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ABSTRACT: Recent studies have demonstrated that high-resolution (∼25 km) Earth System Models (ESMs) have the
potential to skillfully predict tropical cyclone (TC) occurrence and intensity. However, biases in ESM TCs still exist, largely
due to the need to parameterize processes such as boundary layer (PBL) turbulence. Building on past studies, we hypothe-
size that the depiction of the TC PBL in ESMs is sensitive to the configuration of the PBL parameterization scheme, and
that the targeted perturbation of tunable parameters can reduce biases. The Morris one-at-a-time (MOAT) method is
implemented to assess the sensitivity of the TC PBL to tunable parameters in the PBL scheme in an idealized configuration
of the Community Atmosphere Model, version 6 (CAM6). The MOAT method objectively identifies several parameters
in an experimental version of the Cloud Layers Unified by Binormals (CLUBB) scheme that appreciably influence the
structure of the TC PBL. We then perturb the parameters identified by the MOATmethod within a suite of CAM6 ensem-
ble simulations and find a reduction in model biases compared to observations and a high-resolution, cloud-resolving
model. We demonstrate that the high-sensitivity parameters are tied to PBL processes that reduce turbulent mixing and
effective eddy diffusivity, and that in CAM6 these parameters alter the TC PBL in a manner consistent with past modeling
studies. In this way, we provide an initial identification of process-based input parameters that, when altered, have the
potential to improve TC predictions by ESMs.
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1. Introduction

Due to their complexity and associated computational cost,
global Earth System Models (ESMs) have traditionally been
restricted to horizontal resolutions on the order of ∼100 km,
thus preventing the accurate depiction of discrete weather
features such as tropical cyclones (TCs) (e.g., Bengtsson et al.
2007; Randall et al. 2007; Zarzycki and Jablonowski 2014).
For example, ESM hindcasts of TC frequency provided little
additional skill compared to climatology at leads greater than
several weeks (Lee et al. 2020; Vitart et al. 2010). However,
recent studies have demonstrated an enhanced capacity of
ESMs to provide skillful simulations of TC occurrence and
intensity from subseasonal to multidecadal time scales (e.g.,
Bacmeister et al. 2014, 2018; Balaguru et al. 2020; Camargo
and Wing 2016; Camargo et al. 2020; Chen and Linn 2013;
Murakami et al. 2016; Roberts et al. 2020a,b; Vecchi et al.
2014; Walsh et al. 2015; Wehner et al. 2014). Improvements in
ESM TC representation are largely attributed to increased
computational capacity, which allows ESMs to be run at finer
horizontal resolutions (∼25 km) (e.g., Roberts et al. 2020a,b;
Walsh et al. 2015; Wehner et al. 2014; Wing et al. 2019).

In spite of these advances, ESMs are still limited at the pro-
cess level. For example, Zarzycki and Jablonowski (2015)
showed that medium-range TC intensity hindcasts in the
Community Atmosphere Model, version 5 (CAM5), were
about 15%–25% less skillful at 72 h than those from numeri-
cal weather prediction (NWP) models like the Global Fore-
cast System (GFS) and Hurricane Weather Research and
Forecasting (HWRF) models. Meanwhile, Wing et al. (2019)
compared multiyear TC counts from six ESMs and found a
consistent underprediction of TCs with wind speeds in excess
of 60 m s21. Despite computational advances, these biases
remain because even high-resolution ESMs under-resolve the
dynamical structure of TCs (Davis 2018). For this reason,
there is cause to explore how well ESMs resolve key physical
processes, including the secondary circulation (Moon et al.
2020), moist static energy budgets (Wing et al. 2019), and
impacts of low-frequency climate variability (Chen and Linn
2011; Murakami et al. 2015; Zhang et al. 2016). In addition,
ESMs still require the parameterization of unresolved pro-
cesses, which has been shown to drive variability between
models (e.g., Wing et al. 2019).

One specific target for improvement in ESM predictions of
TCs is the parameterization of turbulence in the PBL. Many
studies have explored how modeled TCs vary between PBL
schemes that employ different methods of quantifying turbu-
lent motions. Table 1 summarizes a sample of these studies,
which typically target models used for NWP. These studies
demonstrate large sensitivity to PBL scheme for key TC
metrics (i.e., characteristics), including minimum sea level
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pressure (SLPmin), maximum low-level wind speed (u10,max),
surface inflow angle (uin), radius of maximum wind (RMW),
height of maximum tangential wind (hymax), equivalent poten-
tial temperature (ue), vertical velocity (w), and track. The sen-
sitivity is related to differences in how the PBL schemes
estimate vertical profiles of turbulent mixing and eddy diffu-
sivity Km.

Given the demonstrated influence of the PBL turbulence
parameterization on modeled TCs in higher-resolution simu-
lations, we hypothesize that 1) the structure of the TC PBL in
ESMs is sensitive to the perturbation of individual tunable
parameters related to turbulence in the PBL scheme and 2)
establishing such sensitivity can inform the reduction of base-
line biases in the ESM. In this study, we choose to focus on
one particular ESM, the Community Earth System Model,
version 2 (CESM2), which incorporates CAM6 as its atmo-
spheric component. We choose to study CESM2 with CAM6
for two main reasons: 1) earlier versions have shown promise
in predicting TC occurrence and intensity (e.g., Bacmeister
et al. 2014; Camargo et al. 2020; Walsh et al. 2015; Wehner
et al. 2014; Zarzycki et al. 2014a; Zarzycki and Jablonowski
2015; Zarzycki 2016; Zarzycki and Jablonowski 2014) and
2) CAM6 uses a parameterization scheme, Cloud Layers Uni-
fied by Binormals (CLUBB; see section 2b), that has not been
evaluated in prior studies focused on TC structure. Specifi-
cally, it is not clear from existing literature the degree to
which individual parameters in CLUBB affect the TC PBL
structure. This study builds on prior work in two key ways.
First, few studies have specifically focused on the influence of
the PBL turbulence parameterization in ESMs, which are of
relatively low horizontal resolution and, by comparison, have

the added challenge of requiring PBL parameterizations to be
physically plausible across the entirety of the global climate
system versus for a singular region or phenomenon. Second,
while prior studies typically have focused on a handful of sum-
mary metrics like eddy diffusivity and turbulent length scale,
we aim to assess the effects of perturbing many parameters
that are tied to physical processes that govern PBL turbu-
lence. While other aspects of the subgrid physics package
(e.g., microphysics, radiation, convection, surface fluxes, etc.)
have also been shown to be influential in ESMs (e.g., Covey
et al. 2013; Wing et al. 2019), we wish to evaluate the influence
of the PBL turbulence parameterization in isolation.

One challenge in testing the above hypotheses is the com-
putationally efficient identification of important parameters
from a large set of possibilities. A sensitivity analysis (SA)
can address the hypotheses above by quantifying the effects
of certain input parameters on the model output. A typical
SA involves running a model multiple times with different
input parameter values and assessing how the model output
varies. Prior studies have applied an SA to explore the param-
eterization of radiation and cloud processes in older versions
of CAM (Covey et al. 2013; Guo et al. 2014). In this study, we
apply an SA to an idealized configuration of CAM6 in order
to specifically evaluate the influence of PBL turbulence on
modeled TC structure. We apply an SA known as the Morris
one-at-a-time (MOAT) method (Campolongo et al. 2007;
Covey et al. 2013; Herman et al. 2013; Morales et al. 2019;
Morris 1991; Zarzycki and Ullrich 2017). The MOAT method
provides a computationally efficient means of isolating the
effects of perturbing a particular input parameter on specific
model outputs. An advantage of this method is that it

TABLE 1. A summary of recent studies related to the influence of the PBL scheme on forecasts of TC structure. The left column
cites the study, the middle columns provide a brief description of the model, and the right column lists the demonstrated variations in
TC structure. The listed horizontal grid spacing is the finest grid spacing used in the simulation (e.g., in the case of a nested domain).
The models listed in the second column are the fifth-generation Pennsylvania State University–National Center for Atmospheric
Research Mesoscale Model (MM5), the (Hurricane) Weather Research and Forecasting Model (WRF or HWRF), Cloud Model 1
(CM1), and the National Oceanic and Atmospheric Administration Hurricane Analysis and Forecast System (HAFS).

Study Model description Dx Variations in TC characteristics

Braun and Tao (2000) MM5 hindcasts of Hurricane Bob (1991) 4 km ≈10–20 hPa in min pressure;
≈20 m s21 in max wind speed
≈6 K in ue

Nolan et al. (2009a,b) WRF hindcasts of Hurricane Isabel (2003) 0.444 km ≈20 hPa in min pressure
≈20 m s21 in max wind speed

Smith and Thomsen (2010) Idealized f-plane variation of MM5 5km ≈30 m s21 in max wind speed
≈25 km in RMW
≈1 km in height of max wind

Kepert (2012) Idealized diagnostic PBL model from
Kepert and Wang (2001)

3 km ≈4–6 m s21 in max wind speed
≈0.25–0.30 m s21 in vertical velocity

Bryan (2012) Axisymmetric configuration of CM1 1 km ≈20–50 hPa in min pressure
≈100–500 m in height of max wind

Zhang and Pu (2017) HWRF hindcasts of Atlantic TCs 3 km ≈5–20 hPa in min pressure
≈100–300 km in 5-day track error

Li and Pu (2020) WRF-LES hindcats of Hurricanes
Harvey (2017) and Florence (2018)

0.1 km ≈6%–22% in standard deviation of bias

Gopalakrishnan et al. (2021) FV3-based NOAA HAFS model 3 km ≈30 hPa in min pressure
≈208 in surface inflow angle
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provides information about both the magnitude and the sign
of an input parameter’s sensitivity with respect to the output.
An analysis of the strength and direction of each parameter’s
sensitivity can yield valuable guidance when making targeted
model changes.

We note here that the analysis of high-sensitivity input
parameters in this study does not solely rely on the output of
the MOAT method. As applied in this study, the MOAT
method serves as a tool to initially screen input parameters
and identify those that produce relatively high sensitivity
across a broad range of TC structural characteristics. To this
end, a novel aspect of this study is the combination of sensi-
tivity analysis, physical interpretation of input parameters,
and practical considerations of modeling TCs in a global
ESM. Importantly, we do not advocate for perturbing spe-
cific input parameters, which would require a more compu-
tationally expensive SA that is beyond the scope of this
study.

Section 2 provides details about the idealized configuration
of CAM6, including the CLUBB scheme, used in this study.
This section also includes a description of the MOATmethod,
as well as the relevant inputs and outputs. Section 3 provides
an analysis of the model sensitivities derived from the MOAT
method, including an analysis of how this information can be
applied to reduce biases in CAM6. Finally, conclusions are
provided in section 4.

2. Data and methods

a. Model configuration

To isolate TCs from a more complex, fully coupled, climate,
we apply an idealized model configuration. In particular,
CAM6 is run in a configuration that closely mimics radiative–
convective equilibrium (RCE), a framework commonly used
in modeling studies because it is a relatively simple, yet accu-
rate, depiction of the tropical environment (Wing et al. 2018)
and provides a controlled setup conducive to examining phys-
ical processes governing TC structure (Reed and Chavas
2015). We follow prior TC modeling studies (e.g., Held and
Zhao 2008; Khairoutdinov and Emanuel 2013; Reed and Cha-
vas 2015; Shi and Bretherton 2014; Wing et al. 2019; Zhou
et al. 2014) in using a rotating RCE configuration in which we
impart a constant Coriolis force (f plane) with an ambient
rotation rate consistent with a latitude of 158N. Our setup is
similar to the rotating RCE framework in Reed and Chavas
(2015), with a constant Coriolis force, spatially uniform, diur-
nally varying insolation, fixed SSTs set to approximately
302 K, no land or sea ice (i.e., an aquaplanet), uniform trace
gas concentrations, and limited aerosol effects. Since we
are interested in TC maintenance rather than genesis, we ini-
tialize CAM6 with a weak, symmetric vortex that is in hydro-
static and gradient wind balance, as described by Reed and
Jablonowski (2012). An ensemble is created by randomly per-
turbing both the location (up to 0.18 in central latitude and
longitude) and pressure deficit (up to 0.5 hPa) of the initial
vortex k times.

Based on the advantages demonstrated in earlier studies
(e.g., Zarzycki et al. 2014a,b; Zarzycki and Jablonowski 2014),
we run CAM6 on a variable-resolution ne1538 grid, which
implies a spectral element (CAM-SE) grid with ne = 15 (15 3

15 elements per cubed sphere face) and a patch with a refine-
ment factor of 8 (Zarzycki et al. 2014a). This refined resolu-
tion is comparable to the standard CAM-SE ne = 120 grid,
with an implied grid spacing of approximately 0.258, or 25 km,
which is consistent with other recent high-resolution ESM
studies (e.g., Balaguru et al. 2020; Moon et al. 2020; Mura-
kami et al. 2015; Reed and Chavas 2015; Roberts et al.
2020a,b; Wing et al. 2019). The refined domain is approxi-
mately 4083 408, which is sufficient for our analysis of a single
TC per model run. We run CAM6 with 56 vertical levels in
order to better resolve the TC PBL. We find that our results
are also broadly applicable to a configuration with fewer verti-
cal levels, such as the default 32-level configuration of CAM6
(see Fig. S1 in the online supplemental material). Within the
sensitivity analysis, we run CAM6 with a physics time step
(dtphys) of 450 s, 12 dynamics time steps per physics time
step (se_nsplit = 12), and a vertical remap every tracer time
step (se_rsplit = 1). These settings result in a dynamics
time step (dtdyn) of 37.5 s, which is intentionally set to a
low value to ensure numerical stability for the variety of pre-
viously untested parameter combinations explored in the
MOAT analysis. However, we note that a handful of configu-
rations require a smaller dtdyn, depending on the exact settings
of tunable parameters. In these cases, stability is achieved by
halving the dtdyn to 18.75 s. We find that halving the dtdyn does
not appreciably alter results for otherwise stable configura-
tions (Fig. S2). Outside of the MOAT analysis, we run the
CAM6 simulations with a dtdyn of 112.5 s (se_nsplit = 4). All
CAM6 simulations are integrated for 16 days.

We also introduce a modification to the formulation of the
surface drag coefficient CD, which in CESM2 is based on the
formula from Large and Pond (1981). However, at high 10-m
wind speeds this formulation produces a value of CD that
monotonically increases as wind speed increases. Despite
quantitative uncertainties in observations (Richter et al.
2021), numerous studies have demonstrated that CD likely
levels off (saturates) or decreases at high 10-m wind speeds,
such as those typical of mature TCs (e.g., Bye and Jenkins
2006; Donelan et al. 2004; Makin 2005; Moon et al. 2008; Pow-
ell et al. 2003). To better simulate the observed saturation of
CD at high wind speeds in TCs, we retain the default formula-
tion of CD but enforce it to be constant at 10-m wind speeds
in excess of a chosen wind speed threshold (Donelan et al.
2004). Large and Yeager (2009) applied a smoothed cutoff at
33 m s21 by adding an additional high-order exponential
decay term to the Large and Pond (1981) formulation. Since
this term is tailored to the specific threshold of 33 m s21, we
apply a discrete cutoff instead to allow for easier perturbation
of the threshold.

b. PBL scheme

In CAM6, the CLUBB scheme serves as a unified parame-
terization for stratiform macrophysics, shallow convection,
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and PBL turbulence. This scheme selects a joint probability
density function (PDF) of vertical velocity, temperature, and
moisture from a family of PDFs and achieves closure of
higher-order turbulent moments and buoyancy terms by inte-
grating over the chosen PDF, which takes the form of a dou-
ble Gaussian (Golaz et al. 2002). Zarzycki and Jablonowski
(2015) demonstrated the potential utility of CLUBB in
ESM TC hindcasts, as they showed that including CLUBB
in CAM5 reduced track errors compared to a configuration
without CLUBB. Meanwhile, CAM5 with CLUBB was more
skillful in predicting 10-m wind speed beyond 72 h compared
to CAM5 without CLUBB, with CAM5-CLUBB providing a
40% increase in relative wind speed skill at 120 h. Nonethe-
less, CAM5-CLUBB still had notable biases in both track and
intensity hindcasts. Since Zarzycki and Jablonowski (2015)
only implemented an older version of CLUBB in a previous
version of CAM, this study will provide novel insights into
the performance of CAM6 and CLUBB with respect to TCs.

One noted drawback of CLUBB is that the vertical
momentum fluxes u′w′ and y′w′ have not traditionally been
prognosed, but instead have been diagnosed by assuming sim-
ple downgradient fluxes:

u′w′ $ 2Km
­u
­z

, (1)

y′w′ $ 2Km
­y

­z
: (2)

Here and elsewhere in the text, bars represent the gridbox
mean, while prime superscripts represent the perturbation
from the gridbox mean. The term Km is a varying eddy diffu-
sivity coefficient defined as follows:

Km $ ckLe1=2, (3)

where L is the vertical turbulent length scale, e is the turbu-
lent kinetic energy, and ck is a constant set to 0.5.

However, recent studies have suggested that the downgra-
dient approach is inadequate because it neglects observed
countergradient fluxes, such as those demonstrated by Larson
et al. (2019) in tropical shallow cumulus cases from the Barbados
Oceanographic and Meteorological Experiment (BOMEX)
campaign. They noted that the upgradient fluxes are likely due
to buoyancy production or turbulence advection terms that are
not included in the downgradient formulation. Although turbu-
lence in the TC PBL is expected to be mostly shear-generated
(e.g., Kepert 2001), there is evidence that upgradient fluxes exist
in the TC PBL. For example, Kepert (2012) demonstrated that
PBL schemes parameterizing momentum flux using the down-
gradient assumption did not accurately predict vertical wind pro-
files in the TC PBL, while Persing et al. (2013) found that
upgradient fluxes occur in the TC PBL in high-resolution
3D simulations. Therefore, we apply an experimental version
of CLUBB (hereafter referred to as CLUBBX) that employs
a more realistic prognostic equation for momentum flux.
Specifically, CLUBBX solves the following budget equation
for the local time variation of momentum flux (Larson et al.
2019):

­u′w′

­t
$ 2w

­u′w′

­z︸"""︷︷"""︸
1

2
1
r

­rw′2u′

­z︸"""︷︷"""︸
2

2 1 2 C7upwp
( )

w′2 ­u
­z︸"""""""""︷︷"""""""""︸

3

2 1 2 C7( )u′w′ ­w
­z︸""""""""︷︷""""""""︸

4

1 1 2 C7( ) g
uys

u′u′y
︸""""""""︷︷""""""""︸

5

2
C6

t
u′w′

︸""︷︷""︸
6

2 !uw︸︷︷︸
7

: (4)

Here, g represents gravitational acceleration, t represents
the eddy turnover time scale (Larson 2020), uy represents the
virtual potential temperature, uys represents the basic-state
virtual potential temperature, r(z) represents average air den-
sity, and C6 and C7 are tunable constants between 0 and 1.
Per Larson et al. (2019), the terms on the rhs of the budget in
Eq. (4) represent: 1) advection of momentum flux u′w′ by the
mean vertical wind w, 2) turbulent advection of momentum
flux by the vertical perturbation velocity w′, 3) turbulent
production of momentum flux by updrafts and downdrafts,
4) turbulent production of momentum flux due to existing
momentum flux in the presence of a vertical gradient in mean
vertical wind w, 5) buoyant production of momentum flux,
6) a return-to-isotropy adjustment that reduces the magnitude
of momentum flux, and 7) additional dissipating processes.
The momentum flux budget in Eq. (4) is based on CLUBBX’s
formulation of the scalar flux budgets w′u′ and w′q′ [Eqs. (16)
and (17) in Golaz et al. (2002)]. However, our Eq. (4) has an

additional pressure term [C7upwp w′2 ­u=­z
( )

] that offsets the tur-
bulent production of momentum flux from updrafts and down-
drafts. Like C6 and C7, C7upwp is a tunable constant between
0 and 1.

With prognostic momentum flux turned on, the eddy
diffusivity coefficient Km in Eq. (3) is no longer used in
the calculation of momentum flux. However, to quantify
the degree of vertical mixing in the subsequent analysis,
we follow Bryan et al. (2017) and recast Km as an effective
eddy diffusivity:

Km $

((((((((((((((((((((((((
u′w′( )2 1 y′w′( )2

√

((((((((((((((((((
­u
­z

( )2
1

­y

­z

( )2√ : (5)

This formulation is also consistent with estimates of Km

used in observational studies (e.g., French et al. 2007; Ueda
et al. 2012; Zhang and Drennan 2012).

An additional modification to how CLUBBX calculates the
turbulent length scale L (Guo et al. 2021) is also used here
(all references in this paper are to the vertical turbulent length
scale). CLUBB typically estimates L by calculating how far
upward and downward a parcel can travel due to buoyancy
effects (Golaz et al. 2002; Larson 2020). Here, we diagnose
the turbulent length scale using t, the eddy turnover time
scale, and the turbulent kinetic energy (TKE): L $ te1=2 (Larson
2020). We derive t from the inverse eddy turnover time scale
1=t (Guo et al. 2021):
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, (6)

where a = 1000 s21 is a constant, u* is the friction velocity
(m s21), k = 0.4 is Von Kármán’s constant, z is the model
height (m), zsfc is the surface elevation (m), d is the displace-
ment depth (m), N is the Brunt Väisälä frequency (s21), and
the Cx coefficients on the rhs are tunable constants, which are
referenced in the text as C_invrs_tau_bkgnd, C_invrs_tau_sfc,
C_invrs_tau_shear, and C_invrs_tau_N2, respectively. Since t
is directly proportional to L, 1=t is formulated as the sum of
various dissipating processes in the TC PBL where increasing
1=t decreases L, which physically represents the breakup of
larger turbulent eddies (greater L) into smaller turbulent
eddies (lower L). The terms on the rhs of Eq. (6) represent:
1) a generic background dissipation of turbulent eddies
applied at all levels, 2) dissipation near the surface due to fric-
tional effects, 3) dissipation due to vertical wind shear, and
4) dissipation in a stable atmosphere. The benefit of this mod-
ified formulation for 1=t and L is that it can be adjusted at the
regime level via the tuning of the four coefficients on the rhs
of Eq. (6). This study presents the first analysis of how these
dissipation coefficients influence PBL turbulence in TCs.

c. Sensitivity analysis

To test the relative influence of PBL parameters on TC
structure, we apply the MOAT method, which was first intro-
duced by Morris (1991) and later refined by Campolongo et al.
(2007). Recently, the MOAT method has gained wider use in
the field of atmospheric science. For instance, Covey et al.
(2013) applied the MOAT method to analyze the influence of
27 input parameters on radiative fluxes in CAM3 and CAM4.
Morales et al. (2019) later used the MOAT method to evalu-
ate the influence of 19 microphysical and thermodynamic
parameters on orographic precipitation characteristics in a
high-resolution, cloud-resolving model. Zarzycki and Ullrich
(2017) also applied the MOAT method to the objective
detection of extreme weather, as they evaluated the effect
of perturbing 12 input parameters on the number and in-
tensity of TCs detected by the TempestExtremes tracking
algorithm.

Aside from being well-vetted, the MOAT method effec-
tively analyzes sensitivity in a computationally efficient man-
ner. In fact, Herman et al. (2013) compared the performance
of the MOAT method with the commonly used Sobol method
in screening parameters in a watershed model and found that
MOAT produced similar results with approximately 300 times
fewer computing hours and 180 times less required storage.
Also, unlike other computationally efficient one-at-a-time
(OAT) methods that compare sensitivities to the same base-
line configuration, the MOAT method varies the baseline
configuration, which is appropriate for nonlinear climate sys-
tems where parameter sensitivities may vary between baseline

climate states (Covey et al. 2013). However, we also note
some drawbacks of the MOAT method. For example, the
MOAT method alone cannot quantify the fraction of the out-
put variance explained by each parameter, which would
require a more computationally expensive procedure (Morales
et al. 2019). In addition, the MOAT method does not cover the
entire set of possible combinations of input values. However,
we feel that the benefits of the MOAT method outweigh the
drawbacks given the goal of our study, to provide an initial
identification of high-sensitivity input parameters in modeling
the structure of the TC PBL.

The MOAT method, which has recently been described in
detail by Covey et al. (2013) and Morales et al. (2019), is
briefly summarized here. Like other SAs, the MOAT method
works by quantifying changes in an output metric y given a
change in an input parameter xj. The process begins with an
initial model configuration that has a set of input parameters
X = {x1, x2, … , xj, … , xN}. Each input xj is randomly assigned
a value from a discrete range of plausible values. CAM6
(hereafter referred to as CAM6-CLUBBX) is then run with
this particular combination of input parameter values.
CAM6-CLUBBX is subsequently run with a second combina-
tion of N input parameter values, generated by taking the first
combination and changing the value of only one input param-
eter. The procedure continues until all N input parameter val-
ues have been changed once, one-at-a-time. This process,
called a MOAT “path,” is repeated M times with a new initial
combination of input parameter values each time. In this way,
each path starts with a unique baseline state, thus allowing
the analysis to account for the dependence of the sensitivities
on baseline state (Covey et al. 2013). The MOAT method
requires M(N 1 1) total model runs, which is significantly
smaller than the MN model runs required for a standard mul-
tiparameter SA (Morales et al. 2019).

The output from theM(N 1 1) model runs is used to calcu-
late “elementary effects,” which quantify the change in y due
to a positive change in xj, within a given path i:

dij $
y x1, x2,…, xj 1 D,…, xN
( )

2 y x1, x2,…, xj,…, xN( )
D

: (7)

Here, D represents the magnitude of the change in the input
parameter. D is standardized to allow for an easier compari-
son between input parameters with different units. For each
input–output pair, sensitivity metrics can be derived by calcu-
lating the mean and standard deviation of the elementary
effects over all M paths (Covey et al. 2013). The term m*

j is a
measure of the average change in output metric y when per-
turbing the jth input parameter. Meanwhile, sj is a measure of
the variability of the change over the sampled baseline states,
either due to the input parameter’s own nonlinear effects or
the input parameter’s nonlinear interactions with other
input parameters (Covey et al. 2013; Morales et al. 2019).
We also introduce a new quantity, the “monotonicity” of
the response of output y to input xj (denoted by fj1). Since
the D term in (7) is always positive, fj1 is the probability,
over the M paths, that increasing the input parameter
increases the output:
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ni1 $
1, if dij $ 0

0, otherwise
,

{
(8)

fj1 $ 1
M

∑M

i$1
ni1: (9)

In this way, this study assesses three components of a
parameter’s sensitivity with respect to an output metric: the
response of the output (m*

j ), the nonlinearity of the response
(sj), and the monotonicity, or direction, of the response (fj1).

The N = 10 input parameters in Fig. 1 have been identified
as potentially impactful in depicting the TC PBL. We choose
the input perturbation ranges in Fig. 1 based on two factors:
1) previously established recommended values and 2) known
stability considerations. For our study, we use M = 15 paths,
which is within the recommended range of 10 # M # 20
(Covey et al. 2013; Morales et al. 2019) and results in 165
unique configurations of CAM6-CLUBBX. We run the
MOAT analysis using the Sensitivity Analysis Library
(SALib) package in Python3 (Herman and Usher 2017).

The day 10 zonal winds at the lowest model level (Figs.
S3–S8) and the azimuthally averaged radial winds (Figs.
S9–S14) for each unique configuration are provided in
supplemental materials. All configurations produce cyclonic
low-level flow and a realistic azimuthally averaged secondary
circulation. However, some configurations exhibit early signs
of numerical instability (i.e., high azimuthal variance in low-
level wind speed), appearing most prominently in configura-
tions with low vertical turbulent mixing. Though they present
possible limitations in the utility of certain combinations of
input parameter values, these configurations are still impor-
tant to consider when assessing the sensitivity of model output
to the perturbation of default CLUBBX parameter settings.

3. Results

a. Baseline CAM6-CLUBBX biases

We first establish a baseline for TC structure bias in
CAM6-CLUBBX by comparing against both observations
and a high-resolution, cloud-resolving model. This baseline

analysis employs CLUBBX parameter settings (Fig. 1) largely
based on those provided in the release version of CESM2
used for this study (see the acknowledgments). Figure 2 com-
pares the vertical profiles of azimuthally averaged (Fig. 2a)
tangential wind and (Fig. 2b) effective Km in CAM6-
CLUBBX to NOAA dropsonde observations and Cloud
Model 1 (CM1, Bryan and Rotunno 2009; Bryan et al. 2017,
see supplemental materials for details). CM1, which is a high-
resolution, cloud-resolving model that uses nonhydrostatic
dynamics, has been compared extensively to TC observations
(e.g., Bryan 2012) and provides an additional benchmark for
comparison to CAM6-CLUBBX.

While tangential wind profiles from the dropsondes and
CM1 are maximized at or below 1000 m, the modeled CAM6-
CLUBBX tangential wind profile continues to increase above
1000 m. Meanwhile, the profile of effective Km in CAM6-
CLUBBX is appreciably higher than CM1, implying that
CAM6-CLUBBX produces more vertical turbulent mixing in
the TC PBL. Figure 3a indicates that CAM6-CLUBBX also
produces a TC PBL that is considerably warmer in the lowest
several hundred meters compared to CM1 and observations.
We note that the CM1 configuration shown here uses an SST
that is about 3 K cooler than CAM6-CLUBBX, but the biases
seen in Fig. 3a are likely not fully explained by differences
in prescribed SSTs alone. The specific humidity profile in
CAM6-CLUBBX is also too dry in the lowest several hun-
dred meters (Fig. 3b).

These structural biases in Figs. 2 and 3 are also evident in
the time series of height of maximum wind (Fig. 4a) and latent
heat flux (LHF) fraction (Fig. 4b). As the TC matures, the
height of maximum wind in CAM6-CLUBBX ranges from
2000 to 3000 m, which is 1000 to 2000 m greater than both the
dropsonde composite and CM1. The LHF fraction, which is
the ratio of surface LHF to total surface heat flux (latent 1
sensible), is also too high compared to CM1. We note that the
LHF fraction is related to the Bowen ratio (B = SHF/LHF) as
follows: LHfrac $ 1=B

( )
SHF= B2LHF1 SHF( )[ ]

, so a high bias
in LHF fraction implies a low bias in the Bowen ratio, with
sensible heat flux (SHF) too low in comparison to LHF. This
bias in LHF fraction occurs because the warm and dry biases
in CAM6-CLUBBX suppress SHF and enhance LHF. In fact,

FIG. 1. A list of the input parameters perturbed in the MOAT analysis. The parameters are identified by a unique color and letter
(A–J). Each input can take on one of four equally spaced values within the range given in the far-right column. For example, C7upwp is
assigned one of four possible values: 0.35, 0.5, 0.65, or 0.8.

MONTHLY WEATHER REV I EW VOLUME 150888



CAM6-CLUBBX produces values of LHfrac in excess of 1,
implying a negative SHF directed into the ocean. Accurate
depictions of the jet maximum are critical because these winds
can be advected downward in downdrafts and cause damage
at the surface (Kepert 2001). Meanwhile, the LHF fraction
affects the surface flux feedback, which is a major component
of the moist static energy budget of mature TCs (Emanuel
1986; Wing et al. 2019). Therefore, biases in height of maxi-
mum wind and LHF fraction are important targets for model
improvements.

b. MOAT analysis

To remove specific biases in CAM6-CLUBBX, we use the
output from the MOAT analysis to identify input parameters
that produce relatively large responses in a consistent direc-
tion. Therefore, we seek input parameters that produce a high
value of m*

j , which is the average response of the output to

perturbing the input parameter value. Moreover, we seek
input parameters that produce a consistent directional response,
which means that increasing the parameter xj should either fre-
quently decrease or frequently increase the output y. Therefore,
input parameters with a high value of m*

j should have a monoto-
nicity, fj1, close to 0 or 1. If an input parameter has a value of fj1
close to 0.5, it is unclear whether increasing the input would
increase or decrease the model output, thus providing little value
to developers. However, input parameters that meet both crite-
ria listed above ensure that perturbing the parameter in a partic-
ular direction will reliably push the output metric in the direction
necessary to improve simulations of TCs with CAM6-CLUBBX.

Figure 5 shows (Fig. 5a) m*
j and sj and (Fig. 5b) monotonic-

ity fj1 for the N = 10 input parameters with respect to the
height of maximum tangential wind. In this and subsequent
figures, each input parameter is assigned a unique color and
letter ID (Fig. 1). The terms m*

j and sj for each input are

FIG. 2. Vertical profiles of (a) tangential wind speed and (b) effective eddy diffusivity at the RMW from CAM6-
CLUBBX (dark blue) and CM1 (orange). In (a), the composite wind speed profile from NOAA dropsonde observa-
tions is shown in green. CAM6-CLUBBX profiles come from an idealized configuration using an average of 20 ensem-
ble members over days 8, 10, and 12. The CM1 profile comes from an axisymmetric configuration at steady state.
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normalized such that they fall between 0 (least response or
least nonlinearity) and 100 (greatest response or greatest non-
linearity). Therefore, input parameters located near the right
edge of the left panel (m*

j values closer to 100) produce the
greatest response with respect to height of maximum wind,
while those near the upper edge (sj values closer to 100) pro-
duce the greatest nonlinear response. For the height of maxi-
mum wind, the input parameters are arranged such that those
producing a large m*

j also produce a large sj, signaling a large
average response but also high variability in the response
based on the choice of background state. This implies that
these high-response input parameters may derive their sensi-
tivities from nonlinear interactions between different aspects
of the PBL, as well as interactions with other components of
the climate system. While high variability in the response is
not ideal for targeted perturbations to input parameters, a
high or low value of fj1 can still give model developers confi-
dence that the direction of the response is at least consistent.

The vertical axis of the right panel is fj1, the frequency with
which increasing the input increases the height of maximum
wind. The input’s unique letter ID is located on the horizontal
axis of the right panel. If an input parameter is located at
the bottom (fj1 close to 0) or top of the plot in the right panel
(fj1 close to 1), increasing the input consistently decreases or
increases, respectively, the height of maximum wind. Mean-
while, an input parameter located toward the middle of the
plot (fj1 close to 0.5) provides an inconsistent directional
response. Figure 6 similarly shows (Fig. 6a) m*

j and sj and
(Fig. 6b) fj1 with respect to the LHF fraction.

We also broaden our analysis and assess the sensitivity of
other aspects of TC structure to the N = 10 input parameters.
In Fig. 7, each input parameter on the vertical axis is ranked
according to the magnitude of the response (m*

j ) of each out-
put metric on the horizontal axis. For example, height of max-
imum wind is most sensitive to C_invrs_tau_sfc (highest m*

j )
and least sensitive to C4 (lowest m*

j ). Table 2 provides a key

FIG. 3. Vertical profiles of (a) potential temperature and (b) specific humidity at the RMW from CAM6-CLUBBX
(dark blue) and CM1 [orange, (a) only]. The composite temperature and moisture profiles from NOAA dropsonde
observations are shown in green. CAM6-CLUBBX profiles come from an idealized configuration using an average of
20 ensemble members over days 8, 10, and 12. The CM1 profile comes from an axisymmetric configuration at steady state.
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for the output metric abbreviations, while the supplemental
materials detail how each output is calculated. Figure 8 high-
lights similar rankings with respect to sj, while the grid in
Fig. 9 shows fj1 for each input–output pair.

Figures 7–9 illustrate the variability in an input parameter’s
sensitivity across the various TC structural outputs. Though it
is not the goal of this study, it is difficult to definitively identify
one particular input parameter that produces the most sensi-
tivity across all outputs. Therefore, we choose to isolate a
handful of input parameters that merit additional analysis.
We reiterate that we are not specifically advocating for these
input parameters as the best candidates to change in CAM6-
CLUBBX. These input parameters fit the aforementioned cri-
teria (e.g., strong, consistent directional responses) across a
broad spectrum of TC structural metrics in Figs. 7–9. Three
input parameters of note are C14 (A, dark green in Fig. 5),
C7upwp (C, dark blue), and C_invrs_tau_sfc (G, pink).

Notably, all three input parameters are directly tied to
CLUBBX’s formulation of vertical momentum flux and effec-
tive eddy diffusivity. C14 is a coefficient attached to a damp-
ing term in the budgets of the horizontal variance terms u′2

and y′2 . Therefore, an increase in this term is expected to
reduce TKE in the TC PBL. C7upwp is a coefficient in Eq. (4)
that offsets the turbulent production of momentum flux due

to updrafts and downdrafts. Increasing this term would there-
fore result in a decrease in the magnitude of momentum flux
and a decrease in effective eddy diffusivity. C_invrs_tau_sfc is
the constant coefficient Csfc in Eq. (6) that governs the degree
of turbulent eddy dissipation (i.e., the breakup of larger tur-
bulent eddies into smaller turbulent eddies) due to surface
friction. Increasing this term would result in an increase in 1=t
and a decrease in turbulent length scale L near the surface.
The influence of C7upwp and C_invrs_tau_sfc is made clear by
simplifying Eq. (4) by assuming that the turbulent production
of u′w′ by updrafts and downdrafts (term 3) and the return-
to-isotropy adjustment (term 6) dominate. After rearranging,
Eq. (4) reduces to the diagnostic downgradient diffusion
approximation:

u′w′ $ 2Kapprox
­u
­z

, (10)

Kapprox $
1 2 C7upwp
( )

tw′2

C6
: (11)

Therefore, increasing C7upwp or decreasing t (by increasing
C_invrs_tau_sfc) will act to reduce vertical eddy diffusivity
and associated turbulent mixing.

Though sensitivities vary, inputs that produce high sensitiv-
ity with respect to height of maximum wind and LHF fraction
also produce high sensitivity for other output metrics. For
example, C14 falls within the top half of the m*

j rankings for
10 out of 14 output metrics evaluated, while both C7upwp and
C_invrs_tau_sfc fall within the top half for 13 out of 14 output
metrics evaluated. Moreover, outputs that are physically
related have similar m*

j rankings. For example, the rankings
for minimum surface pressure and maximum 10-m wind speed
are nearly identical, while the rankings for LHF fraction are
similar to those for 100-m potential temperature and specific
humidity.

In general, C14, C7upwp, and C_invrs_tau_sfc also produce
highly nonlinear responses for most output metrics (Fig. 8).
C14 is in the top half of the s rankings for all 14 output met-
rics. C7upwp is in the top half of s rankings for 12 of 14 output
metrics, while C_invrs_tau_sfc is in the top half for 10 of
14 output metrics. All three of these input parameters have
direct impacts on vertical turbulent mixing in the PBL. This
modulation of turbulent mixing can influence the distribution
of heat and moisture in the PBL, which in turn affects other
aspects of the model physics, including convection and micro-
physics. Therefore, the high values of s may be explained by
the nonlinear interactions between turbulence, convection,
and precipitation processes. However, we caution that the
unraveling of nonlinear physical interactions within the TC
PBL is beyond the scope of this study. Nonetheless, future
work should examine these nonlinearities further.

As with height of maximum wind and LHF fraction, C14,
C7upwp, and C_invrs_tau_sfc stand out in Fig. 9 for widely pro-
ducing a consistent directional response, with fj1 values
greater than 0.7 or less than 0.3 for most output metrics.
This indicates that these three inputs may be good targets
for improvement in output metrics. Though these input

FIG. 4. Time series of (a) the height of maximum wind and
(b) latent heat flux (LHF) fraction from CAM6-CLUBBX (dark
blue) and CM1 (orange). In (a), gray shading denotes the inter-
quartile range of NOAA dropsonde observations of height of max-
imum wind. CAM6-CLUBBX time series come from an idealized
configuration using an average of 20 ensemble members over days
8, 10, and 12. The CM1 value in (a) comes from an axisymmetric
configuration at steady state, while the value in (b) comes from a
full 3D configuration at steady state (see supplemental material).
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parameters produce responses that are more variable due to
nonlinear effects (Fig. 8), there is greater confidence that the
responses are still in a consistent direction. Furthermore, out-
puts that are physically related again have similar degrees of
consistency in directional response. For example, inputs that

frequently decrease LHF fraction frequently increase 100-m
specific humidity and decrease 100-m potential temperature.
This provides evidence that the MOAT analysis adequately
captures the expected physical relationships between output
metrics when calculating sensitivities.

FIG. 6. (a) The sensitivity of the latent heat flux (LHF) fraction to perturbations of the N = 10 input parameters.
Figure 1 lists the colors and letters corresponding to each input. The term m*

j represents the average influence of
changing the input on the LHF fraction, while sj represents the nonlinear effects of the input on the LHF fraction;

m*
j and sj are standardized so that m*

j $ m*
j 2 m*

min

( )/
m*
max 2m*

min

( )
3 100 and sj $ sj 2 smin( )= smax 2 smin( )3 100.

(b) The frequency (fj1) of an increase in LHF fraction given an increase in the input parameter. LHF fraction is aver-
aged over days 8, 10, and 12.

FIG. 5. (a) The sensitivity of the height of maximum wind to perturbations of theN = 10 input parameters. Figure 1 lists
the colors and letters corresponding to each input. The term m*

j represents the average influence of changing the input on
the height of maximum wind, while sj represents the nonlinear effects of the input on the height of maximum wind;

m*
j and sj are standardized so that m*

j $ m*
j 2m*

min

( )
= m*

max 2 m*
min

( )
3 100 and sj $ sj 2 smin( )= smax 2 smin( )3 100.

(b) The frequency (fj1) of an increase in height of maximum wind fraction given an increase in the input parameter.
Height of maximum wind is averaged over days 8, 10, and 12.
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Another important factor to consider when screening input
parameters is the influence of the parameters on other aspects
of the global climate. Given that operational TC outlooks
would require running CAM6-CLUBBX globally, targeted
model improvements should balance the reduction of biases
in TC structure with a credible depiction of the rest of the cli-
mate system. Therefore, desirable input parameters would
ideally address model biases in TCs without adversely affect-
ing the model’s depiction of the rest of the climate system.
Given this balance of factors, another potential input parame-
ter of interest is C_invrs_tau_shear, which is the coefficient

Cshear that is tied to turbulent eddy dissipation due to vertical
wind shear in Eq. (6). C_invrs_tau_shear has a value of m*

j in
the top half of all inputs (rankings ranging from 3 to 5) for 11
of 14 output metrics (Fig. 7), and the monotonicity values for
C_invrs_tau_shear closely match those of C_invrs_tau_sfc
(Fig. 9). However, while perturbing C_invrs_tau_sfc affects to
some degree the diagnosis of L everywhere globally, the
direct effects of perturbing C_invrs_tau_shear are largely iso-
lated to atmospheric features exhibiting strong wind shear,
such as TCs (Fig. 2).

It is evident from Figs. 5–9 that C_invrs_tau_bkgnd produ-
ces large responses and high monotonicity for most output
metrics. C_invrs_tau_bkgnd is the coefficient Cbkgnd in the
first term on the rhs of Eq. (6). Unlike other input parameters
in Eq. (6), such as C_invrs_tau_shear and C_invrs_tau_sfc,
C_invrs_tau_bkgnd is not tied to environmental variables
like vertical wind shear or surface roughness. Rather,
C_invrs_tau_bkgnd represents a constant background eddy
dissipation applied at all horizontal and vertical levels. There-
fore, it is not surprising that this term produces high sensitiv-
ity for most aspects of TC structure. However, we also expect
C_invrs_tau_bkgnd to appreciably influence other aspects of
the global climate due to its universal application throughout
the entire model domain. For this reason, C_invrs_tau_bkgnd
is not highlighted here. However, we emphasize that we
do not support eliminating C_invrs_tau_bkgnd or other
input parameters without additional analysis of model
sensitivities

c. Targeted experiments

We now demonstrate how the MOAT analysis can be
directly applied to the baseline configuration of CAM6-

FIG. 7. For each output metric, a ranking of the input parameters based on the value of m*
j

(rankings from 1 to 10, highest to lowest). Higher rankings (darker colors) imply that perturbing
the input parameter produces a greater response with respect to the output metric, while lower
rankings (brighter colors) imply that perturbing the input parameter produces a weaker response
with respect to the output metric. Table 2 provides a key for the output metric abbreviations.

TABLE 2. A key for the output metric abbreviations used in
the MOAT analysis. The left column provides the abbreviations,
while the right column provides brief descriptions of the output
metrics. More information about these output metrics can be
found in the supplemental material.

Abbreviation Description

RMW Radius of max wind (km)
uin Surface inflow angle (8)
zymax Height of max wind (m)
SLPmin Min sea level pressure (hPa)
u10,max Max 10-m wind speed (m s21)
SLP-u Sim Shape of pressure–wind curve (unitless)
ytan Sim Shape of vertical wind profile (unitless)
Km Sim Shape of vertical diffusivity profile (unitless)
AreaTC TC area (km2)
dy=dz Vertical wind shear at 100 m (s21)
LHfrac Latent heat flux (LHF) fraction (unitless)
u Potential temperature at 100 m (K)
q Specific humidity at 100 m (kg kg21)
s2 Scaled inner-core 10-m wind variance (unitless)
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CLUBBX (Figs. 2–4) in order to specifically reduce biases in
height of maximum wind and LHF fraction. We choose a sim-
ple case in which a single input parameter is gradually
changed over 10 configurations of CAM6-CLUBBX. In prac-
tice, model improvements would seek to reduce biases in a

wider range of TC structural characteristics, likely employing
multiple input parameter perturbations. However, these
experiments are meant to provide a simplified illustration of
the physical processes governing the sensitivities seen in the
MOAT analysis.

FIG. 9. For each input–output pair, the frequency (fj1) of the output metric increasing with an
increase in the input parameter. Values greater than 0.5 (blues) imply that increasing the input
parameter more often increases the output metric, while values lower than 0.5 (reds) imply that
increasing the input parameter more often decreases the output metric. Dark blues imply a con-
sistent increase, while dark reds imply a consistent decrease. Table 2 provides a key for the out-
put metric abbreviations.

FIG. 8. For each output metric, a ranking of the input parameters based on the value of sj

(rankings from 1 to 10, highest to lowest). Higher rankings (darker colors) imply that perturbing
the input parameter produces greater nonlinear effects with respect to the output metric, while
lower rankings (brighter colors) imply that perturbing the input parameter produces smaller non-
linear effects with respect to the output metric. Table 2 provides a key for the output metric
abbreviations.
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Since CAM6-CLUBBX overestimates both the height
of maximum wind and LHF fraction, we seek a parameter
with relatively high m*

j and relatively low fj1. Therefore, we
choose to target one of the four input parameters identified
above. We specifically highlight the impact of perturbing
C_invrs_tau_shear, as it produces modest sensitivities over
most output metrics but is also expected to have impacts con-
fined to high-shear areas such as TCs. C7upwp is similarly tied
to a vertical wind shear term in Eq. (4), so its impacts are also
expected to be largely isolated to TCs. However, unlike
C_invrs_tau_shear, C7upwp only indirectly influences fluxes of
scalars like u and q, which is consistent with the lower sensitiv-
ity of C7upwp with respect to low-level thermodynamic quanti-
ties (Fig. 7). While increasing C_invrs_tau_shear provides one
potential pathway to reducing CAM6-CLUBBX bias, a for-
mal endorsement of an updated CAM6-CLUBBX configura-
tion suitable for the global climate is beyond the scope of this
study. A repeat of the following analysis with C_invrs_tau_sfc
(Fig. S15) and C7upwp (Fig. S16) indicates that these input
parameters provide additional pathways toward reducing
model biases.

Figure 10 shows the progression of the ensemble-averaged
(k = 20) (Fig. 10a) height of maximum wind and (Fig. 10b) the
LHF fraction as C_invrs_tau_shear is gradually increased
from 0.02 to 0.20, with all else constant, in one particular
model state (the baseline combination of input parameters
from Figs. 2–4). All 10 configurations produce physically plau-
sible ensemble-averaged TC structures (see Figs. S17 and
S18). For reference, the brown line denotes the value of
C_invrs_tau_shear used in the baseline CAM6-CLUBBX
configuration in Fig. 4. Figure 10 indicates that increasing
C_invrs_tau_shear decreases both the height of maximum
wind and the LHF fraction, as seen in the progression from
brown to pink lines. Both are consistent with the predicted
outcomes from the MOAT analysis in Figs. 5 and 6. More-
over, the time series of both outputs gradually approach
observations (gray shading) and/or CM1 (orange). In this
example, the MOAT analysis objectively identifies a high-sen-
sitivity input parameter, like C_invrs_tau_shear, that provides
a pathway to reducing model bias in height of maximum wind.

Increasing C_invrs_tau_shear monotonically reduces the
turbulent length scale (Fig. 11a) and effective eddy diffusivity
Km (Fig. 11b) throughout the TC PBL at the RMW. The
reduction in effective Km produces more realistic values of
these quantities compared to observations from intense TCs
(e.g., Zhang et al. 2011). Figure 12 provides a broader per-
spective by showing the radial cross section of a given output’s
response to increasing C_invrs_tau_shear. At each radius and
vertical level, Fig. 12 quantifies the response by linearly
regressing the output metric on C_invrs_tau_shear and calcu-
lating the slope of the best-fit line using ordinary least squares
(OLS). For example, reds in Fig. 12a imply that increasing
C_invrs_tau_shear decreases the tangential wind at that loca-
tion, while blues imply that increasing C_invrs_tau_shear
increases the tangential wind at that location. As C_invrs_
tau_shear increases, the height of maximum tangential wind
decreases from around 3000 m to 1000 m. The hatching in
Fig. 12 denotes radius-level pairs at which the Spearman rank

correlation (Wilks 2011) between the output and C_invrs_
tau_shear has a magnitude greater than 0.8, which implies a
highly monotonic relationship. The lack of hatching in some
locations indicates that the sensitivity of C_invrs_tau_shear is
not purely monotonic everywhere, likely due to nonlinear
interactions between the the model’s dynamical core, turbu-
lence, microphysics, and convective parameterizations that
merit future research.

Figures 12e and 12f also highlight a decrease in the turbu-
lent length scale L and effective Km due to an increase in
C_invrs_tau_shear. Increasing C_invrs_tau_shear adds weight
to the wind shear dissipation term in Eq. (6), representing
increased dissipation associated with the high-shear environ-
ment of the lower TC PBL. In CLUBBX, this process
decreases L, which physically represents the shear-induced
distortion of larger turbulent eddies into smaller eddies (e.g.,
Mauritsen and Enger 2008). The decrease in L and effective
Km keeps the turbulent mixing confined to the lowest several
hundred meters. This is evident in Fig. 12d, which shows that
the magnitude of the zonal component of momentum flux
(u′w′) decreases above 1000 m, but increases below 1000 m,

FIG. 10. Time series of (a) height of maximum wind and (b) latent
heat flux (LHF) fraction from idealized configurations of CAM6-
CLUBBX with varying values of C_invrs_tau_shear. Darker lines
denote configurations with lower C_invrs_tau_shear, while brighter
colors denote configurations with higher C_invrs_tau_shear. The
steady-state values of height of maximum wind and latent flux
fraction from an axisymmetric configuration in (a) and full 3D
CM1 configuration in (b) are in gold. Gray shading in (a) denotes
the interquartile range of NOAA dropsonde observations. CAM6-
CLUBBX time series are averaged over 20 ensemble members.
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with an increase in C_invrs_tau_shear. Physically, the turbu-
lent eddies are still maintained in the lowest several hundred
meters due to increased vertical wind shear. However, these
turbulent eddies remain small, and turbulence is not able to
diffuse upward.

Increased dissipation of turbulent eddies, and the resulting
reduction in effective Km seen in Fig. 12f, thus provides a
mechanism for reducing the height of maximum wind, which
has been shown to be proportional to Km (Kepert 2001;
Kepert and Wang 2001). Therefore, a modification that
decreases effective Km in CAM6-CLUBBX is expected to
decrease the height of maximum wind, which is consistent
with the findings of Kepert (2012), who found that PBL

schemes that produced lower eddy diffusivity also produced a
lower height of maximum wind in a diagnostic TC PBL model
(Kepert and Wang 2001). In addition, Bryan (2012) found
that reducing the vertical turbulent length scale in CM1 reduced
the modeled height of maximum wind, while Gopalakrishnan
et al. (2013) found that reducing Km in HWRF reduced the
inflow depth in modeled TCs. Most recently, Gopalakrishnan
et al. (2021) applied different PBL schemes to TC forecasts from
the next-generation HAFS model and found that schemes
with lower eddy diffusivity produced lower heights of maxi-
mum wind.

Figures 12b and 12c also highlight how increasing C_invrs_
tau_shear affects the TC secondary circulation. For example,

FIG. 11. Vertical profiles of (a) steady-state turbulent length scale and (b) effective eddy diffusivity at the RMW
from idealized configurations of CAM6-CLUBBX with varying values of C_invrs_tau_shear. Darker profiles denote
configurations with lower C_invrs_tau_shear, while brighter colors denote configurations with higher C_invrs_tau_sh-
ear. Profiles from an axisymmetric CM1 configuration are in orange. CAM6-CLUBBX profiles are averaged over 20
ensemble members at days 8, 10, and 12.
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Fig. 12b shows an appreciable increase in radial inflow below
1000 m. Here, radial wind directed inward toward the TC
center is assigned a negative sign. As C_invrs_tau_shear
increases, reduced vertical mixing effectively compresses, and
moves inward, the couplet of inflow below the jet and outflow
above (Gopalakrishnan et al. 2013; Kepert 2001; Kepert and
Wang 2001). Such a response helps explain the increased
inflow below 1000 m and the increased outflow above. More-
over, Gopalakrishnan et al. (2013) found that a shallower,
less diffusive TC PBL caused a strengthening of radial inflow
below jet height due to an increase in frictional forces.
Gopalakrishnan et al. (2021) found a similar relationship in

HAFS, specifically showing that a reduction in Km in the
lower TC PBL enhanced radial inflow. These findings are also
consistent with Bryan (2012), who found that reducing the
vertical turbulent length scale lv increased the surface inflow
angle in an axisymmetric configuration of CM1. In CAM6-
CLUBBX, we find an increase in surface inflow angle, indi-
cating a strengthened inflow component, when we reduce
vertical turbulent mixing by increasing C_invrs_tau_shear
(Fig. 9). Therefore, the response in radial inflow is likely a
combination of both shifting the inflow–outflow couplet
downward and inward and strengthening the near-surface
inflow due to frictional effects.

FIG. 12. The response of azimuthally averaged CAM6-CLUBBX (a)–(c) wind, (d)–(f) turbulence, and (g)–(i) thermodynamic fields
given an increase in C_invrs_tau_shear. For a particular radius and vertical level, the response is calculated as the slope of the ordinary
least squares (OLS) linear fit between the output and the value of C_invrs_tau_shear. Reds imply a decrease in the output as
C_invrs_tau_shear increases, while blues imply an increase in the output as C_invrs_tau_shear increases. Profiles are averaged over 20
ensemble members at days 8, 10, and 12. Hatching denotes radius-level pairs at which the Spearman rank correlation between the output
and C_invrs_tau_shear has a magnitude greater than 0.8.
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Figures 12a and 12c also highlight a notable inward shift in
the peak tangential and vertical wind speeds toward the cen-
ter of the TC, indicating a contraction of the eyewall. This is
consistent with Fig. 13, which similarly shows the change in
the 2D plan view of the modeled TC as C_invrs_tau_shear
increases. From Figs. 13a–c, it is clear that 10-m wind speed
and precipitation rate increase and outgoing longwave radia-
tion (OLR) decreases at lower radii. The apparent movement
of the eyewall toward the center of the modeled TC compares
favorably to the findings of Gopalakrishnan et al. (2013) and
Bu et al. (2017), who found that reducing the degree of verti-
cal turbulent mixing in the TC PBL in HWRF produced an
inward movement of the eyewall. This is also consistent with
our finding that increasing C_invrs_tau_shear decreases TC
area over all M = 15 MOAT paths (Fig. 9). However, we note
that while the eyewall updrafts shift inward, the peak vertical
velocities appear to weaken as C_invrs_tau_shear increases.
This contradicts past studies that found a strengthening of
eyewall updrafts with decreased turbulent mixing (e.g., Gopa-
lakrishnan et al. 2013), further underscoring the need to
explore the nonlinear interactions between parameterized

turbulence and convection in CAM6-CLUBBX. However, it
is important to note that most prior studies have examined
higher-resolution simulations (∼5 versus ∼25 km in CAM6-
CLUBBX). Therefore, future analysis should focus on quanti-
ties like parameterized convective mass flux instead of model-
resolved vertical velocity, which likely does not fully charac-
terize the modeled convective fluxes in CAM6-CLUBBX.

Figure 14 demonstrates that increasing C_invrs_tau_shear
monotonically decreases 100-m potential temperature (Fig. 14a)
and increases 100-m specific humidity (Fig. 14b) at the RMW,
as anticipated by the MOAT analysis (Fig. 9). The near-sur-
face cooling and moistening seen in Fig. 14 at the RMW are
also prevalent over a large swath of the TC’s lower levels
(Figs. 12g,h). As a result of cooler and moister air just above
the sea surface due to increasing C_invrs_tau_shear, surface SHF
increases and LHF decreases throughout the TC (Figs. 13d,e).
Therefore, LHF fraction is also reduced (Fig. 13f), which is again
consistent with the MOAT analysis.

The low-level cooling that peaks 100 km away from the TC
center is likely partially explained by an increase in evapora-
tive cooling from precipitation that has shifted toward those

FIG. 13. The response of CAM6-CLUBBX (a) 10-m wind speed, (b) outgoing longwave radiation, (c) precipitation rate, (d) sensible
heat flux (SHF), (e) latent heat flux (LHF), and (f) LHF fraction given an increase in C_invrs_tau_shear. For a particular latitude–longitude
pair, the response is calculated as the slope of the ordinary least squares (OLS) linear fit between the output and the value of
C_invrs_tau_shear. Reds imply a decrease in the output as C_invrs_tau_shear increases, while blues imply an increase in the output as
C_invrs_tau_shear increases. Profiles are averaged over 20 ensemble members at days 8, 10, and 12.
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radii (Fig. 13c). Also, Kepert et al. (2016) demonstrated that
increased inflow near the RMW produced a cooling tendency
in an axisymmetric configuration of CM1. Therefore, given a
decrease in u with increasing radius in the modeled TCs,
increased inflow (yrad , 0) is expected to produce a cooling
effect. The area of peak cooling due to an increase in
C_invrs_tau_shear coincides with a region of strengthened
radial inflow (deep reds in Fig. 12b).

The response of the moisture cross section is tied to
changes in vertical water vapor transport. In particular, mois-
ture initially transported from the ocean to levels at or above
2000 m with less turbulent eddy dissipation (higher Km) can

no longer reach those levels under a regime of higher eddy
dissipation (lower Km). As a result, water vapor is concen-
trated closer to the surface, thus explaining the moistening of
the near-surface layer. This response is consistent with Bu
et al. (2017), who defined the impact of turbulent mixing on
the local water vapor (q) budget as follows (Bu et al. 2017):

­q
­t

[ ]

mixing
$ 2a

­Km

­z
: (12)

Assuming a quasi-parabolic vertical profile of Km (Fig. 11b),
local drying exists at the lowest model levels below the peak

FIG. 14. Vertical profiles of steady-state (a) potential temperature and (b) specific humidity at the RMW from ideal-
ized configurations of CAM6-CLUBBX with varying values of C_invrs_tau_shear. Darker profiles denote configura-
tions with lower C_invrs_tau_shear, while brighter colors denote configurations with higher C_invrs_tau_shear. The
vertical profile from an axisymmetric CM1 configuration is in orange in (a), while the vertical profiles from composite
NOAA dropsonde observations are in green in (a) and (b). CAM6-CLUBBX profiles are averaged over 20 ensemble
members at days 8, 10, and 12.
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effective Km. As C_invrs_tau_shear increases, the change in Km

with height decreases (Fig. 11b), resulting in a decrease in the
low-level drying tendency (i.e., a net moistening). This is consis-
tent with Bu et al. (2017), who noted a net moistening (drying)
near the surface due to decreased (increased) turbulent mixing.
Reduced turbulent mixing may also suppress outer convection
because fewer parcels are lifted high enough for saturation, thus
removing the diabatic heating that would otherwise broaden the
wind field (e.g., Bu et al. 2014, 2017; Fovell et al. 2016). This may
help explain the consistent negative response in TC area, which
is based on the wind field, to increasing C_invrs_tau_shear
(Fig. 9).

As mentioned earlier, further research is necessary to bet-
ter illuminate the complex interactions between the PBL,
microphysics, and deep convective schemes in CAM6-
CLUBBX TCs. The mechanisms described above likely do
not explain all of the variability in temperature and moisture
fields with respect to the degree of vertical turbulent mixing.
Specifically, future studies should focus on how the reduction
in turbulent mixing in CLUBBX influences parameterized
convection and microphysics near the eyewall.

While the above analysis demonstrates the effect of chang-
ing a single parameter in CLUBBX, moderate perturbations
of multiple parameters may provide suitable pathways toward
improvement that do not require significant changes from
default values. Therefore, we take the application of the
MOAT analysis a step further and use the expected responses
when changing a single parameter to inform the simultaneous
perturbation of multiple input parameters in CAM6-
CLUBBX. Figures 7 and 8 are used to choose a handful
of high-sensitivity input parameters, and Fig. 9 determines
whether to increase or decrease these inputs in order to
reduce biases. The computational expense of running a
full ensemble for each configuration necessitates a smaller
number (9) of tested configurations. A more systematic anal-
ysis of multiparameter-perturbed configurations is an impor-
tant avenue for future research. In addition, such an analysis
should weigh the effects that these multiparameter perturba-
tions have on the global mean climate, for which we do not
account in the forthcoming analysis.

The nine idealized multiperturbation configurations of
CAM6-CLUBBX are unique but share common directional
perturbations, which are summarized in Table 3. According to

the MOAT analysis, individually changing these parameters
in the proposed direction is expected to reduce the height of
maximum wind and the LHF fraction. Common perturbations
include 1) an increase in C_invrs_tau terms and C14, which is
expected to decrease the turbulent length scale and effective
diffusivity and 2) a slight increase in C4, a damping weight on
the vertical turbulence term w′2 , which is expected to
decrease TKE. Due to the limited number of configurations,
we subjectively choose the magnitude of each perturbation, as
the results of the MOAT analysis do not provide sufficient
information to guide a more objective, simultaneous pertur-
bation of multiple parameters. We also note that some per-
turbed values fall outside the tested MOAT range, though
Fig. 10 indicates that MOAT results are still valid outside the
tested MOAT ranges. Moreover, as with the targeted single-
parameter experiments in Figs. 10–14, these multiparameter
perturbation experiments are merely meant to illustrate how
the MOAT results can be practically applied to specific
improvements in modeling TC PBL structure.

All nine configurations produce reasonable ensemble-aver-
aged TC structures (Figs. S19 and S20). Figure 15 illustrates
the improvements in (Fig. 15a) height of maximum wind and
(Fig. 15b) LHF fraction resulting from these multiple pertur-
bations. The dark blue time series in Fig. 15 are the baseline
CAM6-CLUBBX time series from Fig. 4. The range of the
nine multiperturbation time series for both output metrics
(green shading) is closer than the baseline to observations
and CM1. Analysis of the modeled vertical diffusivity and
thermodynamic profiles (Figs. S21 and S22) is consistent with
the improvements shown in Fig. 15. Although the perturba-
tion magnitudes were subjectively applied, the configurations
provide a range of more reasonable outcomes for modeling
height of maximum wind and LHF fraction. This provides fur-
ther evidence that the MOAT method effectively identifies
high-sensitivity input parameters that can be subsequently
used to produce a more physically realistic TC PBL structure
in CAM6-CLUBBX.

d. Regime-specific eddy dissipation

Last, we discuss the potential utility of defining the turbu-
lent length scale L using the sum of dissipating processes,
which is a novel aspect of this study. Figure 16 shows a break-
down of the eddy dissipation terms in CAM6-CLUBBX for

TABLE 3. The settings used in the multiperturbation CAM6-CLUBBX configurations. The second column from the left provides
the “baseline” values of the input parameters from the CAM6-CLUBBX configuration shown in Figs. 2–4.

Input parameter Baseline Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7 Run 8 Run 9

C14 2.2 4.4 4.4 4.4 2.0 4.4 4.4 2.0 2.0 2.0
C7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
C7upwp 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
C6rt Lscale0 14 14 14 14 14 14 14 14 14 14
C4 5.2 2.6 5.2 5.2 7.0 5.2 5.2 7.0 5.2 5.2
C_invrs_tau_bkgnd 1.0 2.0 2.0 4.0 3.0 3.0 5.0 5.0 5.0 5.0
C_invrs_tau_sfc 0.1 0.2 0.2 0.1 0.4 0.2 0.1 0.4 0.1 0.1
C_invrs_tau_shear 0.02 0.04 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.08
C_invrs_tau_N2 0.1 0.2 0.2 0.2 0.05 0.05 0.05 0.05 0.05 0.05
LY09_sat 33 20 20 20 20 20 20 20 20 20
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three configurations with (Fig. 16a) low, (Fig. 16b) moderate,
and (Fig. 16c) high values of C_invrs_tau_shear (all other tun-
ings constant). A higher value of 1=tx implies greater dissipa-
tion of turbulent eddies due to the given process. In Fig. 16b,
the background dissipation term (brown) is constant through-
out the TC PBL, while the surface term (green) is largest near
the surface where z → 0. The shear term (blue) is maximized
where vertical wind shear is highest, namely, near the surface
and the jet maximum. The buoyancy dissipation term (pink)
is small below 500–1000 m, where the PBL is well-mixed
(Fig. 14a), but larger above the well-mixed layer where static
stability (N2) increases. Increasing C_invrs_tau_shear by a
factor of 8 (Fig. 16a versus Figure 16c) produces appreciably
greater eddy dissipation in areas of high wind shear. Mean-
while, the background term, which is independent of atmo-
spheric conditions, and the surface term, which depends most
strongly on height and surface roughness, do not appreciably
change. However, the buoyancy term appears to increase,
despite C_invrs_tau_N2 remaining constant between configu-
rations, because increasing C_invrs_tau_shear increases N2

near 1000 m (Fig. 12i). This provides another example of the
nonlinear interactions between CLUBBX and thermodynamic
profiles tied to the convective and microphysics schemes.

The diagnosis of L based on the 1=t eddy dissipation for-
mulation allows flexibility in defining the turbulence profile
because the shape of L is controlled by each of the eddy-dissi-
pating processes in Eq. (6). For example, a uniform decrease
in turbulent mixing could be achieved by increasing
C_invrs_tau_bkgnd, while enhanced eddy dissipation applied
to rough land surfaces could be achieved by increasing
C_invrs_tau_sfc. The direct effects of increasing C_invrs_
tau_shear and C_invrs_tau_N2 could similarly be isolated to
high-shear (e.g., low-level jets, TCs) and stably stratified (e.g.,
polar regions, marine layers) environments. While this formu-
lation of L is experimental, the MOAT analysis indicates
that the C_invrs_tau terms are important targets for model
improvements due to their physically based influence on PBL
turbulence.

4. Conclusions

In this study, an SA is applied to assess the influence of per-
turbing various input parameters on TC structure in an ideal-
ized configuration of CESM2-CAM6 with an experimental
version of CLUBB (CLUBBX). The comprehensive, yet
computationally efficient, MOAT method varies N = 10 input
parameters one-at-a-time over M = 15 separate paths and 165
total runs of CAM6-CLUBBX. The MOAT method describes
the degree to which certain aspects of the TC PBL are sensi-
tive to changes in the N = 10 inputs by calculating elementary
effects of each input parameter on the output. The elemen-
tary effects are then used to derive several sensitivity metrics:
m*
j , the average response of each input parameter; sj, the non-

linear effects of each input parameter; and fj1, the frequency
with which increasing the input parameter increases the out-
put. We first analyze the degree of sensitivity (m*

j and sj) of
the output metrics to the perturbed inputs and then quantify
the frequency of positive and negative responses from fj1.
Potentially desirable input parameters have a high value of m*

j
and a value of fj1 close to either 0 or 1. Inputs that meet these
criteria afford model developers added confidence that chang-
ing the input will reliably alter the output in the desired man-
ner. The MOAT method helps us isolate several high-
sensitivity input parameters (C14, C7upwp, C_invrs_tau_sfc,
and C_invrs_tau_shear) that, when increased, decrease verti-
cal turbulent mixing in the TC PBL, which we find to be too
high by default in CAM6-CLUBBX. One of these input
parameters (C_invrs_tau_shear) is then gradually increased in
CAM6-CLUBBX ensemble simulations. We show that
increasing C_invrs_tau_shear, which is a coefficient tied to
turbulent eddy dissipation by wind shear, reduces turbulent
mixing and that this reduction in turbulent mixing influences
other aspects of the TC PBL. In particular, the reduced turbu-
lent mixing from increasing C_invrs_tau_shear lowers the
height of maximum tangential wind, which is consistent with
prior observational and modeling studies (Bryan 2012; Kepert
2001, 2012; Kepert and Wang 2001; Gopalakrishnan et al.
2013). Meanwhile, increasing C_invrs_tau_shear reduces LHF
fraction due to the impacts of reduced turbulent mixing on
low-level temperature and moisture profiles, which is also
consistent with prior studies (e.g., Bu et al. 2017; Kepert et al.

FIG. 15. Time series of the (a) height of maximum wind and
(b) latent heat flux (LHF) fraction from CAM6-CLUBBX (dark
blue) and CM1 (orange). Green shading denotes the range of
values from a selection of perturbed configurations of CAM6-
CLUBBX. Gray shading in (a) denotes the interquartile range of
NOAA dropsonde observations of height of maximum wind.
CAM6-CLUBBX time series come from an idealized configuration
using an average of 20 ensemble members. The CM1 value in
(a) comes from an axisymmetric configuration at steady state,
while the value in (b) comes from a full 3D configuration (see
supplemental material).
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2016). Both effects act to correct high biases in height of maxi-
mum wind and LHF fraction in the baseline configuration of
CAM6-CLUBBX. Finally, the MOAT analysis is used to
inform the perturbation of multiple input parameters simulta-
neously. These multiperturbation configurations reduce CAM6-
CLUBBX biases and bring the height of maximum wind and
LHF fraction closer to observations.

From the analysis summarized above, we highlight the fol-
lowing key takeaways from this study:

1) The baseline configuration of CAM6-CLUBBX exhibits a
high bias in height of maximum tangential wind in ideal-
ized TCs because it is too diffusive. The baseline configu-
ration is also too warm and dry in the lowest several hun-
dred meters, resulting in a high bias in LHF fraction.

2) In concert with idealized or constrained model setups, the
MOAT method is computationally efficient and objec-
tively identifies high-sensitivity CLUBBX parameters that
produce a strong, consistent directional response in various
TC output metrics. In concert with physical interpretation
and practical considerations of running a global ESM, the
MOAT analysis can act as an initial tool to help identify a
group of input parameters that deserve additional scrutiny
as possible candidates for the attention of model developers.

3) The high-sensitivity input parameters effectively reduce
CAM6-CLUBBX biases in height of maximum wind and
LHF fraction compared to observations and CM1. In

identifying multiple inputs, the MOAT method provides
different pathways for bias reduction that model developers
can weigh when choosing how to best improve CAM6-
CLUBBX TC forecasts.

4) All N = 10 CLUBBX parameters explored in this study
are tied to physical processes in the atmosphere, with the
most sensitive processes tied to the production of turbu-
lent mixing in the PBL. In addition, perturbing these param-
eters changes TC structure in ways that are consistent with
past observational and modeling studies. Therefore, target-
ing these input parameters would make CAM6-CLUBBX’s
estimation of PBL turbulence more physically realistic.

5) The experimental CLUBBX formulation of turbulent
length scale through the estimation of turbulent eddy dis-
sipation has an influence on TC PBL structure, namely,
through the C_invrs_tau_shear and C_invrs_tau_sfc coef-
ficients. This formulation is advantageous because it
allows the turbulence profile to be tailored to a specific
atmospheric regime.

Though this study provides novel guidance to model users
and developers, we note limitations that merit future research.
First, while we anticipate wider applicability, it is unclear if these
results also apply to a more realistic global configuration of
CAM6-CLUBBX. In particular, it is important to assess whether
the model improvements in the TC PBL come at the expense of
errors in other parts of the global system. Second, it is important

FIG. 16. Vertical profiles of turbulent eddy dissipation from the four components of the formulation of 1=t. Black lines denote the total
eddy dissipation from the four components. Each panel depicts a different idealized configuration of CAM6-CLUBBX with a unique value
of C_invrs_tau_shear: (a) 0.02, (b) 0.12, and (c) 0.16. Profiles are averaged over 20 ensemble members at days 8, 10, and 12.
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to note that this analysis is not expected to fully correct all model
biases. Though we demonstrate appreciable improvements in
metrics like height of maximum wind and LHF fraction, other
TC characteristics are not assessed here. Third, the MOAT
method only examines the effects of changing a single parameter
at-a-time, so the MOAT method may not be sufficient in cases
where there are highly nonlinear interactions between input
parameters (Campolongo et al. 2007). Therefore, a more thor-
ough, yet computationally expensive, SA may be necessary for
future research aimed at untangling the various nonlinear inter-
actions between parameterizations of turbulence, convection,
and microphysics. To this end, MOAT can serve as an initial
screening tool to identify a smaller number of input parameters
that merit additional scrutiny in a more computationally expen-
sive SA.

The MOAT method provides a cost-effective means of
assessing the impact of changing various input parameters
without the need to run thousands of model simulations or
resorting to hand-tuning (Hourdin et al. 2017). Building on
prior studies (Covey et al. 2013; Morales et al. 2019), we use
the MOAT method as a first step to objectively identify high-
sensitivity input parameters that affect model output. The
findings of this study demonstrate how the MOAT method
can successfully identify such input parameters and provide
critical, physically grounded guidance for model developers in
reducing biases in how climate models depict TC PBL
processes.
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