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Abstract Alongside global climate change, many
freshwater ecosystems are experiencing substantial
shifts in the concentrations and compositions of salt
ions coming from both land and sea. We synthesize
a risk framework for anticipating how climate change
and increasing salt pollution coming from both land
and saltwater intrusion will trigger chain reactions
extending from headwaters to tidal waters. Salt ions
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trigger ‘chain reactions,” where chemical products
from one biogeochemical reaction influence subse-
quent reactions and ecosystem responses. Different
chain reactions impact drinking water quality, eco-
systems, infrastructure, and energy and food produc-
tion. Risk factors for chain reactions include shifts
in salinity sources due to global climate change and
amplification of salinity pulses due to the interac-
tion of precipitation variability and human activities.
Depending on climate and other factors, salt reten-
tion can range from 2 to 90% across watersheds glob-
ally. Salt retained in ecosystems interacts with many
global biogeochemical cycles along flowpaths and
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contributes to ‘fast’ and ‘slow’ chain reactions associ-
ated with temporary acidification and long-term alka-
linization of freshwaters, impacts on nutrient cycling,
CO,, CH,, N,O, and greenhouse gases, corrosion,
fouling, and scaling of infrastructure, deoxygenation,
and contaminant mobilization along the freshwater-
marine continuum. Salt also impacts the carbon cycle
and the quantity and quality of organic matter trans-
ported from headwaters to coasts. We identify the
double impact of salt pollution from land and saltwa-
ter intrusion on a wide range of ecosystem services.
Our salinization risk framework is based on analyses
of: (1) increasing temporal trends in salinization of
tributaries and tidal freshwaters of the Chesapeake
Bay and freshening of the Chesapeake Bay mainstem
over 40 years due to changes in streamflow, sea level
rise, and watershed salt pollution; (2) increasing long-
term trends in concentrations and loads of major ions
in rivers along the Eastern U.S. and increased river-
ine exports of major ions to coastal waters sometimes
over 100-fold greater than forest reference conditions;
(3) varying salt ion concentration-discharge relation-
ships at U.S. Geological Survey (USGS) sites across
the U.S.; (4) empirical relationships between specific
conductance and Na*, CI~, SO,>~, Ca*t, Mg**, K*,
and N at USGS sites across the U.S.; (5) changes in
relationships between concentrations of dissolved
organic carbon (DOC) and different salt ions at USGS
sites across the U.S.; and (6) original salinization
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experiments demonstrating changes in organic mat-
ter composition, mobilization of nutrients and metals,
acidification and alkalinization, changes in oxidation—
reduction potentials, and deoxygenation in non-tidal
and tidal waters. The interaction of human activities
and climate change is altering sources, transport, stor-
age, and reactivity of salt ions and chain reactions
along the entire freshwater-marine continuum. Our
salinization risk framework helps anticipate, prevent,
and manage the growing double impact of salt ions
from both land and sea on drinking water, human
health, ecosystems, aquatic life, infrastructure, agri-
culture, and energy production.

Keywords Anthropogenic salt cycle - Global
biogeochemical cycles - Carbon cycle - Nitrogen
cycle - Metals - Climate change

Introduction

Freshwater salinization is increasing in many
regions of the world and the anthropogenic salt
cycle is now a driver of global change across diverse
Earth systems (Williams 1999; Kaushal et al. 2005,
2023a; Cafiedo-Argiielles et al. 2013). The world’s
freshwaters face a salty future due to: increasing
land-use change (Williams 1999), road salt use
(Kaushal et al. 2005; Dugan et al. 2017; Hintz and
Relyea 2019), wastewater (Bhide et al. 2021; Grant
et al. 2022), resource extraction (Kaushal et al.
2021, 2023a, b, c), groundwater pumping (Kaushal
et al. 2024), irrigation (Cafedo-Argiielles et al.
2013; Thorslund et al. 2021), climate change and
sea level rise (Herbert et al. 2015), human-accel-
erated weathering (Kaushal et al. 2021, 2023b),
resource extraction (Kaushal et al. 2024), mineral
fertilizers containing chloride and sulfate in agricul-
tural areas (Kaushal et al. 2024), and other factors
(Cunillera-Montcusi et al. 2022). Concentrations
and mixtures of salt ions and alkalinity in freshwa-
ters have been altered across regional and global
scales (Raymond et al. 2008; Kaushal et al. 2013,
2017, 2018a, b, 2019, 2023a, b). Increased fresh-
water salinization and alkalinization is occurring
simultaneously with rising temperatures in streams,
rivers, and estuaries (Kaushal et al. 2010; Van Vliet
et al. 2011, 2023; Tassone et al. 2022; Hinson et al.
2022). The convergence of salt pollution from land
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and saltwater intrusion places both non-tidal and
tidal freshwaters ecosystems at risk for declines
and shifts in ecosystem services and functions sen-
sitive to salinity thresholds (Herbert et al. 2015;
Tully et al. 2019a, b; Lassiter 2021, 2024; Little
et al. 2022; Bernhardt 2022; Valle-Levinson and Li
2023; O’Donnell et al. 2024). Here, we synthesize a
framework for anticipating how climate change, ris-
ing salt pollution, and saltwater intrusion can alter
salinity sources, transport, retention, and reactivity
from headwaters to tidal waters, with implications
for drinking water, aquatic life, agriculture, and
infrastructure.

Freshwater Salinization Syndrome (FSS) refers to
the interrelated suite of physical, chemical, and bio-
logical impacts of salt ions that degrade the environ-
ment, impact infrastructure, and disrupt ecosystem
services (e.g., Kaushal et al. 2018a, b, 2019, 2020,
2021, 2022, 2023b, 2024). Salinization, acidifica-
tion, alkalinization, corrosivity, and water hardness
can be chemical indicators of FSS depending on envi-
ronmental factors. Briefly, salinization refers to an
increase in salt ions such as sodium (Na™), potassium
(K"), calcium (Ca®*), magnesium (Mg**), and chlo-
ride (CI7), bicarbonate (HCO;"), carbonate (CO32‘)
and sulfate (SO42_) in soils, waters, and air (Kaushal
et al. 2017, 2023b, 2024). Corrosivity is related to an
increase in the chloride to sulfate mass ratio (Edwards
and Triantafyllidou 2007; Stets et al. 2018), alkalinity
(Edwards et al. 1996), and dissolved oxygen, temper-
ature, and pH; neutral waters are not particularly cor-
rosive but acidic (pH<6.5) and alkaline (pH>7.5)
waters can be corrosive when alkalinity is low. As
an important secondary effect of freshwater saliniza-
tion, many biogeochemical processes associated with
FSS can also mobilize diverse chemical cocktails,
which refer to distinct elemental mixtures with shared
sources or pathways of transport or transformation in
the environment (Kaushal et al. 2018a, b, 2019, 2020,
2021, 2024; Shelton et al. 2024). The chemical cock-
tails of FSS can be linked to ‘chain reactions,” where
chemical products from one biogeochemical reaction
influence subsequent reactions, chemical mixtures,
and ecosystem responses in the environment. More
work is needed to predict how climate change and
variability will alter the spread and severity of diverse
FSS impacts, chemical cocktails, and chain reac-
tions across natural, engineered, and socio-ecological
systems.

Why do we need to anticipate the double impact
of salinization from land and sea?

There have been advancements in our knowledge of
the causes and consequences of freshwater saliniza-
tion, but there are major knowledge gaps regarding
the double impact of salinization from land and sea
on freshwaters that we address in this paper. One
emerging question is related to the complex effects of
climate change: how will the interaction between cli-
mate change and human activities alter the sources,
fluxes, storage, and flowpaths of different salt ions
from headwaters to coastal waters? Although less
explored, the effects of climate change can have
opposing or synergistic forces on salinity along riv-
ers. Increases in rain and floods can reduce saltwater
intrusion whereas droughts can enhance saltwater
intrusion into tidal freshwater zones (Fig. 1). Warm-
ing temperatures can reduce salinity in streams and
rivers affected by road salt pollution during winter
seasons, but they can also increase salinity due to
evaporative concentration during summer seasons.
The balance of opposing, reinforcing, and interac-
tive forces of climate change on salinity across space
and time along the freshwater-marine continuum is
not well known. There may be cases where fresh-
water in rivers is becoming saltier due to increased
watershed salt pollution and saltwater intrusion into
tidal freshwater zones (Fig. 1), but saltwater ecosys-
tems further downriver along estuaries and coastal
waters are becoming fresher due to increased floods
and dilution. The complex effects of climate change
and the role of river discharge on influencing salinity
risks represents an emerging knowledge gap for many
world regions (Fig. 1).

We do not completely understand whether there
are similar effects of salinization from both land and
sea on chemical, biological, and physical processes.
For example, why does salinization lead to acidifi-
cation or alkalinization in certain ecosystems, and
is there a difference in responses across time scales
and along non-tidal and tidal waters? What are the
site specific conditions influencing the trajectory of
acid—base status in response to salinization along
the freshwater-marine continuum? In addition, what
are the effects of salinization on the carbon cycle?
How does salinization affect dissolved inorganic car-
bon (DIC) and river alkalinization? How can salini-
zation alter the absorption or efflux of atmospheric
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Fig. 1 Salinization exerts a growing double impact on fresh-
waters from both land and sea. Salt pollution from land is
increasing concentration of multiple salt ions in rivers world-
wide (Kaushal et al. 2019, 2023a, b, 2024). At the same,
decreased freshwater flows, droughts, and drying rivers can
also increase saltwater intrusion risks. Variability in the loca-
tion of the salt front of rivers and estuaries likely depends on:
tides, winds, waves and storm surges, increased precipitation,

carbon dioxide (CO,) along rivers? Why does salini-
zation sometimes cause an increase in dissolved
organic carbon (DOC) concentrations and quality
(increases in protein-like and reactive fractions) but
cause decreases in DOC concentrations and qual-
ity (increases in more recalcitrant humic fractions)
in other cases? In this paper, we define connections
between salinization and changes in acids and bases,
metals, and carbon and nutrient cycles, and we also
synthesize salinization’s direct, indirect, and interac-
tive effects on many biogeochemical cycles. We pro-
pose the new concept of salinization ‘chain reactions’
extending from elemental interactions to sequences of
alterations in organisms, ecosystems, infrastructure,
and Earth’s biogeochemical cycles (Fig. 2).

Until now, salinization of inland waters and salt-
water intrusion impacts have been typically studied
and managed separately due to disciplinary divisions
and boundaries among hydrology, stream ecology,
soil science, limnology, estuarine science, engineer-
ing, planning, and oceanography. Here, we investigate

@ Springer

bathymetry, dredging deeper channels, sea level rise, degree of
mixing, upriver freshwater withdrawals for agriculture, power,
and water consumption, and other complex factors (Najjar
et al. 2010; Ralston and Geyer 2019; Tian 2019; Lassiter 2021;
Valle-Levinson and Li 2023). Tidal freshwaters and low salin-
ity zones along streams, rivers, estuaries, and wetlands are the
most at risk from the double impact of salt from land and sea.
Graphics modified from IAN Symbol Library and Canva

how salinization exerts a growing double impact on
freshwaters from both land and sea due to increased
salt pollution, decreased freshwater flows along river
systems, and saltwater intrusion (Fig. 1). The causes
and consequences of salinization have not been com-
pared from headwaters to coastal waters, even within
the same geographic regions of the world. This lack
of connection in our understanding of salinization
between inland and coastal waters opens up a new
research frontier and question: How will the combi-
nation of freshwater salinization from land and salt-
water intrusion from the ocean impact ecosystems,
infrastructure, water, energy, and food production,
and global biogeochemical cycles from headwaters
to coasts? We make new connections among salt and
different biogeochemical chain reactions and their
emerging risks. We discuss the double impact of salt
from both land and sea on multiple elemental cycles
together, which is not always considered. We dem-
onstrate that there is an added value of putting all of
these elements together to anticipate a more holistic
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and comprehensive sequence of cascading impacts on
water quality and ecosystem services from headwa-
ters to coasts.

A salinization risk framework from headwaters
to coasts in a changing climate

Here, we synthesize and conceptualize a saliniza-
tion risk assessment framework from headwaters to
coasts. Risks can be defined in many different ways.
We consider salinity risks as the intersection of: (1)
hazards, (2) probability, (3) salt exposure history, and
(4) vulnerability (e.g., a community is at risk if they
are exposed to a hazard or are more vulnerable to that
hazard). These types of conceptual frameworks have
been widely used for analyzing risks and vulnerability
associated with climate change and flooding (Brooks
2003). We explore how the frequency and magni-
tude of salinization events has been shifting spatially
and temporally from headwaters to estuaries. We
explore three major questions for guiding future pre-
dictions, mitigation, and management: (1) how will
salt sources, transport, and storage change in water-
sheds in response to climate change and variability?,
(2) how will salinization trigger chain reactions and
cascading impacts from headwaters to tidal waters?,
and (3) and how will saltwater intrusion due to sea
level rise shift ecosystem functions and services? We
illustrate how salinization risks can be associated
with ‘fast’ processes, which occur over shorter time-
scales from hours to days and ‘slow’ processes, which
occur over longer time periods from years to decades
(e.g., Michael et al. 2005, 2017; Kirwan and Gedan
2019; Tully et al. 2019a, b). Anticipating changes in
salinity sources, salt retention, biogeochemical chain
reactions, and saltwater intrusion from headwaters
to coastal zones will improve FSS monitoring, mod-
eling, and management strategies globally (Figs. 1
and 2).

In our salinization risk framework, we synthesize
10 interactive risks based on data from: (1) original
field and lab experiments, (2) water quality moni-
toring across space and time, and (3) case studies
from the global literature. More details on all data
sources are available in Supporting Information. Each
risk that we identify in this paper also represents an
emerging frontier of salinization research for further
exploration. Although we highlight examples from

the intensively monitored Chesapeake Bay region and
regions throughout the U.S., categories of predictions
may be applicable to other regions globally. We pre-
dict that climate change and variability will increase
salinization, which is already occurring along both
ends of the freshwater-marine continuum (e.g., Her-
bert et al. 2015; Kaushal et al. 2018a, 2022, 2023b,
c; Little et al. 2022; Maas et al. 2023; Shelton et al.
2024). In addition, we show that salinization triggers
chain reactions along the freshwater-marine contin-
uum with implications for different ecosystem func-
tions and ecosystem services (Fig. 2). We propose
the need for better identification and anticipation of
diverse salinity risks and collaborative partnerships in
regions where salinity monitoring is difficult. Overall,
we synthesize a set of interactive risks regarding how
climate change, pollution, and saltwater intrusion will
cause cascading effects affecting water quality, infra-
structure, and ecosystems extending from headwaters
to tidal waters.

Part 1: anticipating changes in watershed salt sources,
transport, and storage

Interactive risk 1: Watershed sources and transport of
salt will shift with global warming and droughts.
Climate change alters many direct and indirect
salinization risks. More work is needed to fully pre-
dict the effects of global warming and intensification
of the hydrological cycle on freshwater salinization,
but some large-scale impacts have emerged such
as changing regional ocean salinity; some areas of
Earth’s oceans are becoming saltier and other areas
are becoming fresher due to regional changes in rain-
fall and precipitation patterns and increasing glacial
meltwater (Durack et al. 2012). Analysis of long-term
changes in ocean salinity imply that there could be a
16-24% amplification of the global water cycle and
evaporation and precipitation in a 2-3 C° warmer
world (Durack et al. 2012). Some semi-arid and
arid regions are expected to become drier, and some
humid regions may become wetter (Zaitchik et al.
2023), which could amplify or counteract the effects
of salinization based on changes in sources, storage,
and transport (Lintern et al. 2021, 2023). The effects
of warming and droughts on salinization has been a
growing topic of concern primarily in dry environ-
ments (Jeppesen et al. 2020; Lintern et al. 2023).
Droughts can increase freshwater salinization through

@ Springer
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Salinization Chain Reaction Risks
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«Fig. 2 Examples of different chain reactions triggered by
salt as part of Freshwater Salinization Syndrome, which can
influence the role of major ions, organic matter, and nutrients
in degrading ecosystem services and causing water quality
issues. Superscripts in the figure correspond to literature ref-
erences for specific types of chain reactions that are provided
in this caption. For example, impacts on corrosion can be
found in Pieper et al. (2018)'; Stets et al. (2018)% Zhou et al.
(2021)*; Kaushal (2016)*. Impacts on pipe scaling can be
found in Li et al. (2022a, b)’; MacAdam and Jarvis (2015)%;
Cao et al. (2022)". Impacts on acidification and alkalinization
can be found in Bui (2017)%; Zalizniak et al. (2009)°; Zhao
et al. (2022)'°. Impacts on contaminant binding can be found
in Navarro et al. (2022)'!; Rodriguez-Liébana et al. (2010)'%;
Yin et al. (2022)"3; Acosta et al. (2011)'. Impacts on decom-
position and carbon cycling can be found in Oliveira et al.
(2021)"%; Connolly et al. (2014)'%; Weston et al. (2011)'7;
Almeida Janior et al. (2020)'8. Impacts on microbial functions
and pathogen survival can be found in Huq et al. (1984);
DeVilbiss et al. (2021)%% Van Gray and Ayayee (2024)21,
Impacts on eutrophication and nutrient mobilization can be
found in Lind et al. 2018%%; Radosavljevic et al. (2022); Sal-
cedo et al. (2024)**; Galella et al. (2023a, b)*>; MacLeod et al.
(2011)%; Steinmuller and Chambers (2018)%". Impacts on
algal blooms can be found in Osburn et al. (2023)%%; Yu et al.
(2022)%; Duval et al. (2018)*°. Impacts on greenhouse gases
can be found in Ardén et al. (2018)*!; Neubauer et al. (2013)?;
Dang et al. (2019)*; Xie et al. (2020)**; Weston et al. (2014)*

evaporative concentration of salt ions (Kaushal et al.
2023b), losses in plant cover causing losses in regu-
lation of the hydrologic cycle (Perri et al. 2020),
decreases in dilution capacity (Lintern et al. 2023),
changes in human water uses, increased irriga-
tion impacts on salinization during drier conditions
(Thorslund et al. 2021), and complex feedbacks lead-
ing to aridity or desertification (D’Odorico et al.
2013; Perri et al. 2020).

In response to global warming and droughts, there
are also other important human feedbacks on salin-
ity in watersheds. For example, per capita water
consumption can increase with temperature, par-
ticularly due to increased use of water for irrigation
for home lawns, swimming pools, and luxury uses
by affluent communities (Balling et al. 2008); these
water uses represent 60-75% of residential water
use in some regions (Balling et al. 2008). There can
be increased seasonal variability of wastewater dis-
charges in response to climate change (Khalkhali and
Mo 2020), and wastewater has been shown to be a
major source of salinity in watersheds (Bhide et al.
2021; Grant et al. 2022). Socioecological feedbacks
can increase salinization of source waters in at least
two ways: (1) facilitating the evapotranspiration of

irrigated soils (based on water withdrawals) in green
space in urban settings (thereby offsetting salt dilu-
tion) (Qiu et al. 2017); and (2) increasing the rate
at which water passes through homes, where salty
chemicals (e.g., clothing detergents and household
products) are added to waste streams and subse-
quently discharged back to freshwaters (Rippy et al.
2024). Understanding the feedback between salinity
and changes in human water consumption and man-
agement in response to climate change presents a
challenge (Fig. 1).

In humid climates, we anticipate that warming
temperatures and changes in precipitation will also
interact with underlying geology to increase major
ion concentrations and/or fluxes through human-
accelerated weathering (Kaushal et al. 2013, 2017;
Raymond 2017; Kopacek et al. 2017a, b; Crawford
et al. 2019). Under future climate scenarios, river
water temperatures are predicted to increase on aver-
age by approximately 0.8—1.6 °C for 2071-2100 rela-
tive to 1971-2000 (Van Vliet et al. 2013). Warming
temperatures influence physical properties of water
including mineral solubility and dissolution rates
(Kaushal et al. 2010; Raymond 2017; Li et al. 2024a).
Increased salinity also modestly reduces the specific
heat capacity of water, which allows water to increase
in temperature more quickly and cool off more slowly
(Millero et al. 1973; Sharqawy et al. 2010). Human-
accelerated weathering increases concentrations of
alkalinity, SO,*~, HCO;~ and CO,*", Ca**, and other
ions, which all can contribute to rising salinization
and alkalinization trends (Kaushal et al. 2013, 2017,
2023a, b, c, 2024).

Human activities and climate change are accel-
erating geological processes, which are influencing
the concentrations and compositions of major ions
in streams and rivers, in addition to changes in pol-
lution sources. Annual watershed fluxes of major
ions (Na*, CI~, Ca®*, Mg?*, K*, and alkalinity) have
been significantly increasing in some major tributar-
ies of the Chesapeake Bay and other rivers draining
the U.S. East Coast over previous decades (Fig. 3)
due to human-accelerated weathering, increased ion
exchange from salt pollution, and changes in atmos-
pheric acid deposition (Kaushal et al. 2013, 2017,
2018a, b). Annual riverine fluxes of major ions per
unit watershed area in Fig. 3 are sometimes over 100
times greater than small forest reference watersheds
(Likens et al. 1967; Watmough and Dillon 2004), but
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riverine fluxes of SO,>~ show a significant decrease
in some watersheds over recent decades because of
acid rain regulations and decreased SO, emission
from coal fired power plants (Fig. 3). In Europe, the
SO,>~ content has also decreased significantly in
agricultural fertilizers, due to the reduction in the use
of (NH,),SO,, which acidifies soils, and the reduc-
tion in the use of H,SO, (and the increasing use of
H;PO,) in the production of P fertilizers (Kopéacek
et al. 2014a, b).

Weathering of geologic materials is acceler-
ated by rising temperatures in watersheds and riv-
ers (Kaushal et al. 2010, 2023b; Raymond 2017),
decreased ice cover and exposure of rocks to weath-
ering agents (Kaushal et al. 2013, 2017; Drake et al.
2018; Crawford et al. 2019), and changes in precipi-
tation, temperature, and freeze thaw cycles (Kopacek
et al. 2017a). Easily weathered construction materials
and agricultural lime are affected disproportionately
thereby contributing to enhanced weathering fluxes
from human-dominated watersheds (Barnes and Ray-
mond 2009; Kaushal et al. 2017; Moore et al. 2017).
In some regions, urban watersheds can export almost
800% more dissolved inorganic carbon (DIC) than
forested watersheds and 200% more DIC than agri-
cultural watersheds (Barnes and Raymond 2009). In
the future, freshwater salinization could increase due
to climate and land use change, accelerated physi-
cal and chemical weathering, and increased mineral
solubility.

In wetter and colder climates, warming tempera-
tures may decrease the perceived need for road salt
use in the future (Fig. 4A), but urbanization is also
simultaneously increasing thereby leading to more
roadways that will require salting (Kaushal et al.
2005; Rossi et al. 2022). Despite warming tempera-
tures, annual fluxes of Na* and C1~ ions have signifi-
cantly increased over the past 40 years in major tribu-
taries of the Chesapeake Bay and other regions in the
northeastern U.S. (Fig. 3). In some cases, warmer
temperatures have been shown to decrease saliniza-
tion from road salt (Arvidsson et al. 2012; Stirpe et al.
2017; Kaushal et al. 2022), but there have been only
relatively short-term annual salinity reductions or
substantial lags in trends due to variations in hydro-
geology and retention of salt ions in soils and ground-
water (Novotny and Stefan 2010). If road salt applica-
tions were discontinued, it is projected that it would
still take some surface waters 10-30 years before

chloride concentrations would return to natural levels
(Novotny and Stefan 2010). It is likely that long-term
increases in urban impervious surface cover (increas-
ing surface area of roads and parking lots requiring
deicers) can overwhelm impacts of warming win-
ters to sustain long-term salinization trends in some
regions.

Salinization is still increasing in regions experi-
encing a decrease in snow. In the Washington D.C.
region, there has been decreased snowfall over the
past century (Fig. 4A) (Kocin and Uccellini 2016).
From 1965 to 2005, mean, minimum, and maximum
temperatures were increasing at rates ranging from
0.42 to 0.46 °C per decade in the northeastern U.S.,
and the fastest rates of warming were during the win-
ter months (Burakowski et al. 2008). Yet, there have
still been more intense snow events over shorter time
periods during recent decades leading to increased
salinity peaks in many streams and rivers includ-
ing the Potomac River (Fig. 4B) (Kocin and Uccel-
lini 2016). Interestingly, there has also been increas-
ing salinization during drought years with minimal
or no snow due to decreased dilution from runoff
(Fig. 4C). Overall, there has been increased salini-
zation of freshwaters with increased variability of
salinity pulses from winter snowstorms in the north-
eastern U.S., including increasing baseline specific
conductance during non-winter months due to the
steady accumulation of road salt in soils and ground
water (Kaushal et al. 2005) (Fig. 4D). In addition,
an increase in rain on snow events may also enhance
transport of salt pollution to freshwaters. Approxi-
mately 53% of the contiguous U.S. is impacted by
rain on snow events with the highest frequency in
the northeastern U.S. and western mountains with
greater than 3 rain on snow events per year (Seybold
et al. 2022). If road salt is applied during snow events
followed shortly thereafter by heavy rains (or snow-
melt), it could change pathways by which salt enters
streams and rivers. Thus, there can be both syner-
gistic and reinforcing or opposing and counteracting
forces that determine the net rates of salinization in
the future that should be considered holistically.

Interactive risk 2: More intense precipitation pat-
terns will amplify watershed salinity pulses.

Salinity could become increasingly pulsed in
some regions due to changes in precipitation and
these pulses could be amplified by the interaction
between climate variability and human activities
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Fig. 4 (Panel A) Decreasing snowfall trend in Washington
D.C. over 100 years from National Oceanic and Atmospheric
Administration (NOAA) data. (Panel B) Increasing long-term
trends in chloride concentrations with extreme pulses dur-
ing recent years in the Potomac River at Little Falls Pumping
Station near Washington D.C. from U.S. Geological Survey
(USGS) data. (Panel C) Increasing specific conductance dur-

(Daley et al. 2009; Kaushal et al. 2014). Based
on long-term data analyses, the frequency of both
extreme high and low-flow discharge events in
streams and rivers has increased by approximately
100% from historical conditions across many
regions of North America (Dethier et al. 2020).
Pulses are large increases in concentrations or
fluxes over relatively short periods of time (Kaushal
et al. 2008, 2014). In some regions, rainfall could
decrease but intensity of rainfall could increase over
shorter time scales such as extreme storm events
(Asadieh and Krakauer 2017; Naz et al. 2018). In
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coastal waters, high water levels associated with
extreme storms and king tides (i.e., the highest
high tide of the year) may serve as a predictor for
future freshwater saltwater intrusion events and
help us know what the “new normal” will look like
for coastal areas impacted by sea level rise and land
subsidence. In addition to storms, droughts can also
lead to increases in specific conductance and salin-
ity and vulnerability to saltwater intrusion events
(e.g., Fig. 4C).

Streamflow varies regionally and profoundly
affects salinity risks, and contributions of low
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streamflow to river discharge is increasing in some
regions whereas low flow is decreasing in other
regions (Rice and Hirsch 2012; Rice et al. 2017).
For example, some rivers in the northeastern U.S.
have experienced increasing trends in streamflow
due to increased precipitation (Zhang et al. 2010a;
Rice et al. 2017). During periods of decreased
streamflow, low flow in tidal rivers can induce the
upstream encroachment of salt fronts (Tian 2019);
for example, there was an increase in specific con-
ductance in the Potomac River upstream of its
estuary, as streamflow decreased during a regional
drought (Fig. 4C). Thus, in addition to salinity
pulses from land to coasts based on road salt appli-
cations (Bubeck et al. 1971), there may be salinity
pulses from the coast towards the land based on
droughts and saltwater intrusion (Li et al. 2024b).
Changes in runoff would not only influence dilu-
tion capacity and attenuation of salty inputs but also
affect the sources, timing, fluxes, and flowpaths of
salt ions transported in watersheds.

There could also be more extreme winter salinity
pulses from road salt application due to shifts in the
frequency and magnitude of both snow events and
rain on snow events in colder regions. In the eastern
U.S., there was an increase in extreme snowfall events
in the 1950’s and 1990’s with concomitant pulses in
chloride concentrations in the Potomac River dur-
ing the corresponding period of measurement in the
1990’s (Fig. 4B) (Kocin and Uccellini 2016). El Nifio
and La Nifia events can also influence snowfall in the
Mid-Atlantic U.S. and elsewhere. With increasing cli-
mate change and global warming, there is increased
water vapor in the atmosphere contributing to cli-
mate variability. For example, the dew point has been
increasing over time in many regions of the U.S. (Wu
and Wang 2021). When air can hold more moisture,
it rises and cools due to adiabatic cooling, and then
drops more precipitation as either rain, snow, or sleet
depending on atmospheric temperatures. Changes in
the timing, duration, and magnitude of precipitation
events affect flushing and dilution of salts from water-
sheds, which could alter pulses in concentrations and
fluxes of different salt ions and associated chemical
cocktails.

Land use change can further interact with winter
precipitation variability to amplify salinity pulses
(Kaushal et al. 2014). Impervious surface cover is
strongly related to salinity in urban streams (Kaushal

et al. 2005; Baker et al. 2019) and impervious sur-
faces can efficiently convey roadway chemicals to
waterways during precipitation events. In some cases,
freshwater ecosystems may become more adapted to
lower salinity levels during warmer years with mini-
mal snow and road salt applications and then are
exposed to extreme salinity events (sensu DeLaune
et al. 2021). More extremes in salinity and tempera-
ture could influence water quality and cause stress
in organisms and/or their ability for osmoregulation
and adaptation to a more variable environment (Van
Meter et al. 2011; Duan and Kaushal 2013, 2015;
Walker et al. 2020; Garcia et al. 2024). It may become
harder for cities and municipalities to manage, plan,
and budget for extreme snow events leading to pulses
in road salt application rates across years (Matthews
et al. 2017). We anticipate that variability in road salt
application rates across dry and snowy winters could
have lingering biogeochemical consequences and
impact water quality spanning over multiple years
(Novotny and Stefan 2010) (Figs. 3 and 4).

Interactive risk 3: Salt retention within watersheds
will increase on regional, continental, and global
scales.

The limited capacity of watersheds to flush out
salts during precipitation events can lead to long-term
storage and rising salinity trends in streams, rivers,
and lakes (Kaushal et al. 2005; Kelly et al. 2008; Lin-
tern et al. 2023; Van Meter and Ceisel 2024). Across
the U.S., there are varying relationships between
streamflow and concentrations of Na*, Ca®*, Mg**,
Cl~, and SO42_in streams and rivers (Fig. 5). Concen-
trations of Na*, Cl~, and SO42_ decrease with increas-
ing streamflow due to dilution, but there appears to
be stabilization of concentrations (plateaus) for these
major ions at the highest levels of streamflow (Fig. 5).
Howeyver, if salt accumulation in catchments increases
during dry years, salt ion concentrations in receiving
waters may actually increase with increasing runoff
in wet years, as observed in Europe (Kopacek et al.
2017b). Interestingly, concentrations of Ca®" and
Mg** are less controlled by streamflow and hydrol-
ogy, as compared to the more mobile ions of Na*,
CI™, and SO42_ (Fig. 5). Thus, the potential flush-
ing rates of salt ions from watersheds likely depends
upon climate, geology, human activities, flowpaths,
and time (Lintern et al. 2023; Kaushal et al. 2023b),
and also the different types of salt ions (Fig. 5).
Changes in agricultural fertilization and drainage of
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Fig. 5 Relationships between streamflow and concentrations
of sodium, calcium, magnesium, chloride, sulfate in streams
and rivers across the U.S. monitored by the U.S. Geologi-
cal Survey (USGS). Concentrations of major ions generally

farmlands are also other important factors. Precipita-
tion and streamflow are increasing in some regions,
which could flush and dilute salt ions and contribute
to decreasing long-term trends (Murphy and Sprague
2019). However, road salt is accumulating in ground-
water and soils at faster rates than it can be flushed
out (Cooper et al. 2014), which is contributing to
long-term increasing chloride and sodium trends in
some watersheds and their receiving waters (Kaushal
et al. 2005; Daley et al. 2009; Kelly et al. 2008; Van
Meter and Ceisel 2024) (Table 1). Although NaCl has
been commonly considered to be inert and mobile, it
can be retained up to decades in watersheds (Shaw
et al. 2012).

A biogeochemical salt budget for the entire con-
tinental U.S. showed that a substantial fraction of
anthropogenic salt input is retained in watersheds
before reaching streams and rivers (Kaushal et al.
2023a). Salt retention is an important process in other
watersheds globally (Table 1). Over a 30-year period,
approximately 36% of total inputs of chloride have
been retained in watersheds of the Chicago Metro-
politan Area, and Cl™ is accumulating in groundwater
at a rate of 480 kilotons per year (Van Meter and Cei-
sel 2024). It is important to note that accumulation in
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decrease with increases in runoff, but there appears to be a sta-
bilization of concentrations (plateau) for many major ions at
the highest levels of runoff. Information on USGS stream and
river sites can be found in the Supporting Information

groundwater may not always be considered perma-
nently ‘retaining’ salt, rather just redistributing it to a
slower moving pool relative to surface water. Over a
one-year period, 35% of chloride inputs were retained
in the Lake Constance watershed in Europe with only
65% of chloride from anthropogenic sources reach-
ing the lake (Miiller and Géchter 2012). An annual
chloride budget revealed that 77% of chloride from
road salt was retained within a large watershed drain-
ing the Minneapolis-Saint Paul metropolitan area in
Minnesota, USA, and there was an average annual
chloride retention of 72% in 10 of the subwatersheds
(Novotny et al. 2009). Chloride retention in a metro-
politan region of Canada ranged from 40-90% and
was related to urban land use patterns (Oswald et al.
2019). A growing body of work supports the grow-
ing importance of quantifying salt storage and reten-
tion within soils and groundwater in the future (sensu
Shanley 1994) (Table 1).

Although less considered from the perspective
of global climate change, impacts on the salt cycle,
biological formation of organochlorines can repre-
sent an important mechanism for watershed chloride
retention and transformation (Kaushal et al. 2023a),
in addition to biological uptake and adsorption of
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Table 1 Examples of retention of sodium and chloride in watersheds around the world

% Cl- retained Location Period Watershed area (km?) References
36% Chicago, Illinois, USA 30 years (1990-2020) 18,600 Van Meter and Ceisel (2024)
35% Lake Constance Catchment, 1 year (2006) 11,000 Miiller and Gichter (2012)
Switzerland Germany and
Austria
72% Minneapolis/St Paul MN, 5 years (2000-2005) 4150 Novotny et al. (2009)
USA
40-90% Southern Ontario, Canada Each water year 2007-2011  40.5-406 Oswald et al. (2019)
28-45% Chicago, Illinois, USA 5 months (Nov 1972 to April 376.5 Waulkowicz and Saleem (1974)
1973)
32% New York, USA 1 year (Nov 1971- Nov 396 Diment et al. (1973)
1972)
52% New York, USA 1 year (Nov 1970- Nov 396 Diment et al. (1973)
1971)
11-40% Vermont, USA 1 year (1970) 111.2 Kunkle (1972)
50-65% Helsinki, Finland 1.5 years (July 1998-Dec 1.7-24.4 Ruth (2003)
1999)
35% Boston Metro, Massachu- 4 months (December 1969-  168.4 Huling and Hollocher (1972)
setts, USA March 1970)
55% Toronto Metro, Ontario, 2 years (1989-1990) 104 Howard and Haynes (1993)
Canada
59% Rochester, New York, USA 1 year (1969-1970) 435 Bubeck et al. (1971)
34-69% New York, USA 1 year (2012-2014) 1000 Gutchess et al. (2016)
10.8-23.5% Ontario, Canada 1 year (2004-2005) 27 Meriano et al. (2009)
10-47% New Hampshire, USA 1 year (Oct 2006-Sept 2007) 1.42-78.5 Trowbridge et al. (2010)
53% Alberta, Canada Each water year for 12,971 Laceby et al. (2019)
2010-2017
40% City of Toronto, Ontario, Each water year for 100 Perera et al. (2013)
Canada 2004-2008
2-62% Pennsylvania, USA Annually for 20112018 73.9-934 Rossi et al. (2022)

CI™ and other anions on Al and Fe oxyhydroxides.
Biological organochlorine formation can be enhanced
by warming temperatures and faster reaction kinetics.
Kopacek et al. (2014a, b) found that on average 14%
chloride was retained in agricultural soils, and this
percentage was consistent with organochlorine forma-
tion in soils. Similarly, Bastviken et al. (2007, 2009)
showed that there is chloride retention in Swedish for-
est soils which ranges from 4 to 40% as a function of
temperature (e.g., with warmer soils potentially form-
ing more organochlorines). The effects of climate
change and warming temperatures on organochlorine
formation warrant further investigation as part of
the anthropogenic salt cycle (Kaushal et al. 2023a).
Organochlorine formation and salt storage in soils
and groundwater can lead to salt retention in water-
sheds globally (Table 1).

Part 2: anticipating chain reactions from headwaters
to coastal waters from salinization

Interactive risk 4: Salinization exhibits ‘pulsed, and
episodic’ versus ‘sustained and cumulative’ effects
due to changing climate that drive chain reactions
and formation of harmful chemical cocktails.

Salt is a strong driver of chain reactions along
flowpaths, which can lead to mobilization of second-
ary contaminants and changes in acidity and alka-
linity (Kaushal et al. 2018b, 2019, 2020, 2022; Haq
et al. 2018; Galella et al. 2021). For example, there
are strong positive relationships between specific con-
ductance and concentrations of salt ions and nutrients
in streams and rivers across the U.S. (Fig. 6). Many
different elements are either co-mobilized (through
biogeochemical reactions) or transported along with
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salt ions to maintain charge balances in watersheds
(Kaushal et al. 2018b, 2019, 2020, 2024) (Fig. 6).
There are also plateau or threshold relationships
between specific conductance and pH due to influ-
ence of salt ion mixtures and alkalinity on acid buff-
ering capacity (Fig. 6), which have been described in
previous work linking salinization and alkalinization
in streams and rivers across the U.S. (Kaushal et al.
2013, 2018a). Thus, salt has the potential to trig-
ger chain reactions among many different elements,
which may be either both short-term (pulses) or sus-
tained and cumulative changes.

Changes in the frequency and magnitude of salin-
ity pulses from winter road salt events, irrigation
return flows, agricultural runoff, saltwater intrusion

events, droughts, and other climatic factors have
the potential to trigger mobilization of secondary
contaminant pulses (Ardén et al. 2013; Kaushal
et al. 2018b, 2019; Galella et al. 2023a, b a,b). For
example, salinity pulses can lead to the sequential
extraction of elements from soils and sediments in
freshwaters (e.g., adsorption and solubility changes
with ionic strength and pH, ion exchange, mineral
dissolution, redox effects, changes in alkalinity,
hardness and toxicity) (Kaushal et al. 2019, 2021,
2024) (Fig. 6). In addition, there can be ion pair-
ing during salinity pulses leading to temporary
bonds that allow Na* and Cl~ ions to “pull” many
other ions such as nitrate, phosphate, sulfate and
others within ground and surface waters during
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Fig. 6 There are positive relationships between specific con-
ductance and concentrations of salt ions and nutrients and
dissolved inorganic carbon (as represented by alkalinity) in
streams and rivers across the U.S. monitored by the U.S. Geo-
logical Survey (USGS). These positive relationships demon-
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strate that many different elements are either co-mobilized or
transported along with salt ions in watersheds. Specific con-
ductance is a surrogate or proxy for many ions (Kaushal et al.
2018b, 2019, 2020, 2021). Information on USGS sites can be
found in the Supporting Information
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pulsed winter road salt, fertilizer runoff, and salt-
water intrusion events (Kaushal et al. 2024). Salt
tracer experiments in suburban stream ecosystems
can result in mobilization of ammonium (NH,"),
nitrate (NO;"7), potassium (K*), phosphate (PO43_),
and dissolved organic carbon (DOC) and signifi-
cant linear relationships between these chemicals
and added Na' concentrations (Fig. 7). However,
the effects of NaCl on mobilization of DOC and
nutrients in stream likely varies across streamflow,
seasons, and land use (Fig. 7). Salinization can also
trigger episodic pulses of toxic metals and nutrients
from sediments to streams and rivers (Kaushal et al.
2019, 2022).

In addition to pulsed and episodic effects, we also
need to anticipate sustained and cumulative effects
from chronic salinization due to legacy salt reten-
tion in watersheds during dry conditions or prolonged
saltwater intrusion. Sustained effects from chronic

salinization are related to storage of salt and chain
reactions in soils, groundwater, streams, rivers, res-
ervoirs, and estuaries (sensu slow changes described
in Michael et al. 2005, 2017). Groundwater storage
of salt contributes to corrosivity and mobilization of
radium, radionuclides, and metals (McNaboe et al.
2017; Lazur et al. 2020; Kaushal et al. 2024). Slow
effects of salinization can alter major cycles of car-
bon, nitrogen, phosphorus, sulfur, iron, and silica,
which control the productivity, functioning, and bio-
diversity of non-tidal and tidal freshwater ecosystems
(Herbert et al. 2015; Luo et al. 2019) (e.g., Fig. 2).
In coastal rivers and wetlands, chronically elevated
salt ion concentrations from repeated and frequent
saltwater intrusion can reduce the solubility of gas-
ses including dissolved O, (Supporting Information
Fig. S1), which could eventually trigger changes in
redox potentials (Supporting Information Fig. S2) and
alter reactions in sediments or stratified bottom waters
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Fig. 7 Experimental NaCl tracer additions in a suburban New
Hampshire stream (WHB) trigger “fast” mobilization of dis-
solved organic carbon (DOC), nitrogen (N), phosphorus (P),
and potassium (K). A) Break-through curve of Na' concen-
trations from the added NaCl at WHB; Regressions between
added Na™ concentrations and ambient concentrations of B)
ammonium (NH,*), C) nitrate (NO;7), D) potassium (K*), E)
phosphate (PO,>"), and F) dissolved organic carbon (DOC).
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Green points are from July 2015 and yellow points are from
June 2014. Each point represents a single sample, and linear
regressions were only included for statistically significant
(p<0.05) relationships. The effects of experimental stream
salinization may vary with streamflow and season. Informa-
tion on tracer addition methods can be found in the Supporting
Information
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Fig. 8 Salt impacts carbon cycling and bulk dissolved organic
matter (DOM) concentrations, as well as different fractions of
DOM through physical, biological, and chemical processes. These
processes can result in net increases or decreases in DOM concen-
trations or changes in DOM quality from headwaters to coastal
waters. Here, we summarize how changes in salinity impact:
(1) bulk DOM; (2) recalcitrant DOM, which is often considered
to be aromatic, high molecular weight humic-like substances typi-
cally terrestrial and soil derived (shown in brown arrows as abso-
Iute amount; Hansen et al. 2016); and (3) labile DOM, which is
often considered to be less complex aliphatic, protein-like sub-
stances typically microbial and plant leachate derived (shown in
green arrows as absolute amount; Hansen et al. 2016). Initially,
pulses in salinity cause rapid decreases in pH (Kaushal et al.
2022), making DOM, including humic fractions, less soluble in
soil, water, and streams (Green et al. 2009; Duan and Kaushal
2015). Over longer time scales, elevated salinity can cause alka-
linization through repeated H* depletion on soil exchange sites,
enhancing solubility of DOM, particularly aromatic and humic
fractions (Green et al. 2008, 2009; Duan and Kaushal 2015; Haq
et al. 2018). In soils and sediments, sodium dispersion can mobi-
lize organic matter through the destruction of soil aggregates,
and it can increase bulk DOM, as well as aromatic and non-
humic fractions up to a threshold before flocculation (Amrhein
et al. 1992, Green et al. 2008b, 2009, Duan and Kaushal 2015).
Along riparian zones and streams, invertebrate decomposers are
impacted by salinity thresholds, which alter decomposition rates
and concentrations of fine particulate organic matter, bulk DOM,
and changes in DOM quality (Entrekin et al. 2019; Berger et al.
2019). Within streams and rivers, elevated salinity can pose a
subsidy-stress relationship to primary producers and heterotrophic
microbial communities. Low levels of added salinity initially
cause decreases in osmotic stress, leading to increases in primary
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production and decomposition rates (Entrekin et al. 2019; DeVil-
biss et al. 2024), which could increase bulk DOM and protein-like
and microbially derived fractions of organic matter through exu-
dation. As salinity thresholds are exceeded, increases in osmotic
stress can lead to decreases in primary production and decompo-
sition rates, leading to decreases in overall DOM concentrations
and larger relative contributions of recalcitrant material (Entrekin
et al. 2019). Cell death due to desiccation or cell lysis caused by
osmotic stress can increase the contribution of aquatically sourced
DOM in streams (Duan and Kaushal 2015; Kaushal et al. 2022).
Along river flowpaths, salinity gradients along the freshwater-
marine continuum can affect whether different fractions of DOM
are degraded, oxidized, or mineralized by sunlight, UV radiation,
and photobleaching based on upon the chemical composition of
organic matter and the salt ion matrix (Minor et al. 2006; Schafer
et al. 2021). Along the entire freshwater-marine continuum,
increasing ionic strength also increases the solubility of proteins
up to a threshold, which depends upon salt ion compositions and
DOM substrate composition (salting-in), after which hydrogen
bond locations are taken up and solubility decreases (salting out)
(Kaushal et al. 2022; Hyde et al 2017). Across increased salinity
levels, Ca®*, Mg?*, and Na*, can lead to flocculation of organic
matter; flocculation can remove aromatic and humic fractions
preferentially and decrease bulk DOC concentrations (Abolfa-
zli and Strom 2021; Duan and Kaushal 2015). Overall, salinity
affects the cycling of carbon from headwaters to coastal waters
in many environmentally significant ways based on: organic sub-
strate composition, concentrations and compositions of the salt
ion matrix, previous salt exposure histories at sites, microbial
communities and adaptations to osmotic stress, and other site-
specific factors
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affected by hypoxia or anoxia (Luo et al. 2019). The
combination of deoxygenation and ion exchange from
salinization can also mobilize redox-sensitive metals
such as Mn, Fe, and Cu from sediments into solution
(Supporting Information Fig. S3), which has implica-
tions for mobilization of other metals and contami-
nants bound to Mn and Fe oxyhydroxides. Future pre-
dictions need to anticipate both pulsed and episodic
vs. sustained and cumulative biogeochemical reac-
tions associated with salinization.

Interactive risk 5: Salt pollution pulses and salt-
water intrusion events will contribute to “fast” pulses
of temporary acidification but “slow” and sustained
long-term alkalinization.

Over time, pulsed Na*, Ca?*, Mg?*, and K* inputs
from winter road salt, other salt pollution sources,
and saltwater intrusion can contribute to continual
alkalinization chain reactions from the displacement
of H" ions from soil and sediment exchange sites
by base cations and episodic acidification (Kaushal
et al. 2018a, b; Kaushal et al. 2024). The input of sea
salts onto coastal soils during atmospheric deposition
events can also be important for episodic acidification
and the mobilization of H (and other ions) in acidic
soils (Wright et al. 1988). On an ion basis, inputs of
Mg** and Ca®* ions have the potential to displace
more H* ions than Na* based on their size and charge
(Hussein and Rabenhorst 2001). Initially, this would
lead to ‘fast’ temporary acidification and pH depres-
sion (Kaushal et al. 2022; Ury et al. 2023), and then,
sustained and cumulative long-term alkalinization as
H* becomes depleted on soil ion exchange sites. In
areas affected by saltwater intrusion, soil alkaliniza-
tion is controlled by the accumulation of sodium and
other exchangeable base cations, in addition to the
displacement of H" ions (Hussein and Rabenhorst
2001; Arslan and Demir 2013).

There have been increasing alkalinity trends
in streams, rivers, and seas across diverse world
regions (Raymond et al. 2008; Kaushal et al. 2013
2017, 2018a; Stets et al. 2014; Drake et al. 2018;
Miiller et al. 2016; Najjar et al. 2020) due to acceler-
ated weathering, decreases in atmospheric acid dep-
osition, increasing production and use of alkaline
salts, and cumulative depletion of H from soil ion
exchange sites from increased Na* and salinization
(Kaushal et al. 2013, 2017, 2023a). Another impor-
tant pattern of changing climate is the increased
movement of dust (salts, base cations, and P) from

deserts to aquatic ecosystems (Brahney et al. 2014).
The increase in alkalinity and acid neutralizing
capacity has increased pH. Specifically, there have
been rising trends in pH in 66% of streams and riv-
ers draining the continental U.S. (Kaushal et al.
2018a), including the Mississippi River and Chesa-
peake Bay tributaries (Turner 2021; Waldbusser
et al. 2011). Human activities are now regulating
alkalinity and pH trends and pulses (both increases
and decreases) on a global scale. Increased pH may
decrease carbon dioxide (CO,) evasion and cause
some alkaline streams and rivers to become sinks
for CO, (Dubois et al. 2010). On the other hand,
increasing DOC and decomposition may contribute
to acidification in some cases and lead to increases
in pCO, (Couturier et al. 2022). In a wetter or more
variable climate, increases in the delivery of alka-
linity loads in rivers could contribute to variabil-
ity in coastal ecosystem responses to ocean acidi-
fication and alkalinization of estuaries and coastal
waters (e.g., Fig. 3). While an increase in alkalin-
ity and pH is beneficial to streams recovering from
acidic precipitation in response to the Clean Air Act
Amendments in the U.S. (Likens et al. 1996), it can
also alter changes in absorption of CO, from the
atmosphere, changes in ammonia toxicity, phospho-
rus sorption or desorption from sediments, changes
in organic matter solubility and carbon cycling, and
have effects on primary productivity, aquatic life,
and food webs (Kaushal et al. 2013). Thus, a future
challenge will be to better understand the potential
connections between salinization and alkalinization
of inland waters and estuaries across time and space
from increases in ion exchange, alkalinity genera-
tion from chemical weathering, and other biogeo-
chemical processes.

Interactive risk 6: Salt pollution and saltwater
intrusion will alter the quantity and quality of organic
carbon in freshwaters.

The future impacts of salinization on the con-
centration, composition, and structure of dissolved
organic carbon (DOC) also warrant attention. The
cumulative effects of different salt ions on the quan-
tity and quality of organic matter and DOC have
not been synthesized to our knowledge (Fig. 8);
this knowledge gap connecting salinization with the
cycling of DOC extends from headwaters to coastal
waters (Fig. 8). Although not fully understood yet, we
propose that impacts of salinity on organic matter and
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«Fig. 9 Experimental NaCl impacts on pH, dissolved inorganic
carbon (DIC), total dissolved nitrogen (TDN), and humic frac-
tions of dissolved organic matter (DOM) in sediments from
non-tidal and tidal freshwater sites along the Anacostia River.
Results are from an original experiment with further details
provided in Supporting Information. Organic matter indices
were identified using staRdom in R (Pucher et al. 2019), with
a higher value of BIX representing a larger contribution of
recent autochthonous material (Huguet et al. 2009) and higher
values of Coble’s Peaks (A, C, M, and T) representing larger
amounts of protein-like and humic-like organic matter, as asso-
ciated with each peak given in parentheses (Coble 1996). RU
denotes Raman Units, which is followed by the description
of the peak (Coble 1996). T (Protein-like) to C (Humic-Like)
is the ratio between Coble’s Peak T to Coble’s Peak C, with
higher values indicating a larger relative contribution of pro-
tein-like material. Experimental methods and additional results
are in the Supporting Information

organic substrates exposed to salt (Duan and Kaushal
2015; Haq et al 2018), (5) salt exposure history and
microbial communities at sites (Ury et al. 2023), and
(6) dissolved oxygen and redox conditions and redox-
sensitive metals with changing salinity (Supporting
Information Figs. S1-S3). The relative importance of
these six primary factors can be site specific (Fig. 8).
There may even be subsidy stress responses related
to Na* where organic matter decomposition rates
are slower in the presence of Na*t (Tyree et al. 2016;
Gruntz et al. 2022; DeVilbiss et al. 2024), which
cause nonlinear effects of increasing salinization on
decomposition. Ion mixtures may also affect decom-
position rates (Martinez et al. 2020) (Fig. 8). Some of
the changes (or lack thereof) in DOM composition or
concentrations could be due to an absence or reduc-
tion in certain groups/taxa of microbes with differ-
ent sensitivities to salt, and future work needs to link
salinization with changes in organic matter amounts
and quality and microbial communities.

Distinct fractions of dissolved organic matter
(DOM) respond differently to discrete salt ion pulses
and mixtures across varying pH ranges (Figs. 8 and
9, Supporting Information Figure S4). Increased Na*
from winter road salt pulses and saltwater intrusion
events can cause dispersion of DOM and then floc-
culation at higher salinities (Duan and Kaushal 2015;
Hagq et al. 2018) (Figs. 8 and 9). For example, NaCl
pulses can enhance mobilization of DOM across cer-
tain ranges of concentrations, dissolved organic nitro-
gen (DON), and protein-like fractions in roadside
soils and urban stream sediments due to a combina-
tion of increases in soil pH and increased solubility,

denaturing of proteins, and dispersion of organic mat-
ter (Amrhein et al. 1992; Green et al. 2008; Duan and
Kaushal 2015) (Fig. 8). Conversely, Ca’* and Mg>*
form a bridge between mineral surfaces and organic
matter, which decreases DOC solubility and increases
DOC flocculation. The phases and concentrations of
Fe are also important in governing DOC behavior in
this context as well. There can also be decreased sol-
ubility and increased ‘salting out’ of DOM and also
some metals at higher concentrations of salt; this has
important implications for DOM reactivity and bioa-
vailability and also contaminant partitioning between
dissolved and particulate phases (Turner 2003).
Changes in salt concentrations and pH alter optical
properties of organic matter and the rate and propor-
tion of DOC that is photochemically oxidized and
broken down by solar radiation to respective C-oxides
and lower molecular weight DOC (Fig. 8); these
forms of carbon can be more available for microbial
degradation (e.g., Kopacek et al. 2003). Thus, salin-
ity interacts with site-specific chemical mixtures to
alter the amounts, forms, and chemical and biological
reactivity of dissolved organic matter from headwa-
ters to coastal waters (Figs. 8 and 9).

Further insights into the effects of salinity on con-
centrations of DOC can be gained from analyzing
broader patterns across sites and analyzing relation-
ships between DOC and salt ions at individual sites.
Across the eastern U.S., there are decreasing rela-
tionships between DOC concentrations and concen-
trations of Na*, Ca**, and Mg** at some U.S. Geo-
logical Survey stream sites; this can be related to the
effects of increasing ionic strength on coagulation and
flocculation of DOC or a general inverse relationship
between DOC and base cations due to a shift in their
sources across shallow vs. deep flowpaths (Fig. 10).
However, a slightly different pattern emerges across
all sites. Concentrations of DOC appear to increase
initially with elevated concentrations of Na*, Ca’",
and Mg>* potentially due to sodium dispersion
effects on organic matter in soils at sites that repre-
sent the lower range of salinity, but then decrease as
ionic strength and coagulation and flocculation gen-
erally increase (Fig. 10). There may be competing
effects of different salt ions and pH on enhancing
solubility within certain ranges in salt ion concentra-
tions and compositions versus enhancing floccula-
tion within other ion concentration and composition
ranges. Typically, K* shows a strong positive linear
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Fig. 10 Relationships between Na*, Ca®*, and Mg>* (total
sum of these three base cations), and Kt and dissolved organic
carbon concentrations in streams and rivers across the U.S. In
addition, we present examples of relationships between dis-
solved organic carbon (DOC) and individual ions at specific
sites. Concentrations of DOC appear to increase initially with
elevated concentrations of Na*, Ca**, and Mg?* (sum of these
base cations) across sites in the Eastern U.S., but then decrease
likely as ionic strength and coagulation increases. However,

relationship with DOC across U.S. Geological Survey
sites (Fig. 10), which is likely because of its biologi-
cal importance as a limiting nutrient in terrestrial sys-
tems (Tripler et al. 2006). Overall, our analysis raises
new questions regarding the relationships between
different salt ions and the quantity, quality, and reac-
tivity of DOC transported along streams, rivers, and
estuaries.

In some cases, particularly when there is lower
pH or temporary fast acidification (Fig. 9), salt
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there are typically declining relationships between DOC con-
centrations and concentrations of Na*, Ca®*, and Mg?* at indi-
vidual local sites. Typically, K* concentrations show a strong
positive relationship with DOC concentrations, which is likely
because of the importance of biological controls on cycling
of potassium; potassium is a limiting nutrient in terrestrial
systems (Tripler et al. 2006). Information on U.S. Geological
Survey (USGS) sites can be found in Supporting Information
Table S1

pollution and saltwater intrusion can lead to DOC
decreases likely due to changes in solubility or floc-
culation (Duan and Kaushal 2015; Ardén et al. 2016;
Hagq et al. 2018; Ury et al. 2023) (Figs. 8 and 9). For
example, salt pulses at very high salinities can lead
to changes in particle size distribution, flocculation
of organic matter and inorganic colloids, and sedi-
mentation in streams and lead to streambed clogging,
which impact benthic habitats (Abolfazli and Strom
2021). At lower levels of salinity, salinization can
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actually lead to DOC increases due to dispersion from
Na* at higher pH ranges (Amrhein et al. 1992; Green
et al. 2008; Duan and Kaushal 2015; Haq et al. 2018)
(Figs. 8 and 9). Thus, the long-term impacts of salini-
zation on DOM concentrations and quality depend on
the balance of various processes such as short-term
acidification, long-term pH increase, sodium disper-
sion, and coagulation and flocculation of DOM due
to higher ionic strength and/or increasing calcium and
magnesium concentrations (Green et al. 2008; Hruska
et al. 2009; Abolfazli and Strom 2021) (Figs. 8 and 9).
In particular, the effects of different ion mixtures and
chemical cocktails containing Na*, Ca?*, Mg?*, and
K* on organic carbon quantity, quality, and microbial
decomposition warrants consideration in a changing
climate, particularly in freshwaters experiencing alka-
linization and higher pH (Fig. 8).

Interactive risk 7: Salinity pulses from chang-
ing weather, salt pollution, and saltwater intrusion
will alter nitrogen cycling from headwaters to tidal
waters.

From a watershed perspective, salinization has
the potential to extract N and other nutrients from
soils and sediments and increase N transport to
ground and surface waters under some conditions
and seasons (Duan and Kaushal 2015; Haq et al.
2018; Kaushal et al. 2019; Kinsman-Costello et al.
2023). Winter road salt mobilizes ammonium from
soil exchange sites near roads and increases soil
pH in acidic soils by displacing H* ions (Green
and Cresser 2008) (discussed in prediction 5). The
increase in pH enhances mineralization of organic N
and nitrification in these roadside soils, which may
increase N transport to ground and surface waters
(Green and Cresser 2008). Winter salinity pulses
from road salt can suppress denitrification in some
cases (Hale and Groffman 2006) and enhance dis-
similatory nitrate reduction to ammonium (Inamdar
et al. 2024). Interestingly, the potential for added
NaCl to significantly mobilize nitrogen from soils
and sediments may also be related to an increase
in mobilization of biologically labile organic mat-
ter and organic N that may be rapidly mineralized
to inorganic N (Fig. 9). Although less considered
from a climate change perspective, salinization can
alter the magnitude and timing of nitrogen delivery
to receiving waters during winter months when road
salt is applied (Galella et al. 2023b). From a water-
shed perspective, salinization influences the cycling

of N and multiple bioreactive elements together
(Duan and Kaushal 2015).

In response to sea level rise and saltwater intru-
sion, tidal freshwaters become less of an N sink and
more of an N source when considering fast biogeo-
chemical responses (Osborne et al. 2015). For exam-
ple, drought can lead to saltwater intrusion and fast N
mobilization from coastal agricultural fields (Ardén
et al. 2013). Slow and chronic saltwater intrusion can
also lead to large mobilization of inorganic N to tidal
freshwater marshes (Widney et al. 2019). In addition,
saltwater intrusion can also enhance mobilization of
NH,* from sediments to the water column of estuar-
ies through pairing of NH,* with base cations from
sea salts (Gardner et al. 1991); the process of ion
pairing refers to the association of oppositely charged
ions in solution by electrostatic Coulombic forces
without forming covalent bonds, which also influ-
ences movement of ions through watersheds (Kaushal
et al. 2024). Shifts in microbial community compo-
sition and function from salt stress can also shift the
predominant N cycling pathways, water quality, and
ecosystem services in estuaries (Franklin et al. 2017;
Dang et al. 2019; Neubauer et al. 2019; Batanero et al.
2022; Feng et al. 2023). Nitrate (NO;") is a major N
form in estuaries, and it can be assimilated into bio-
mass or transformed via two dissimilatory pathways:
denitrification and dissimilatory nitrate reduction to
ammonia (DNRA). Denitrification sequentially con-
verts NO;™ to NO,~, NO, N,O, and N,. Denitrifica-
tion has the potential for permanently removing N
from the ecosystem as N, gas, but saltwater intrusion
can lead to incomplete denitrification and production
of the greenhouse gas N,O (Jiang et al. 2023). In con-
trast, DNRA reduces NO;~ to ammonium (NH4+),
conserving N in the ecosystem.

Previous studies have shown that denitrification
is the dominant pathway in freshwater and interme-
diate salinities and generates alkalinity (biologically
mediated alkalinization). The relative importance of
DNRA increases in more saline waters, which could
alter the fate of N and decrease N removal via deni-
trification in estuaries (Gardner et al. 2006; Seo et al.
2008; Jiang et al. 2023; Gervasio et al. 2023; Huang
et al. 2024). For example, DNRA is more important
in C-rich systems with high C:N ratios like sediments
in estuaries. The potential for significant DNRA
exists in most soils also, but is more important under
anoxic conditions in microsites rich in low molecular
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weight C sources, and at high soil bioavailable DOC
to NO;™ ratios (Riitting et al. 2011). Over both fast
and slow time scales, there can be greater mobili-
zation of inorganic N from sediments in saltier and
more alkaline tidal rivers and marshes in response to
saltwater intrusion events and sea level rise.

Interactive risk 8: Salinity pulses from climate
change will amplify corrosion risks and reactions
with infrastructure from headwaters to coastal waters.

Infrastructure corrosion costs billions of dollars
per year, representing approximately 3% of the gross
domestic product of the U.S. (Koch et al. 2005) and
1-6% of the gross domestic product of South Korea
(Kim et al. 2011). Most of the costs are associated
with sectors such as drinking water and sewer sys-
tems, transportation, and defense, which can be
affected by salinization of groundwater, inland waters,
and coastal tidal waters (Koch et al. 2005). Corrosiv-
ity is commonly estimated by the ratios of the con-
centrations of chloride and sulfate ions to the concen-
trations of bicarbonate and carbonate ions (alkalinity)
(e.g., Edwards and Triantafyllidou 2007; Stets et al.
2018; Edwards et al. 1996). Concentrations and mix-
tures of major ions influencing corrosion are shifting
across local, regional, continental, and global scales
(Kaushal et al. 2005, 2013, 2018a, b, 2019, 2021,
2023a), which could influence corrosion potential of
freshwaters across “fast” and “slow” time scales.

As one example, pulses of C1™ have been increas-
ing in streams and rivers from road salt pollution and
climate variability (Figs. 3 and 4), and there have
been long-term decreases in SO,*~ loads in rivers
from acid precipitation regulations and changes in
application rate or composition of synthetic fertiliz-
ers (Fig. 3). Long-term diverging trends and pulsed
changes in the CI~ to SO,*>~ mass ratio (Fig. 3) can
trigger fast corrosion events, which can affect the
mobilization of Pb, Cu, and other metals from drink-
ing water pipes in the absence of adequate corrosion
inhibitors (Pieper et al. 2017, 2018). As highlighted
in Risk 5, pulsed salinity events can occur during
periods of temporary acidification and reduced alka-
linity during storms or road salt events (Kaushal et al.
2018a, b, 2022), which could increase corrosion risks
into the future because of more saline conditions. A
notable example of the ‘fast’ effects of chloride con-
tamination (from road salts) on mobilization of met-
als occurred in the drinking water supply of Flint,
Michigan, U.S.A. when the city failed to add proper
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amounts of corrosion inhibitors and test for elevated
concentrations of lead and copper in drinking water
(Pieper et al. 2017, 2018). Cascade events are also
possible, where salinity pulses in a watershed release
nitrate to drinking water (e.g., Galella et al. 2023b),
which in turn, can mobilize lead in finished drinking
water (Lopez et al. 2022).

In addition, climate variability can influence
moisture and salinity exposure in concrete structures
through acute fast extreme weather events and slow,
long-term, and prolonged exposure to moisture and
salt via rain, snow, and road salt applications. Chlo-
ride-induced corrosion is a major deterioration mech-
anism of concrete (e.g., reinforced concrete used in
buildings, parking garages, etc.) and steel structures
(e.g., bridges), and is a motivation for infrastructure
design strategies and planning for infrastructure life
cycles based on environmental exposure conditions
(Ahmad 2003). Concrete is porous, and there is a need
to better consider penetration of water contaminated
with chlorides when predicting corrosion of rein-
forced steel structures supporting concrete bridges,
tunnels, and roadways (Aldea et al. 1999). There are
different mixtures of concrete used for different appli-
cations and some concrete mixtures are more resist-
ant to salinity and moisture than others (Yildrim et al.
2011). Typically, concrete mixtures and infrastruc-
ture designs are based on current climate conditions,
but designs do not always consider future changes in
moisture, salinity, and pH (Stewart et al. 2011); these
future changes can manifest as both fast pulses and
slow trends over time. Overall, changes in salinization
will affect the service life of infrastructure exposed to
pulsed salinity events and understanding how those
changes will affect infrastructure design, maintenance
and inspection, financing, and failure risks poses a
looming conundrum (Stewart et al. 2011).

Part 3: anticipating double trouble: ecosystem
transitions where salt pollution from land meets
saltwater intrusion

Interactive risk 9: Climate-driven changes in stream-
flow, human activities, and sea level rise will interact
to alter saltwater intrusion and ecosystem transitions.

Effects of freshwater salinization have been stud-
ied separately in non-tidal and tidal waters. More
work on understanding impacts of climate change on
salinization have focused on soils, groundwater, or
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coastal forests and wetlands (e.g., Kirwan and Gedan
2019; Tully et al. 2019a, b; White et al. 2022; Mon-
dal et al. 2023). Relatively less work has focused
on the effects of climate change on salinization and
alkalinization of tidal rivers and estuaries because of
disciplinary divides among scientists along nontidal
and tidal boundaries (but see Hall et al. 2023). Tidal
freshwater areas or low salinity zones are the nexus
of freshwater and marine waters, and tidal freshwater
habitats may be most at risk from salinization across
space and time. Tidal freshwaters are likely more
sensitive to shifts in salinity due to their previous
exposure history to low salinity conditions, the rapid
encroachment of salt fronts during droughts, and the
combined impacts of increased watershed salt pollu-
tion to estuaries.

During periods of warmer temperatures and
droughts, water withdrawals and pumping are
expected to increase (Van Vliet et al. 2023) and can
increase saltwater intrusion rates and decrease dilu-
tion of salinity in tidal rivers (Barlow and Reichard
2010; Roehl et al. 2013). A greater frequency and
magnitude of droughts is predicted in the future with
warmer temperatures (Cook et al. 2018), which may
increase upstream freshwater demand and withdraw-
als. Flash droughts, which develop more suddenly
than prolonged droughts, are increasing over 74%
of global regions identified by the Intergovernmen-
tal Panel on Climate Change (Yuan et al. 2023),
and flash droughts could impact the magnitude, tim-
ing, and extent of saltwater intrusion events along
tidal rivers. Runoff in rivers influences the landward
encroachment of the salt front in tidal rivers and estu-
aries (Tian 2019), and decreasing river discharges
to coastal zones can be further reduced by upstream
dams, human water use, and hydrologic alterations.

Changes in streamflow can have profound impacts
on salinization versus freshening responses in estuar-
ies from days to decades. As one example, we have
observed increasing freshening trends over dec-
ades throughout the mainstem of the Chesapeake
Bay (Fig. 11) due to increasing precipitation and
streamflow in the Susquehanna River (e.g., Zhang
et al. 2010a). These long-term freshening trends
throughout the mainstem of the Chesapeake Bay sug-
gest the importance of understanding regional bal-
ances between opposing forces of sea level rise and
streamflow when anticipating net effects of saltwater
intrusion risks along estuaries and tidal rivers. The

freshening trends are strongest in the Upper Chesa-
peake Bay due to the proximity of the Susquehanna
River (Fig. 11A-C), and observations of increasing
streamflow in rivers draining the northeastern U.S.
(Rice et al. 2017). In contrast, we observed increas-
ing salinity trends in many of the tidal rivers flow-
ing into the Chesapeake Bay during the same time
period as freshening trends along the mainstem of
the Chesapeake Bay. For example, we documented
increasing long-term salinity trends in stations along
the Potomac, Rapahannock, York, and James Rivers
(e.g., Fig. 11D-F and any other stations on the map
shown in shades of red). Interestingly, the number
of stations with increasing salinity trends increases
in a southward direction with the James River show-
ing the most stations experiencing salinization. The
increasing salinity trends in tributaries of the Chesa-
peake Bay, particularly rivers in Virginia, are likely
driven by decreasing streamflow in the southeastern
U.S. (Rice and Hirsch 2012; Rice et al. 2017).
Salinization is also impacting tidal freshwater
rivers in the northern portion of Chesapeake Bay
(Fig. 12). For example, tidal freshwaters of the
Patuxent River estuary are becoming more salty,
whereas salty portions of the lower estuary are
becoming fresher (Fig. 12A and B). When examin-
ing the longitudinal pattern of specific conductance
along the Patuxent River, there is an increase in
salinity pulses in tidal freshwaters due to road salts
and watershed pollution and also increased pulses
of fresher water in the lower estuary due to floods
(Fig. 12A and B). For example, there are extreme
outliers in very high specific conductance in tidal
freshwater reaches coinciding with winter road salt
events, and there are extreme outliers in low spe-
cific conductance in the saltier lower estuary due to
floods and dilution events (Fig. 12C and D). There
have been increasing trends in specific conduct-
ance in the tidal freshwater Anacostia and Patux-
ent Rivers over approximately the last four decades
(Fig. 12C and D). These increasing long-term trends
in specific conductance are characterized by an
increase in strong pulses, particularly during winter
months when road salt is applied (Fig. 12C and D).
A future challenge will be to understand and antici-
pate the impacts of shifting salinity along tidal riv-
ers and estuaries (Najjar et al. 2010; Lassiter 2021),
given the growing implications for irrigation and
agriculture, oyster and shellfish production, power
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Fig. 11 A long-term trend analysis of salinity for tidal sites
within the EPA Chesapeake Bay Program water quality moni-
toring network. Long-term trends at sites were only assessed
if sites had 10+ years of data and 504 observations. Theil-Sen
slopes are shown for the trends at specific stations as exam-
ples; in addition, the colors of points on the map represent
ranges in Theil-Sen slopes for individual stations within the
tidal monitoring network. Trends in figures A-F are statisti-
cally significant and PSU in the figure legend refers to practical
salinity unit. (Panels A, B, and C) Long-term trends in salinity
throughout the Chesapeake Bay. The mainstem of the Chesa-
peake Bay shows long-term “freshening” or decreasing salin-

ity trends due to increased streamflow from the Susquehanna

generation, drinking water supplies, and industry
within this region.

From the perspective of global implications, there
could be a disappearance or displacement of tidal
freshwater areas in the future due to watershed salt
pollution and saltwater intrusion (Tully et al. 2019a;
Little et al. 2022; Bernhardt 2022), which could
influence ecosystem services, functions, and biogeo-
chemical reactions. There are varying approaches of
how a salt front can be defined in estuaries depend-
ing on geography (sensu Cook et al. 2023). In some
estuaries, average saltwater intrusion and the loca-
tion of the daily average of the tidal salt front is
generally inversely related to river discharge (Zhang
et al. 2010b), but there can be variability in these
relationships with river discharge. The relationship

@ Springer

2010 2020 1990 2000 2010 2020 1990 2000 2010 2020

River over recent decades. In contrast, we observed increas-
ing salinity trends in many of the tidal rivers flowing into the
Chesapeake Bay during the same time period. (Panels D, E, F)
There have been increasing long-term salinity trends along the
Potomac, Rapahannock, York, and James Rivers; while exam-
ples of time series are only shown for a subset of these rivers,
all monitoring stations with increasing salinity trends can be
seen in shades of red on the map. The names of some of the
major tributaries flowing into Chesapeake Bay are labeled on
the map for geographic reference. Information about trends
at each station (e.g., years of record, sample sizes, slopes, p
values, and confidence intervals) can be found in Supporting
Information Table S2

between saltwater intrusion and river discharge var-
ies over time, and there are interannual seasonal and
annual changes in the relationships between river
flow and the location of the salt front (Tian 2019;
Cook et al. 2023). Variability in the location of the
salt front depends on tides, winds, waves and storm
surges (likely minor effects), increased precipitation,
bathymetry, sea level rise, degree of mixing, upriver
freshwater withdrawals for agriculture, power, and
consumption (withdrawals are typically much smaller
than river flows), and other factors (Najjar et al. 2010;
Ralston and Geyer 2019; Tian 2019; Valle-Levinson
and Li 2023). Thus, predicting the location of the salt
line and saltwater intrusion is a moving target subject
to environmental change and anticipating changes
will be important for harnessing the many ecosystem
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Fig. 12 Salinization is impacting tidal freshwater rivers of
the Chesapeake Bay according to an analysis of data from the
EPA Chesapeake Bay Program. Tidal freshwaters of the Patux-
ent River estuary are becoming more salty, whereas salty por-
tions of the lower estuary are becoming fresher. (Panels A and
B) There is an increase in salinity pulses in tidal freshwaters,
and there is an increase in pulses of fresher water in the salt-
ier lower estuary. (Panels A and B) There are extreme outliers

services of tidal rivers and wetlands (Lassiter 2021,
2024; Little et al. 2022; Bernhardt 2022; Valle-Levin-
son and Li 2023; O’Donnell et al. 2024).

Although underappreciated, the depth and shape of
the river channel (and estuary) affects potential salt-
water intrusion length (Chant et al. 2011; Tian 2019;
Ralston and Geyer 2019). For example, the deeper
the river channel, the greater the potential for salt-
water intrusion from saltier, denser, and deeper water
layers (Chant et al. 2011; Ralston and Geyer 2019).
Dredging for navigation significantly deepens river
channels, and sea level rise can also affect the length

in very high specific conductance in tidal freshwater reaches,
and there are extreme outliers in low specific conductance in
the lower estuary due to floods and dilution events. (Panels C
and D) There have been increasing long-term trends in specific
conductance in the tidal freshwater Patuxent River and tidal
freshwater Anacostia River. (Panels C and D) These increasing
long-term trends in specific conductance are characterized by
an increase in winter pulses when road salt is applied

of saltwater intrusion further up rivers (Chant et al.
2011). There are lingering questions about whether
sea level rise always leads to increasing water depth
along tidal rivers and estuaries (average depth may
increase but there can also be spatial variations).
Channel depth can mitigate or exacerbate the effects
of sea level rise and depends on the sediment supply
of the rivers (and whether the sediment supply is low
or high) (Chant et al. 2011; Tian 2019). Sedimenta-
tion may be able to keep up with sea level rise in some
estuaries but not in many others (Ensign et al. 2023),
and this is certainly complicated by engineering
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activities such as dredging. The geomorphologi-
cal response of estuaries and tidal rivers and large-
scale impacts of dredging and channel engineering is
largely unknown. Although more traditional emphasis
is placed on sea level rise from climate change as a
driver for saltwater intrusion (Najjar et al. 2010; Ross
et al. 2015), other factors such as river channel dredg-
ing and sediment transport should also be considered
when anticipating saltwater intrusion risks.

Interactive risk 10: Saltwater intrusion will alter
diverse ecosystem services such as habitat for aquatic
life, provisioning drinking water, supporting agri-
culture, and power generation along tidal rivers and
estuaries.

As mentioned throughout this paper, the ecosys-
tem scale impacts of increasing saltwater intrusion
risks and biogeochemical chain reactions along tidal
freshwater segments of rivers has been less studied,
although they are often the link between land and
sea and provide vital ecosystem services. Below, we
explore impacts of salinization on different types of
ecosystem functions and services along the freshwa-
ter-marine continuum.

A. Impacts along tidal rivers from organisms to eco-
systems

Saltwater intrusion is altering ecosystem and biogeo-
chemical transition zones between uplands, marshes,
and open water. In initial stages of saltwater intru-
sion, there can be loss of uplands and gains in marsh
areas with opportunities for increased carbon seques-
tration (e.g., Kirwan and Gedan 2019; Tully et al.
2019a, b; Guimond and Michael 2021; de la Reguera
and Tully 2021). As inundation from sea level rise
continues, there can be eventual loss of wetlands to
open water and losses in carbon sequestration (e.g.,
Kirwan and Gedan 2019; Tully et al. 2019a, b; Gui-
mond and Michael 2021; de la Reguera and Tully
2021). The frequency and extent of saltwater intru-
sion influences transition zones for biogeochemical
reactions by altering spatial and temporal evolution
of increasing salinity; decreasing dissolved oxygen;
shifting groundwater salinity dynamics; changing
hydraulic conductivity of soils; and causing tempo-
rary acidification and long-term alkalinization (exam-
ples of different processes are in Tully et al. 2019a,
b; Kaushal et al. 2021, 2023b, 2024). All of these
physical and chemical changes triggered by ‘fast’
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saltwater intrusion from storms and ‘slow’ saltwater
intrusion from sea level rise will influence the distri-
bution, abundance, stability, and diversity of organ-
isms and ecosystem services.

Along with shifting ecosystem and biogeochemical
transitions, saltwater intrusion will have ripple effects
from organisms to ecosystems along tidal rivers (Love
et al. 2008; Osborne et al. 2015). Some organisms
such as early stage amphibians and mussels are more
susceptible to acute and chronic changes in salinity
(Venancio et al. 2022). There can be elevated salinity
concentrations during low flow periods, when river
discharge either cannot push the salt front seaward or
there are increased shallow saline groundwater con-
tributions (Sadat-Noori et al. 2015). Some forms of
submerged aquatic vegetation and their organic mat-
ter are susceptible to elevated salinity (Connolly et al.
2014), and submerged aquatic vegetation can provide
valuable habitat and can influence ecological impacts
of hypoxia (Miranda and Hodges 2000). More work
is necessary to understand and identify thresholds
influencing impacts on organisms, ecosystems, and
biogeochemical functions (Bachman and Rand 2008;
Osborne et al. 2015). There can be losses of sensi-
tive species at certain thresholds and changes in the
geographic abundance and distribution of organisms,
which represent shifts in habitat over time (Love et al.
2008; Pettit et al. 2016).

Even episodic saltwater intrusion can be problem-
atic, with tidal rivers and marshes experiencing the
most risk. Plants and macrophytes in tidal marshes are
important for carbon sequestration, their organic mat-
ter inputs contribute to denitrification, and they are
susceptible due to inundation (Connolly et al. 2014;
Pettit et al. 2016). Plants in tidal marshes are adapted
to different salinity zones influenced by microtopog-
raphy and the depth and duration of inundation. For
example, some plant species may be intolerant of
higher salinity in marshes at lower topographic ele-
vation near tidal rivers (Pennings et al. 2005; Pettit
et al. 2016); this could result in conversion of some
tidal wetlands to mudflats and altered biogeochemical
reactions (Barendregt and Swarth 2013). Tidal marsh
vegetation composition could also shift over time in
response to salinity changes (Sutter et al. 2015), but
there may be differences in fast and slow effects on
vegetation dynamics (Li et al. 2022a).

Although underappreciated, salinity has the poten-
tial to influence the location, timing, and magnitude
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of algal blooms and harmful algal blooms (Xu et al.
2017; Li et al. 2020; McClymont et al. 2023). For
example, salinity can influence transient stratifica-
tion, where algal cells may be suspended in the light
longer. In addition, salinity can trigger algal blooms
through increased mortality of zooplankton graz-
ers and trophic cascades in freshwaters (Hintz et al.
2017). There can be cascading effects of salinity
contributing to the formation, intensity, and persis-
tence of harmful algal blooms and interactions with
warming (McClymont et al. 2023). For example, at
500 mg/L of chloride, there was a large increase in
cyanobacteria concentrations whereas temperature
played a smaller role (McClymont et al. 2023). This
response to salinity was due to chloride reducing zoo-
plankton biomass and richness suggesting that distur-
bance to the food web made conditions favorable to
cyanobacteria (McClymont et al. 2023). In addition,
hypersaline conditions (> 60 ppt) due to drought and
loss of zooplankton and grazer communities contrib-
uted to formation of brown tides in the Laguna Madre
of Texas (Buskey et al. 1997). Other factors such as
nutrient availability, temperature, hydraulic flush-
ing, and stratification are important in coastal waters,
but the interactive impacts of salinity warrant further
consideration in tidal ecosystems (Rothig et al. 2023).

There are many open questions regarding how
changes in saltwater intrusion will impact aquatic
food webs and the distribution and abundance of fil-
ter feeders and predatory fishes in tidal rivers and
marshes (Romafach et al. 2019). Fish are mobile,
but they may be more active and/or migrate during
certain seasons or in response to saltwater intrusion
with implications for altering predator—prey dynam-
ics (Schwartz 1998; Love et al. 2008; Mohamed and
Hameed 2019). Overall, direct and indirect impacts of
saltwater intrusion and ecosystem transitions on fish-
eries and altered aquatic food webs can influence both
coastal ecosystems and economies (Al-zewar and
Ahmed 2020).

B. Impacts on coastal drinking water supplies

Many major drinking water supplies are located at
the boundary of saltwater and freshwater interfaces
(Martinez et al. 2007; Lassiter 2021, 2024). Salt-
water intrusion can directly or indirectly contami-
nate coastal drinking water supplies, through direct
salinization or indirect mobilization of chemicals

by enhanced biogeochemical reactions (Moore and
Joye 2021). In addition, saltwater intrusion is linked
to hypertensive disorders, developmental delays in
children, and other human health impacts beyond the
impacts of corrosion to drinking water infrastruc-
ture (please see Kaushal et al. 2024 for an extensive
review on human health implications of saliniza-
tion). Even modest levels of sea level rise will have
serious impacts on drinking water depending on
where intakes for drinking water facilities are located
and coastal water supplies may be most vulnerable
(Roehl et al. 2013; Garcés-Vargas et al. 2020). Salt-
water intrusion can affect multiple sources of drink-
ing water including groundwater aquifers and surface
waters in estuaries. Groundwater can also be con-
taminated from recharge from saltwater if wells are
overpumped in coastal areas (Moore and Joye 2021;
Langevin and Zygnerski 2013). It is important to
emphasize that the tidal freshwater portions of estuar-
ies are a viable drinking water source without desa-
linization, and tidal freshwaters are at the most risk
of salinization from both watershed pollution and
saltwater intrusion. Here, we consider the brackish
front moving upstream into areas that were previously
either tidal freshwaters or non-tidal freshwaters and
contaminating viable drinking water sources.
Predicting regional impacts of saltwater intrusion
on drinking water can be difficult to anticipate due to
heterogeneity in local environmental factors, which
include river discharge and the ability to push away
the encroaching salt front, geomorphology, and chan-
nel deepening from dredging. Most previous work has
focused on saltwater intrusion of aquifers and associ-
ated hydrogeologic parameters and human activities
(e.g., groundwater pumping) that make them suscep-
tible to saltwater intrusion (Klassen and Allen 2017).
For an extensive review of hydrogeologic factors
contributing to groundwater salinization and the bio-
geochemical and human health effects of groundwater
salinization in coastal areas, see Kaushal et al. (2024).
Much less is known regarding salinization risks along
the world’s many tidal rivers. Local factors influenc-
ing the physical transport of saltwater upstream to
drinking water sources include increases in channel
depth, subsidence, changes in river flow, decreases in
vertical mixing, increases in gravitational circulation,
changes in baroclinic pressure gradients, and changes
in tidal ranges, which also depend upon length and
geometry (e.g., Chant et al. 2011; Ralston and Geyer
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2019; Tian 2019; Cook et al. 2023; Valle-Levinson
and Li 2023). Thus, there is an increasing need for
customized models and decision support tools to
be downscaled from global modeling assessments
(e.g., Ross et al. 2021; Valle-Levinson and Li 2023)
to better anticipate the effects of saltwater intrusion
on drinking water sources based on local and unique
conditions.

In order to better anticipate the risks of saltwater
intrusion on drinking water intakes, regional models
are needed to project how much salinity can migrate
upstream, particularly during dry years and droughts
as a research frontier (Lassiter 2021, 2024). Regional
models with different local and regional boundary
conditions are needed to predict how often and how
long salinity thresholds are exceeded. Information
regarding threshold exceedances can guide water
managers on when to limit withdrawal frequency or
developing advisories on whether the quality of water
may present certain risks (sensu Jones and van Vliet
2018). Furthermore, regional models and plans can
be developed to inform where to move intakes further
into the future and identify and predict spatial regions
where tidal rivers will be most affected by salinity
upstream of the mouth. This information is needed to
better anticipate adaptation and mitigation strategies
(Lassiter 2021, 2024).

C. Saltwater intrusion impacts along tidal rivers on
agriculture

During dry weather, crops demand more irrigation
and streamflow is naturally lower, which increases
vulnerability to saltwater intrusion risks along the
freshwater-marine continuum (Tarolli et al. 2023).
There may also be increasing instances when farm-
ers cannot reliably use irrigation water from their
intakes along the river because farmers either can-
not use the water for irrigation or are forced to irri-
gate with saltier water or need to switch to grow-
ing alternative salt-tolerant crops because the water
becomes too salty for conventional crop growth and
health (de la Reguera et al. 2021; van Aalst et al.
2023; Mondal et al. 2023). Saltwater intrusion leads
to serious economic costs (Mondal et al. 2023), and
substantial losses of nitrogen and phosphorus from
agricultural lands (Weissman et al. 2021). Saltwa-
ter intrusion also contributes to losses of culture
and history, as homes and fields are threatened by

@ Springer

inundation from increased flood waters from marine
environments (Tully et al. 2019b).

Saltwater intrusion alters spatial and temporal
transitions in biogeochemical reactions relevant to
agriculture and water quality along the freshwater-
marine continuum (Tully et al. 2019a; Weissman
and Tully 2020). Saltwater intrusion can cause sul-
fate to bind with iron to form sulfides, preventing
phosphorus (P) from binding to iron oxyhydrox-
ides (i.e., P stays in solution) (Tully et al. 2019a;
Weissman and Tully 2020). This increases P mobi-
lization from agricultural soils and can negatively
impact coastal water quality (Tully et al. 2019a,
b a,b, Weissman and Tully 2020). However, car-
bon can accumulate in inundated soil aggregates
experiencing anoxic conditions and anaerobic
metabolism (Tully et al. 2019a, b). Decreases in
the SO,*~ to CI™ ratio in soils and soil waters have
indicated the importance of increased sulfate reduc-
tion in response to saltwater intrusion. There can be
stabilization of soil organic matter through chemi-
cal sorption of organic matter onto iron and alu-
minum oxyhydroxides (Tully et al. 2019a, b). As
the impacts of saltwater intrusion increase and soil
fertility declines, there may be a need to switch to
more salt tolerant crops such as barley and sorghum,
and plant crops such as switchgrass for restoration
and remediation of mobilized nutrients; otherwise,
farmers may experience serious economic losses
(de la Reguera and Tully 2021; Mondal et al. 2023).

D. Saltwater intrusion impacts on power generation,
infrastructure, and cooling waters

There can be increasing operational costs of electric-
ity generation from increasing saltwater intrusion due
to sea level rise and channel dredging and deepening
(Shirazi et al. 2019). The energy industry wants to
draw the cleanest water possible to reduce corrosion
(lower CI7), scaling (lower Ca**, Mg?*, and carbon-
ates), and fouling and biofouling for steam generation
and cooling, when generating electricity (Pan et al.
2018). However, due to environmental and ecologi-
cal concerns for waste heat discharges, locations for
power plants are often located along large rivers and
estuaries (Lin et al. 2021). Therefore, the potential for
using river water as a coolant in energy production
and industry may be impaired by warmer and saltier
water with lower specific heat that cools off more
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slowly (sensu Millero et al. 1973, Stewart et al. 2013);
thermal pollution from coolants may also have further
impacts if discharged back to rivers (particularly riv-
ers already showing rising river temperatures sensu
Kaushal et al. 2010, Stewart et al. 2013). Even if the
slower cooling of water doesn’t pose a problem to riv-
ers, there may be more costs required to remove the
additional salts from the water actually used for cool-
ing to prevent the precipitation of Ca(Mg)CO; and
CaSO, and to reduce either the corrosive or scaling
potential of the cooling water within the power plants.

Freshwater alkalinization and water hardness could
also impact the efficiency of transmission of steam
and water in piped distribution systems. Scaling from
ions contributing to carbonate alkalinity and water
hardness can be a major problem for water supply
pipelines (Li et al. 2022b). Buildup of scale in pipes
can increase the resistance of water flow and pres-
sure within water supply pipes and can contribute
to wasted energy or deterioration of pipes (Li et al.
2022b). Scale in the pipes can be enriched in toxic
metals or pathogens in biofilms, which can also be a
potential source of secondary contamination of drink-
ing water supplies (Li et al. 2022b). Ultimately, both
salinization and alkalinization along tidal rivers can
impact the industrial uses of water and degradation of
piped infrastructure.

Future directions

Based on our predictions of a saltier and alkaline
future for freshwaters, there is a growing role for
ecologists, watershed hydrologists, oceanographers,
landscape architects and planners, geochemists, epi-
demiologists, and engineers to address the future of
FSS. General interdisciplinary knowledge gaps are
relevant to: (1) planning—developing strategies for
anticipating changes in source water quality, and then
using these data to inform long-term planning; (2)
technology—developing low-cost, low-energy modu-
lar technologies for removing salt from water; these
facilities can be scaled up based on increasing salin-
ity concentrations and risks; and (3) institutions—
developing strategies for strong partnerships among
coastal freshwater users and reallocating freshwa-
ter sources as needed to ensure basic water security.
These future strategies will require communication

and collaboration among diverse groups to tackle the
complex problem of stopping or slowing FSS.

More work in the future is also necessary identi-
fying all relevant stakeholders (including underrepre-
sented groups) for managing water needs pertaining
to changes in salinity, alkalinity, and pH and poten-
tial interactions with temperature from headwaters
to coastal waters. There may be underrepresented
groups affected by saltwater intrusion along tidal
rivers and estuaries. For example, rural communi-
ties may not be a key stakeholder in terms of use, but
they can be more strongly impacted and have less
resources for anticipating and managing salinity risks.
Understanding the risks and limitations of saline and
alkaline freshwaters requires interviewing different
users and decision makers for acceptable water uses
across different salinities, pH, alkalinity, and salt ion
concentrations (sensu Higgins et al. 2002; Dutta et al.
2022) and public perceptions (sensu Dolnicar et al.
2011). If changes in the salinity, alkalinity, and pH
of water can be anticipated or predicted, it can help
guide decisions regarding how to use that water better
for drinking, agriculture, power generation, industry,
etc.; for example, there may be certain recommended
limits and thresholds for salinity, alkalinity, and pH of
water for different uses and applications. For exam-
ple, high salinity water that is very alkaline and hard
is not best for steam transmission in pipes and avoid-
ing scaling of pipes. On the other hand, high salinity
water that is more acidic may affect uses of water and
steam that could cause corrosion risks. There is also a
need to anticipate potential complications from differ-
ent salinity mixtures and chemical cocktails (Kaushal
et al. 2018b, 2019, 2020), which need to be consid-
ered not only from an ecological and health perspec-
tive but also for water treatment and industrial pro-
cesses (Bhide et al. 2021; Grant et al. 2022).

Predicting the future scope and magnitude of FSS
along inland and coastal waters will be limited by the
availability of high temporal and spatial resolution
data from monitoring with sensors and high-resolu-
tion spatial monitoring (sensu Kaushal et al. 2023a, b,
¢, Shelton et al. 2024). High salinity or high pH events
can easily be missed based on weekly or monthly
sampling or limited sampling locations (Tassone et al.
2022). Further work should also focus on developing
proxies with conductivity sensors, pH, and ion spe-
cific probes to expand the temporal and spatial reso-
lution of salt ion concentrations and related chemical
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cocktails (Kaushal et al. 2018b, 2019, 2020, 2021;
Morel et al. 2020; Galella et al. 2021). FSS will likely
impact many non-tidal and tidal freshwaters around
the world, which remain unmonitored due to eco-
nomic or sociopolitical challenges, offering opportu-
nities for collaborations (Krabbenhoft et al 2022).

Alternative future management scenarios, trade-
offs, and restoration strategies can be anticipated and
modeled, but are typically limited by high resolution
monitoring data across space and time (Sanford and
Pope 2010; Dey and Prakash 2020). With improved
high-resolution data, models can be developed to:
(1) predict alternative scenarios for water allocations
among groups, (2) develop adaptation, mitigation,
and restoration strategies based on salinity, alkalin-
ity, and pH, and (3) compare analyses of tradeoffs.
Models could evaluate the potential for nature-based
solutions to FSS before costly engineering solutions
are constructed and implemented. Traditional engi-
neered solutions for saltwater intrusion involve barri-
ers, diversions, dilution from upstream reservoirs, set-
ting new minimum flow requirements, and increasing
water use efficiency (Motallebian et al. 2019). Despite
potential limitations and trade-offs in salinity mitiga-
tion and attenuation associated with conservation and
restoration (Kaushal et al. 2022, 2023c; Maas et al.
2023; Malin et al. 2024; Shelton et al. 2024; Long
et al. 2025), nature-based solutions can also provide
other ecosystem services; for example, restoration
of coastal tidal wetlands may serve as future salinity
barriers preventing saltwater intrusion (depending on
location), while also increasing recreational oppor-
tunities and ecological habitats (White and Kaplan
2017). It is important to recognize that some of these
nature-based solutions are experimental approaches
and may have mixed effectiveness based on their set-
tings (White and Kaplan 2017).

Conclusion

Our synthesis shows that climate change, pollution,
and saltwater intrusion can alter the sources, storage,
reactivity, and transport of salt ions causing cascading
impacts on water quality and ecosystems extending
from headwaters to coastal waters. More monitoring
is needed in tidal freshwaters where variability is high
due to pulsed inputs from both salt pollution on land
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and saltwater intrusion from the sea. Understanding
changes in the different compositions of salt ions,
biogeochemical reactions, and mobilized chemical
cocktails could provide breakthroughs for anticipat-
ing impacts of saltier and more alkaline freshwater on
ecosystem services. Salinization interacts with many
biogeochemical cycles and can exacerbate contem-
porary water quality problems as a multiple stressor
along with rising temperatures and chemical cocktails
from other anthropogenic sources. There will be fast
and slow effects of climate change on salinity risks
spreading along both ends of the freshwater-marine
continuum. Our synthesis showed that salt sources,
transport, and storage is changing in watersheds in
response to climate change and variability. We illus-
trated how salinization is triggering different chain
reactions with cascading impacts from headwaters to
tidal waters. Finally, we showed how combined salin-
ization from land and saltwater intrusion due to sea
level rise will alter ecosystem services such as habitat
for aquatic life, provisioning drinking water, support-
ing agriculture, and power generation along the fresh-
water-marine continuum.
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