training objective. One major challenge is that microenvironments lack robust protein backbone
coordinate frames that underpin full protein models (Jumper et al., 2021; Hayes et al., 2024; Dauparas
etal., 2022). Unsurprisingly, we empirically observe that vanilla MSE loss Ligp = 2 3, [|é} — ¢l
does not take the coordinate frame into account and overestimates the loss. Thus, we optimize the
MSE loss after global alignment. First, we employ the Kabsch algorithm (Kabsch, 1976; Umeyama,
1991) to analytically compute the rotation and translation that minimize MSE loss. Then the loss is

calculated using the transformed ground truth coordinates. Formally,

. 1 .
‘Cll\/[SE—aligned = Resél(l;gTeRB - Z &} — (Re} + ).

i

During training, we observe that naive optimization of the MSE-aligned loss results in convergence to
a local optimum where all predicted coordinates lie on a 2-dimensional plane. Following AlphaFold
(Jumper et al., 2021), we addressed the issue using a distogram loss. Here, we use ESM3’s distogram
head by first computing Z-lj =W,.fl - W, jl-, where W,,, W), are linear adapters. We then apply a
binned distance loss

1 .
l _ T l bin,l
Laiso = ) E eCE(Cdisto ijo dz‘j )

(2]

where Cyig, 18 a linear classification head that predicts the distance bin d?}“’l between atoms ¢ and
j at residue position /. During the first stage of training, we train with the distogram and masked
modeling losses, L1, .+ L. ,. During the second stage, we additionally include Ell\,ISE_ahgned.

Generating Structure Tokens. Given a protein structure Ty,, we start by generating the masked
microenvironment for all L residues, namely (x} o .o . @l ey ). We feed each
masked microenvironment into our Graph Transformer encoder to extract a residue-level feature
representation at each position, (21, ..., 21). We quantize 2! for every residue in the protein using K-
means (Lloyd, 1982) to generate a structure sequence s = (sy, ..., 51, ). In addition to our autoencoder,
we also extract features (2, ..., 2%/) from MutRank (Gong et al., 2024) and generate a second
structure sequence s’ = (s, ..., 7 ), both of which are used identically to fine-tune the protein
sequence model. Both models are trained on a smaller dataset of experimental structures and are used

to generate structure tokens on a large dataset of AlphaFold structures.
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Table 1: Comparisons on structural benchmarks. We freeze all protein models to assess the
learned representation. ISM is structure-tuned on the AlphaFold structures of Uniclust30 while SM*
undergoes additional structure-tuning on PDB structures. SaProt* takes the protein structure as input.
All other methods take a sequence as their only input. For contact, secondary structure, and binding
residue prediction, the proteins in the training and test sets have at most 30% sequence similarity.

Strucure Prediction (CAMEO) Contact SS Binding

Method GDT-TS GDT-HA  LDDT  Short Med Long Acc F1I MCC
Evolutionary pLM

Amphfy (Fournier et al., 2024) - - - 038 036 023 0.82 0.22 026
ESM2 (Linetal, 2022) 0.64 0.47 0.82 045 045 035 086 031 034
ESM2 (fine-tuned) 0.64 0.47 0.82 045 045 035 086 032 0.34
Structural pLM

ESM2-S (Zhang et al., 2024) 0.61 0.43 0.79 046 047 036 0.85 032 0.35
S-PLM (wang etal., 2023) 0.61 0.44 0.80 048 049 036 086 029 0.32
SaProt™* (suetal, 2023) - - . 0.57 053 048 086 036 0.38
ISM (Ours) 0.67 0.50 0.83 0.61 060 049 089 035 0.37
ISM T (Ours) 0.67 0.50 0.84 0.62 060 048 0.89 037 0.38

4.2 STRUCTURE-TUNING THE PROTEIN SEQUENCE MODEL

We initialize a sequence-only protein language model trained using masked language modeling (i.e.,
ESM?2) and fine-tune it to predict the structure tokens. We call this training structure-tuning and the
resulting model Implicit Structure Model (ISM). We append a linear classification head Cyyy to the
output of the pLM backbone to predict the structural token. The structure prediction loss function is

1 -
Lsiruct = @ Z KCE(Cs—lrructpLM(mseq)iv si)v
€S

where Zq is the amino acid sequence with masked residues, pLLM is the protein language model
backbone, pLM(:Eseq)i is the representation for residue ¢, s; is the structure token at residue ¢, and
S are the positions at which the loss is computed. In standard MLM, the loss is computed for all
masked positions (i.e., S = M). We found that predicting structure tokens at all positions (i.e.,
S ={1,..., L}), and not just masked positions, better distills structural representations.

We structure-tune our model on AlphaFold protein structures. AlphaFold sometimes produces inac-
curate structures with poorly folded areas showing few interactions. Our structure token visualization
reveals that many of these problematic residues are grouped into a single token s* ([struct id
171 in Figure 3). To ensure data quality, we exclude microenvironments assigned the s* token from
sequence model training. We compute Lgyye at positions S = {i : ¢ € {1,..., L} and s; # s*}.

The final training objective for structure-tuning is the sum of structure token(s) and amino acid
cross-entropy losses (see Section 3.1), namely £ = Lgyyer + LmLMm-

5 RESULTS

5.1 IMPLEMENTATION DETAILS

Atomic Autoencoder. Our microenvironment-based Atomic Autoencoder is a Graph Transformer
encoder with 4 layers and a vanilla Transformer decoder with 2 layers. Our autoencoder training
dataset contains 35K proteins from the Protein Data Bank(PDB). We train both stages for 5 epochs
with a learning rate of 1 x 1073, See Table 5a for a list of hyperparameters.

Distillation Dataset. Once our autoencoder is fully trained, we extract per-residue microenvironment
features for 5.8M proteins from Uniclust30 with AlphaFold structures (Mirdita et al., 2017), along
with 35K PDB proteins. We identify cluster centroids by applying K-means clustering to features
from the PDB database, then assign features to tokens based on their distances to these centroids. The
number of clusters, K = 64, is chosen using the elbow method. Additionally, we extract per-residue
microenvironment features from MutRank and cluster the features into one of X = 512 tokens
(see Section 3.2).
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Table 2: Comparisons on S669 Single Mutation Thermodynamic Stability prediction. We
compare ISM to state-of-the-art methods that take various modalities as input. The middle and bottom
block approaches are fine-tuned on cDNA 117K, which consists of mini-proteins that have at most
30% sequence similarity with those in S669. URS50: UniRef-50 used in ESM2 pretraining, UR100:
UniRef-100, PDB: Protein data bank, UC30: Uniclust30. OAS: Observed Antibody Space. SCOP
Structural Classification of Proteins. rs: Spearman correlation coefficient.

Method PreTrain Data rs  AUC MCC RMSE,
FOldX (Schymkowitz et al., 2005) N/A 027 062 0 14 235
PROSTATA (Umerenkov et al., 2022) UR—SO 050 073 028 1 44
Ampllfy (Fournier et al., 2024) URIO0,0AS,SCOP 0.42 0.66 0.21 1.52
S-PLM (Wang et al., 2023) UR50,SwissProt 041 0.68 0.18 1.53
Stability Oracle mia et al., 2024) PDB 0.53 0.75 034 1.44
MutateEverything (ESM) (Ouyang-Zhang et al., 2024) UR-50 0.47 0.72 0.31 1.48
MutateEverything (AF) uyang-zhang et a1, 2024) PDB 056 0.76 0.35 1.38
ESM (fine-tuned) UR-50,PDB+UC30 0.49 0.72 0.25 1.47
ISM URS50,UC30 049 0.73 033 1.47
ISM URS50,PDB 052 0.74 0.30 1.45
ISM (Ours) URS50,PDB+UC30 0.53 0.76 0.40 1.44

Structure-tuning. We structure-tune the 650M parameter ESM2 for 20 epochs using a cosine
learning rate schedule with 4 warmup epochs. We use a total batch size of 1536 proteins cropped to a
maximum sequence length of 512 amino acids. We use AdamW optimizer with a learning rate of
1 x 10~* and weight decay of 5 x 1072, Training takes 26 wall-clock hours on 32 GH200 GPUs.
See Table 5b for a complete list of hyperparameters.

5.2 COMPARISONS ON STRUCTURE TASKS

Rich sequence representations should inherently capture a protein’s fold. In Table 1, we evaluate
the structure-enriched representation of ISM against established methods on several structure-based
downstream tasks, including structure, contact, secondary structure, and binding residue prediction.
We evaluate all models as frozen feature extractors and learn a decoding head. For structure prediction,
we initialize from pre-trained SoloSeq (Ahdritz et al., 2022), replace the ESM2 backbone model
with a frozen protein model, and tune the folding head. For other downstream tasks, we freeze
the backbone model and train a shallow head. Contact, secondary structure, and binding residue
prediction are evaluated using sequence similarity splits of 30%, 25%, and 20% respectively. More
dataset descriptions are listed in Section C. ESM (fine-tuned) follows the same training regimen
as ISM, but is trained only with masked language modeling. We report results for /SM trained on
Uniclust30 alone and Uniclust30+PDB.

Our model outperforms all sequence-only models and matches structure-sequence models on all
structure-based benchmarks. Notably, on long-range contact prediction, ISM outperforms ESM2 by
40%, with a precision of 0.49 against 0.35. This matches the performance of SaProt (0.48), which
explicitly requires the structure as input while ISM is a sequence-only model. On structure prediction,
ISM outperforms ESM2 by 5% on the GDT-TS metric (0.67 vs 0.64). On binding residue prediction
F1 metric, ISM performs similarly with SaProt’s 0.36, achieving 0.35 when trained on Uniclust30
and 0.37 when trained on Uniclust30+PDB. Overall, the structure-enriched representations of ISM
improve performance on various structure-based downstream tasks compared to sequence-only pLMs
and structural pLMs.

5.3 COMPARISONS ON MUTATION STABILITY EFFECT

Thermodynamic stability is an important phenotype that often needs to be improved during the
engineering of a commercially viable protein (Diaz et al., 2023; Liu et al., 2024; Carceller et al.,
2024). We evaluate how effectively ISM predicts the impact of single mutations on a protein’s
thermodynamic stability (AAG) on the S669 dataset (Pancotti et al., 2022) in Table 2. We evaluate
all pLMs (ESM, Amplify, S-PLM, ISM) identically by fine-tuning the model with a shallow decoder
head as in MutateEverything (Ouyang-Zhang et al., 2024). We fine-tune on the cDNA117K dataset
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Table 3: System-level Comparisons of transfer learning to various functional benchmarks. We
fine-tune all models with a shallow head for each benchmark (except HumanPPI, in which we freeze
ISM due to overfitting). * reports the best checkpoint found during training.

Methoq Thermostability HumanPPI Metal Bind EC GO DeepLoc
ctho MF BP CC Subcell. Binary
Spearman p Acc Acc Fmax Fmax Fmax Fmax Acc Acc
ESMI1b 0.71 0.82 074 087 066 045 047 080 092
MIF-ST 0.69 0.76 0.75 0.81 063 038 032 079 092
ESM2* 0.70 0.88 074 087 0.67 049 051 085 0.94
SaProt* 0.72 0.88 079 088 065 049 051 0.85 093
ISM * 0.71 0.89 0.75 0.88 0.67 047 0.52 084 093

from Diaz et al. (2024), a subset of the cDNA display proteolysis dataset (Tsuboyama et al., 2023)
where all proteins have at most 30% sequence similarity to those in S669.

ISM outperforms all existing models that take a single sequence as input, achieving a Spearman
correlation of 0.53 compared to Mutate Everything (ESM)’s 0.49, and an AUC of 0.76 compared
to Mutate Everything (ESM)’s 0.72. Additionally, ISM matches the performance of state-of-the-art
models while only using the amino acid sequence input, achieving an AUC of 0.76, while Mutate
Everything (AF) and Stability Oracle achieve AUCs of 0.76 and 0.75, respectively. Note that Stability
Oracle (Diaz et al., 2024) takes the atomic microenvironment as input and Mutate Everything (AF)
(Ouyang-Zhang et al., 2024) takes a multiple sequence alignment as input.

We conducted an ablation study on the datasets used for structure-tuning and were surprised to find
that training on the smaller PDB dataset enhances downstream AAG performance more than training
on the larger Uniclust30 dataset. Specifically, ISM achieves a Spearman correlation of 0.49 when
trained on UniClust30, compared to 0.52 when trained on PDB. Even though the supervision signal
during structure-tuning is derived solely from the atomic coordinates in the structure and not AAG
labels, we suspect the PDB dataset has some overlap with the structures in the S669 dataset, resulting
in performance similar to that of structure-input models. Overall, on the S669 AAG test set, ISM is
competitive and even outperforms SOTA structure-based methods and AlphaFold’s representations, a
feat sequence-only pLMs have yet to achieve.

5.4 COMPARISONS ON A DIVERSE SET OF FUNCTIONAL PHENOTYPES

Functional characterization of proteins through biochemical techniques is typically the most resource-
intensive type of labeled data to generate, making accurate transfer learning predictions particularly
valuable for downstream bioinformatics and protein engineering and design tasks (Yu et al., 2023;
Allman et al., 2024; Kulikova et al., 2021). In Table 3, we evaluate ISM on the PEER (Xu et al., 2022)
and FLIP (Dallago et al., 2021) benchmarks, which encompass tasks that benefit from structural
representations (e.g., thermostability), evolutionary representations (e.g., biological process), or
both (e.g., EC). We fine-tune all models with a shallow readout head on all benchmarks, except
HumanPPI, for which we perform linear probing on ISM to prevent overfitting. We observed that
longer training leads to overfitting, therefore, we evaluate various training checkpoints and report the
highest performance for ESM2, SaProt, and ISM. ESM1b (Rives et al., 2019) and MIF-ST (Yang
et al., 2023) results are sourced from SaProt (Su et al., 2023).

ISM performance remains competitive with ESM2 and other pLMs on functionally diverse tasks
and does not stand out. For example, for predicting gene ontology - molecular function (GO-MF),
both ISM and ESM2 achieve 67% accuracy while SaProt achieves 65%. This finding aligns with
prior work (Hu et al., 2022), which demonstrates that ESM?2 outperforms Evoformer, the feature
extractor for AlphaFold, on some functional tasks. It seems that for these functional tasks, the
evolutionary signal from masked language modeling is sufficient and does not necessarily benefit
from AlphaFold representations. Nonetheless, these experiments demonstrate that the structure-
enriched representations of ISM do not corrupt ESM2’s evolutionary representation on various
function-based downstream tasks while enhancing ESM2’s structural understanding.
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Table 4: ISM ablation experiments. Default settings are marked in grey. See Section 6.1. ss:
Secondary Structure prediction, mc: MutCompute, mr: MutRank, ae: Atomic Autoencoder

(a) Other Structure Tokens (b) Our Structure Tokens (c) Number of clusters
tokenizer contact ss bind  tokenizer contact ss bind K contact ss bind
foldseek  0.42 0.88 0.32 ae 0.38 0.88 0.35 32 0.27 0.84 0.33
esm3 0.18 0.85 0.11 mr 0.46 0.88 0.34 64 0.48 0.89 0.37

me+mr 0.45 0.88 0.36  ae+mr 0.48 0.89 0.37 128  0.42 0.85 0.37
ae+mr 0.48 0.89 0.37

(d) Pre-training Crop length (e) Label Type (f) Initialization
crop val acc  contact  label contact rs (AAG) init val acc  contact
32 0.27 0.27 features 0.36 0.49 random 0.36 0.10
128 0.36 0.42 tokens  0.46 0.51 esm2 0.40 0.48

512 0.40 0.48

6 ANALYSIS

6.1 ABLATIONS

We ablate key design decisions by reporting long-range Precision at L (P@L) for contact prediction,
accuracy for secondary structure prediction, F1 for binding residue prediction, and Spearman correla-
tion for AAG prediction in Table 4. We also report the validation accuracy, indicating how often the
ISM variant correctly predicts the structure token derived from Atomic Autoencoder.

Structure Tokens. In Table 4a, we distill from various structure models from the literature. We
compare against a variant using both MutComputeX-GT (mc) and MutRank (mr) structure models.
Since Atomic Autoencoder uses the MLM loss £} , from MutComputeX-GT, this variant determines
the effect of dropping the autoencoder from structure-tuning ZSM. Our model outperforms MutRank
and MutComputeX-GT, indicating that the autoencoder provides important structural information.

We found that structure-tuning with ESM3’s VQVAE (Hayes et al., 2024) structure tokens do not
produce robust structural representations. A model structure-tuned with ESM3 achieves 0.18 and
0.11 on contact and binding residue prediction, compared to 0.48 and 0.37 for ISM, respectively. We
observe that the accuracy of ESM3 structure token prediction on a held-out validation accuracy on
UniClust30 is ~8%, while Atomic Autoencoder accuracy is ~40% and MutRank accuracy is ~47%.
We suspect that the large vocabulary of ESM3’s VQVAE (4096 structure tokens) results in redundant
and overlapping tokens that are difficult to discern and complicate loss optimization.

We also evaluate the performance of our sequence model structure-tuned on FoldSeek VQVAE
structure tokens (van Kempen et al., 2022). We train on a larger subset of UniClust30 obtained
from SaProt (Su et al., 2023) for the same number of iterations as in ISM. The model achieves a
long-range contact P@L of 0.42 and a binding residue F1 score of 0.32, which are improvements over
ESM3 structure tokens and surpasses the ESM2 baseline (F1 scores of 0.35 and 0.31, respectively).
However, representations learned from FoldSeek’s VQVAE structure tokens lag behind ISM (0.48 and
0.37). Thus, the structure tokens from Atomic Autoencoder and MutRank produce better structure
representations, their combination being the most effective (see Table 4b).

Training parameters. We evaluate how the maximum length of a sequence during structure-tuning
affects the accuracy and downstream performance in Table 4d. When the crop length is dropped to
128 and 32 amino acids, the contact long-range P@L drops from 0.48 to 0.42 and 0.27 respectively.
This shows that training with longer sequences is essential for learning long-range contacts.

Additionally, we evaluate the effectiveness of clustering MutRank representations z = (z!, ..., 21) €
REXD into tokens 8 = (s1,...,51) € {1,..., K} in Table 4e (excluding Atomic Autoencoder
supervision). Our model variant uses a linear head to predict the MutRank representations z and
is trained with normalized MSE loss. Direct MutRank representation prediction achieves 0.36
P@L, while token ID prediction reaches 0.46 P@L on long-range contact prediction. Clustering the
MutRank representations potentially removes superfluous high-frequency noise.

Evolutionary Pre-Training. We evaluate the significance of training with MLM before structure
tuning in Table 4f by initializing with random weights. This approach resulted in decreased accuracy
of structure tokens from 40% to 36%. On downstream contact prediction, training from scratch drops
long-range P@L from 0.48 to 0.1. This highlights the importance of structure-tuning a pretrained
ESM2 as opposed to structure-tuning from scratch.
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6.2 QUALITATIVE VISUALIZATIONS

In Figure 3, we visualize atomic structures of microenvironments grouped by structure token id.
Specifically, we examine tokens [struct id 3] and [struct id 17], which are the least
and most frequently observed tokens in Uniclust30, respectively. We find that microenvironments of
the same structure token are semantically related. For example, [struct id 3] contains semi-
exposed residues. Interestingly, [struct id 17] includes both solvent-exposed residues from
experimental structures and unfolded residues from AlphaFold structures. These findings motivate
us to exclude [struct id 17] from our structure-tuning training objective (see Section 4.2).
Additional visualizations and analysis are provided in Section D.
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(c) PDB Structures with [struct id 17] (d) AlphaFold Structures with [struct id 17]

Figure 3: Cluster-based Microenvironment Visualizations. Residues in sky blue are within the
microenvironment, while white residues are outside and included for context. The grey density
indicates the masked-out amino acid. Nodes are colored by element: blue for nitrogen, red for
oxygen, and for sulfur. The left two columns display structures from the PDB, while the right
two columns show protein sequences from Uniclust30, folded using AlphaFold. [struct id 3]
contains semi-solvent exposed residues. [struct id 17] contains solvent exposed residues.

6.3 RUNTIME SaProt  ISM (Ours)

ColabFold 418 s -
FoldSeek 43 ms -
Transformer 28 ms 28ms

We compare our runtime against SaProt (Su et al., 2023)
on three proteins with 91, 355, and 689 amino acids. The
transformer is run on an A40 GPU. Colabfold structure
prediction (Mirdita et al., 2022) dominates the runtime.
Even with structures, the ISM runs 2.4 x faster than SaProt
which additionally runs FoldSeek (van Kempen et al.,
2022) to tokenize the structure.

Figure 4: Runtime comparison.

7 DISCUSSION

In this paper, we trained ISM, a protein language model with enriched structure representations
while not requiring explicit structural coordinates and complex data engineering pipelines during
inference. ISM achieves this with structure-tuning: a multi-modal fine-tuning paradigm that distills
the representation of the tertiary structure surrounding a residue from a structure-based model
into a sequence-based model. Structure-tuning augments the standard masked language modeling
(MLM) loss with additional cross-entropy losses where the labels are structure tokens derived from
discretizing the embeddings of structure-based model(s).

Here, we explored structure-tuning ESM?2 with structure tokens derived from FoldSeek VQVAE,
ESM3 Structural VQVAE, MutComputeX, and MutRank structure models (see Section 6.1). Ad-
ditionally, we developed Atomic Autoencoder to bridge the gap between current VQVAEs and
masking-based self-supervised frameworks. Atomic AutoEncoder learns richer all-atom structural
details than existing backbone-based VQVAESs and the reconstruction loss prioritizes learning patterns
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within the entire all-atom local tertiary structure compared to traditional self-supervised masked
modeling techniques.

ISM demonstrates enhanced structural understanding by achieving state-of-the-art performance on
both downstream structure prediction tasks (Table 1) and mutational tasks (i.e., AAG prediction
in Table 2) when structure-tuned with both Atomic Autoencoder and MutRank structure tokens. ISM
maintains performance on tasks that do not appear to benefit from structure-enriched representations.
Thus, we believe ISM’s structurally-enriched representations will benefit other protein applications
where structure is important without compromising performance in other downstream tasks.

We observe the best structure-tuning performance when training with structure tokens from Atomic
Autoencoder and MutRank. Both Atomic Autoencoder and MutRank structure models are all-atom
microenvironment-based graph transformers trained on a sequence-balanced dataset of experimen-
tal structures. They differ in their training objective — reconstruction vs EvoRank. The trained
models were run on 5.8M AlphaFold structures from UniClust30 and their representations were
discretized into tokens. During this work, we observed sufficient generalization from experimental
to computational structures for the structure-tuning of ISM. However, upon visualizing a token’s
microenvironments in experimental and computational structures, we noticed subtle distribution shifts
that are primarily due to AlphaFold artifacts (see Section D for detailed analysis). We hypothesize
that training the Atomic Autoencoder and MutRank on computational structures will enable further
downstream tasks.

Although structure-tuning can be applied to any pre-trained pLM, we built ISM on ESM2 due
to its popularity in the protein-ML and bioinformatics communities. Thus, ISM uses the ex-
act same architecture and interface as ESM2, making it a drop-in replacement to all frame-
works built on ESM2. To use ISM instead of ESM2, end users require a single line of
code: model.load_state_dict (torch.load("/path/to/ism/weights.pth")).
We make ISM’s weights available for both the 650M and 3B parameter ESM2 models: https:
//github.com/jozhang97/ISM. All results presented in this manuscript are based on the
650M parameter ISM model.
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A ATOMIC AUTOENCODER ARCHITECTURE DETAILS

In Figure 5, we visualize the details of our Atomic Autoencoder architecture. We use a GraphTrans-
former encoder and a vanilla transformer decoder.

: Pool
MatMul | .
f A "_“ xL
SoftMax i xL
MLP
3 \ MLP
Add Attention Attention
1 w/Pair Bias
MatMul
t t
B o k v/ € NO
Atoms Distances

Figure 5: Atomic Autoencoder Architecture Details. The autoencoder takes atom element types
and pairwise distances as input and reconstructs all atomic coordinates. The encoder is a graph
transformer that uses the pairwise distances to bias the attention mechanism to learn rich atomic
representations. The atomic representations are pooled to form a microenvironment embedding. The
decoder takes the atomic representations and microenvironment embedding as input and produces
coordinates for each atom. The learned microenvironment embeddings are discretized via K-means
into structure tokens, which supervise the fine-tuning of a protein language model.

B ATOMIC AUTOENCODER TRAINING AND ISM STRUCTURE-TUNING

Table 5 lists the hyperparameters used for training the Atomic Autoencoder (see Section 4.1) and
structure-tuning the PLM (see Section 4.2).

Table 5: Model Hyperparameters.

(a) Atomic Autoencoder Training (b) Protein Language Model Structure-tuning
Hyperparameter Stage1l Stage 2 Hyperparameter Structure-tuning
optimization optimization
total batch size 2048 2048 total batch size 1536
optimizer AdamW AdamW optimizer AdamW
learning rate le-3 le-3 learning rate le-4
weight decay le-5 le-5 weight decay Se-3
epochs 5 5 epochs 20
warmup epochs 1 1 warmup epochs 4
clip max norm 1.0 1.0 clip max norm 5.0
modeling modeling
layers 4 4 layers 33
max atoms 512 512 mask ratio 15%
max atom distance 10.0 10.0 crop length 512
losses losses
Aaa 1.0 1.0 AMLM 1.0
)\Dislogram 1.0 1.0 )\strucll 1.0
AMSE—aligned 0 1.0 >\slruc12 1.0
number of GPUs 8 8 number of GPUs 32
runtime ~12hr  ~12hr runtime 26hr
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Table 6: Structural Dataset Statistics. We report the primary metrics and number of proteins. The
split similarity is the maximum allowed sequence similarity between any protein in the training set
and any protein in the validation or test sets.

Dataset Metrics Train Valid Test Split Similarity
Structure Prediction GDT-TS 121,481 - 185 -
Contact Prediction Long Range Precision 25,299 224 40 30%
Secondary Structure Prediction Accuracy 8,678 2170 513 25%
Binding Residue Prediction F1 1,014 - 300 20%

Table 7: Hyperparameters on downstream structural benchmarks. *: we find that training
converges and terminate training early.

C

Hyperparameter Structure Contact Secondary Structure Binding Residues

optimization

total batch size 128 16 16 32
optimizer LION AdamW AdamW AdamW
learning rate le-4 0.01 3e-4 le-4
weight decay 5e-3 0.01 0.5 0.5
epochs 20 30 10 10
warmup epochs 4 - 2 2
clip max norm 5.0 - 5.0 5.0
freeze backbone True True True True
number of GPUs 32 8 4 8
runtime 20hr 40m* 35m Sm

DOWNSTREAM STRUCTURAL BENCHMARK DETAILS

We summarize our structural datasets in Table 6. In Table 7, we report the hyperparameters used for
fine-tuning on different downstream benchmarks. Additionally, we report all additional metrics for
contact prediction and binding residue prediction in Table 8 and Table 9 respectively.

C.1

STRUCTURE PREDICTION

We train on proteins in the PDB and evaluate our model on the CAMEO dataset. Notably, unlike
most benchmarks, CAMEO evaluations customarily do not include a sequence similarity split.

We initialize our model from SoloSeq Ahdritz et al. (2022) and freeze our ISM backbone. We
fine-tune the folding trunk for 10 epochs using a cosine learning rate schedule with 2 warmup epochs.
We use a batch size of 128 proteins. We use LION optimizer with a learning rate of 1 x 10~* and
weight decay of 0.01.

C.2 CONTACT PREDICTION

We follow the experimental setting as in SaProt (Su et al., 2023), which uses the contact prediction
benchmark proposed by Rao et al. (2019) and Xu et al. (2022). In this benchmark, the goal is to
predict whether a pair of residues is within a certain distance of one another. We evaluate our model
on the ProteinNet CASP12 test set which contains at most 30% sequence identity to those in the
training set.

In the main paper, we report precision at L. (P@L) for long-range contacts at least 24 amino acids
away. In Table 8, we thoroughly evaluate precision at L, L/2, L /5 on short, medium, and long-range
intervals of [6,12], [12,24],[24,00] amino acids respectively. The results of our baseline Amplify
model closely align with those reported in their paper.

C.3 SECONDARY STRUCTURE

We use the secondary structure prediction benchmark from Xu et al. (2022). The protein’s secondary
structures are labeled one of three states - coil, strand, or helix. The training set is taken from Klausen
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Table 8: Comparisons to prior work on contact prediction. /SM is structure-tuned on Uniclust30
while ISM 1 is additionally trained on the PDB. SaProt* takes the structure as input. The proteins in
the training and test sets have at most 30% sequence similarity.

Short Range Medium Range Long Range
Method P@L P@L/2 P@L/5 P@L P@L/2 P@L/5 P@L P@L/2 P@L/5
ESM-2 045 045 050 045 045 054 035 042 0.52
ESM-2S 046 046 0.50 046 047 0.54 036 043 0.52
Amplity 038 0.38 041 036 035 040 023 028 0.35
S-PLM 049 049 055 048 049 057 036 043 0.54
SaProt* 0.57 057 064 053 055 0.66 048 0.60 0.74

ISM (Ours)  0.62  0.62 0.67 0.60 0.61 0.68 0.49 0.57 0.69
ISM T (Ours) 0.62  0.62 068 0.60 0.60 0.68 048 0.56 0.67

et al. (2019), which contains proteins with no more than 25% sequence similarity. The proteins in the
test set have at most 25% sequence similarity to those in the training set. We evaluate the model’s
classification accuracy.

We freeze ISM and train a 2-layer classifier for 10 epochs using a cosine learning rate schedule with
2 warmup epochs. We use a batch size of 32 proteins. We use AdamW optimizer with a learning rate
of 1 x 10~ and weight decay of 0.5.

C.4 BINDING RESIDUES

We use the binding residues benchmark extracted from BioLip (Yang et al., 2012) prepared in the
bindEmbed21 method (Littmann et al., 2021). At the time of dataset generation, they found 104,733
structures corresponding to 14,894 sequences in BioLiP. Upon deduplication at 20% sequence
similarity, they ended up with 1314 proteins, of which 1014 were used for training and 300 were used
for testing. We evaluate on the binary classification of whether a residue is within < 2.5A of a metal
ion, nucleic acid, or a small ligand (Littmann et al., 2021).

We freeze ISM and train a 2-layer classifier for 10 epochs using a cosine learning rate schedule with
2 warmup epochs. We use a batch size of 32 proteins. We use AdamW optimizer with a learning rate
of 3 x 10~* and weight decay of 0.5. Full results with all metrics are available in Table 9.

Table 9: Comparisons to prior work on binding residue prediction. ISM is structure-tuned on
Uniclust30 while ISM T is additionally trained on the PDB. SaProt* takes the structure as input. The
proteins in the training and test sets have at most 20% sequence similarity.

Test Independent
Method F1 MCC AUC Fl1 MCC AUC
ESM (Lin et al., 2022) 031 034 0.84 028 028 0.82
ESM-2S 032 035 0.84 028 028 0.83

Amplify (Fournier et al., 2024) 0.22 0.26 081 0.19 0.18 0.79
S-PLM (Wang et al., 2023) 035 036 083 035 033 0.82

SaProt* (Suetal., 2023) 036 038 087 035 033 0.87
ISM (Ours) 035 037 086 033 031 0385
ISM T (Ours) 037 038 086 034 032 0585
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D QUALITATIVE ANALYSIS ON THE CLUSTERING RESULTS.

We qualitatively evaluate our clusters both on the experimental structures in PDB and the AlphaFold
structures in Uniclust30. First, we measured how many unique token IDs occurred in each protein
in Figure 6a. Surprisingly, we observed that over 20% of the proteins contained the same token
ID (token [17]) for every residue in the sequence. We then measured the number of times each
token appeared in the entire Uniclust30 dataset and found that one token appeared over 20% in total
(see Figure 6b). This turns out to be token [17] in Figure 7 which contains disordered regions with
little or no secondary or tertiary structures. Interestingly, the microenvironments in PDB with token
[17] do contain more sparse environments. This motivated us to remove training on the special
token s* =[17].

We also looked at a few tokens in Figure 7 that either occurred the most/least and report our intuition
below. Note that while our intuition can offer some rationale about the clusters, the model may
capture relevant microenvironment features that are difficult for humans to interpret.

* [id:3]: In PDB proteins, this cluster consists primarily of semi-solvent exposed mi-
croenvironments with masked alanines. In Alphafold proteins, the cluster still contains
semi-solvent exposed microenvironments but is not as heavily biased towards alanine. This
is the least frequently seen structure token in Uniclust30.

e [id:14]: In PDB proteins, this cluster consists primarily of glycine residues that are
solvent-exposed and mainly present in highly dynamic loops, often with little local secondary
structure. In Alphafold proteins, we observe similar microenvironments, though not as
heavily biased towards glycine. This is the second most frequently seen structure token in
Uniclust30. It is the most frequently seen token ID in PDB.

* [1id:17] In PDB proteins, this cluster consists primarily of residues that are solvent-
exposed. However, in Alphafold proteins, this cluster corresponds to poorly folded regions
(e.g., N- and C-terminus residues and low pLDDT regions). This is the most frequent
structure token in Uniclust30 and the second least frequent structure token in PDB. Because
this token accurately captures poorly folded regions in computational structures, we drop
this token during training on the Uniclust30 dataset.

* [id:25]: In PDB proteins, this cluster primarily consists of the tertiary interactions
centered on disulfide bridges. In Alphafold proteins, this cluster also captures tertiary
interactions of small amino acids, primarily glycine. We suspect that since AlphaFold
does not explicitly model post-translation modifications, this cluster is not biased towards
compact tertiary structures formed by disulfide bridges, as observed in the PDB. This is the
least frequently seen structure token in PDB proteins.

Protein Structural Token Diversity 0.95 Distribution of Structure Token IDs
PDB ’ PDB
0.31 Uniclust30 0.90 Uniclust30
0.15
0.2
0.10
0.14
0.05
0.0 .
0 20 40 60 0.00 0 20 40 60
Number of Unique Structure Token 1Ds Sorted Structure Token 1D
(a) Histogram of Unique Structure Token IDs (b) Distribution of tokens across the entire
per Protein dataset

Figure 6: Measuring the diversity of tokens in both PDB and Uniclust30.
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Figure 7: More Cluster-based Microenvironment Visualizations. Residues in sky blue are within
the microenvironment, while white residues are outside and included for context. The grey density
indicates the masked-out amino acid. Nodes are colored by element: blue for nitrogen, red for oxygen,
and for sulfur. The left two columns display structures from the PDB, while the right two
columns show protein sequences from Uniclust30, folded using AlphaFold.
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