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trigger ‘chain reactions,’ where chemical products 
from one biogeochemical reaction influence subse-
quent reactions and ecosystem responses. Different 
chain reactions impact drinking water quality, eco-
systems, infrastructure, and energy and food produc-
tion. Risk factors for chain reactions include shifts 
in salinity sources due to global climate change and 
amplification of salinity pulses due to the interac-
tion of precipitation variability and human activities. 
Depending on climate and other factors, salt reten-
tion can range from 2 to 90% across watersheds glob-
ally. Salt retained in ecosystems interacts with many 
global biogeochemical cycles along flowpaths and 

Abstract  Alongside global climate change, many 
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contributes to ‘fast’ and ‘slow’ chain reactions associ-
ated with temporary acidification and long-term alka-
linization of freshwaters, impacts on nutrient cycling, 
CO2, CH4, N2O, and greenhouse gases, corrosion, 
fouling, and scaling of infrastructure, deoxygenation, 
and contaminant mobilization along the freshwater-
marine continuum. Salt also impacts the carbon cycle 
and the quantity and quality of organic matter trans-
ported from headwaters to coasts. We identify the 
double impact of salt pollution from land and saltwa-
ter intrusion on a wide range of ecosystem services. 
Our salinization risk framework is based on analyses 
of: (1) increasing temporal trends in salinization of 
tributaries and tidal freshwaters of the Chesapeake 
Bay and freshening of the Chesapeake Bay mainstem 
over 40 years due to changes in streamflow, sea level 
rise, and watershed salt pollution; (2) increasing long-
term trends in concentrations and loads of major ions 
in rivers along the Eastern U.S. and increased river-
ine exports of major ions to coastal waters sometimes 
over 100-fold greater than forest reference conditions; 
(3) varying salt ion concentration-discharge relation-
ships at U.S. Geological Survey (USGS) sites across 
the U.S.; (4) empirical relationships between specific 
conductance and Na+, Cl−, SO4

2−, Ca2+, Mg2+, K+, 
and N at USGS sites across the U.S.; (5) changes in 
relationships between concentrations of dissolved 
organic carbon (DOC) and different salt ions at USGS 
sites across the U.S.; and (6) original salinization 

experiments demonstrating changes in organic mat-
ter composition, mobilization of nutrients and metals, 
acidification and alkalinization, changes in oxidation–
reduction potentials, and deoxygenation in non-tidal 
and tidal waters. The interaction of human activities 
and climate change is altering sources, transport, stor-
age, and reactivity of salt ions and chain reactions 
along the entire freshwater-marine continuum. Our 
salinization risk framework helps anticipate, prevent, 
and manage the growing double impact of salt ions 
from both land and sea on drinking water, human 
health, ecosystems, aquatic life, infrastructure, agri-
culture, and energy production.

Keywords  Anthropogenic salt cycle · Global 
biogeochemical cycles · Carbon cycle · Nitrogen 
cycle · Metals · Climate change

Introduction

Freshwater salinization is increasing in many 
regions of the world and the anthropogenic salt 
cycle is now a driver of global change across diverse 
Earth systems (Williams 1999; Kaushal et al. 2005, 
2023a; Cañedo-Argüelles et  al. 2013). The world’s 
freshwaters face a salty future due to: increasing 
land-use change (Williams 1999), road salt use 
(Kaushal et al. 2005; Dugan et al. 2017; Hintz and 
Relyea 2019), wastewater (Bhide et al. 2021; Grant 
et  al. 2022), resource extraction (Kaushal et  al. 
2021, 2023a, b, c), groundwater pumping (Kaushal 
et  al. 2024), irrigation (Cañedo-Argüelles et  al. 
2013; Thorslund et  al. 2021), climate change and 
sea level rise (Herbert et  al. 2015), human-accel-
erated weathering (Kaushal et  al. 2021, 2023b), 
resource extraction (Kaushal et  al. 2024), mineral 
fertilizers containing chloride and sulfate in agricul-
tural areas (Kaushal et  al. 2024), and other factors 
(Cunillera-Montcusí et  al. 2022). Concentrations 
and mixtures of salt ions and alkalinity in freshwa-
ters have been altered across regional and global 
scales (Raymond et  al. 2008; Kaushal et  al. 2013, 
2017, 2018a, b, 2019, 2023a, b). Increased fresh-
water salinization and alkalinization is occurring 
simultaneously with rising temperatures in streams, 
rivers, and estuaries (Kaushal et al. 2010; Van Vliet 
et al. 2011, 2023; Tassone et al. 2022; Hinson et al. 
2022). The convergence of salt pollution from land 
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and saltwater intrusion places both non-tidal and 
tidal freshwaters ecosystems at risk for declines 
and shifts in ecosystem services and functions sen-
sitive to salinity thresholds (Herbert et  al. 2015; 
Tully et  al. 2019a, b; Lassiter 2021, 2024; Little 
et al. 2022; Bernhardt 2022; Valle-Levinson and Li 
2023; O’Donnell et al. 2024). Here, we synthesize a 
framework for anticipating how climate change, ris-
ing salt pollution, and saltwater intrusion can alter 
salinity sources, transport, retention, and reactivity 
from headwaters to tidal waters, with implications 
for drinking water, aquatic life, agriculture, and 
infrastructure.

Freshwater Salinization Syndrome (FSS) refers to 
the interrelated suite of physical, chemical, and bio-
logical impacts of salt ions that degrade the environ-
ment, impact infrastructure, and disrupt ecosystem 
services (e.g., Kaushal et  al. 2018a, b, 2019, 2020, 
2021, 2022, 2023b, 2024). Salinization, acidifica-
tion, alkalinization, corrosivity, and water hardness 
can be chemical indicators of FSS depending on envi-
ronmental factors. Briefly, salinization refers to an 
increase in salt ions such as sodium (Na+), potassium 
(K+), calcium (Ca2+), magnesium (Mg2+), and chlo-
ride (Cl−), bicarbonate (HCO3

−), carbonate (CO3
2−) 

and sulfate (SO4
2−) in soils, waters, and air (Kaushal 

et al. 2017, 2023b, 2024). Corrosivity is related to an 
increase in the chloride to sulfate mass ratio (Edwards 
and Triantafyllidou 2007; Stets et al. 2018), alkalinity 
(Edwards et al. 1996), and dissolved oxygen, temper-
ature, and pH; neutral waters are not particularly cor-
rosive but acidic (pH < 6.5) and alkaline (pH > 7.5) 
waters can be corrosive when alkalinity is low. As 
an important secondary effect of freshwater saliniza-
tion, many biogeochemical processes associated with 
FSS can also mobilize diverse chemical cocktails, 
which refer to distinct elemental mixtures with shared 
sources or pathways of transport or transformation in 
the environment (Kaushal et al. 2018a, b, 2019, 2020, 
2021, 2024; Shelton et al. 2024). The chemical cock-
tails of FSS can be linked to ‘chain reactions,’ where 
chemical products from one biogeochemical reaction 
influence subsequent reactions, chemical mixtures, 
and ecosystem responses in the environment. More 
work is needed to predict how climate change and 
variability will alter the spread and severity of diverse 
FSS impacts, chemical cocktails, and chain reac-
tions across natural, engineered, and socio-ecological 
systems.

Why do we need to anticipate the double impact 
of salinization from land and sea?

There have been advancements in our knowledge of 
the causes and consequences of freshwater saliniza-
tion, but there are major knowledge gaps regarding 
the double impact of salinization from land and sea 
on freshwaters that we address in this paper. One 
emerging question is related to the complex effects of 
climate change: how will the interaction between cli-
mate change and human activities alter the sources, 
fluxes, storage, and flowpaths of different salt ions 
from headwaters to coastal waters? Although less 
explored, the effects of climate change can have 
opposing or synergistic forces on salinity along riv-
ers. Increases in rain and floods can reduce saltwater 
intrusion whereas droughts can enhance saltwater 
intrusion into tidal freshwater zones (Fig. 1). Warm-
ing temperatures can reduce salinity in streams and 
rivers affected by road salt pollution during winter 
seasons, but they can also increase salinity due to 
evaporative concentration during summer seasons. 
The balance of opposing, reinforcing, and interac-
tive forces of climate change on salinity across space 
and time along the freshwater-marine continuum is 
not well known. There may be cases where fresh-
water in rivers is becoming saltier due to increased 
watershed salt pollution and saltwater intrusion into 
tidal freshwater zones (Fig. 1), but saltwater ecosys-
tems further downriver along estuaries and coastal 
waters are becoming fresher due to increased floods 
and dilution. The complex effects of climate change 
and the role of river discharge on influencing salinity 
risks represents an emerging knowledge gap for many 
world regions (Fig. 1).

We do not completely understand whether there 
are similar effects of salinization from both land and 
sea on chemical, biological, and physical processes. 
For example, why does salinization lead to acidifi-
cation or alkalinization in certain ecosystems, and 
is there a difference in responses across time scales 
and along non-tidal and tidal waters? What are the 
site specific conditions influencing the trajectory of 
acid–base status in response to salinization along 
the freshwater-marine continuum? In addition, what 
are the effects of salinization on the carbon cycle? 
How does salinization affect dissolved inorganic car-
bon (DIC) and river alkalinization? How can salini-
zation alter the absorption or efflux of atmospheric 
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carbon dioxide (CO2) along rivers? Why does salini-
zation sometimes cause an increase in dissolved 
organic carbon (DOC) concentrations and quality 
(increases in protein-like and reactive fractions) but 
cause decreases in DOC concentrations and qual-
ity (increases in more recalcitrant humic fractions) 
in other cases? In this paper, we define connections 
between salinization and changes in acids and bases, 
metals, and carbon and nutrient cycles, and we also 
synthesize salinization’s direct, indirect, and interac-
tive effects on many biogeochemical cycles. We pro-
pose the new concept of salinization ‘chain reactions’ 
extending from elemental interactions to sequences of 
alterations in organisms, ecosystems, infrastructure, 
and Earth’s biogeochemical cycles (Fig. 2).

Until now, salinization of inland waters and salt-
water intrusion impacts have been typically studied 
and managed separately due to disciplinary divisions 
and boundaries among hydrology, stream ecology, 
soil science, limnology, estuarine science, engineer-
ing, planning, and oceanography. Here, we investigate 

how salinization exerts a growing double impact on 
freshwaters from both land and sea due to increased 
salt pollution, decreased freshwater flows along river 
systems, and saltwater intrusion (Fig. 1). The causes 
and consequences of salinization have not been com-
pared from headwaters to coastal waters, even within 
the same geographic regions of the world. This lack 
of connection in our understanding of salinization 
between inland and coastal waters opens up a new 
research frontier and question: How will the combi-
nation of freshwater salinization from land and salt-
water intrusion from the ocean impact ecosystems, 
infrastructure, water, energy, and food production, 
and global biogeochemical cycles from headwaters 
to coasts? We make new connections among salt and 
different biogeochemical chain reactions and their 
emerging risks. We discuss the double impact of salt 
from both land and sea on multiple elemental cycles 
together, which is not always considered. We dem-
onstrate that there is an added value of putting all of 
these elements together to anticipate a more holistic 

Fig. 1   Salinization exerts a growing double impact on fresh-
waters from both land and sea. Salt pollution from land is 
increasing concentration of multiple salt ions in rivers world-
wide (Kaushal et  al. 2019, 2023a, b, 2024). At the same, 
decreased freshwater flows, droughts, and drying rivers can 
also increase saltwater intrusion risks. Variability in the loca-
tion of the salt front of rivers and estuaries likely depends on: 
tides, winds, waves and storm surges, increased precipitation, 

bathymetry, dredging deeper channels, sea level rise, degree of 
mixing, upriver freshwater withdrawals for agriculture, power, 
and water consumption, and other complex factors (Najjar 
et al. 2010; Ralston and Geyer 2019; Tian 2019; Lassiter 2021; 
Valle-Levinson and Li 2023). Tidal freshwaters and low salin-
ity zones along streams, rivers, estuaries, and wetlands are the 
most at risk from the double impact of salt from land and sea. 
Graphics modified from IAN Symbol Library and Canva
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and comprehensive sequence of cascading impacts on 
water quality and ecosystem services from headwa-
ters to coasts.

A salinization risk framework from headwaters 
to coasts in a changing climate

Here, we synthesize and conceptualize a saliniza-
tion risk assessment framework from headwaters to 
coasts. Risks can be defined in many different ways. 
We consider salinity risks as the intersection of: (1) 
hazards, (2) probability, (3) salt exposure history, and 
(4) vulnerability (e.g., a community is at risk if they 
are exposed to a hazard or are more vulnerable to that 
hazard). These types of conceptual frameworks have 
been widely used for analyzing risks and vulnerability 
associated with climate change and flooding (Brooks 
2003). We explore how the frequency and magni-
tude of salinization events has been shifting spatially 
and temporally from headwaters to estuaries. We 
explore three major questions for guiding future pre-
dictions, mitigation, and management: (1) how will 
salt sources, transport, and storage change in water-
sheds in response to climate change and variability?, 
(2) how will salinization trigger chain reactions and 
cascading impacts from headwaters to tidal waters?, 
and (3) and how will saltwater intrusion due to sea 
level rise shift ecosystem functions and services? We 
illustrate how salinization risks can be associated 
with ‘fast’ processes, which occur over shorter time-
scales from hours to days and ‘slow’ processes, which 
occur over longer time periods from years to decades 
(e.g., Michael et  al. 2005, 2017; Kirwan and Gedan 
2019; Tully et al. 2019a, b). Anticipating changes in 
salinity sources, salt retention, biogeochemical chain 
reactions, and saltwater intrusion from headwaters 
to coastal zones will improve FSS monitoring, mod-
eling, and management strategies globally (Figs.  1 
and 2).

In our salinization risk framework, we synthesize 
10 interactive risks based on data from: (1) original 
field and lab experiments, (2) water quality moni-
toring across space and time, and (3) case studies 
from the global literature. More details on all data 
sources are available in Supporting Information. Each 
risk that we identify in this paper also represents an 
emerging frontier of salinization research for further 
exploration. Although we highlight examples from 

the intensively monitored Chesapeake Bay region and 
regions throughout the U.S., categories of predictions 
may be applicable to other regions globally. We pre-
dict that climate change and variability will increase 
salinization, which is already occurring along both 
ends of the freshwater-marine continuum (e.g., Her-
bert et  al. 2015; Kaushal et  al. 2018a, 2022, 2023b, 
c; Little et al. 2022; Maas et al. 2023; Shelton et al. 
2024). In addition, we show that salinization triggers 
chain reactions along the freshwater-marine contin-
uum with implications for different ecosystem func-
tions and ecosystem services (Fig.  2). We propose 
the need for better identification and anticipation of 
diverse salinity risks and collaborative partnerships in 
regions where salinity monitoring is difficult. Overall, 
we synthesize a set of interactive risks regarding how 
climate change, pollution, and saltwater intrusion will 
cause cascading effects affecting water quality, infra-
structure, and ecosystems extending from headwaters 
to tidal waters.

Part 1: anticipating changes in watershed salt sources, 
transport, and storage

Interactive risk 1: Watershed sources and transport of 
salt will shift with global warming and droughts.

Climate change alters many direct and indirect 
salinization risks. More work is needed to fully pre-
dict the effects of global warming and intensification 
of the hydrological cycle on freshwater salinization, 
but some large-scale impacts have emerged such 
as changing regional ocean salinity; some areas of 
Earth’s oceans are becoming saltier and other areas 
are becoming fresher due to regional changes in rain-
fall and precipitation patterns and increasing glacial 
meltwater (Durack et al. 2012). Analysis of long-term 
changes in ocean salinity imply that there could be a 
16–24% amplification of the global water cycle and 
evaporation and precipitation in a 2–3 C° warmer 
world (Durack et  al. 2012). Some semi-arid and 
arid regions are expected to become drier, and some 
humid regions may become wetter (Zaitchik et  al. 
2023), which could amplify or counteract the effects 
of salinization based on changes in sources, storage, 
and transport (Lintern et al. 2021, 2023). The effects 
of warming and droughts on salinization has been a 
growing topic of concern primarily in dry environ-
ments (Jeppesen et  al. 2020; Lintern et  al. 2023). 
Droughts can increase freshwater salinization through 
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evaporative concentration of salt ions (Kaushal et al. 
2023b), losses in plant cover causing  losses in regu-
lation of the hydrologic cycle (Perri et  al. 2020), 
decreases in dilution capacity (Lintern et  al. 2023), 
changes in human water uses, increased irriga-
tion impacts on salinization during drier conditions 
(Thorslund et al. 2021), and complex feedbacks lead-
ing to aridity or desertification (D’Odorico et  al. 
2013; Perri et al. 2020).

In response to global warming and droughts, there 
are also other important human feedbacks on salin-
ity in watersheds. For example, per capita water 
consumption can increase with temperature, par-
ticularly due to increased use of water for irrigation 
for home lawns, swimming pools, and luxury uses 
by affluent communities (Balling et  al. 2008); these 
water uses represent 60–75% of residential water 
use in some regions (Balling et al. 2008). There can 
be increased seasonal variability of wastewater dis-
charges in response to climate change (Khalkhali and 
Mo 2020), and wastewater has been shown to be a 
major source of salinity in watersheds (Bhide et  al. 
2021; Grant et  al. 2022). Socioecological feedbacks 
can increase salinization of source waters in at least 
two ways: (1) facilitating the evapotranspiration of 

irrigated soils (based on water withdrawals) in green 
space in urban settings (thereby offsetting salt dilu-
tion) (Qiu et  al. 2017); and (2) increasing the rate 
at which water passes through homes, where salty 
chemicals (e.g., clothing detergents and household 
products) are added to waste streams and subse-
quently discharged back to freshwaters (Rippy et  al. 
2024). Understanding the feedback between salinity 
and changes in human water consumption and man-
agement in response to climate change presents a 
challenge (Fig. 1).

In humid climates, we anticipate that warming 
temperatures and changes in precipitation will also 
interact with underlying geology to increase major 
ion concentrations and/or fluxes through human-
accelerated weathering (Kaushal et  al. 2013, 2017; 
Raymond 2017; Kopáček et  al. 2017a, b; Crawford 
et  al. 2019). Under future climate scenarios, river 
water temperatures are predicted to increase on aver-
age by approximately 0.8–1.6 °C for 2071–2100 rela-
tive to 1971–2000 (Van Vliet et  al. 2013). Warming 
temperatures influence physical properties of water 
including mineral solubility and dissolution rates 
(Kaushal et al. 2010; Raymond 2017; Li et al. 2024a). 
Increased salinity also modestly reduces the specific 
heat capacity of water, which allows water to increase 
in temperature more quickly and cool off more slowly 
(Millero et al. 1973; Sharqawy et al. 2010). Human-
accelerated weathering increases concentrations of 
alkalinity, SO4

2−, HCO3
− and CO3

2−, Ca2+, and other 
ions, which all can contribute to rising salinization 
and alkalinization trends (Kaushal et al. 2013, 2017, 
2023a, b, c, 2024).

Human activities and climate change are accel-
erating geological processes, which are influencing 
the concentrations and compositions of major ions 
in streams and rivers, in addition to changes in pol-
lution sources. Annual watershed fluxes of major 
ions (Na+, Cl−, Ca2+, Mg2+, K+, and alkalinity) have 
been significantly increasing in some major tributar-
ies of the Chesapeake Bay and other rivers draining 
the U.S. East Coast over previous decades (Fig.  3) 
due to human-accelerated weathering, increased ion 
exchange from salt pollution, and changes in atmos-
pheric acid deposition (Kaushal et  al. 2013, 2017, 
2018a, b). Annual riverine fluxes of major ions per 
unit watershed area in Fig. 3 are sometimes over 100 
times greater than small forest reference watersheds 
(Likens et al. 1967; Watmough and Dillon 2004), but 

Fig. 2   Examples of different chain reactions triggered by 
salt as part of Freshwater Salinization Syndrome, which can 
influence the role of major ions, organic matter, and nutrients 
in degrading ecosystem services and causing water quality 
issues. Superscripts in the figure correspond to literature ref-
erences for specific types of chain reactions that are provided 
in this caption. For example, impacts on corrosion can be 
found in Pieper et al. (2018)1; Stets et al. (2018)2; Zhou et al. 
(2021)3; Kaushal (2016)4. Impacts on pipe scaling can be 
found in Li et  al. (2022a, b)5; MacAdam and Jarvis (2015)6; 
Cao et al. (2022)7. Impacts on acidification and alkalinization 
can be found in Bui (2017)8; Zalizniak et  al. (2009)9; Zhao 
et al. (2022)10. Impacts on contaminant binding can be found 
in Navarro et  al. (2022)11; Rodríguez-Liébana et  al. (2010)12; 
Yin et al. (2022)13; Acosta et al. (2011)14. Impacts on decom-
position and carbon cycling can be found in Oliveira et  al. 
(2021)15; Connolly et  al. (2014)16; Weston et  al. (2011)17; 
Almeida Júnior et al. (2020)18. Impacts on microbial functions 
and pathogen survival can be found in Huq et  al. (1984)19; 
DeVilbiss et  al. (2021)20; Van Gray and Ayayee (2024)21. 
Impacts on eutrophication and nutrient mobilization can be 
found in Lind et  al. 201822; Radosavljevic et  al. (2022); Sal-
cedo et al. (2024)24; Galella et al. (2023a, b)25; MacLeod et al. 
(2011)26; Steinmuller and Chambers (2018)27. Impacts on 
algal blooms can be found in Osburn et al. (2023)28; Yu et al. 
(2022)29; Duval et  al. (2018)30. Impacts on greenhouse gases 
can be found in Ardón et al. (2018)31; Neubauer et al. (2013)32; 
Dang et al. (2019)33; Xie et al. (2020)34; Weston et al. (2014)35

◂
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within the range of other human-impacted watersheds and rivers across the U.S. (Barco et al. 2013). Annual 

Fig. 3   Increasing long-term annual exports of major ions in 
kg/ha/yr (mass transport) in Susquehanna, Potomac, Patuxent, 
and Passaic Rivers along the eastern U.S. Annual exports of 
sodium, chloride, potassium, and alkalinity show increasing 
patterns over decades whereas sulfate shows a decreasing pat-

tern over decades. There have been increased pulses in annual 
exports of major ions due to increasing climate variability over 
recent decades. Information on methods for salt ion load esti-
mates can be found in the Supporting Information
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riverine fluxes of SO4
2− show a significant decrease 

in some watersheds over recent decades because of 
acid rain regulations and decreased SO2 emission 
from coal fired power plants (Fig. 3). In Europe, the 
SO4

2− content has also decreased significantly in 
agricultural fertilizers, due to the reduction in the use 
of (NH4)2SO4, which acidifies soils, and the reduc-
tion in the use of H2SO4 (and the increasing use of 
H3PO4) in the production of P fertilizers (Kopáček 
et al. 2014a, b).

Weathering of geologic materials is acceler-
ated by rising temperatures in watersheds and riv-
ers (Kaushal et  al. 2010, 2023b; Raymond 2017), 
decreased ice cover and exposure of rocks to weath-
ering agents (Kaushal et al. 2013, 2017; Drake et al. 
2018; Crawford et al. 2019), and changes in precipi-
tation, temperature, and freeze thaw cycles (Kopáček 
et al. 2017a). Easily weathered construction materials 
and agricultural lime are affected disproportionately 
thereby contributing to enhanced weathering fluxes 
from human-dominated watersheds (Barnes and Ray-
mond 2009; Kaushal et al. 2017; Moore et al. 2017). 
In some regions, urban watersheds can export almost 
800% more dissolved inorganic carbon (DIC) than 
forested watersheds and 200% more DIC than agri-
cultural watersheds (Barnes and Raymond 2009). In 
the future, freshwater salinization could increase due 
to climate and land use change, accelerated physi-
cal and chemical weathering, and increased mineral 
solubility.

In wetter and colder climates, warming tempera-
tures may decrease the perceived need for road salt 
use in the future (Fig.  4A), but urbanization is also 
simultaneously increasing thereby leading to more 
roadways that will require salting (Kaushal et  al. 
2005; Rossi et  al. 2022). Despite warming tempera-
tures, annual fluxes of Na+ and Cl− ions have signifi-
cantly increased over the past 40 years in major tribu-
taries of the Chesapeake Bay and other regions in the 
northeastern U.S. (Fig.  3). In some cases, warmer 
temperatures have been shown to decrease saliniza-
tion from road salt (Arvidsson et al. 2012; Stirpe et al. 
2017; Kaushal et al. 2022), but there have been only 
relatively short-term annual salinity reductions or 
substantial lags in trends due to variations in hydro-
geology and retention of salt ions in soils and ground-
water (Novotny and Stefan 2010). If road salt applica-
tions were discontinued, it is projected that it would 
still take some surface waters 10–30  years before 

chloride concentrations would return to natural levels 
(Novotny and Stefan 2010). It is likely that long-term 
increases in urban impervious surface cover (increas-
ing surface area of roads and parking lots requiring 
deicers) can overwhelm impacts of warming win-
ters to sustain long-term salinization trends in some 
regions.

Salinization is still increasing in regions experi-
encing a decrease in snow. In the Washington D.C. 
region, there has been decreased snowfall over the 
past century (Fig.  4A) (Kocin and Uccellini 2016). 
From 1965 to 2005, mean, minimum, and maximum 
temperatures were increasing at rates ranging from 
0.42 to 0.46 °C per decade in the northeastern U.S., 
and the fastest rates of warming were during the win-
ter months (Burakowski et al. 2008). Yet, there have 
still been more intense snow events over shorter time 
periods during recent decades leading to increased 
salinity peaks in many streams and rivers includ-
ing the Potomac River (Fig.  4B) (Kocin and Uccel-
lini 2016). Interestingly, there has also been increas-
ing salinization during drought years with minimal 
or no snow due to decreased dilution from runoff 
(Fig.  4C). Overall, there has been increased salini-
zation of freshwaters with increased variability of 
salinity pulses from winter snowstorms in the north-
eastern U.S., including increasing baseline specific 
conductance during non-winter months due to the 
steady accumulation of road salt in soils and ground 
water (Kaushal et  al. 2005) (Fig.  4D). In addition, 
an increase in rain on snow events may also enhance 
transport of salt pollution to freshwaters. Approxi-
mately 53% of the contiguous U.S. is impacted by 
rain on snow events with the highest frequency in 
the northeastern U.S. and western mountains with 
greater than 3 rain on snow events per year (Seybold 
et al. 2022). If road salt is applied during snow events 
followed shortly thereafter by heavy rains (or snow-
melt), it could change pathways by which salt enters 
streams and rivers. Thus, there can be both syner-
gistic and reinforcing or opposing and counteracting 
forces that determine the net rates of salinization in 
the future that should be considered holistically.

Interactive risk 2: More intense precipitation pat-
terns will amplify watershed salinity pulses.

Salinity could become increasingly pulsed in 
some regions due to changes in precipitation and 
these pulses could be amplified by the interaction 
between climate variability and human activities 
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(Daley et  al. 2009; Kaushal et  al. 2014). Based 
on long-term data analyses, the frequency of both 
extreme high and low-flow discharge events in 
streams and rivers has increased by approximately 
100% from historical conditions across many 
regions of North America (Dethier et  al. 2020). 
Pulses are large increases in concentrations or 
fluxes over relatively short periods of time (Kaushal 
et  al. 2008, 2014). In some regions, rainfall could 
decrease but intensity of rainfall could increase over 
shorter time scales such as extreme storm events 
(Asadieh and Krakauer 2017; Naz et  al. 2018). In 

coastal waters, high water levels associated with 
extreme storms and king tides (i.e., the highest 
high tide of the year) may serve as a predictor for 
future freshwater saltwater intrusion events and 
help us know what the “new normal” will look like 
for coastal areas impacted by sea level rise and land 
subsidence. In addition to storms, droughts can also 
lead to increases in specific conductance and salin-
ity and vulnerability to saltwater intrusion events 
(e.g., Fig. 4C).

Streamflow varies regionally and profoundly 
affects salinity risks, and contributions of low 

Fig. 4   (Panel A) Decreasing snowfall trend in Washington 
D.C. over 100 years from National Oceanic and Atmospheric 
Administration (NOAA) data. (Panel B) Increasing long-term 
trends in chloride concentrations with extreme pulses dur-
ing recent years in the Potomac River at Little Falls Pumping 
Station near Washington D.C. from U.S. Geological Survey 
(USGS) data. (Panel C) Increasing specific conductance dur-

ing drought conditions near the drinking water intake for the 
Potomac River at the Little Falls Pumping Station revealed 
by USGS high-frequency sensor data during 2023. (Panel D) 
Increasing baseflow concentrations of specific conductance 
with winters removed in the Northeast Branch of the Anacostia 
River in the Potomac Watershed



Biogeochemistry (2025) 168:31	 Page 11 of 40  31

Vol.: (0123456789)

streamflow to river discharge is increasing in some 
regions whereas low flow is decreasing in other 
regions (Rice and Hirsch 2012; Rice et  al. 2017). 
For example, some rivers in the northeastern U.S. 
have experienced increasing trends in streamflow 
due to increased precipitation (Zhang et  al. 2010a; 
Rice et  al. 2017). During periods of decreased 
streamflow, low flow in tidal rivers can induce the 
upstream encroachment of salt fronts (Tian 2019); 
for example, there was an increase in specific con-
ductance in the Potomac River upstream of its 
estuary, as streamflow decreased during a regional 
drought (Fig.  4C). Thus, in addition to salinity 
pulses from land to coasts based on road salt appli-
cations (Bubeck et  al. 1971), there may be salinity 
pulses from the coast towards the land based on 
droughts and saltwater intrusion (Li et  al. 2024b). 
Changes in runoff would not only influence dilu-
tion capacity and attenuation of salty inputs but also 
affect the sources, timing, fluxes, and flowpaths of 
salt ions transported in watersheds.

There could also be more extreme winter salinity 
pulses from road salt application due to shifts in the 
frequency and magnitude of both snow events and 
rain on snow events in colder regions. In the eastern 
U.S., there was an increase in extreme snowfall events 
in the 1950’s and 1990’s with concomitant pulses in 
chloride concentrations in the Potomac River dur-
ing the corresponding period of measurement in the 
1990’s (Fig. 4B) (Kocin and Uccellini 2016). El Niño 
and La Niña events can also influence snowfall in the 
Mid-Atlantic U.S. and elsewhere. With increasing cli-
mate change and global warming, there is increased 
water vapor in the atmosphere contributing to cli-
mate variability. For example, the dew point has been 
increasing over time in many regions of the U.S. (Wu 
and Wang 2021). When air can hold more moisture, 
it rises and cools due to adiabatic cooling, and then 
drops more precipitation as either rain, snow, or sleet 
depending on atmospheric temperatures. Changes in 
the timing, duration, and magnitude of precipitation 
events affect flushing and dilution of salts from water-
sheds, which could alter pulses in concentrations and 
fluxes of different salt ions and associated chemical 
cocktails.

Land use change can further interact with winter 
precipitation variability to amplify salinity pulses 
(Kaushal et  al. 2014). Impervious surface cover is 
strongly related to salinity in urban streams (Kaushal 

et  al. 2005; Baker et  al. 2019) and impervious sur-
faces can efficiently convey roadway chemicals to 
waterways during precipitation events. In some cases, 
freshwater ecosystems may become more adapted to 
lower salinity levels during warmer years with mini-
mal snow and road salt applications and then are 
exposed to extreme salinity events (sensu DeLaune 
et al. 2021). More extremes in salinity and tempera-
ture could influence water quality and cause stress 
in organisms and/or their ability for osmoregulation 
and adaptation to a more variable environment (Van 
Meter et  al. 2011; Duan and Kaushal 2013, 2015; 
Walker et al. 2020; Garcia et al. 2024). It may become 
harder for cities and municipalities to manage, plan, 
and budget for extreme snow events leading to pulses 
in road salt application rates across years (Matthews 
et al. 2017). We anticipate that variability in road salt 
application rates across dry and snowy winters could 
have lingering biogeochemical consequences and 
impact water quality spanning over multiple years 
(Novotny and Stefan 2010) (Figs. 3 and 4).

Interactive risk 3: Salt retention within watersheds 
will increase on regional, continental, and global 
scales.

The limited capacity of watersheds to flush out 
salts during precipitation events can lead to long-term 
storage and rising salinity trends in streams, rivers, 
and lakes (Kaushal et al. 2005; Kelly et al. 2008; Lin-
tern et al. 2023; Van Meter and Ceisel 2024). Across 
the U.S., there are varying relationships between 
streamflow and concentrations of Na+, Ca2+, Mg2+, 
Cl−, and SO4

2−in streams and rivers (Fig. 5). Concen-
trations of Na+, Cl−, and SO4

2− decrease with increas-
ing streamflow due to dilution, but there appears to 
be stabilization of concentrations (plateaus) for these 
major ions at the highest levels of streamflow (Fig. 5). 
However, if salt accumulation in catchments increases 
during dry years, salt ion concentrations in receiving 
waters may actually increase with increasing runoff 
in wet years, as observed in Europe (Kopáček et  al. 
2017b). Interestingly, concentrations of Ca2+ and 
Mg2+ are less controlled by streamflow and hydrol-
ogy, as compared to the more mobile ions of Na+, 
Cl−, and SO4

2− (Fig.  5). Thus, the potential flush-
ing rates of salt ions from watersheds likely depends 
upon climate, geology, human activities, flowpaths, 
and time (Lintern et al. 2023; Kaushal et al. 2023b), 
and also the different types of salt ions (Fig.  5). 
Changes in agricultural fertilization and drainage of 
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farmlands are also other important factors. Precipita-
tion and streamflow are increasing in some regions, 
which could flush and dilute salt ions and contribute 
to decreasing long-term trends (Murphy and Sprague 
2019). However, road salt is accumulating in ground-
water and soils at faster rates than it can be flushed 
out (Cooper et  al. 2014), which is contributing to 
long-term increasing chloride and sodium trends in 
some watersheds and their receiving waters (Kaushal 
et al. 2005; Daley et al. 2009; Kelly et al. 2008; Van 
Meter and Ceisel 2024) (Table 1). Although NaCl has 
been commonly considered to be inert and mobile, it 
can be retained up to decades in watersheds (Shaw 
et al. 2012).

A biogeochemical salt budget for the entire con-
tinental U.S. showed that a substantial fraction of 
anthropogenic salt input is retained in watersheds 
before reaching streams and rivers (Kaushal et  al. 
2023a). Salt retention is an important process in other 
watersheds globally (Table 1). Over a 30-year period, 
approximately 36% of total inputs of chloride have 
been retained in watersheds of the Chicago Metro-
politan Area, and Cl− is accumulating in groundwater 
at a rate of 480 kilotons per year (Van Meter and Cei-
sel 2024). It is important to note that accumulation in 

groundwater may not always be considered perma-
nently ‘retaining’ salt, rather just redistributing it to a 
slower moving pool relative to surface water. Over a 
one-year period, 35% of chloride inputs were retained 
in the Lake Constance watershed in Europe with only 
65% of chloride from anthropogenic sources reach-
ing the lake (Müller and Gächter 2012). An annual 
chloride budget revealed that 77% of chloride from 
road salt was retained within a large watershed drain-
ing the Minneapolis-Saint Paul metropolitan area in 
Minnesota, USA, and there was an average annual 
chloride retention of 72% in 10 of the subwatersheds 
(Novotny et al. 2009). Chloride retention in a metro-
politan region of Canada ranged from 40–90% and 
was related to urban land use patterns (Oswald et al. 
2019). A growing body of work supports the grow-
ing importance of quantifying salt storage and reten-
tion within soils and groundwater in the future (sensu 
Shanley 1994) (Table 1).

Although less considered from the perspective 
of global climate change, impacts on the salt cycle, 
biological formation of organochlorines can repre-
sent an important mechanism for watershed chloride 
retention and transformation (Kaushal et  al. 2023a), 
in addition to biological uptake and adsorption of 

Fig. 5   Relationships between streamflow and concentrations 
of sodium, calcium, magnesium, chloride, sulfate in streams 
and rivers across the U.S. monitored by the U.S. Geologi-
cal Survey (USGS). Concentrations of major ions generally 

decrease with increases in runoff, but there appears to be a sta-
bilization of concentrations (plateau) for many major ions at 
the highest levels of runoff. Information on USGS stream and 
river sites can be found in the Supporting Information
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Cl− and other anions on Al and Fe oxyhydroxides. 
Biological organochlorine formation can be enhanced 
by warming temperatures and faster reaction kinetics. 
Kopáček et al. (2014a, b) found that on average 14% 
chloride was retained in agricultural soils, and this 
percentage was consistent with organochlorine forma-
tion in soils. Similarly, Bastviken et al. (2007, 2009) 
showed that there is chloride retention in Swedish for-
est soils which ranges from 4 to 40% as a function of 
temperature (e.g., with warmer soils potentially form-
ing more organochlorines). The effects of climate 
change and warming temperatures on organochlorine 
formation warrant further investigation as part of 
the anthropogenic salt cycle (Kaushal et  al. 2023a). 
Organochlorine formation and salt storage in soils 
and groundwater can lead to salt retention in water-
sheds globally (Table 1).

Part 2: anticipating chain reactions from headwaters 
to coastal waters from salinization

Interactive risk 4: Salinization exhibits ‘pulsed, and 
episodic’ versus ‘sustained and cumulative’ effects 
due to changing climate that drive chain reactions 
and formation of harmful chemical cocktails.

Salt is a strong driver of chain reactions along 
flowpaths, which can lead to mobilization of second-
ary contaminants and changes in acidity and alka-
linity (Kaushal et  al. 2018b, 2019, 2020, 2022; Haq 
et  al. 2018; Galella et  al. 2021). For example, there 
are strong positive relationships between specific con-
ductance and concentrations of salt ions and nutrients 
in streams and rivers across the U.S. (Fig. 6). Many 
different elements are either co-mobilized (through 
biogeochemical reactions) or transported along with 

Table 1   Examples of retention of sodium and chloride in watersheds around the world

% Cl- retained Location Period Watershed area (km2) References

36% Chicago, Illinois, USA 30 years (1990–2020) 18,600 Van Meter and Ceisel (2024)
35% Lake Constance Catchment, 

Switzerland Germany and 
Austria

1 year (2006) 11,000 Müller and Gächter (2012)

72% Minneapolis/St Paul MN, 
USA

5 years (2000–2005) 4150 Novotny et al. (2009)

40–90% Southern Ontario, Canada Each water year 2007–2011 40.5–406 Oswald et al. (2019)
28–45% Chicago, Illinois, USA 5 months (Nov 1972 to April 

1973)
376.5 Wulkowicz and Saleem (1974)

32% New York, USA 1 year (Nov 1971- Nov 
1972)

396 Diment et al. (1973)

52% New York, USA 1 year (Nov 1970- Nov 
1971)

396 Diment et al. (1973)

11–40% Vermont, USA 1 year (1970) 111.2 Kunkle (1972)
50–65% Helsinki, Finland 1.5 years (July 1998–Dec 

1999)
1.7–24.4 Ruth (2003)

35% Boston Metro, Massachu-
setts, USA

4 months (December 1969–
March 1970)

168.4 Huling and Hollocher (1972)

55% Toronto Metro, Ontario, 
Canada

2 years (1989–1990) 104 Howard and Haynes (1993)

59% Rochester, New York, USA 1 year (1969–1970) 435 Bubeck et al. (1971)
34–69% New York, USA 1 year (2012–2014) 1000 Gutchess et al. (2016)
10.8–23.5% Ontario, Canada 1 year (2004–2005) 27 Meriano et al. (2009)
10–47% New Hampshire, USA 1 year (Oct 2006–Sept 2007) 1.42–78.5 Trowbridge et al. (2010)
53% Alberta, Canada Each water year for 

2010–2017
12,971 Laceby et al. (2019)

40% City of Toronto, Ontario, 
Canada

Each water year for 
2004–2008

100 Perera et al. (2013)

2–62% Pennsylvania, USA Annually for 2011–2018 73.9–934 Rossi et al. (2022)
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salt ions to maintain charge balances in watersheds 
(Kaushal et  al. 2018b, 2019, 2020, 2024) (Fig.  6). 
There are also plateau or threshold relationships 
between specific conductance and pH due to influ-
ence of salt ion mixtures and alkalinity on acid buff-
ering capacity (Fig. 6), which have been described in 
previous work linking salinization and alkalinization 
in streams and rivers across the U.S. (Kaushal et al. 
2013, 2018a). Thus, salt has the potential to trig-
ger chain reactions among many different elements, 
which may be either both short-term (pulses) or sus-
tained and cumulative changes.

Changes in the frequency and magnitude of salin-
ity pulses from winter road salt events, irrigation 
return flows, agricultural runoff, saltwater intrusion 

events, droughts, and other climatic factors have 
the potential to trigger mobilization of secondary 
contaminant pulses (Ardón et  al. 2013; Kaushal 
et al. 2018b, 2019; Galella et al. 2023a, b a,b). For 
example, salinity pulses can lead to the sequential 
extraction of elements from soils and sediments in 
freshwaters (e.g., adsorption and solubility changes 
with ionic strength and pH, ion exchange, mineral 
dissolution, redox effects, changes in alkalinity, 
hardness and toxicity) (Kaushal et  al. 2019, 2021, 
2024) (Fig.  6). In addition, there can be ion pair-
ing during salinity pulses leading to temporary 
bonds that allow Na+ and Cl− ions to “pull” many 
other ions such as nitrate, phosphate, sulfate and 
others within ground and surface waters during 

Fig. 6   There are positive relationships between specific con-
ductance and concentrations of salt ions and nutrients and 
dissolved inorganic carbon (as represented by alkalinity) in 
streams and rivers across the U.S. monitored by the U.S. Geo-
logical Survey (USGS). These positive relationships demon-

strate that many different elements are either co-mobilized or 
transported along with salt ions in watersheds. Specific con-
ductance is a surrogate or proxy for many ions (Kaushal et al. 
2018b, 2019, 2020, 2021). Information on USGS sites can be 
found in the Supporting Information
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pulsed winter road salt, fertilizer runoff, and salt-
water intrusion events (Kaushal et  al. 2024). Salt 
tracer experiments in suburban stream ecosystems 
can result in mobilization of ammonium (NH4

+), 
nitrate (NO3

−), potassium (K+), phosphate (PO4
3−), 

and dissolved organic carbon (DOC) and signifi-
cant linear relationships between these chemicals 
and added Na+ concentrations (Fig.  7). However, 
the effects of NaCl on mobilization of DOC and 
nutrients in stream likely varies across streamflow, 
seasons, and land use (Fig. 7). Salinization can also 
trigger episodic pulses of toxic metals and nutrients 
from sediments to streams and rivers (Kaushal et al. 
2019, 2022).

In addition to pulsed and episodic effects, we also 
need to anticipate sustained and cumulative effects 
from chronic salinization due to legacy salt reten-
tion in watersheds during dry conditions or prolonged 
saltwater intrusion. Sustained effects from chronic 

salinization are related to storage of salt and chain 
reactions in soils, groundwater, streams, rivers, res-
ervoirs, and estuaries (sensu slow changes described 
in Michael et  al. 2005, 2017). Groundwater storage 
of salt contributes to corrosivity and mobilization of 
radium, radionuclides, and metals (McNaboe et  al. 
2017; Lazur et  al. 2020; Kaushal et  al. 2024). Slow 
effects of salinization can alter major cycles of car-
bon, nitrogen, phosphorus, sulfur, iron, and silica, 
which control the productivity, functioning, and bio-
diversity of non-tidal and tidal freshwater ecosystems 
(Herbert et  al. 2015; Luo et  al. 2019) (e.g., Fig.  2). 
In coastal rivers and wetlands, chronically elevated 
salt ion concentrations from repeated and frequent 
saltwater intrusion can reduce the solubility of gas-
ses including dissolved O2 (Supporting Information 
Fig.  S1), which could eventually trigger changes in 
redox potentials (Supporting Information Fig. S2) and 
alter reactions in sediments or stratified bottom waters 

Fig. 7   Experimental NaCl tracer additions in a suburban New 
Hampshire stream (WHB) trigger “fast” mobilization of dis-
solved organic carbon (DOC), nitrogen (N), phosphorus (P), 
and potassium (K). A) Break-through curve of Na+ concen-
trations from the added NaCl at WHB; Regressions between 
added Na+ concentrations and ambient concentrations of B) 
ammonium (NH4

+), C) nitrate (NO3
−), D) potassium (K+), E) 

phosphate (PO4
3−), and F) dissolved organic carbon (DOC). 

Green points are from July 2015 and yellow points are from 
June 2014. Each point represents a single sample, and linear 
regressions were only included for statistically significant 
(p < 0.05) relationships. The effects of experimental stream 
salinization may vary with streamflow and season. Informa-
tion on tracer addition methods can be found in the Supporting 
Information
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Fig. 8   Salt impacts carbon cycling and bulk dissolved organic 
matter (DOM) concentrations, as well as different fractions of 
DOM through physical, biological, and chemical processes. These 
processes can result in net increases or decreases in DOM concen-
trations or changes in DOM quality from headwaters to coastal 
waters. Here, we summarize how changes in salinity impact: 
(1) bulk DOM; (2) recalcitrant DOM, which is often considered 
to be aromatic, high molecular weight humic-like substances typi-
cally terrestrial and soil derived (shown in brown arrows as abso-
lute amount; Hansen et al. 2016); and (3) labile DOM, which is 
often considered to be less complex aliphatic, protein-like sub-
stances typically microbial and plant leachate derived (shown in 
green arrows as absolute amount; Hansen et  al. 2016). Initially, 
pulses in salinity cause rapid decreases in pH (Kaushal et  al. 
2022), making DOM, including humic fractions, less soluble in 
soil, water, and streams (Green et  al. 2009; Duan and Kaushal 
2015). Over longer time scales, elevated salinity can cause alka-
linization through repeated H+ depletion on soil exchange sites, 
enhancing solubility of DOM, particularly aromatic and humic 
fractions (Green et al. 2008, 2009; Duan and Kaushal 2015; Haq 
et al. 2018). In soils and sediments, sodium dispersion can mobi-
lize organic matter through the destruction of soil aggregates, 
and it can increase bulk DOM, as well as aromatic and non-
humic fractions up to a threshold before flocculation (Amrhein 
et al. 1992, Green et al. 2008b, 2009, Duan and Kaushal 2015). 
Along riparian zones and streams, invertebrate decomposers are 
impacted by salinity thresholds, which alter decomposition rates 
and concentrations of fine particulate organic matter, bulk DOM, 
and changes in DOM quality (Entrekin et al. 2019; Berger et al. 
2019). Within streams and rivers, elevated salinity can pose a 
subsidy-stress relationship to primary producers and heterotrophic 
microbial communities. Low levels of added salinity initially 
cause decreases in osmotic stress, leading to increases in primary 

production and decomposition rates (Entrekin et al. 2019; DeVil-
biss et al. 2024), which could increase bulk DOM and protein-like 
and microbially derived fractions of organic matter through exu-
dation. As salinity thresholds are exceeded, increases in osmotic 
stress can lead to decreases in primary production and decompo-
sition rates, leading to decreases in overall DOM concentrations 
and larger relative contributions of recalcitrant material (Entrekin 
et al. 2019). Cell death due to desiccation or cell lysis caused by 
osmotic stress can increase the contribution of aquatically sourced 
DOM in streams (Duan and Kaushal 2015; Kaushal et al. 2022). 
Along river flowpaths, salinity gradients along the freshwater-
marine continuum can affect whether different fractions of DOM 
are degraded, oxidized, or mineralized by sunlight, UV radiation, 
and photobleaching based on upon the chemical composition of 
organic matter and the salt ion matrix (Minor et al. 2006; Schafer 
et  al. 2021). Along the entire freshwater-marine continuum, 
increasing ionic strength also increases the solubility of proteins 
up to a threshold, which depends upon salt ion compositions and 
DOM substrate composition (salting-in), after which hydrogen 
bond locations are taken up and solubility decreases (salting out) 
(Kaushal et al. 2022; Hyde et al 2017). Across increased salinity 
levels, Ca2+, Mg2+, and Na+, can lead to flocculation of organic 
matter; flocculation can remove aromatic and humic fractions 
preferentially and decrease bulk DOC concentrations (Abolfa-
zli and Strom 2021; Duan and Kaushal 2015). Overall, salinity 
affects the cycling of carbon from headwaters to coastal waters 
in many environmentally significant ways based on: organic sub-
strate composition, concentrations and compositions of the salt 
ion matrix, previous salt exposure histories at sites, microbial 
communities and adaptations to osmotic stress, and other site-
specific factors
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affected by hypoxia or anoxia (Luo et al. 2019). The 
combination of deoxygenation and ion exchange from 
salinization can also mobilize redox-sensitive metals 
such as Mn, Fe, and Cu from sediments into solution 
(Supporting Information Fig. S3), which has implica-
tions for mobilization of other metals and contami-
nants bound to Mn and Fe oxyhydroxides. Future pre-
dictions need to anticipate both pulsed and episodic 
vs. sustained and cumulative biogeochemical reac-
tions associated with salinization.

Interactive risk 5: Salt pollution pulses and salt-
water intrusion events will contribute to “fast” pulses 
of temporary acidification but “slow” and sustained 
long-term alkalinization.

Over time, pulsed Na+, Ca2+, Mg2+, and K+ inputs 
from winter road salt, other salt pollution sources, 
and saltwater intrusion can contribute to continual 
alkalinization chain reactions from the displacement 
of H+ ions from soil and sediment exchange sites 
by base cations and episodic acidification (Kaushal 
et al. 2018a, b; Kaushal et al. 2024). The input of sea 
salts onto coastal soils during atmospheric deposition 
events can also be important for episodic acidification 
and the mobilization of H+ (and other ions) in acidic 
soils (Wright et al. 1988). On an ion basis, inputs of 
Mg2+ and Ca2+ ions have the potential to displace 
more H+ ions than Na+ based on their size and charge 
(Hussein and Rabenhorst 2001). Initially, this would 
lead to ‘fast’ temporary acidification and pH depres-
sion (Kaushal et al. 2022; Ury et al. 2023), and then, 
sustained and cumulative long-term alkalinization as 
H+ becomes depleted on soil ion exchange sites. In 
areas affected by saltwater intrusion, soil alkaliniza-
tion is controlled by the accumulation of sodium and 
other exchangeable base cations, in addition to the 
displacement of H+ ions (Hussein and Rabenhorst 
2001; Arslan and Demir 2013).

There have been increasing alkalinity trends 
in streams, rivers, and seas across diverse world 
regions (Raymond et  al. 2008; Kaushal et  al. 2013 
2017, 2018a; Stets et  al. 2014; Drake et  al. 2018; 
Müller et al. 2016; Najjar et al. 2020) due to acceler-
ated weathering, decreases in atmospheric acid dep-
osition, increasing production and use of alkaline 
salts, and cumulative depletion of H+ from soil ion 
exchange sites from increased Na+ and salinization 
(Kaushal et al. 2013, 2017, 2023a). Another impor-
tant pattern of changing climate is the increased 
movement of dust (salts, base cations, and P) from 

deserts to aquatic ecosystems (Brahney et al. 2014). 
The increase in alkalinity and acid neutralizing 
capacity has increased pH. Specifically, there have 
been rising trends in pH in 66% of streams and riv-
ers draining the continental U.S. (Kaushal et  al. 
2018a), including the Mississippi River and Chesa-
peake Bay tributaries (Turner 2021; Waldbusser 
et  al. 2011). Human activities are now regulating 
alkalinity and pH trends and pulses (both increases 
and decreases) on a global scale. Increased pH may 
decrease carbon dioxide (CO2) evasion and cause 
some alkaline streams and rivers to become sinks 
for CO2 (Dubois et  al. 2010). On the other hand, 
increasing DOC and decomposition may contribute 
to acidification in some cases and lead to increases 
in pCO2 (Couturier et al. 2022). In a wetter or more 
variable climate, increases in the delivery of alka-
linity loads in rivers could contribute to variabil-
ity in coastal ecosystem responses to ocean acidi-
fication and alkalinization of estuaries and coastal 
waters (e.g., Fig.  3). While an increase in alkalin-
ity and pH is beneficial to streams recovering from 
acidic precipitation in response to the Clean Air Act 
Amendments in the U.S. (Likens et al. 1996), it can 
also alter changes in absorption of CO2 from the 
atmosphere, changes in ammonia toxicity, phospho-
rus sorption or desorption from sediments, changes 
in organic matter solubility and carbon cycling, and 
have effects on primary productivity, aquatic life, 
and food webs (Kaushal et al. 2013). Thus, a future 
challenge will be to better understand the potential 
connections between salinization and alkalinization 
of inland waters and estuaries across time and space 
from increases in ion exchange, alkalinity genera-
tion from chemical weathering, and other biogeo-
chemical processes.

Interactive risk 6: Salt pollution and saltwater 
intrusion will alter the quantity and quality of organic 
carbon in freshwaters.

The future impacts of salinization on the con-
centration, composition, and structure of dissolved 
organic carbon (DOC) also warrant attention. The 
cumulative effects of different salt ions on the quan-
tity and quality of organic matter and DOC have 
not been synthesized to our knowledge (Fig.  8); 
this knowledge gap connecting salinization with the 
cycling of DOC extends from headwaters to coastal 
waters (Fig. 8). Although not fully understood yet, we 
propose that impacts of salinity on organic matter and 
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DOC depends upon six primary factors: (1) salinity 
ranges, (2) pH ranges, (3) ion mixtures dominated by 

Na+ (dispersant of colloids at certain concentrations) 
or Ca2+ (coagulant of colloids), (4) the composition of 



Biogeochemistry (2025) 168:31	 Page 19 of 40  31

Vol.: (0123456789)

organic substrates exposed to salt (Duan and Kaushal 
2015; Haq et al 2018), (5) salt exposure history and 
microbial communities at sites (Ury et al. 2023), and 
(6) dissolved oxygen and redox conditions and redox-
sensitive metals with changing salinity (Supporting 
Information Figs. S1–S3). The relative importance of 
these six primary factors can be site specific (Fig. 8). 
There may even be subsidy stress responses related 
to Na+ where organic matter decomposition rates 
are slower in the presence of Na+ (Tyree et al. 2016; 
Gruntz et  al. 2022; DeVilbiss et  al. 2024), which 
cause nonlinear effects of increasing salinization on 
decomposition. Ion mixtures may also affect decom-
position rates (Martínez et al. 2020) (Fig. 8). Some of 
the changes (or lack thereof) in DOM composition or 
concentrations could be due to an absence or reduc-
tion in certain groups/taxa of microbes with differ-
ent sensitivities to salt, and future work needs to link 
salinization with changes in organic matter amounts 
and quality and microbial communities.

Distinct fractions of dissolved organic matter 
(DOM) respond differently to discrete salt ion pulses 
and mixtures across varying pH ranges (Figs.  8 and 
9, Supporting Information Figure S4). Increased Na+ 
from winter road salt pulses and saltwater intrusion 
events can cause dispersion of DOM and then floc-
culation at higher salinities (Duan and Kaushal 2015; 
Haq et al. 2018) (Figs. 8 and 9). For example, NaCl 
pulses can enhance mobilization of DOM across cer-
tain ranges of concentrations, dissolved organic nitro-
gen (DON), and protein-like fractions in roadside 
soils and urban stream sediments due to a combina-
tion of increases in soil pH and increased solubility, 

denaturing of proteins, and dispersion of organic mat-
ter (Amrhein et al. 1992; Green et al. 2008; Duan and 
Kaushal 2015) (Fig.  8). Conversely, Ca2+ and Mg2+ 
form a bridge between mineral surfaces and organic 
matter, which decreases DOC solubility and increases 
DOC flocculation. The phases and concentrations of 
Fe are also important in governing DOC behavior in 
this context as well. There can also be decreased sol-
ubility and increased ‘salting out’ of DOM and also 
some metals at higher concentrations of salt; this has 
important implications for DOM reactivity and bioa-
vailability and also contaminant partitioning between 
dissolved and particulate phases (Turner 2003). 
Changes in salt concentrations and pH alter optical 
properties of organic matter and the rate and propor-
tion of DOC that is photochemically oxidized and 
broken down by solar radiation to respective C-oxides 
and lower molecular weight DOC (Fig.  8); these 
forms of carbon can be more available for microbial 
degradation (e.g., Kopáček et al. 2003). Thus, salin-
ity interacts with site-specific chemical mixtures to 
alter the amounts, forms, and chemical and biological 
reactivity of dissolved organic matter from headwa-
ters to coastal waters (Figs. 8 and 9).

Further insights into the effects of salinity on con-
centrations of DOC can be gained from analyzing 
broader patterns across sites and analyzing relation-
ships between DOC and salt ions at individual sites. 
Across the eastern U.S., there are decreasing rela-
tionships between DOC concentrations and concen-
trations of Na+, Ca2+, and Mg2+ at some U.S. Geo-
logical Survey stream sites; this can be related to the 
effects of increasing ionic strength on coagulation and 
flocculation of DOC or a general inverse relationship 
between DOC and base cations due to a shift in their 
sources across shallow vs. deep flowpaths (Fig. 10). 
However, a slightly different pattern emerges across 
all sites. Concentrations of DOC appear to increase 
initially with elevated concentrations of Na+, Ca2+, 
and Mg2+ potentially due to sodium dispersion 
effects on organic matter in soils at sites that repre-
sent the lower range of salinity, but then decrease as 
ionic strength and coagulation and flocculation gen-
erally increase (Fig.  10). There may be competing 
effects of different salt ions and pH on enhancing 
solubility within certain ranges in salt ion concentra-
tions and compositions versus enhancing floccula-
tion within other ion concentration and composition 
ranges. Typically, K+ shows a strong positive linear 

Fig. 9   Experimental NaCl impacts on pH, dissolved inorganic 
carbon (DIC), total dissolved nitrogen (TDN), and humic frac-
tions of dissolved organic matter (DOM) in sediments from 
non-tidal and tidal freshwater sites along the Anacostia River. 
Results are from an original experiment with further details 
provided in Supporting Information. Organic matter indices 
were identified using staRdom in R (Pucher et al. 2019), with 
a higher value of BIX representing a larger contribution of 
recent autochthonous material (Huguet et al. 2009) and higher 
values of Coble’s Peaks (A, C, M, and T) representing larger 
amounts of protein-like and humic-like organic matter, as asso-
ciated with each peak given in parentheses (Coble 1996). RU 
denotes Raman Units, which is followed by the description 
of the peak (Coble 1996). T (Protein-like) to C (Humic-Like) 
is the ratio between Coble’s Peak T to Coble’s Peak C, with 
higher values indicating a larger relative contribution of pro-
tein-like material. Experimental methods and additional results 
are in the Supporting Information

◂
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relationship with DOC across U.S. Geological Survey 
sites (Fig. 10), which is likely because of its biologi-
cal importance as a limiting nutrient in terrestrial sys-
tems (Tripler et al. 2006). Overall, our analysis raises 
new questions regarding the relationships between 
different salt ions and the quantity, quality, and reac-
tivity of DOC transported along streams, rivers, and 
estuaries.

In some cases, particularly when there is lower 
pH or temporary fast acidification (Fig.  9), salt 

pollution and saltwater intrusion can lead to DOC 
decreases likely due to changes in solubility or floc-
culation (Duan and Kaushal 2015; Ardón et al. 2016; 
Haq et al. 2018; Ury et al. 2023) (Figs. 8 and 9). For 
example, salt pulses at very high salinities can lead 
to changes in particle size distribution, flocculation 
of organic matter and inorganic colloids, and sedi-
mentation in streams and lead to streambed clogging, 
which impact benthic habitats (Abolfazli and Strom 
2021). At lower levels of salinity, salinization can 

Fig. 10   Relationships between Na+, Ca2+, and Mg2+ (total 
sum of these three base cations), and K+ and dissolved organic 
carbon concentrations in streams and rivers across the U.S. In 
addition, we present examples of relationships between dis-
solved organic carbon (DOC) and individual ions at specific 
sites. Concentrations of DOC appear to increase initially with 
elevated concentrations of Na+, Ca2+, and Mg2+ (sum of these 
base cations) across sites in the Eastern U.S., but then decrease 
likely as ionic strength and coagulation increases. However, 

there are typically declining relationships between DOC con-
centrations and concentrations of Na+, Ca2+, and Mg2+ at indi-
vidual local sites. Typically, K+ concentrations show a strong 
positive relationship with DOC concentrations, which is likely 
because of the importance of biological controls on cycling 
of potassium; potassium is a limiting nutrient in terrestrial 
systems (Tripler et  al. 2006). Information on U.S. Geological 
Survey (USGS) sites can be found in Supporting Information 
Table S1 
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actually lead to DOC increases due to dispersion from 
Na+ at higher pH ranges (Amrhein et al. 1992; Green 
et al. 2008; Duan and Kaushal 2015; Haq et al. 2018) 
(Figs. 8 and 9). Thus, the long-term impacts of salini-
zation on DOM concentrations and quality depend on 
the balance of various processes such as short-term 
acidification, long-term pH increase, sodium disper-
sion, and coagulation and flocculation of DOM due 
to higher ionic strength and/or increasing calcium and 
magnesium concentrations (Green et al. 2008; Hruska 
et al. 2009; Abolfazli and Strom 2021) (Figs. 8 and 9). 
In particular, the effects of different ion mixtures and 
chemical cocktails containing Na+, Ca2+, Mg2+, and 
K+ on organic carbon quantity, quality, and microbial 
decomposition warrants consideration in a changing 
climate, particularly in freshwaters experiencing alka-
linization and higher pH (Fig. 8).

Interactive risk 7: Salinity pulses from chang-
ing weather, salt pollution, and saltwater intrusion 
will alter nitrogen cycling from headwaters to tidal 
waters.

From a watershed perspective, salinization has 
the potential to extract N and other nutrients from 
soils and sediments and increase N transport to 
ground and surface waters under some conditions 
and seasons (Duan and Kaushal 2015; Haq et  al. 
2018; Kaushal et al. 2019; Kinsman-Costello et al. 
2023). Winter road salt mobilizes ammonium from 
soil exchange sites near roads and increases soil 
pH in acidic soils by displacing H+ ions (Green 
and Cresser 2008) (discussed in prediction 5). The 
increase in pH enhances mineralization of organic N 
and nitrification in these roadside soils, which may 
increase N transport to ground and surface waters 
(Green and Cresser 2008). Winter salinity pulses 
from road salt can suppress denitrification in some 
cases (Hale and Groffman 2006) and enhance dis-
similatory nitrate reduction to ammonium (Inamdar 
et  al. 2024). Interestingly, the potential for added 
NaCl to significantly mobilize nitrogen from soils 
and sediments may also be related to an increase 
in mobilization of biologically labile organic mat-
ter and organic N that may be rapidly mineralized 
to inorganic N (Fig.  9). Although less considered 
from a climate change perspective, salinization can 
alter the magnitude and timing of nitrogen delivery 
to receiving waters during winter months when road 
salt is applied (Galella et al. 2023b). From a water-
shed perspective, salinization influences the cycling 

of N and multiple bioreactive elements together 
(Duan and Kaushal 2015).

In response to sea level rise and saltwater intru-
sion, tidal freshwaters become less of an N sink and 
more of an N source when considering fast biogeo-
chemical responses (Osborne et al. 2015). For exam-
ple, drought can lead to saltwater intrusion and fast N 
mobilization from coastal agricultural fields (Ardón 
et al. 2013). Slow and chronic saltwater intrusion can 
also lead to large mobilization of inorganic N to tidal 
freshwater marshes (Widney et al. 2019). In addition, 
saltwater intrusion can also enhance mobilization of 
NH4

+ from sediments to the water column of estuar-
ies through pairing of NH4

+ with base cations from 
sea salts (Gardner et  al. 1991); the process of ion 
pairing refers to the association of oppositely charged 
ions in solution by electrostatic Coulombic forces 
without forming covalent bonds, which also influ-
ences movement of ions through watersheds (Kaushal 
et  al. 2024). Shifts in microbial community compo-
sition and function from salt stress can also shift the 
predominant N cycling pathways, water quality, and 
ecosystem services in estuaries (Franklin et al. 2017; 
Dang et al. 2019; Neubauer et al. 2019; Batanero et al. 
2022; Feng et al. 2023). Nitrate (NO3

−) is a major N 
form in estuaries, and it can be assimilated into bio-
mass or transformed via two dissimilatory pathways: 
denitrification and dissimilatory nitrate reduction to 
ammonia (DNRA). Denitrification sequentially con-
verts NO3

−  to NO2
−, NO, N2O, and N2. Denitrifica-

tion has the potential for permanently removing N 
from the ecosystem as N2 gas, but saltwater intrusion 
can lead to incomplete denitrification and production 
of the greenhouse gas N2O (Jiang et al. 2023). In con-
trast, DNRA reduces NO3

−  to ammonium (NH4
+), 

conserving N in the ecosystem.
Previous studies have shown that denitrification 

is the dominant pathway in freshwater and interme-
diate salinities and generates alkalinity (biologically 
mediated alkalinization). The relative importance of 
DNRA increases in more saline waters, which could 
alter the fate of N and decrease N removal via deni-
trification in estuaries (Gardner et al. 2006; Seo et al. 
2008; Jiang et al. 2023; Gervasio et al. 2023; Huang 
et al. 2024). For example, DNRA is more important 
in C-rich systems with high C:N ratios like sediments 
in estuaries. The potential for significant DNRA 
exists in most soils also, but is more important under 
anoxic conditions in microsites rich in low molecular 
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weight C sources, and at high soil bioavailable DOC 
to NO3

− ratios (Rütting et  al. 2011). Over both fast 
and slow time scales, there can be greater mobili-
zation of inorganic N from sediments in saltier and 
more alkaline tidal rivers and marshes in response to 
saltwater intrusion events and sea level rise.

Interactive risk 8: Salinity pulses from climate 
change will amplify corrosion risks and reactions 
with infrastructure from headwaters to coastal waters.

Infrastructure corrosion costs billions of dollars 
per year, representing approximately 3% of the gross 
domestic product of the U.S. (Koch et al. 2005) and 
1–6% of the gross domestic product of South Korea 
(Kim et  al. 2011). Most of the costs are associated 
with sectors such as drinking water and sewer sys-
tems, transportation, and defense, which can be 
affected by salinization of groundwater, inland waters, 
and coastal tidal waters (Koch et al. 2005). Corrosiv-
ity is commonly estimated by the ratios of the con-
centrations of chloride and sulfate ions to the concen-
trations of bicarbonate and carbonate ions (alkalinity) 
(e.g., Edwards and Triantafyllidou 2007; Stets et  al. 
2018; Edwards et al. 1996). Concentrations and mix-
tures of major ions influencing corrosion are shifting 
across local, regional, continental, and global scales 
(Kaushal et  al. 2005, 2013, 2018a, b, 2019, 2021, 
2023a), which could influence corrosion potential of 
freshwaters across “fast” and “slow” time scales.

As one example, pulses of Cl− have been increas-
ing in streams and rivers from road salt pollution and 
climate variability (Figs.  3 and 4), and there have 
been long-term decreases in SO4

2− loads in rivers 
from acid precipitation regulations and changes in 
application rate or composition of synthetic fertiliz-
ers (Fig.  3). Long-term diverging trends and pulsed 
changes in the Cl− to SO4

2− mass ratio (Fig.  3) can 
trigger fast corrosion events, which can affect the 
mobilization of Pb, Cu, and other metals from drink-
ing water pipes in the absence of adequate corrosion 
inhibitors (Pieper et  al. 2017, 2018). As highlighted 
in Risk 5, pulsed salinity events can occur during 
periods of temporary acidification and reduced alka-
linity during storms or road salt events (Kaushal et al. 
2018a, b, 2022), which could increase corrosion risks 
into the future because of more saline conditions. A 
notable example of the ‘fast’ effects of chloride con-
tamination (from road salts) on mobilization of met-
als occurred in the drinking water supply of Flint, 
Michigan, U.S.A. when the city failed to add proper 

amounts of corrosion inhibitors and test for elevated 
concentrations of lead and copper in drinking water 
(Pieper et  al. 2017, 2018). Cascade events are also 
possible, where salinity pulses in a watershed release 
nitrate to drinking water (e.g., Galella et  al. 2023b), 
which in turn, can mobilize lead in finished drinking 
water (Lopez et al. 2022).

In addition, climate variability can influence 
moisture and salinity exposure in concrete structures 
through acute fast extreme weather events and slow, 
long-term, and prolonged exposure to moisture and 
salt via rain, snow, and road salt applications. Chlo-
ride-induced corrosion is a major deterioration mech-
anism of concrete (e.g., reinforced concrete used in 
buildings, parking garages, etc.) and steel structures 
(e.g., bridges), and is a motivation for infrastructure 
design strategies and planning for infrastructure life 
cycles based on environmental exposure conditions 
(Ahmad 2003). Concrete is porous, and there is a need 
to better consider penetration of water contaminated 
with chlorides when predicting corrosion of rein-
forced steel structures supporting concrete bridges, 
tunnels, and roadways (Aldea et al. 1999). There are 
different mixtures of concrete used for different appli-
cations and some concrete mixtures are more resist-
ant to salinity and moisture than others (Yildrim et al. 
2011). Typically, concrete mixtures and infrastruc-
ture designs are based on current climate conditions, 
but designs do not always consider future changes in 
moisture, salinity, and pH (Stewart et al. 2011); these 
future changes can manifest as both fast pulses and 
slow trends over time. Overall, changes in salinization 
will affect the service life of infrastructure exposed to 
pulsed salinity events and understanding how those 
changes will affect infrastructure design, maintenance 
and inspection, financing, and failure risks poses a 
looming conundrum (Stewart et al. 2011).

Part 3: anticipating double trouble: ecosystem 
transitions where salt pollution from land meets 
saltwater intrusion

Interactive risk 9: Climate-driven changes in stream-
flow, human activities, and sea level rise will interact 
to alter saltwater intrusion and ecosystem transitions.

Effects of freshwater salinization have been stud-
ied separately in non-tidal and tidal waters. More 
work on understanding impacts of climate change on 
salinization have focused on soils, groundwater, or 
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coastal forests and wetlands (e.g., Kirwan and Gedan 
2019; Tully et al. 2019a, b; White et al. 2022; Mon-
dal et  al. 2023). Relatively less work has focused 
on the effects of climate change on salinization and 
alkalinization of tidal rivers and estuaries because of 
disciplinary divides among scientists along nontidal 
and tidal boundaries (but see Hall et al. 2023). Tidal 
freshwater areas or low salinity zones are the nexus 
of freshwater and marine waters, and tidal freshwater 
habitats may be most at risk from salinization across 
space and time. Tidal freshwaters are likely more 
sensitive to shifts in salinity due to their previous 
exposure history to low salinity conditions, the rapid 
encroachment of salt fronts during droughts, and the 
combined impacts of increased watershed salt pollu-
tion to estuaries.

During periods of warmer temperatures and 
droughts, water withdrawals and pumping are 
expected to increase (Van Vliet et al. 2023) and can 
increase saltwater intrusion rates and decrease dilu-
tion of salinity in tidal rivers (Barlow and Reichard 
2010; Roehl et  al. 2013). A greater frequency and 
magnitude of droughts is predicted in the future with 
warmer temperatures (Cook et al. 2018), which may 
increase upstream freshwater demand and withdraw-
als. Flash droughts, which develop more suddenly 
than prolonged droughts, are increasing over 74% 
of global regions identified by the Intergovernmen-
tal Panel on Climate Change (Yuan et  al. 2023), 
and flash droughts could impact the magnitude, tim-
ing, and extent of saltwater intrusion events along 
tidal rivers. Runoff in rivers influences the landward 
encroachment of the salt front in tidal rivers and estu-
aries (Tian 2019), and decreasing river discharges 
to coastal zones can be further reduced by upstream 
dams, human water use, and hydrologic alterations.

Changes in streamflow can have profound impacts 
on salinization versus freshening responses in estuar-
ies from days to decades. As one example, we have 
observed increasing freshening trends over dec-
ades throughout the mainstem of the Chesapeake 
Bay (Fig.  11) due to increasing precipitation and 
streamflow in the Susquehanna River (e.g., Zhang 
et  al. 2010a). These long-term freshening trends 
throughout the mainstem of the Chesapeake Bay sug-
gest the importance of understanding regional bal-
ances between opposing forces of sea level rise and 
streamflow when anticipating net effects of saltwater 
intrusion risks along estuaries and tidal rivers. The 

freshening trends are strongest in the Upper Chesa-
peake Bay due to the proximity of the Susquehanna 
River (Fig.  11A–C), and observations of increasing 
streamflow in rivers draining the northeastern U.S. 
(Rice et  al. 2017). In contrast, we observed increas-
ing salinity trends in many of the tidal rivers flow-
ing into the Chesapeake Bay during the same time 
period as freshening trends along the mainstem of 
the Chesapeake Bay. For example, we documented 
increasing long-term salinity trends in stations along 
the Potomac, Rapahannock, York, and James Rivers 
(e.g., Fig. 11D–F and any other stations on the map 
shown in shades of red). Interestingly, the number 
of stations with increasing salinity trends increases 
in a southward direction with the James River show-
ing the most stations experiencing salinization. The 
increasing salinity trends in tributaries of the Chesa-
peake Bay, particularly rivers in Virginia, are likely 
driven by decreasing streamflow in the southeastern 
U.S. (Rice and Hirsch 2012; Rice et al. 2017).

Salinization is also impacting tidal freshwater 
rivers in the northern portion of Chesapeake Bay 
(Fig.  12). For example, tidal freshwaters of the 
Patuxent River estuary are becoming more salty, 
whereas salty portions of the lower estuary are 
becoming fresher (Fig. 12A and B). When examin-
ing the longitudinal pattern of specific conductance 
along the Patuxent River, there is an increase in 
salinity pulses in tidal freshwaters due to road salts 
and watershed pollution and also increased pulses 
of fresher water in the lower estuary due to floods 
(Fig.  12A and B). For example, there are extreme 
outliers in very high specific conductance in tidal 
freshwater reaches coinciding with winter road salt 
events, and there are extreme outliers in low spe-
cific conductance in the saltier lower estuary due to 
floods and dilution events (Fig. 12C and D). There 
have been increasing trends in specific conduct-
ance in the tidal freshwater Anacostia and Patux-
ent Rivers over approximately the last four decades 
(Fig. 12C and D). These increasing long-term trends 
in specific conductance are characterized by an 
increase in strong pulses, particularly during winter 
months when road salt is applied (Fig. 12C and D). 
A future challenge will be to understand and antici-
pate the impacts of shifting salinity along tidal riv-
ers and estuaries (Najjar et al. 2010; Lassiter 2021), 
given the growing implications for irrigation and 
agriculture, oyster and shellfish production, power 
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generation, drinking water supplies, and industry 
within this region.

From the perspective of global implications, there 
could be a disappearance or displacement of tidal 
freshwater areas in the future due to watershed salt 
pollution and saltwater intrusion (Tully et al. 2019a; 
Little et  al. 2022; Bernhardt 2022), which could 
influence ecosystem services, functions, and biogeo-
chemical reactions. There are varying approaches of 
how a salt front can be defined in estuaries depend-
ing on geography (sensu Cook et al. 2023). In some 
estuaries, average saltwater intrusion and the loca-
tion of the daily average of the tidal salt front is 
generally inversely related to river discharge (Zhang 
et  al. 2010b), but there can be variability in these 
relationships with river discharge. The relationship 

between saltwater intrusion and river discharge var-
ies over time, and there are interannual seasonal and 
annual changes in the relationships between river 
flow and the location of the salt front (Tian 2019; 
Cook et  al. 2023). Variability in the location of the 
salt front depends on tides, winds, waves and storm 
surges (likely minor effects), increased precipitation, 
bathymetry, sea level rise, degree of mixing, upriver 
freshwater withdrawals for agriculture, power, and 
consumption (withdrawals are typically much smaller 
than river flows), and other factors (Najjar et al. 2010; 
Ralston and Geyer 2019; Tian 2019; Valle-Levinson 
and Li 2023). Thus, predicting the location of the salt 
line and saltwater intrusion is a moving target subject 
to environmental change and anticipating changes 
will be important for harnessing the many ecosystem 

Fig. 11   A long-term trend analysis of salinity for tidal sites 
within the EPA Chesapeake Bay Program water quality moni-
toring network. Long-term trends at sites were only assessed 
if sites had 10 + years of data and 50 + observations. Theil-Sen 
slopes are shown for the trends at specific stations as exam-
ples; in addition, the colors of points on the map represent 
ranges in Theil-Sen slopes for individual stations within the 
tidal monitoring network. Trends in figures A-F are statisti-
cally significant and PSU in the figure legend refers to practical 
salinity unit. (Panels A, B, and C) Long-term trends in salinity 
throughout the Chesapeake Bay. The mainstem of the Chesa-
peake Bay shows long-term “freshening” or decreasing salin-
ity trends due to increased streamflow from the Susquehanna 

River over recent decades. In contrast, we observed increas-
ing salinity trends in many of the tidal rivers flowing into the 
Chesapeake Bay during the same time period. (Panels D, E, F) 
There have been increasing long-term salinity trends along the 
Potomac, Rapahannock, York, and James Rivers; while exam-
ples of time series are only shown for a subset of these rivers, 
all monitoring stations with increasing salinity trends can be 
seen in shades of red on the map. The names of some of the 
major tributaries flowing into Chesapeake Bay are labeled on 
the map for geographic reference. Information about trends 
at each station (e.g., years of record, sample sizes, slopes, p 
values, and confidence intervals) can be found in Supporting 
Information Table S2
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services of tidal rivers and wetlands (Lassiter 2021, 
2024; Little et al. 2022; Bernhardt 2022; Valle-Levin-
son and Li 2023; O’Donnell et al. 2024).

Although underappreciated, the depth and shape of 
the river channel (and estuary) affects potential salt-
water intrusion length (Chant et al. 2011; Tian 2019; 
Ralston and Geyer 2019). For example, the deeper 
the river channel, the greater the potential for salt-
water intrusion from saltier, denser, and deeper water 
layers (Chant et  al. 2011; Ralston and Geyer 2019). 
Dredging for navigation significantly deepens river 
channels, and sea level rise can also affect the length 

of saltwater intrusion further up rivers (Chant et  al. 
2011). There are lingering questions about whether 
sea level rise always leads to increasing water depth 
along tidal rivers and estuaries (average depth may 
increase but there can also be spatial variations). 
Channel depth can mitigate or exacerbate the effects 
of sea level rise and depends on the sediment supply 
of the rivers (and whether the sediment supply is low 
or high) (Chant et  al. 2011; Tian 2019). Sedimenta-
tion may be able to keep up with sea level rise in some 
estuaries but not in many others (Ensign et al. 2023), 
and this is certainly complicated by engineering 

Fig. 12   Salinization is impacting tidal freshwater rivers of 
the Chesapeake Bay according to an analysis of data from the 
EPA Chesapeake Bay Program. Tidal freshwaters of the Patux-
ent River estuary are becoming more salty, whereas salty por-
tions of the lower estuary are becoming fresher. (Panels A and 
B) There is an increase in salinity pulses in tidal freshwaters, 
and there is an increase in pulses of fresher water in the salt-
ier lower estuary. (Panels A and B) There are extreme outliers 

in very high specific conductance in tidal freshwater reaches, 
and there are extreme outliers in low specific conductance in 
the lower estuary due to floods and dilution events. (Panels C 
and D) There have been increasing long-term trends in specific 
conductance in the tidal freshwater Patuxent River and tidal 
freshwater Anacostia River. (Panels C and D) These increasing 
long-term trends in specific conductance are characterized by 
an increase in winter pulses when road salt is applied
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activities such as dredging. The geomorphologi-
cal response of estuaries and tidal rivers and large-
scale impacts of dredging and channel engineering is 
largely unknown. Although more traditional emphasis 
is placed on sea level rise from climate change as a 
driver for saltwater intrusion (Najjar et al. 2010; Ross 
et al. 2015), other factors such as river channel dredg-
ing and sediment transport should also be considered 
when anticipating saltwater intrusion risks.

Interactive risk 10: Saltwater intrusion will alter 
diverse ecosystem services such as habitat for aquatic 
life, provisioning drinking water, supporting agri-
culture, and power generation along tidal rivers and 
estuaries.

As mentioned throughout this paper, the ecosys-
tem scale impacts of increasing saltwater intrusion 
risks and biogeochemical chain reactions along tidal 
freshwater segments of rivers has been less studied, 
although they are often the link between land and 
sea and provide vital ecosystem services. Below, we 
explore impacts of salinization on different types of 
ecosystem functions and services along the freshwa-
ter-marine continuum.

A.	 Impacts along tidal rivers from organisms to eco-
systems

Saltwater intrusion is altering ecosystem and biogeo-
chemical transition zones between uplands, marshes, 
and open water. In initial stages of saltwater intru-
sion, there can be loss of uplands and gains in marsh 
areas with opportunities for increased carbon seques-
tration (e.g., Kirwan and Gedan 2019; Tully et  al. 
2019a, b; Guimond and Michael 2021; de la Reguera 
and Tully 2021). As inundation from sea level rise 
continues, there can be eventual loss of wetlands to 
open water and losses in carbon sequestration (e.g., 
Kirwan and Gedan 2019; Tully et al. 2019a, b; Gui-
mond and Michael 2021; de la Reguera and Tully 
2021). The frequency and extent of saltwater intru-
sion influences transition zones for biogeochemical 
reactions by altering spatial and temporal evolution 
of increasing salinity; decreasing dissolved oxygen; 
shifting  groundwater salinity  dynamics; changing 
hydraulic conductivity of soils; and  causing tempo-
rary acidification and long-term alkalinization (exam-
ples of different  processes are in  Tully et  al. 2019a, 
b;  Kaushal et  al. 2021, 2023b, 2024). All of these 
physical and chemical changes triggered by ‘fast’ 

saltwater intrusion from storms and ‘slow’ saltwater 
intrusion from sea level rise will influence the distri-
bution, abundance, stability, and diversity of organ-
isms and ecosystem services.

Along with shifting ecosystem and biogeochemical 
transitions, saltwater intrusion will have ripple effects 
from organisms to ecosystems along tidal rivers (Love 
et  al. 2008; Osborne et  al. 2015). Some organisms 
such as early stage amphibians and mussels are more 
susceptible to acute and chronic changes in salinity 
(Venâncio et al. 2022). There can be elevated salinity 
concentrations during low flow periods, when river 
discharge either cannot push the salt front seaward or 
there are increased shallow saline groundwater con-
tributions (Sadat-Noori et  al. 2015). Some forms of 
submerged aquatic vegetation and their organic mat-
ter are susceptible to elevated salinity (Connolly et al. 
2014), and submerged aquatic vegetation can provide 
valuable habitat and can influence ecological impacts 
of hypoxia (Miranda and Hodges 2000). More work 
is necessary to understand and identify thresholds 
influencing impacts on organisms, ecosystems, and 
biogeochemical functions (Bachman and Rand 2008; 
Osborne et  al. 2015). There can be losses of sensi-
tive species at certain thresholds and changes in the 
geographic abundance and distribution of organisms, 
which represent shifts in habitat over time (Love et al. 
2008; Pettit et al. 2016).

Even episodic saltwater intrusion can be problem-
atic, with tidal rivers and marshes experiencing the 
most risk. Plants and macrophytes in tidal marshes are 
important for carbon sequestration, their organic mat-
ter inputs contribute to denitrification, and they are 
susceptible due to inundation (Connolly et  al. 2014; 
Pettit et al. 2016). Plants in tidal marshes are adapted 
to different salinity zones influenced by microtopog-
raphy and the depth and duration of inundation. For 
example, some plant species may be intolerant of 
higher salinity in marshes at lower topographic ele-
vation near tidal rivers (Pennings et  al. 2005; Pettit 
et  al. 2016); this could result in conversion of some 
tidal wetlands to mudflats and altered biogeochemical 
reactions (Barendregt and Swarth 2013). Tidal marsh 
vegetation composition could also shift over time in 
response to salinity changes (Sutter et al. 2015), but 
there may be differences in fast and slow effects on 
vegetation dynamics (Li et al. 2022a).

Although underappreciated, salinity has the poten-
tial to influence the location, timing, and magnitude 
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of algal blooms and harmful algal blooms (Xu et al. 
2017; Li et  al. 2020; McClymont et  al. 2023). For 
example, salinity can influence transient stratifica-
tion, where algal cells may be suspended in the light 
longer. In addition, salinity can trigger algal blooms 
through increased mortality of zooplankton graz-
ers and trophic cascades in freshwaters (Hintz et  al. 
2017). There can be cascading effects of salinity 
contributing to the formation, intensity, and persis-
tence of harmful algal blooms and interactions with 
warming (McClymont et  al. 2023). For example, at 
500  mg/L of chloride, there was a large increase in 
cyanobacteria concentrations whereas temperature 
played a smaller role (McClymont et al. 2023). This 
response to salinity was due to chloride reducing zoo-
plankton biomass and richness suggesting that distur-
bance to the food web made conditions favorable to 
cyanobacteria (McClymont et  al. 2023). In addition, 
hypersaline conditions (> 60 ppt) due to drought and 
loss of zooplankton and grazer communities contrib-
uted to formation of brown tides in the Laguna Madre 
of Texas (Buskey et al. 1997). Other factors such as 
nutrient availability, temperature, hydraulic flush-
ing, and stratification are important in coastal waters, 
but the interactive impacts of salinity warrant further 
consideration in tidal ecosystems (Röthig et al. 2023).

There are many open questions regarding how 
changes in saltwater intrusion will impact aquatic 
food webs and the distribution and abundance of fil-
ter feeders and predatory fishes in tidal rivers and 
marshes (Romañach et  al. 2019). Fish are mobile, 
but they may be more active and/or migrate during 
certain seasons or in response to saltwater intrusion 
with implications for altering predator–prey dynam-
ics (Schwartz 1998; Love et al. 2008; Mohamed and 
Hameed 2019). Overall, direct and indirect impacts of 
saltwater intrusion and ecosystem transitions on fish-
eries and altered aquatic food webs can influence both 
coastal ecosystems and economies (Al-zewar and 
Ahmed 2020).

B.	 Impacts on coastal drinking water supplies

Many major drinking water supplies are located at 
the boundary of saltwater and freshwater interfaces 
(Martínez et  al. 2007; Lassiter 2021, 2024). Salt-
water intrusion can directly or indirectly contami-
nate coastal drinking water supplies, through direct 
salinization or indirect mobilization of chemicals 

by enhanced biogeochemical reactions (Moore and 
Joye 2021). In addition, saltwater intrusion is linked 
to hypertensive disorders, developmental delays in 
children, and other human health impacts beyond the 
impacts of corrosion to drinking water infrastruc-
ture (please see Kaushal et al. 2024 for an extensive 
review on human health implications of saliniza-
tion). Even modest levels of sea level rise will have 
serious impacts on drinking water depending on 
where intakes for drinking water facilities are located 
and coastal water supplies may be most vulnerable 
(Roehl et  al. 2013; Garcés-Vargas et  al. 2020). Salt-
water intrusion can affect multiple sources of drink-
ing water including groundwater aquifers and surface 
waters in estuaries. Groundwater can also be con-
taminated from recharge from saltwater if wells are 
overpumped in coastal areas (Moore and Joye 2021; 
Langevin and Zygnerski 2013). It is important to 
emphasize that the tidal freshwater portions of estuar-
ies are a viable drinking water source without desa-
linization, and tidal freshwaters are at the most risk 
of salinization from both watershed pollution and 
saltwater intrusion. Here, we consider the brackish 
front moving upstream into areas that were previously 
either tidal freshwaters or non-tidal freshwaters and 
contaminating viable drinking water sources.

Predicting regional impacts of saltwater intrusion 
on drinking water can be difficult to anticipate due to 
heterogeneity in local environmental factors, which 
include river discharge and the ability to push away 
the encroaching salt front, geomorphology, and chan-
nel deepening from dredging. Most previous work has 
focused on saltwater intrusion of aquifers and associ-
ated hydrogeologic parameters and human activities 
(e.g., groundwater pumping) that make them suscep-
tible to saltwater intrusion (Klassen and Allen 2017). 
For an extensive review of hydrogeologic factors 
contributing to groundwater salinization and the bio-
geochemical and human health effects of groundwater 
salinization in coastal areas, see Kaushal et al. (2024). 
Much less is known regarding salinization risks along 
the world’s many tidal rivers. Local factors influenc-
ing the physical transport of saltwater upstream to 
drinking water sources include increases in channel 
depth, subsidence, changes in river flow, decreases in 
vertical mixing, increases in gravitational circulation, 
changes in baroclinic pressure gradients, and changes 
in tidal ranges, which also depend upon length and 
geometry (e.g., Chant et al. 2011; Ralston and Geyer 
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2019; Tian 2019; Cook et  al. 2023; Valle-Levinson 
and Li 2023). Thus, there is an increasing need for 
customized models and decision support tools to 
be downscaled from global modeling assessments 
(e.g., Ross et al. 2021; Valle-Levinson and Li 2023) 
to better anticipate the effects of saltwater intrusion 
on drinking water sources based on local and unique 
conditions.

In order to better anticipate the risks of saltwater 
intrusion on drinking water intakes, regional models 
are needed to project how much salinity can migrate 
upstream, particularly during dry years and droughts 
as a research frontier (Lassiter 2021, 2024). Regional 
models with different local and regional boundary 
conditions are needed to predict how often and how 
long salinity thresholds are exceeded. Information 
regarding threshold exceedances can guide water 
managers on when to limit withdrawal frequency or 
developing advisories on whether the quality of water 
may present certain risks (sensu Jones and van Vliet 
2018). Furthermore, regional models and plans can 
be developed to inform where to move intakes further 
into the future and identify and predict spatial regions 
where tidal rivers will be most affected by salinity 
upstream of the mouth. This information is needed to 
better anticipate adaptation and mitigation strategies 
(Lassiter 2021, 2024).

C.	 Saltwater intrusion impacts along tidal rivers on 
agriculture

During dry weather, crops demand more irrigation 
and streamflow is naturally lower, which increases 
vulnerability to saltwater intrusion risks along the 
freshwater-marine continuum (Tarolli et  al. 2023). 
There may also be increasing instances when farm-
ers cannot reliably use irrigation water from their 
intakes along the river because farmers either can-
not use the water for irrigation or are forced to irri-
gate with saltier water or need to switch to grow-
ing alternative salt-tolerant crops because the water 
becomes too salty for conventional crop growth and 
health (de la Reguera et  al. 2021; van Aalst et  al. 
2023; Mondal et al. 2023). Saltwater intrusion leads 
to serious economic costs (Mondal et al. 2023), and 
substantial losses of nitrogen and phosphorus from 
agricultural lands (Weissman et  al. 2021). Saltwa-
ter intrusion also contributes to losses of culture 
and history, as homes and fields are threatened by 

inundation from increased flood waters from marine 
environments (Tully et al. 2019b).

Saltwater intrusion alters spatial and temporal 
transitions in biogeochemical reactions relevant to 
agriculture and water quality along the freshwater-
marine continuum (Tully et  al. 2019a; Weissman 
and Tully 2020). Saltwater intrusion can cause sul-
fate to bind with iron to form sulfides, preventing 
phosphorus (P) from binding to iron oxyhydrox-
ides (i.e., P stays in solution) (Tully et  al. 2019a; 
Weissman and Tully 2020). This increases P mobi-
lization from agricultural soils and can negatively 
impact coastal water quality (Tully et  al. 2019a, 
b a,b, Weissman and Tully 2020). However, car-
bon can accumulate in inundated soil aggregates 
experiencing anoxic conditions and anaerobic 
metabolism (Tully et  al. 2019a, b). Decreases in 
the SO4

2− to Cl− ratio in soils and soil waters have 
indicated the importance of increased sulfate reduc-
tion in response to saltwater intrusion. There can be 
stabilization of soil organic matter through chemi-
cal sorption of organic matter onto iron and alu-
minum oxyhydroxides (Tully et  al. 2019a, b). As 
the impacts of saltwater intrusion increase and soil 
fertility declines, there may be a need to switch to 
more salt tolerant crops such as barley and sorghum, 
and plant crops such as switchgrass for restoration 
and remediation of mobilized nutrients; otherwise, 
farmers may experience serious economic losses 
(de la Reguera and Tully 2021; Mondal et al. 2023).

D.	 Saltwater intrusion impacts on power generation, 
infrastructure, and cooling waters

There can be increasing operational costs of electric-
ity generation from increasing saltwater intrusion due 
to sea level rise and channel dredging and deepening 
(Shirazi et  al. 2019). The energy industry wants to 
draw the cleanest water possible to reduce corrosion 
(lower Cl−), scaling (lower Ca2+, Mg2+, and carbon-
ates), and fouling and biofouling for steam generation 
and cooling, when generating electricity (Pan et  al. 
2018). However, due to environmental and ecologi-
cal concerns for waste heat discharges, locations for 
power plants are often located along large rivers and 
estuaries (Lin et al. 2021). Therefore, the potential for 
using river water as a coolant in energy production 
and industry may be impaired by warmer and saltier 
water with lower specific heat that cools off more 
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slowly (sensu Millero et al. 1973, Stewart et al. 2013); 
thermal pollution from coolants may also have further 
impacts if discharged back to rivers (particularly riv-
ers already showing rising river temperatures sensu 
Kaushal et al. 2010, Stewart et al. 2013). Even if the 
slower cooling of water doesn’t pose a problem to riv-
ers, there may be more costs required to remove the 
additional salts from the water actually used for cool-
ing to prevent the precipitation of Ca(Mg)CO3 and 
CaSO4 and to reduce either the corrosive or scaling 
potential of the cooling water within the power plants.

Freshwater alkalinization and water hardness could 
also impact the efficiency of transmission of steam 
and water in piped distribution systems. Scaling from 
ions contributing to carbonate alkalinity and water 
hardness can be a major problem for water supply 
pipelines (Li et al. 2022b). Buildup of scale in pipes 
can increase the resistance of water flow and pres-
sure within water supply pipes and can contribute 
to wasted energy or deterioration of pipes (Li et  al. 
2022b). Scale in the pipes can be enriched in toxic 
metals or pathogens in biofilms, which can also be a 
potential source of secondary contamination of drink-
ing water supplies (Li et al. 2022b). Ultimately, both 
salinization and alkalinization along tidal rivers can 
impact the industrial uses of water and degradation of 
piped infrastructure.

Future directions

Based on our predictions of a saltier and alkaline 
future for freshwaters, there is a growing role for 
ecologists, watershed hydrologists, oceanographers, 
landscape architects and planners, geochemists, epi-
demiologists, and engineers to address the future of 
FSS. General interdisciplinary knowledge gaps are 
relevant to: (1) planning—developing strategies for 
anticipating changes in source water quality, and then 
using these data to inform long-term planning; (2) 
technology—developing low-cost, low-energy modu-
lar technologies for removing salt from water; these 
facilities can be scaled up based on increasing salin-
ity concentrations and risks; and (3) institutions—
developing strategies for strong partnerships among 
coastal freshwater users and reallocating freshwa-
ter sources as needed to ensure basic water security. 
These future strategies will require communication 

and collaboration among diverse groups to tackle the 
complex problem of stopping or slowing FSS.

More work in the future is also necessary identi-
fying all relevant stakeholders (including underrepre-
sented groups) for managing water needs pertaining 
to changes in salinity, alkalinity, and pH and poten-
tial interactions with temperature from headwaters 
to coastal waters. There may be underrepresented 
groups affected by saltwater intrusion along tidal 
rivers and estuaries. For example, rural communi-
ties may not be a key stakeholder in terms of use, but 
they can be more strongly impacted and have less 
resources for anticipating and managing salinity risks. 
Understanding the risks and limitations of saline and 
alkaline freshwaters requires interviewing different 
users and decision makers for acceptable water uses 
across different salinities, pH, alkalinity, and salt ion 
concentrations (sensu Higgins et al. 2002; Dutta et al. 
2022) and public perceptions (sensu Dolnicar et  al. 
2011). If changes in the salinity, alkalinity, and pH 
of water can be anticipated or predicted, it can help 
guide decisions regarding how to use that water better 
for drinking, agriculture, power generation, industry, 
etc.; for example, there may be certain recommended 
limits and thresholds for salinity, alkalinity, and pH of 
water for different uses and applications. For exam-
ple, high salinity water that is very alkaline and hard 
is not best for steam transmission in pipes and avoid-
ing scaling of pipes. On the other hand, high salinity 
water that is more acidic may affect uses of water and 
steam that could cause corrosion risks. There is also a 
need to anticipate potential complications from differ-
ent salinity mixtures and chemical cocktails (Kaushal 
et  al. 2018b, 2019, 2020), which need to be consid-
ered not only from an ecological and health perspec-
tive but also for water treatment and industrial pro-
cesses (Bhide et al. 2021; Grant et al. 2022).

Predicting the future scope and magnitude of FSS 
along inland and coastal waters will be limited by the 
availability of high temporal and spatial resolution 
data from monitoring with sensors and high-resolu-
tion spatial monitoring (sensu Kaushal et al. 2023a, b, 
c, Shelton et al. 2024). High salinity or high pH events 
can easily be missed based on weekly or monthly 
sampling or limited sampling locations (Tassone et al. 
2022). Further work should also focus on developing 
proxies with conductivity sensors, pH, and ion spe-
cific probes to expand the temporal and spatial reso-
lution of salt ion concentrations and related chemical 



	 Biogeochemistry (2025) 168:3131  Page 30 of 40

Vol:. (1234567890)

cocktails (Kaushal et  al. 2018b, 2019, 2020, 2021; 
Morel et al. 2020; Galella et al. 2021). FSS will likely 
impact many non-tidal and tidal freshwaters around 
the world, which remain unmonitored due to eco-
nomic or sociopolitical challenges, offering opportu-
nities for collaborations (Krabbenhoft et al 2022).

Alternative future management scenarios, trade-
offs, and restoration strategies can be anticipated and 
modeled, but are typically limited by high resolution 
monitoring data across space and time (Sanford and 
Pope 2010; Dey and Prakash 2020). With improved 
high-resolution data, models can be developed to: 
(1) predict alternative scenarios for water allocations 
among groups, (2) develop adaptation, mitigation, 
and restoration strategies based on salinity, alkalin-
ity, and pH, and (3) compare analyses of tradeoffs. 
Models could evaluate the potential for nature-based 
solutions to FSS before costly engineering solutions 
are constructed and implemented. Traditional engi-
neered solutions for saltwater intrusion involve barri-
ers, diversions, dilution from upstream reservoirs, set-
ting new minimum flow requirements, and increasing 
water use efficiency (Motallebian et al. 2019). Despite 
potential limitations and trade-offs in salinity mitiga-
tion and attenuation associated with conservation and 
restoration (Kaushal et  al. 2022, 2023c; Maas et  al. 
2023; Malin et  al. 2024; Shelton et  al. 2024; Long 
et  al. 2025), nature-based solutions can also provide 
other ecosystem services; for example, restoration 
of coastal tidal wetlands may serve as future salinity 
barriers preventing saltwater intrusion (depending on 
location), while also increasing recreational oppor-
tunities and ecological habitats (White and Kaplan 
2017). It is important to recognize that some of these 
nature-based solutions are experimental approaches 
and may have mixed effectiveness based on their set-
tings (White and Kaplan 2017).

Conclusion

Our synthesis shows that climate change, pollution, 
and saltwater intrusion can alter the sources, storage, 
reactivity, and transport of salt ions causing cascading 
impacts on water quality and ecosystems extending 
from headwaters to coastal waters. More monitoring 
is needed in tidal freshwaters where variability is high 
due to pulsed inputs from both salt pollution on land 

and saltwater intrusion from the sea. Understanding 
changes in the different compositions of salt ions, 
biogeochemical reactions, and mobilized chemical 
cocktails could provide breakthroughs for anticipat-
ing impacts of saltier and more alkaline freshwater on 
ecosystem services. Salinization interacts with many 
biogeochemical cycles and can exacerbate contem-
porary water quality problems as a multiple stressor 
along with rising temperatures and chemical cocktails 
from other anthropogenic sources. There will be fast 
and slow effects of climate change on salinity risks 
spreading along both ends of the freshwater-marine 
continuum. Our synthesis showed that salt sources, 
transport, and storage is changing in watersheds in 
response to climate change and variability. We illus-
trated how salinization is triggering different chain 
reactions with cascading impacts from headwaters to 
tidal waters. Finally, we showed how combined salin-
ization from land and saltwater intrusion due to sea 
level rise will alter ecosystem services such as habitat 
for aquatic life, provisioning drinking water, support-
ing agriculture, and power generation along the fresh-
water-marine continuum.
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