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Abstract The parameterization of subgriduscale processes such as boundary layer (PBL) turbulence
introduces uncertainty in Earth System Model (ESM) results. This uncertainty can contribute to or exacerbate
existing biases in representing key physical processes. This study analyzes the influence of tunable parameters
in an experimental version of the Cloud Layers Unified by Binormals (CLUBBX) scheme. CLUBB is the
operational PBL parameterization in the Community Atmosphere Model version 6 (CAM6), the atmospheric
component of the Community ESM version 2 (CESM2). We perform the Morris oneuatuautime (MOAT)
parameter sensitivity analysis using shortuterm (3uday), initialized hindcasts of CAM6uCLUBBX with 24
unique initial conditions. Several input parameters modulating vertical momentum flux appear most influential
for various regionallyuaveraged quantities, namely surface stress and shortwave cloud forcing (SWCF). These
parameter sensitivities have a spatial dependence, with parameters governing momentum flux most influential
in regions of high vertical wind shear (e.g., the midulatitude storm tracks). We next evaluate several
experimental 20uyear simulations of CAM6uCLUBBX with targeted parameter perturbations. We find that
parameter perturbations produce similar physical mechanisms in both shortuterm and longuterm simulations, but
these physical responses can be muted due to nonlinear feedbacks manifesting over time scales longer than
3 days, thus causing differences in how output metrics respond in the longuterm simulations. Analysis of
turbulent fluxes in CLUBBX indicates that the influential parameters affect vertical fluxes of heat, moisture, and
momentum, providing physical pathways for the sensitivities identified in this study.

Plain Language Summary Models struggle with certain aspects of predicting the Earth's current and
future climate. To achieve better predictions in the future, it is important to understand which parts of the model
need to be improved. This study explores how changing certain model characteristics influences what the model
outputs. We find that changing how the model estimates smalluscale motions in the atmosphere improves the
model's accuracy. Furthermore, these changes affect both shortuterm (several days) and longuterm (several
decades) model simulations. The results of this study can help scientists understand the physical behavior of
climate models and help inform future improvements to enhance model accuracy.

1. Introduction
Despite continued advances in computational capacity, Earth System Models (ESMs) still exhibit notable biases
in depicting key processes relevant to the climate system. These include clouduradiative forcings (e.g., Trenberth
& Fasullo, 2010) and surface wind stress (e.g., Simpson et al., 2018), just two examples of processes critical for
accurately depicting the future climate in an ESM. Generally, ESMs do not explicitly resolve processes related to
clouds, radiation, convection, microphysics, and boundary layer (PBL) turbulence, even at grid spacings
considered highuresolution for climate applications (Bacmeister et al., 2014, 2018; Wehner et al., 2014).
Therefore, ESMs must estimate, or parameterize, these key physical processes based on theory, observations, or a
combination of both. These parameterizations typically contain tunable numeric settings (i.e., parameter values)
and are a key source of uncertainty in ESMs (e.g., Covey et al., 2013; Duffy et al., 2024; Nardi et al., 2022; Qian
et al., 2018).

Parameterizations are a major source of model uncertainty because (a) parameter values are often inadequately
constrained physically due to a lack of processulevel understanding or observational data and (b) there are often
various ways model developers can represent the same process (Hourdin et al., 2017). Recent studies have
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focused on better quantifying uncertainties in ESM output due to choice of parameter value. Many of these studies
have performed variations of a perturbed parameter ensemble (PPE), in which a model is run multiple times with
unique combinations of input parameter values. The changes in model outputs across different parameter com-
binations help quantify the degree to which each input parameter affects the model solution. For example,
Eidhammer et al. (2024) performed a PPE in which they used Latin hypercube sampling to perturb 45 input
parameters associated with the PBL turbulence, microphysics, and convection parameterization schemes in the
Community ESM version 2 (CESM2). This PPE guided the identification of key parameters for more focused
perturbations and analysis (Duffy et al., 2024).

Qian et al. (2018) performed a PPE on 18 parameters from the turbulence/shallow convection, microphysics, deep
convection, and gravity wave drag schemes in the Energy Exascale Earth System Model (E3SM). Unlike the PPE
in Eidhammer et al. (2024), they ran short, 3uday simulations rather than multiyear simulations. Such a meth-
odology provides the added benefit of reduced computational cost and better ability to sample a larger parameter
space. This study demonstrated that shortuterm simulations can provide useful insights for parameter sensitivity at
longer time scales. These are just several examples among numerous other parameter sensitivity analyses using
ESMs (e.g., Covey et al., 2013; Guo et al., 2014, 2015; Ma et al., 2014; Qian et al., 2015).

Though previous work has highlighted influential parameters for ESMs, the precise physical mechanisms driving
these parameter sensitivities remain uncertain. Recent studies have attempted to fill this gap in model develop-
ment. For example, prior studies have found that parameters affecting the subgriduscale distribution of vertical
velocity play a key role in modeled cloud regimes (e.g., Guo et al., 2015; Qian et al., 2018). Graap and Zar-
zycki (2024) analyzed how changes in the formulation of momentum flux in CESM2 affected lowulevel fluxes of
momentum, heat, and moisture in the tropical Atlantic. They found that adding a prognostic formulation for
vertical momentum flux in the PBL turbulence scheme improved the depiction of modeled fluxes, producing
more realistic lowulevel wind profiles. Nardi et al. (2022) conducted a oneuatuautime sensitivity analysis and
identified a handful of input parameters related to PBL turbulence that were influential in the depiction of PBL
structure in idealized tropical cyclones (TCs) in CESM2. They linked the influential input parameters to the
modulation of turbulent eddy length scales and vertical turbulent mixing in the TC PBL.

While Nardi et al. (2022) established the importance of parameterized momentum flux on TC structure in
CESM2, it is unclear how these parameters affect output in a more realistic global simulation. In particular, we
wish to better understand how and why these parameters influence various aspects of the climate system. As in
Nardi et al. (2022), we seek to screen a larger number of input parameters to isolate a handful of parameters that
are influential for the mean climate. We can then isolate these parameters and analyze the physical drivers behind
the sensitivities. Knowledge of PBL parameters that affect the global climate system, and those that affect
extreme weather phenomena, can inform model developers when balancing improvements aimed at either
objective. We also seek a screening mechanism that reduces computational cost while also allowing for a
comprehensive analysis of parameter sensitivity in the climate system.

In this study, we employ a simple parameter sensitivity analysis, Morris oneuatuautime or MOAT (Mor-
ris, 1991), on a subset of tunable input parameters in the PBL turbulence and microphysics schemes within an
ESM. Following prior ESM sensitivity analyses, we first focus on a handful of spatiotemporallyuaveraged
output metrics related to clouduradiative forcing. We then compare parameter sensitivities for common pa-
rameters between studies to verify the fidelity of our MOAT analysis (Section 3.1). We then build on prior
studies and extend our analysis to less commonlyuevaluated metrics related to PBL turbulence, the general
circulation, and precipitation processes (Section 3.2). We next evaluate the key physical mechanisms driving
the influence of one particular influential input parameter (Section 3.3). We conclude by running a 20uyear
CESM2 simulation with two targeted parameter perturbations, informed by the shortuterm MOAT sensitivity
analysis (Section 3.4).

This study builds on prior PPEs in three ways. First, we extend our analysis beyond clouduradiative metrics and
analyze metrics characterizing the PBL and general circulation. This allows a more comprehensive view of how
tunable parameters affect all components of the climate system. Second, we explore a handful of experimental
input parameters in the PBL turbulence parameterization that have not been thoroughly studied in prior PPEs.
Third, we analyze processuoriented metrics to help identify physical mechanisms driving parameter sensitivities.
While shortuterm simulations isolate relevant physical mechanisms prior to the onset of feedbacks manifesting at
longer time scales, multiuyear simulations allow for a deeper analysis of how parameter perturbations affect
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interactions within the modeled climate system (e.g., turbulence, clouds, microphysics). In this way, our analysis
will not only guide model tuning but also provide key context that can allow model developers to build a more
physicallyuconsistent model.

2. Materials and Methods
2.1. Model Setup
We evaluate input parameter sensitivity in the Community Atmosphere Model version 6 (CAM6), the atmo-
spheric component of CESM2 (Danabasoglu et al., 2020). We run CAM6 using the spectral element (SE)
dynamical core (Dennis et al., 2012; Lauritzen et al., 2018) on a 1°cubedusphere grid with a hybrid sigmaupressure
vertical coordinate (58 levels). The development version of CAM6 used here is tagged cam6_3_124 (https://
github.com/ESCOMP/CAM/releases/tag/cam6_3_124). Notably, this version of CAM6 employs the Parame-
terization of Unified Microphysics Across Scales version 1 (PUMASv1; Gettelman et al., 2023) scheme to
parameterize microphysics and an experimental version of the Cloud Layers Unified by Binormals (CLUBB;
Golaz et al., 2002; Larson, 2017; Larson et al., 2019) scheme to parameterize PBL turbulence, shallow con-
vection, and cloud macrophysics.

We initialize CAM6 with atmospheric states, seausurface temperatures (SST), and sea ice conditions from
reanalysis and integrate over 72 hr (“Betacast,” C. Zarzycki, 2023). We initialize the atmosphere from the 5th

generation of the European Center for MediumuRange Weather Forecasts (ECMWF) reanalysis (ERA5; Hersbach
et al., 2017). We initialize SST and sea ice with daily data from the NOAA Optimum Interpolation version 2 data
set (NOAA OI SST v2; Reynolds et al., 2002). Both ERA5 and NOAA OI SST v2 data are at a horizontal
resolution of 0.25°. To initialize the land, we follow Pettett and Zarzycki (2023) and apply a 12umonth spinuup
process in which we run the Community Land Model version 5 (CLM5; Lawrence et al., 2019) with prescribed
atmospheric conditions from ERA5 over the 12 months preceding the initialization date. SST and sea ice remain
constant throughout the entirety of the short model run. To encompass seasonal variations and account for
interannual variability, we run Betacast for 24 different initialization dates. For each month (JanuaryuDecember),
we randomly select two years between 2010 and 2020, and for each monthuyear combination, we initialize the
model at 00 UTC on the first day of the month. While randomly sampled initially, we keep these initializations
fixed for each parameter combination.

Though prior sensitivity analyses have leveraged multiuyear simulations in ESMs (e.g., Eidhammer et al., 2024;
Guo et al., 2015; Zhang et al., 2018), we choose to use 3uday hindcasts for three reasons: (a) running short
simulations reduces computational cost, thus allowing for an expanded sampling of the parameter space, (b) short
simulations allow for the isolation of key physical processes before nonlinear feedbacks manifest, and (c) short
simulations have proven effective in understanding parameter sensitivity in multiuyear ESM simulations (Ma
et al., 2014; Qian et al., 2018; Wan et al., 2014; Xie et al., 2012). Qian et al. (2018) specifically demonstrated that
short simulations are useful tools for establishing a processulevel understanding of a parameterization's influence
on “fast processes” involving clouds, convection, and turbulence. They showed that parameter sensitivities seen
in 3uday E3SM simulations are comparable to those in 5uyear simulations.

2.2. Cloud Layers Unified by Binormals (CLUBB)
CLUBB is a unified parameterization for turbulence, shallow convection, and cloud macrophysics in CAM6
(Golaz et al., 2002). The governing equations for CLUBB are detailed in Larson (2017). Following Nardi
et al. (2022), we adopt two experimental modifications to CLUBB. Hereafter, we refer to this version of CLUBB,
described below, as CLUBBX.

First, we replace the existing diagnostic formulation of vertical momentum flux, u→w→ ↑ ↓Km
zu
zz , with a new

prognostic formulation, as described in Larson et al. (2019). They noted that the prognostic momentum flux
formulation better accounts for upgradient fluxes seen in large eddy simulations. Graap and Zarzycki (2024)
demonstrated that implementing the prognostic formulation in CAM6 effectively produced upgradient fluxes
over the tropics. However, a detailed analysis of upgradient fluxes is beyond the scope of this study. The
prognostic formulation is defined as follows:
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input parameters is generated by perturbing one input parameter value and keeping all other values constant. New
combinations are subsequently generated until all 17 input parameters have been perturbed once. This is repeated
for additional “paths,” each with unique initial combinations of randomlyudefined input parameter values. We
generate parameter combinations over M ↑ 10 paths (Morales et al., 2019), resulting in 180 unique combinations
of input parameter values. This number of parameter combinations analyzed by MOAT is significantly smaller
than the 417 combinations needed to sample the entire discretized parameter space. For each of the 24 initiali-
zation dates, we run a 3uday hindcast using each of the 180 combinations of input parameter values, resulting in
4,320 total simulations. This procedure is described in further detail in prior studies (e.g., Covey et al., 2013;
Morales et al., 2019; Nardi et al., 2022; C. M. Zarzycki & Ullrich, 2017).

By perturbing an input parameter oneuatuautime, the MOAT method quantifies how the model output changes due
to modifying that input alone. Here, “output” refers to a model simulation result, such as precipitation magnitude
or global mean cloud fraction. By perturbing the value over multiple MOAT paths, we can derive a distribution of
“elementary effects” dijm, the change in an output metric yj due to perturbing input parameter xi over path m
(Equation 1 in Morales et al., 2019). Here, we quantify a parameter's influence on a given output metric using two
measures: L∗

ij and fij↘. L∗
ij is the average magnitude among the distribution of elementary effects for input parameter

xi and output metric yj and characterizes the average response of the output metric to perturbing the input
parameter value (Equation 4 in Covey et al., 2013). fij↘, the monotonicity of the response, is the frequency with
which increasing the input parameter xi increases the output metric yj (Equation 9 in Nardi et al., 2022). Together,
these sensitivity measures provide information about the magnitude and direction of the output's response to a
change in the input parameter value. Parameters with high L∗

ij and fij↘ values near 0 or 1 are important and
consistent in driving changes to the output. However, parameters with low L∗

ij and fij↘ near 0.5 are unimportant and

Table 1
Input Parameters Analyzed in MOAT Sensitivity Analysis

Parameter Description Perturbed range
C_invrs_tau_sf c ↔Csfc↗ Coefficient in nearusurface term in CLUBBX formulation of eddy dissipation 0.05–0.2

C_invrs_tau_shear ↔Cshear↗ Coefficient in shear term in CLUBBX formulation of eddy dissipation 0.16–0.4

C_invrs_tau_N2 ↔CN2↗ Coefficient in static stability term in CLUBBX formulation of eddy dissipation 0.16–0.4

C_invrs_tau_N2_xp2 Coefficient in static stability term in CLUBBX formulation of eddy dissipation (applies
to scalar fluxes only)

0–0.8

C_invrs_tau_N2_wp2 Coefficient in static stability term in CLUBBX formulation of eddy dissipation (applies
to w→2 only)

0.1–1.1

gamma_coef Controls width of vertical velocity of each Gaussian component 0.1–0.6
gamma_coef b Controls width of the Gaussian for vertical velocity 0.1–0.6
clubb_C11 Lowubuoyancy damping coefficient for vertical velocity skewness 0.2–0.8
clubb_C8 Newtonian damping coefficient for vertical velocity skewness 0.7–5
clubb_beta Coefficient in the skewness of scalar quantities 1.2–2.6
c_uu_shr ↔Cuu,shr↗ Coefficient in a pressure term that damps turbulent production of momentum flux and

accumulation term for vertical velocity variance
0.01–0.99

c_uu_buoy Coefficient in a pressure term that damps buoyant production of vertical velocity
variance

0–0.99

clubb_up2_sf c_coef Coefficient multiplied by the friction velocity to calculate surface horizontal wind
variances

1–5

micro_mg_dcs Size threshold for the autoconversion of cloud ice particles to snow 3 ⇐10↓4↓7 ⇐10↓4

micro_mg_vtrmi_f actor Multiplicative factor for calculating the ice fall velocity 0.5–5
micro_mg_pre_f act Multiplicative factor for calculating evaporation of precipitation 0.1–1.5
micro_mg_accre_enhan_f act Enhancement factor for calculating accretion 0.5–5
Note. Parameters 1 through 13 appear in the PBL turbulence scheme (CLUBBX), while parameters 14 through 17 appear in the microphysics scheme (PUMASv1). For
parameters that appear in equations herein, we also provide in parentheses the coefficients as they are shown in those equations. Note that these parameters are unitless.
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inconsistent. Additional details about these metrics can be found in Nardi et al. (2022). To calculate elementary
effects and sensitivity metrics, we employ the Sensitivity Analysis Library (SALib) (J. Herman & Usher, 2017).

3. Results
3.1. Assessing Validity of Sensitivity Metrics

We first evaluate the average magnitude {L∗
ij} and direction {fij↘} of the response for various CAM6 output

metrics at t ↑ 72 hr. For each of the 180 unique parameter combinations, we first timeuaverage model output fields
over the 24 unique initializations. We then spatially average each of the 180 timeuaveraged fields, using cosineu
latitude weighting, over two regions: (a) the Southern Storm Track, covering 0–360°E and 70u40°S, and (b) the
Tropics, covering 0–360°E and 30°Su30°N. This results in a set of 180 time and spatiallyuaveraged output metrics
representing each unique combination of input parameter values. We then calculate the elementary effect dijm for
each input xi, output yj, and path m. From these elementary effects, we can derive the L∗

ij and fij↘ for each input xi

and output yj.

Figure 1a ranks each input parameter (vertical axis) based on its L∗
ij value for output metrics characterizing cloud

feedbacks (horizontal axis). Table 1 provides descriptions of the input parameters, while Table 2 provides a key
defining the output metrics analyzed in this study. We average output metrics over the Southern Storm Track (for
the Tropics, see Figures S1–S3 in Supporting Information S1). The shading represents the input parameter's
influence on the output metric relative to the other input parameters. For example, micro_mg_accre_enhan_fact
(light yellow, #1) produces the highestumagnitude response in SWCF (leftmost column in Figure 1), while
C_invrs_tau_N2 produces the lowestumagnitude response in SWCF (dark purple #17). Figure 1b depicts the
monotonicity fij↘, the frequency with which increasing the input parameter increases the output metric over the
Southern Storm Track. For instance, increasing clubb_C11 increases low cloud percentage (second column from
the left) approximately 90% of the time (dark red, 0.9), while increasing micro_mg_accre_enhan_fact never
increases (i.e., always decreases) low cloud percentage (dark blue, 0.0). Meanwhile, increasing C_invrs_tau_N2
only increases low cloud percentage 50% of the time (white, 0.5). Note that 1 ↓ fij↘ represents (a) the probability
that decreasing the input parameter increases the output metric and (b) the probability that increasing the input
parameter decreases the output metric.

Parameters such as micro_mg_accre_enhan_fact, clubb_C11, clubb_C8, and C_invrs_tau_N2_xp2 are broadly
influential for clouduradiative metrics, providing a relatively highumagnitude response in a consistent direction.
Increasing micro_mg_accre_enhan_fact, a PUMASv1 parameter that acts as a multiplicative factor in the
formulation of accretion, increases ice hydrometeor growth, which according to Figure 1b results in a consistent
decrease in cloud percentage. clubb_C11 and clubb_C8 are both damping coefficients in the formulation of the
thirduorder moment of vertical velocity w→3, a proxy for the skewness of the PDF for vertical velocity in CLUBBX
that modulates the modeled low cloud regime (e.g., Guo et al., 2015). Increasing these input parameters increases
damping and reduces w→3, which produces more of a stratocumulus regime (i.e., higher low cloud percentage
compared to a cumulus regime) (Guo et al., 2014, 2015; Qian et al., 2018). We find a similar response of cloud
percentage to increasing clubb_C11 and clubb_C8 in the second column of Figure 1b. C_invrs_tau_N2_xp2 is a
coefficient in the formulation of the dissipation term 1

θx→2
in the budget for scalar variances (e.g., r→2t and C→2l ).

Increasing this coefficient increases dissipation in stablyustratified environments, thus reducing scalar variances.
Figure 1 indicates that this results in a consistent increase in cloud percentage.

Though primarily interested in momentum flux and lowulevel wind profiles in CAM6uCLUBBX, we initially
analyze clouduradiative metrics that have been assessed in prior PPEs, thus providing a means of validating our
analysis. Consistent with our findings, Guo et al. (2015) highlighted clubb_C8 as an influential input parameter
for low cloud percentage globally, with that parameter contributing 20–22% of the variation in global low cloud
percentage in CAM5. Qian et al. (2018) found that clubb_c8 was relatively influential for SWCF (related
physically to low cloud percentage) in 3uday E3SM simulations. Specifically, they found that clubb_c8
contributed 11–13% of the variation in global SWCF and 26–27% of the variation in SWCF over stratocumulus
regions in the eastern Pacific Ocean.

Eidhammer et al. (2024) also found that in 3uyear CAM6 simulations, clubb_c8 was highly influential in fields such
as SWCF and low cloud percentage. They also noted that microphysics parameters micro_mg_accre_enhan_fact,
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Figure 1.
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micro_mg_dcs, and micro_mg_vtrmi_factor were influential for cloud feedbacks. This is consistent with our study,
where micro_mg_accre_enhan_fact is broadly influential for many parameters, while micro_mg_dcs and
micro_mg_vtrmi_fact, more tied to ice processes, are relatively influential for medium and high clouds.
C_invrs_tau_N2_xp2, which is influential in our study, is an experimental parameter that has not been appreciably
vetted in prior PPEs.

We also note some differences in our results compared to prior sensitivity analyses, namely in the relative in-
fluence of clubb_C11 and gamma_coef. Though we find clubb_C11 to be influential for clouduradiative metrics,
others (e.g., Eidhammer et al., 2024; Guo et al., 2015) found this parameter to be less important relative to other
CLUBB parameters. Moreover, while Guo et al. (2015) and Qian et al. (2018) found gamma_coef to be relatively
influential for low cloud percentage, we find that this parameter is not relatively influential in our analysis—
consistent with Eidhammer et al. (2024).

We also compare the direction of the response for clouduradiative metrics to those from prior studies. Overall, the
directional responses of low cloud percentage and SWCF in Figure 1b compare favorably to the directional
responses from prior PPEs. For example, our finding that low cloud percentage increases with an increase in
clubb_C8 and clubb_C11, and decreases with an increase in gamma_coef, is consistent with multiyear (e.g.,
Eidhammer et al., 2024; Guo et al., 2015) and shortuterm (e.g., Qian et al., 2018) PPEs. Given these results, we
feel confident in the MOAT analysis' ability to highlight parameter sensitivities in metrics related to momentum
flux in the PBL.

3.2. Identifying Influential Input Parameters
As in Nardi et al. (2022), we seek input parameters that have two key characteristics: (a) a relatively highu
magnitude response in model output when perturbed (i.e., a high L∗

ij ranking) and (b) a consistent directional
response in model output (i.e., either a high or low fij↘). A parameter with these characteristics offers confidence
that perturbing this parameter in a given direction will produce the desired response in the output. We emphasize
that the MOAT analysis is meant to provide a means of screening a large number of input parameters to identify a
handful of influential parameters that merit additional analysis. Therefore, the forthcoming discussion is not
designed to provide a definitive list of optimal input parameter values.

Figure 2 shows L∗
ij and monotonicity for output metrics that characterize synoptic conditions and the general

circulation, averaged over the Southern Storm Track. Several parameters produce a relatively highumagnitude
response in a consistent direction for various synoptic output metrics. For example, C_invrs_tau_shear consis-
tently produces relatively large responses in seaulevel pressure (SLP), 2um temperature ↔T2m↗ , and wind speed at
the lowest model level (Figure 2a). (Herein, “wind speed” refers to the magnitude of the wind vector

⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨
u2 ↘ v2

≃
).

This parameter also produces consistent directional responses (Figure 2b). C_invrs_tau_shear is a coefficient in
the experimental formulation of the eddy turnover time scale θ (Cshear in the third term on the r.h.s. of Equation 2)
and modulates the degree of turbulent eddy dissipation due to vertical wind shear. In areas of high vertical wind
shear (e.g., the Southern Storm Track), increasing this term is expected to increase eddy dissipation, with wind
shear more effectively breaking up larger turbulent eddies into smaller ones (Mauritsen & Enger, 2008).
Increasing C_invrs_tau_shear consistently decreases wind speed at the lowest model level ↔ubot↗ but consistently
increases wind speeds at higher levels (e.g., u500 through u4000, the wind speeds at 500 m through 4,000 m).
c_uu_shr produces a similar response, both in terms of average magnitude and direction of the response. c_uu_shr
is a coefficient in the prognostic formulation of momentum flux that represents a pressure force that counters the
turbulent production of momentum flux by vertical wind shear (third term on the r.h.s. of Equation 1). Similar to
C_invrs_tau_shear, this parameter is expected to be influential where vertical wind shear is high, as in the
Southern Storm Track.

Figure 1. In panel (a), L∗ for clouduradiative output metrics. We average metrics over the Southern Storm Track region (0–360°E, 70u40°S) using cosineulatitude
weighting. Light colors imply that the input parameter (vertical axis) produces a highumagnitude change in the output metric (horizontal axis) relative to other input
parameters. For each output metric, we rank input parameters based on the magnitude of the response in the output metric. In panel (b), the frequency with which
increasing the input parameter increases the output metric (i.e., the monotonicity). Deep reds (blues) imply that increasing the input parameter frequently increases
(decreases) the output metric. For each combination of input parameter and output metric, the frequency is also plotted.
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Figure 3 similarly shows L∗
ij and monotonicity for output metrics, averaged over the Southern Storm Track, that

characterize turbulence in the PBL. As with the synoptic metrics, C_invrs_tau_shear and c_uu_shr broadly
produce relatively large average responses in a consistent direction. Both are particularly influential for metrics
that characterize vertical turbulent mixing, such as eddy turnover time scale θ and vertical momentum flux.

Table 2
Output Metrics Derived From CAM6 History Fields

Output metric Description Units
ubot Bottom modelulevel wind speed m

s

T2m 2um air temperature degrees K
q2m 2um specific humidity kg

kg

Precip Total precipitation rate m
s

CAPE Convective available potential energy J
kg

b700 Vertical velocity (pressure coordinates) at 700 hPa Pa
s

TPW Total precipitable water kg
m2

SLP Seaulevel pressure Pa
UXXX Wind speed at XXX hPa m

s

ZXXX Geopotential height at XXX hPa gpm
uxxx Wind speed at XXX meters m

s

SWCFa Shortwave cloud forcing W
m2

Low Cloud % Verticallyuintegrated low cloud percentage %

Med Cloud % Verticallyuintegrated midulevel cloud percentage %

High Cloud % Verticallyuintegrated high cloud percentage %

Total Cloud % Verticallyuintegrated total cloud percentage %

Cloud Drop Verticallyuintegrated droplet number concentration 1
m2

FLNSa Net longwave flux at surface W
m2

FSNSa Net solar flux at surface W
m2

FLDSa Downwelling longwave flux at surface W
m2

FSNTOAa Net solar flux at top of atmosphere W
m2

FSUTOAa Upwelling solar flux at top of atmosphere W
m2

OLRa Outgoing longwave radiation at top of model W
m2

LWCFa Longwave cloud forcing W
m2

SHFLX Sensible heat flux at surface W
m2

LHFLX Latent heat flux at surface W
m2

u→w→ Lowulevel vertical momentum flux m2
s2

C→l w→ Lowulevel vertical flux of liquid water potential temperature
(Larson, 2017)

Km
s

r→t w→ Lowulevel vertical moisture flux kg
kg

m
s

θsfc Total surface wind stress N
m2

TKE Lowulevel turbulent kinetic energy m2
s2

θzm Lowulevel eddy turnover time scale θ 1
s

Kh Lowulevel effective vertical eddy diffusivity m2
s

L Lowulevel vertical turbulent length scale m
w→2 Lowulevel vertical velocity variance m2

s2

PBLH Boundary layer depth m
Note. We average metrics over the region of interest using a cosineulatitude weighting. aIndicates output metrics that are daily
averages (averaged over t ↑ 48–72 hr). Otherwise, output metrics are instantaneous at t ↑ 72 hr). “Lowulevel” refers to the
second model level from the bottom.
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Increasing C_invrs_tau_shear results in a decrease of θ on the r.h.s. of Equation 1, thus increasing the speed with
which the horizontal wind perturbation is relaxed toward zero, leading to enhanced damping of the momentum
flux tendency. Physically, this represents reduced vertical turbulent mixing and momentum flux due to a breakup
of larger turbulent eddies into smaller turbulent eddies. Increasing c_uu_shr similarly enhances damping of

Figure 2. As in Figure 1, but for synoptic output metrics.
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Figure 3. As in Figure 2, but for PBL output metrics.
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turbulent production on the r.h.s. of Equation 1, thus decreasing turbulent fluxes (Figure 3b). The relatively high
influence of C_invrs_tau_shear and c_uu_shr over the Southern Storm Track is consistent with Nardi
et al. (2022), who demonstrated the importance of these parameters in the sheared environment of a TC.

Figures 1–3 only highlight the influence of CLUBBX parameters on regionallyuaveraged output metrics. We also
seek to better understand the spatial variability of a parameter's influence, which is a key consideration for de-
velopers who want to reduce biases for a particular region, or phenomenon, without affecting the rest of the global
climate. Here, we analyze how C_invrs_tau_shear affects lowulevel wind speed and surface wind stress (θsfc in
plots, not to be confused with eddy turnover time scale θ) globally. Herein, surface wind stress refers to the
magnitude of the surface wind stress vector, or the magnitude of the momentum flux vector at the surface:

θsfc ↑
⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨
u→w→2

sfc ↘ v→w→2
sfc

/
. We focus on C_invrs_tau_shear because it (a) produces a highumagnitude,

directionallyuconsistent response in PBL wind and turbulence profiles and (b) has been shown in prior studies to
be important for PBL structure in CAM6uCLUBBX (Nardi et al., 2022). Over the Southern Storm Track, where
vertical wind shear is climatologically high, we hypothesize that increasing C_invrs_tau_shear will affect the
lowulevel wind profile by modulating vertical turbulent mixing via eddy dissipation.

For a given initialization date, we perturb C_invrs_tau_shear once for each of the M ↑ 10 MOAT paths. Over 24
initialization dates, this results in 240 total combinations where we perturb only C_invrs_tau_shear and all other
parameters remain constant. After locating the 240 pairs of configurations along the MOAT paths where only
C_invrs_tau_shear is perturbed, we put the configurations with the lower value of C_invrs_tau_shear into one
group and the configurations with the higher value into a second group. The first group is effectively a distribution
of simulations before increasing C_invrs_tau_shear, while the second is a distribution of simulations after
increasing C_invrs_tau_shear. We emphasize that both groups have the same distribution of 24 initial conditions
and M ↑ 10 background input parameter values.

The left panels of Figure 4 show the change in wind speed at the lowest model level (ubot, a) and surface wind
stress (c) when increasing C_invrs_tau_shear. This is the difference between the 2D output field, averaged over
the 240 perturbations, before increasing C_invrs_tau_shear and after increasing C_invrs_tau_shear. The right
panels of Figure 4 show, at each latitude, the zonallyuaveraged difference in average ubot (b) and surface wind
stress (d) when increasing C_invrs_tau_shear. Figure 4 indicates that ubot decreases globally when increasing
C_invrs_tau_shear, especially over the Southern Storm Track. Meanwhile, panel c shows a decrease in surface
wind stress at most locations globally, especially over the Southern Storm Track. The qualitativelyusimilar re-
sponses in ubot and surface wind stress are consistent with bulk aerodynamic theory, where surface wind stress is
directly proportional to wind speed above the surface (Stull, 1988). The magnitude of the response in ubot and
surface wind stress appears to be maximized over the higher latitudes and minimized over the tropics, especially
in marine environments such as the Pacific Ocean. As expected, the areas of higherumagnitude response are
spatially correlated (not shown) with vertical wind shear.

Figure 2 indicates that increasing C_invrs_tau_shear consistently increases wind speeds aloft (e.g., uxxx from 250
to 4,000 m, U850, U200) with a high L∗

ij and a positive fij↘, while also decreasing SLP and 500uhPa geopotential
height (Z500) over the Southern Storm Track. This implies that C_invrs_tau_shear potentially influences not just
the PBL, but also the general circulation, even at 3 days. Specifically, the increased winds above the surface and
decreased SLP in Figure 2 hint at an enhanced pressure gradient and stronger storm systems over the Southern
Storm Track, yet despite this, Figure 4 shows that wind speed at the lowest model level decreases. We hy-
pothesize that this opposing response between the lowest model level and model levels above is the result of a
change in vertical momentum flux due to increasing C_invrs_tau_shear.

3.3. Physical Basis for Parameter Sensitivity
We next explore the physical mechanisms that drive the impact of C_invrs_tau_shear on lowulevel wind profiles
and surface wind stress. We hypothesize that this parameter affects lowulevel winds by modulating vertical
turbulent mixing. C_invrs_tau_shear appears as Cshear in the formulation of 1

θ , the inverse of the eddy turnover
time scale θ, which is a measure of turbulent eddy dissipation (Equation 2). Increasing C_invrs_tau_shear en-
hances eddy dissipation, and reduces the eddy turnover time scale θ, in the presence of vertical wind shear. This
results in an increase in the magnitude of term #6 on the r.h.s. of Equation 1. This term represents the tendency of
pressure perturbations to reduce the horizontal wind perturbation u→ toward zero over a time scale θ (Larson
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et al., 2019). To remain consistent with Larson et al. (2019), we refer to this term as the “returnutouisotropy” term.
A higher value of 1

θ means that the force acts over a shorter time scale and more effectively damps the momentum
flux tendency.

Figure 5 depicts the range, at each vertical level, of eddy dissipation due to wind shear (a), modeled eddy turnover
time scale θ (b), and the returnutouisotropy term for the zonal component of momentum flux u→w→ (c) before and
after increasing C_invrs_tau_shear. The solid line represents the median of the distribution of 240 realizations at
each vertical level, while the shading bounds the 25th and 75th percentiles of the distribution. Figure 5 provides a
sense of how the distributions are shifting at each level in the 3uday hindcasts, over the Southern Storm Track,
when increasing C_invrs_tau_shear. Shearuinduced dissipation increases in Figure 5a, resulting in an increase in
total turbulent eddy dissipation. This causes a shift in eddy turnover time scale θ, favoring smaller values, as seen
in Figure 5b. With a decrease in θ, the pressureuinduced relaxation of the horizontal wind perturbation toward zero
occurs over a shorter time scale, causing a higherumagnitude damping of the time tendency of momentum flux
(Figure 5c).

Figure 4. The change in ubot (a) and surface wind stress (c) after increasing C_invrs_tau_shear. Reds (blues) indicate that
increasing C_invrs_tau_shear increases (decreases) the output metric. For each output metric, the cosineulatitudeuweighted
global averages before and after increasing C_invrs_tau_shear are at the bottom of the panel. The panels on the right show
the zonallyuaveraged change in ubot (b) and surface wind stress (d) when increasing C_invrs_tau_shear.
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Figure 6 similarly shows the ranges for momentum flux (a), TKE (b), and wind speed (c) for the distributions
before and after increasing C_invrs_tau_shear. (Herein, any plotted metric for momentum flux refers to the

magnitude of the momentum flux vector
⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨
u→w→2

↘ v→w→2
/

). With an increase in turbulent eddy dissipation and the
returnutouisotropy pressure term, momentum flux magnitude decreases, mainly in the lowest model levels below
500 m, after increasing C_invrs_tau_shear. TKE is reduced due to decreased turbulent production of horizontal
wind variances by vertical wind shear (Larson, 2017). Figure 6c indicates an increase in vertical wind shear at the
lowest model levels when increasing C_invrs_tau_shear. Mathematically, as the returnutouisotropy damping term
increases, the momentum flux budget in Equation 1 must achieve balance via the adjustment of other terms. In this
case, the system attempts to balance itself by increasing wind shear ⌈zu

zz⌉ in the turbulent production term (term #3
on the r.h.s.). Physically, with less vertical turbulent mixing in the PBL, there is less downward transport of
stronger winds aloft toward the surface.

The responses of PBL metrics to increasing C_invrs_tau_shear are consistent with the sensitivity metrics in
Figure 3. The change in the wind speed profile over the Southern Storm Track due to an increase in
C_invrs_tau_shear (Figure 6c) is also consistent with the responses predicted by MOAT (Figure 2b). The wind
response, especially above 200 m, is specifically consistent with an enhanced pressure gradient and geostrophic
wind aloft over the Southern Storm Track (Figure 2). We speculate that the decrease in wind speed at the lowest
model level is driven by increased vertical wind shear caused by reduced vertical turbulent mixing, thus opposing

Figure 5. Distribution of eddy dissipation due to wind shear 1
θ shear (a), eddy turnover time scale θ (b), and the returnutouisotropy term for the zonal component of vertical

momentum flux (c), at each vertical level, for configurations before (red) and after (blue) increasing C_invrs_tau_shear. Thicker lines denote the median value at each
vertical level. The shaded region bounds the 25th and 75th percentiles. We derive the “before” distributions from the 240 simulations before increasing
C_invrs_tau_shear, and we derive the “after” distributions from the 240 simulations after increasing C_invrs_tau_shear, with all else constant. For each simulation, we
spatially average the metrics over the Southern Storm Track region (0–360°E, 70u40°S) with cosineulatitude weighting.

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004482

NARDI ET AL. 14 of 25

 19422466, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004482 by Pennsylvania State U
niversity, W

iley O
nline Library on [27/08/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



the effects of increased geostrophic winds above the PBL. Uncovering the exact nature of the nonlinear rela-
tionship between changes in momentum flux, wind speed, and pressure gradient within the PBL is a topic of
future research. Nonetheless, we demonstrate here that the parameter sensitivities highlighted by the MOAT
analysis indeed have a physical basis rooted in CLUBBX's closed, prognostic equations.

3.4. Targeted Parameter Perturbations in 20NYear Simulation
The MOAT method applied to 3uday simulations highlights several potential pathways toward modulating model
output. Next, we investigate the degree to which the MOAT analysis can inform targeted parameter perturbations
in multidecadal simulations. Prior studies (Ma et al., 2014; Qian et al., 2018; Wan et al., 2014; Xie et al., 2012)
have indicated that parameters influence output metrics in similar ways for both 3uday and multiuyear simulations.
Here, we illustrate how model developers could hypothetically apply our 3uday MOAT analysis to achieve
tangible impacts on various aspects of model behavior.

We run two 20uyear simulations of CAM6uCLUBBX, one baseline simulation and one with two experimental
parameter perturbations. In making perturbations, we seek to (a) reduce surface wind stress over the Southern
Storm Track and (b) increase SWCF over the Tropics, a location where ESM cloud biases are common (e.g., Kay
et al., 2012; Trenberth & Fasullo, 2010; Vignesh et al., 2020). Although motivated by biases, this is an illustrative
example and does not necessarily reflect a suggested operational outcome for the model. In choosing these two
outcomes, we wish to highlight two climate phenomena that are not directly related and occur in distinct regions.
We simultaneously perturb multiple parameters in this example to illustrate a more realistic operational strategy
of tuning multiple parameters at a time. In this exercise, we compare, between 3uday and 20uyear simulations, how

Figure 6. Same as Figure 5, but for momentum flux magnitude (a), TKE (b), and wind speed (c).
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the parameter perturbations affect (a) the output metrics of interest (surface
wind stress and SWCF) and (b) the physical mechanisms driving the output
metrics.

Table 3 shows the parameter settings for these two configurations. The
baseline configuration, which is comprised of the default parameter values
used in our study, produces a realistic mean climate (e.g., a climate broadly
similar to that in Danabasoglu et al., 2020). The parameter perturbations
include changes to two CLUBBX parameters: an increase in
C_invrs_tau_shear and a decrease in clubb_C8. Figures 3–6 indicate that
increasing C_invrs_tau_shear produces a decrease in surface wind stress over
the Southern Storm Track due to a reduction in vertical turbulent mixing and
decreased nearusurface wind speed. Meanwhile, Figure 1 indicates that
C_invrs_tau_shear is less influential (relative to other input parameters) for
SWCF but that clubb_C8 is relatively influential for SWCF, namely due to a
high impact on low cloud percentage. Based on the MOAT method,
decreasing clubb_C8 is expected to decrease cloud cover and increase SWCF
over the Southern Storm Track and Tropics (Figure S1 in Supporting Infor-
mation S1). Physically, this represents weakened pressure damping of w→3,
higher skewness in the distribution of vertical velocity, and a preference for
cumulus versus stratocumulus clouds. Moreover, clubb_C8 is less influential
for surface wind stress (Figure 3). Each input parameter has an appreciable
impact on one targeted output metric but less of an influence on the other.
Therefore, we hypothesize that, in the 20uyear simulations, increasing
C_invrs_tau_shear will drive changes in PBL winds in the Southern Storm
Track, while decreasing clubb_C8 will drive changes in clouds and SWCF in
the Tropics.

We run the 20uyear simulations with fixed, prescribed SSTs and sea ice consistent with the present day (the
“F2000climo” compset, see Open Research). Other than the targeted perturbations listed above (increased
C_invrs_tau_shear and decreased clubb_C8), these two configurations are identical. We store output as monthly
averages and average over years 2 through 20. We remove year 1 from the analysis to allow for model spinup.
Figure 7 shows the difference between the perturbed and baseline simulations for SWCF (a), low cloud per-
centage (c), and lowulevel w→3 (e). Panels on the right side of Figure 7 (b, d, and f) show the zonallyuaveraged
difference at each latitude. SWCF increases (i.e., clouds become “dimmer”) almost everywhere, most notably
in the Tropics, the equatorward flank of the Southern Storm Track, and the western coasts of continents. We focus
primarily on responses over the ocean, where the increase in SWCF is well correlated spatially with a decrease in
low cloud percentage, as well as an increase in lowulevel w→3. This is consistent with the 3uday MOAT results,
which indicate that decreasing clubb_C8 produces a decrease in cloud cover and an increase in SWCF. Physically,
this is consistent with reduced pressure damping of the time tendency of w→3, resulting in enhanced skewness and a
preference for cumulus clouds. (Factors driving responses over land are a subject of future research.) This is an
example of consistent parameter sensitivity between the 3uday and 20uyear simulations, thus indicating potential
utility of the 3uday MOAT analysis for reducing cloud biases in longeruterm simulations.

Figure 8 similarly shows the difference in ubot (aub), surface wind stress (c, d), and SLP (e, f) between the per-
turbed and baseline simulations. The MOAT analysis for the 3uday simulations indicates that increasing
C_invrs_tau_shear results in a decrease in surface wind stress almost everywhere, especially over the Southern
Storm Track (Figure 4). However, when making the targeted perturbations in the 20uyear simulations, this
reduction as a function of latitude is weaker. There are even prominent areas of increased surface stress over the
Southern Storm Track, namely from Australia eastward toward South America. This increased surface stress is
correlated spatially with an increase in wind speed at the lowest model level ↔ubot↗ and an area of highumagnitude
response in SLP. Figures 8e and 8f indicate an increase in pressure from Australia eastward toward South
America, roughly near 40°S. Meanwhile, there is a strong decrease in pressure over the Southern Storm Track.
This results in an enhanced pressure gradient as the climatological highs and lows in this region are strengthened.

Table 3
Baseline Values for the 20αYear CAM6αCLUBBX Simulations

Parameter Baseline value
C_invrs_tau_sf c 0.05
C_invrs_tau_shear 0.22 (0.33)
C_invrs_tau_N2 0.3
C_invrs_tau_N2_xp2 0
C_invrs_tau_N2_wp2 0.1
gamma_coef 0.25
gamma_coef b 0.32
clubb_C11 0.5
clubb_C8 0.8 (0.4)
clubb_beta 2.0
c_uu_shr 0.1
c_uu_buoy 0
clubb_up2_sf c_coef 2.0
micro_mg_dcs 5⇐10↓4

micro_mg_vtrmi_f actor 1.0
micro_mg_pre_f act 1.0
micro_mg_accre_enhan_f act 1.0
Note. We denote in bold the parameters perturbed in the targeted perturba-
tions (perturbed values are in parentheses).
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Figure 7.
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The response in surface wind stress and lowulevel wind speed over the Southern Storm Track provides an example
of a potential disconnect in regional parameter sensitivity between the 3uday and 20uyear simulations.

Despite the difference in the response of the wind stress metric over the Southern Storm Track region, the 3uday
and 20uyear perturbations produce similar physical changes in the PBL. Owing to an increase in
C_invrs_tau_shear, shearuinduced eddy dissipation (Figure 9a) increases due to the increased coefficient Cshear
on the r.h.s. of Equation 2. The increased shearurelated eddy dissipation once again leads to a reduced eddy
turnover time scale θ (Figure 9b), which in turn results in an increased pressure damping term (Figure 9c).
Figure 10a highlights a slight decrease in momentum flux magnitude with the targeted parameter perturbations.
The sign of the response is consistent with increased pressure damping of momentum flux, though the magnitude
of the response is quite small. Consistent with decreased eddy turnover time scale θ, turbulent length scale, and
momentum flux in the PBL, TKE is reduced (Figure 10b).

As in the 3uday simulations, to balance the momentum flux budget, the system responds to increased pressure
damping by enhancing vertical wind shear (Figure 10c) in the turbulent production term. Physically, this rep-
resents reduced mixing downward of stronger winds toward the surface. However, the vertical wind shear re-
sponds to a lesser degree in the 20uyear simulations. Figure 11 indicates that although wind speed at PBL top
increases by a similar amount for both the 3uday and 20uyear simulations, the magnitude of the wind shear in-
crease is more muted in the 20uyear simulations. As a result, the change in wind shear—albeit of the same
directionality—does not lead to a clear reduction in nearusurface wind speed and surface wind stress metrics. In
this case, although the physical mechanisms modulated by the parameter perturbations are the same between the
3uday and 20uyear simulations, coupled system feedbacks act to damp the magnitude of the response in the 20u
year runs.

Analysis of the largeuscale response to the targeted perturbations indicates nonlinear feedbacks due to changes in
the general circulation. Figures 8e and 8f shows an appreciable response in SLP over the Southern Storm Track,
while Figure 12 shows changes in fields of zonallyuaveraged zonal wind (a), meridional wind (b), temperature (c),
and geopotential height (d). A modified general circulation can feed back into the PBL by influencing the
adjustment of the various terms in the budgets of momentum and scalar fluxes, which are tied to characteristics of
the environment. Though a response in the general circulation also appears in the 3uday simulations (e.g., Figure
S10 in Supporting Information S1), a 20uyear simulation allows more time for feedbacks to modulate fluxes
within the PBL. Importantly, though responses in metrics associated with fast moist physics processes (e.g.,
clouds) are consistent between the 3uday and 20uyear simulations, it is possible that with shortuterm simulations,
there is not enough time for dynamical metrics to fully adjust to climate system feedbacks manifesting over longer
timescales. Acquiring a deeper understanding of the physical mechanisms driving the response in the general
circulation is a key objective of future research.

4. Discussion and Conclusions
In this study, we perform an interpretable sensitivity analysis using the MOAT method on 3uday, initialized
hindcasts in CAM6 with an experimental configuration of CLUBB (CAM6uCLUBBX). We build on prior an-
alyses of CLUBB parameter sensitivities in ESMs (e.g., Eidhammer et al., 2024; Guo et al., 2014, 2015; Qian
et al., 2018), which have mainly focused on clouduradiative metrics and have not included new tunable parameters
related to experimental formulations of momentum flux and eddy dissipation. We further extend prior CLUBB
sensitivity studies by examining physical mechanisms driving specific parameter sensitivities, especially as they
relate to momentum flux in the PBL. Furthermore, given prior studies demonstrating that shortuterm simulations
provide useful information about parameter sensitivity in multiyear simulations (Qian et al., 2018), we explore
how the 3uday MOAT analysis can help guide targeted parameter perturbations in 20uyear CAM6uCLUBBX
simulations.

Figure 7. The change in SWCF (a), low cloud percentage (c), and the thirduorder moment of vertical velocity {w→3} after making two targeted parameter perturbations in
a 20uyear simulation. Reds (blues) indicate that the simulation with the targeted perturbations produces a larger (smaller) value of the parameter compared to the baseline
20uyear simulation. For each output metric, the cosineulatitudeuweighted global averages before and after making the targeted perturbations are located at the bottom of
the panel. We average the output over years 2 through 20 of each simulation. The panels on the right show the zonallyuaveraged change in SWCF (b), low cloud
percentage (d), and w→3 (f) when making the targeted perturbations.
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Figure 8. Same as Figure 7, but for ubot (a–b), surface wind stress (c–d), and seaulevel pressure (e–f).
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We find that parameter sensitivities in 3uday simulations compare favorably to prior studies that have explored the
impact of CLUBB on clouduradiative metrics in ESMs. Consistent with prior PPEs, clubb_C8 and clubb_C11,
both playing a role in estimating the thirduorder moment of vertical velocity {w→3} , are influential parameters for
SWCF in the 3uday MOAT analysis (Figure 1). We then extend our analysis to output metrics related to the
synoptic state and general circulation (Figure 2) and PBL turbulence (Figure 3). C_invrs_tau_shear and c_uu_shr
stand out as parameters that affect PBL structure and the general circulation in shortuterm simulations. Both
parameters appear in either the formulation of prognostic momentum flux or eddy dissipation and modulate the
amount of vertical turbulent mixing in the PBL. Their importance in governing PBL structure is consistent with
the findings of Nardi et al. (2022), who identified both parameters as key drivers of PBL structure in idealized TCs
in CAM6uCLUBBX.

As they are new parameters, C_invrs_tau_shear and C_uu_shr have not been vetted in prior analyses, so our study
provides an opportunity to get a better understanding of the impact these parameters have on various output
metrics in an ESM. Therefore, we analyze how PBL structure changes when increasing one of these parameters
(C_invrs_tau_shear). With an increase in C_invrs_tau_shear, eddy dissipation increases in the PBL, leading to
reduced vertical turbulent mixing. As the system achieves balance in the momentum flux budget under reduced
vertical turbulent mixing, PBL wind shear increases and results in a reduced nearusurface wind speed (Figures 5
and 6). This results in reduced surface wind stress over the Southern Storm Track region, which is predicted by the
MOAT analysis.

Figure 9. Distribution of eddy dissipation due to wind shear (a), eddy turnover time scale θ (b), and the returnutouisotropy term for the zonal component of vertical
momentum flux (c), at each vertical level, for configurations before (red) and after (blue) making the targeted parameter perturbations. Thicker lines denote the median
value at each vertical level. The shaded region bounds the 25th and 75th percentiles. For the perturbed and baseline configurations, we derive the distributions from
monthlyuaveraged fields for each month during years 2 through 20 of each simulation. For each simulation, we spatiallyuaverage the metrics over the Southern Storm
Track region (0–360°E, 70u40°S) with cosineulatitude weighting.
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Finally, we evaluate whether the MOAT analysis using 3uday hindcasts can inform parameter perturbations to get
desired responses in 20uyear simulations. Based on sensitivity measures from MOAT, we make two targeted
parameter perturbations: (a) increase C_invrs_tau_shear and (b) decrease clubb_C8, with the desired effect of
decreasing surface wind stress over the Southern Storm Track and increasing SWCF over the Tropics. Making
these two parameter perturbations produces a marked increase in SWCF over the Tropics (Figure 7), largely due
to a decrease in cloud fraction caused by increasing clubb_C8 and therefore reducing w→3. However, these targeted
parameter perturbations result in essentially negligible changes over the Southern Storm Track (Figure 8), which
is different from the response in the 3uday MOAT analysis. Though the increase in C_invrs_tau_shear produces a
similar physical response in the PBL, namely a decrease in vertical mixing and increased vertical wind shear,
climate feedbacks manifesting in the 20uyear simulations reduce the magnitude of the wind shear response and
therefore mute the response of the nearusurface wind metrics.

The similar responses for SWCF are consistent with Qian et al. (2018), who demonstrated that certain CLUBB
parameters such as clubb_C8 affect clouduradiative metrics in the same way for both 3uday and 5uyear simula-
tions. However, while this similarity may exist for moist physics processes (e.g., clouds), we find that this same
correlation does not necessarily exist for PBL metrics that are governed by a balance of processes tied to winds,
pressure gradients, etc. For example, we find that the targeted perturbations (Figure 12), and individual parameter
perturbations (Figures S4–S9 in Supporting Information S1), affect the general circulation in the 20uyear sim-
ulations. Though additional analysis is required in future studies, we speculate that the changes in the general
circulation feed back into the PBL by affecting the balance of terms within the budgets of PBL fluxes (e.g.,
momentum flux). Though the individual parameters modulate the general circulation even at 3 days (e.g., Figures
S10 and S11 in Supporting Information S1), 20uyear simulations allow more time for changes in the mean state to

Figure 10. Same as Figure 9, but for momentum flux magnitude (a), TKE (b), and wind speed (c).
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affect how the terms in the momentum flux budget come into balance following the perturbation of an individual
term (e.g., pressure damping). This discrepancy in allowed response time can then result in differences in the
magnitude of the response in a metric such as vertical wind shear.

In the future, it will be important to get a deeper physical understanding of the mechanisms driving a parameter's
influence in both the shortuterm and over multiple decades. For example, future studies should quantify and
compare how each term in the momentum flux budget responds over different time scales. This can aid in better
understanding how climate system feedbacks manifest for longuterm simulations and affect CLUBBX parameter
sensitivities. Future studies should also explore how our results vary when running coupled simulations with an
interactive ocean. For example, changes in clouds can be amplified/dampened as the upper ocean responds to
changes in the surface radiation budget.

We also emphasize that the MOAT analysis is meant to serve as an initial screening tool to separate a handful of
influential input parameters from a larger set of tunable parameters. While MOAT possesses strengths highlighted
here, it also contains drawbacks (Morales et al., 2019), including a limited quantification of the variance explained
by each input parameter. Nonlinear feedbacks, which are inherent to a complex climate system, provide additional

Figure 11. On the top row, the change in nearusurface vertical wind shear (a) and wind speed at the top of the PBL (b) after 3 days when increasing C_invrs_tau_shear.
On the bottom row, the change in nearusurface vertical wind shear (c) and wind speed at the top of the PBL (d) after making the targeted perturbations in the 20uyear
simulations. Reds (blues) indicate that the field increases (decreases) when making these changes. The wind shear in panels (a, c) is the vertical gradient in the wind
speed near the surface. The results for the 3uday simulations come from instantaneous model output for simulations before and after increasing only C_invrs_tau_shear.
We derive the results for the 20uyear simulations from monthlyuaverage output over years 2 through 20.
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challenges in interpreting the MOAT results (e.g., the multiuparameter perturbations in Section 3.4). Nonetheless,
this study provides a framework through which model developers can identify important input parameters and
perform additional analysis of the physical mechanisms tied to these parameters. This information can then
provide guidance for developers to produce a model that is not only more accurate but also more realistic
physically.

Data Availability Statement
Short and longuterm sensitivity analysis is performed using a development release of the Community ESM
version 2 (CESM2, Danabasoglu et al., 2020). The specific tag of CESM2 used in this study (6.3.124) is accessed
via the portal referenced in ESCOMP (2023). More information about the compset used can be found in “CAM6.3
User's Guide” (2024). Parameter sensitivity analysis is conducted using the SALib in Python (SALib), which is an
openusource software package (J. Herman & Usher, 2017). Betacast is openusource software available for public
use and is documented in C. Zarzycki (2023). All model simulations, analysis data, and code supporting this
manuscript are archived with Penn State Data Commons (Nardi et al., 2024).

Figure 12. Crossusections of the difference (shading) in zonallyuaveraged zonal wind (a), meridional wind (b), temperature (c), and geopotential height (d) when running
the 20uyear simulation with the targeted parameter perturbations. Reds (blues) indicate that the zonal average of the simulation with the targeted parameter perturbations
has a larger (smaller) value of the output compared to the zonal average of the baseline. Black contours denote the zonallyuaveraged climatological values from the
baseline configuration. White shading denotes null values where high terrain exists and no zonal averaging can be done.
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