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Abstract 

Large Language Models (LLMs) are being adopted at an unprecedented rate, yet still face 

challenges in knowledge-intensive domains like biomedicine. Solutions such as pre-training and 

domain-specific fine-tuning add substantial computational overhead, requiring further domain-

expertise. Here, we introduce a token-optimized and robust Knowledge Graph-based Retrieval 

Augmented Generation (KG-RAG) framework by leveraging a massive biomedical KG 

(SPOKE) with LLMs such as Llama-2-13b, GPT-3.5-Turbo and GPT-4, to generate meaningful 

biomedical text rooted in established knowledge. Compared to the existing RAG technique for 

Knowledge Graphs, the proposed method utilizes minimal graph schema for context extraction 

and uses embedding methods for context pruning. This optimization in context extraction results 

in more than 50% reduction in token consumption without compromising the accuracy, making a 

cost-effective and robust RAG implementation on proprietary LLMs. KG-RAG consistently 

enhanced the performance of LLMs across diverse biomedical prompts by generating responses 

rooted in established knowledge, accompanied by accurate provenance and statistical evidence 

(if available) to substantiate the claims. Further benchmarking on human curated datasets, such 

as biomedical true/false and multiple-choice questions (MCQ), showed a remarkable 71% boost 

in the performance of the Llama-2 model on the challenging MCQ dataset, demonstrating the 

framework’s capacity to empower open-source models with fewer parameters for domain-

specific questions. Furthermore, KG-RAG enhanced the performance of proprietary GPT 

models, such as GPT-3.5 and GPT-4. In summary, the proposed framework combines explicit 

and implicit knowledge of KG and LLM in a token optimized fashion, thus enhancing the 

adaptability of general-purpose LLMs to tackle domain-specific questions in a cost-effective 

fashion.  
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Introduction 
Large language models (LLM) have shown impressive performance in solving complex tasks 

across various domains that involve language modeling and processing (Zhao et al. 2023). LLMs 

are pre-trained on a large corpora of text data in a self-supervised learning framework which can 

be either Masked Language Modeling (e.g. BERT like models) (Devlin et al. 2018; Liu et al. 

2019) or Auto-Regressive framework (GPT like models) (Brown et al. 2020; R. Luo et al. 2022). 

This pre-training encodes knowledge about the language in the model parameters. Similar to the 

transfer learning approach commonly used in deep neural networks, this implicit knowledge can 

be refined through supervised training to excel in a range of domain-specific tasks (Wei et al. 

2021; R. Luo et al. 2022). Nevertheless, the “implicit representation” of knowledge in LLM has 

also been shown to generate non-factual information despite linguistically coherent answers (i.e. 

“hallucination”) as a response to the input prompt (Ji et al. 2022; Maynez et al. 2020; Raunak, 

Menezes, and Junczys-Dowmunt 2021). This issue poses a significant challenge for the adoption 

of LLM models in domains with stringent requirements for accuracy, such as biomedicine.  

Various strategies have been introduced to address hallucinations in LLMs. One such solution 

involves the utilization of domain-specific data for pre-training the LLM, rather than relying on 

generic text corpora. This approach has led to the creation of models such as PubMedBERT (Yu 

Gu Microsoft Research, Redmond, WA et al. 2021), BioBERT (Lee et al. 2019), BlueBERT 

(Lee et al. 2019; Peng, Yan, and Lu 2019), SciBERT (Beltagy, Lo, and Cohan 2019), 

ClinicalBERT (Huang, Altosaar, and Ranganath 2019), BioGPT (R. Luo et al. 2022), Med-

PaLM (Singhal et al. 2023), and BioMedGPT (Y. Luo et al. 2023). However, pre-training an 

LLM from scratch imposes a significant computational cost and time overhead to attain the 

desired human-like performance. An alternative approach, known as prompt tuning, was recently 

proposed as a means to enhance LLM performance, for instance through the use of zero-shot 

https://paperpile.com/c/aSnWyV/THWeO
https://paperpile.com/c/aSnWyV/QtQHN+KBDML
https://paperpile.com/c/aSnWyV/QtQHN+KBDML
https://paperpile.com/c/aSnWyV/sfRx+aRNYi
https://paperpile.com/c/aSnWyV/oPk9t+aRNYi
https://paperpile.com/c/aSnWyV/oPk9t+aRNYi
https://paperpile.com/c/aSnWyV/ff7XR+c6Tmp+DiBzb
https://paperpile.com/c/aSnWyV/ff7XR+c6Tmp+DiBzb
https://paperpile.com/c/aSnWyV/3dbBW
https://paperpile.com/c/aSnWyV/3dbBW
https://paperpile.com/c/aSnWyV/TyLhC
https://paperpile.com/c/aSnWyV/TyLhC+yzZNU
https://paperpile.com/c/aSnWyV/Wvha2
https://paperpile.com/c/aSnWyV/wpnq6
https://paperpile.com/c/aSnWyV/aRNYi
https://paperpile.com/c/aSnWyV/wg7Ul
https://paperpile.com/c/aSnWyV/fMbrM
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(Kojima et al. 2022), few-shot (Brown et al. 2020) and Chain-of-Thought (Wei, Wang, et al. 

2022) prompting strategies.  

Although prompt tuning methods have proven to be effective, their performance is restricted on 

knowledge-intensive tasks that require providing provenance and up-to-date knowledge about 

the world to address the user prompt. To address such knowledge-intensive tasks, an alternative 

approach that integrates knowledge graphs (KG) with language models was recently introduced 

(Feng et al. 2020; Lin et al. 2019; Wang et al. 2019; Yang et al. 2019; Yasunaga et al. 2021; Lv 

et al. 2019; Yasunaga et al. 2022). This approach was primarily implemented in question-

answering tasks, where the structured information contained within the KG was used to provide 

context for predicting the answer to the question. While such multimodal integrative approach 

showed promise, its downstream supervised training was tailored to a specific task, limiting its 

versatility and broad applicability, thereby constraining its ability to fully harness the "emergent 

capabilities" of LLMs (Wei, Tay, et al. 2022). Retrieval-Augmented Generation (RAG) involves 

enhancing a parametric pre-trained LLM with the ability to access a non-parametric memory 

containing updated knowledge about the world (for e.g., Wikipedia or SPOKE) (Lewis et al. 

2020).  

In this paper, we propose a robust and token-optimized framework called KG-RAG that 

integrates a KG with a pre-trained LLM within a RAG framework, thus capturing the best of 

both worlds. To achieve this, we make use of the biomedical KG called SPOKE (Morris et al. 

2023) that  integrates more than 40 publicly available biomedical knowledge sources of separate 

domains where each source is centered around a biomedical concept, such as genes, proteins, 

drugs, compounds, diseases, and one or more of their known relationships. Because these 

concepts are recurrent entities forming defined sets (e.g., all named human genes, all FDA 

https://paperpile.com/c/aSnWyV/PA3dy
https://paperpile.com/c/aSnWyV/sfRx
https://paperpile.com/c/aSnWyV/kFEfB
https://paperpile.com/c/aSnWyV/kFEfB
https://paperpile.com/c/aSnWyV/VLGfO+Ltm9m+zxIxP+qFE0n+jQEl5+PKyyu+bixwp
https://paperpile.com/c/aSnWyV/VLGfO+Ltm9m+zxIxP+qFE0n+jQEl5+PKyyu+bixwp
https://paperpile.com/c/aSnWyV/VCMLe
https://paperpile.com/c/aSnWyV/4Jpne
https://paperpile.com/c/aSnWyV/4Jpne
https://paperpile.com/c/aSnWyV/pdCrp
https://paperpile.com/c/aSnWyV/pdCrp
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approved drugs, etc.) the integration of these concepts into a single graph exposes novel multi-

hop factual relationships that connect the knowledge sources and provides the biological and 

ontological context for each concept. Unlike other RAG approaches, the proposed framework 

performs an optimized retrieval, specifically obtaining only the essential biomedical context 

from SPOKE, referred to as 'prompt-aware context', which is adequate enough to address the 

user prompt with accurate provenance and statistical evidence. This enriched prompt is further 

used as input for the LLM in the RAG framework for meaningful biomedical text generation. We 

evaluated this approach using various pre-trained LLMs including Llama-2-13b, GPT-3.5-Turbo 

and GPT-4.  
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Results 

 We developed KG-RAG, a framework that integrates LLMs with the SPOKE knowledge graph. 

This integration enables accurate biomedical context retrieval and reliable text generation in an 

optimized and cost-effective manner. This framework involves multiple steps, namely: i) entity 

recognition from user prompt ii) extraction of biomedical concepts from SPOKE iii) concept 

embedding iv) prompt-aware context generation v) conversion into natural language vi) prompt 

assembly and vii) answer generation. The performance of this approach was extensively tested 

using different scenarios.  

 

Prompting KG-RAG framework 

Fig. 1 shows two biomedical prompts (Fig 1A and B yellow box) given as input to the GPT-4 

model using two approaches: (i) prompt based, i.e., without KG-RAG (blue box) and (ii) with 

KG-RAG (green box). We observed that only KG-RAG was able to provide an accurate answer 

for both prompts, accompanied by supporting evidence and provenance information. (For more 

prompting examples refer Supplementary Table C. We have also provided these prompts in a 

Jupyter notebook which can be accessed at 

https://github.com/BaranziniLab/KG_RAG/blob/main/notebooks/kg_rag_based_gpt_prompts.ipy

nb) 
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Fig 1. Prompting examples Example prompts (yellow boxes) and prompt based (blue boxes)/KG-RAG based 

(green boxes) responses using GPT-4. (A) shows a biomedical prompt to search the drugs used for weight 

management in patients with ‘Bardet-Biedl Syndrome’ and (B) shows another prompt to compare the statistical 

associations of PNPLA3 and HLA-B genes with the disease liver benign neoplasm. Both (A) and (B) show the 

associated ‘prompt aware graph’ context.  

 

Hyperparameter analysis 

KG-RAG has two hyperparameters, (‘context volume’ and ‘context embedding model’), which 

enable it to conduct optimized context retrieval from a KG. Context volume defines the upper 

limit on the number of graph connections permitted to flow from the KG to the LLM (See 

Materials and methods, S1 Text). Context embedding model extracts graph context that shows 

semantic similarity to the user prompt, facilitating the refinement of extracted context to those 

that are contextually relevant (See Materials and methods, S1 Text). To optimize these 

hyperparameters, we used two context embedding models (MiniLM and PubMedBert) with 

increasing sizes of context volume (Fig 2A). For prompts with single disease entity, the 

PubMedBert based model exhibited a mean performance (Jaccard similarity) approximately 10% 



 

8 
 

higher than that of the MiniLM model across all context volume settings (mean performance of 

PubMedBert = 0.67, mean performance of MiniLM = 0.61). For prompts with two disease 

entities, PubMedBert achieved a performance that was 8.1% higher than the MiniLM across all 

context volume settings (mean performance of PubMedBert model = 0.4, performance of 

MiniLM = 0.37).  

Fig 2A shows that the performance curve reaches a plateau for prompts with single disease entity 

and follows a similar trend for prompts with two disease entities (for both models). Based on 

these findings, we selected PubMedBert based model as the context embedding model and set 

the context volume to a value between 100-200 (For most downstream tasks, we opted for a 

context volume of 150, and for True/False questions, we chose a context volume of 100). 
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Fig 2. Hyperparameter analysis and RAG comparison (A) Hyperparameter analysis performance curves using 

prompts with single (top) and two (below) disease entities mentioned in it. The x-axis denotes the ‘Context volume’ 

(number of associations from KG) and the y-axis denotes the mean performance (Jaccard similarity) across the 

prompts. The red curve denotes ‘PubMedBert’ and the blue curve denotes ‘MiniLM’ transformer models. (B) shows 

the comparative analysis between KG-RAG (green color), Cypher-RAG (red color) and Full-Text Index using 

Apache Lucene (blue color) in terms of retrieval accuracy (top) and token usage (bottom). Insight shows an example 

where Cypher-RAG fails to retrieve context from the KG when the input prompt is slightly perturbed, but KG-RAG 

and Full-Text Index remain robust in context retrieval. However, only KG-RAG could extract provenance 

information linked to the assertion from the context, whereas Full-Text Index could not. It is evident that KG-RAG 

has significantly lesser token usage when compared to Cypher-RAG and Full-Text Index method (bottom). Error bar 

in the token utilization bar plot (bottom) represents standard error of the mean (sem).    

 

RAG comparative analysis 

Fig 2B shows the comparative analysis between the proposed KG-RAG and the other two 

methods, such as Cypher-RAG and Full-Text Index approach for context retrieval from a KG 

(See Materials and Methods). We compared these three frameworks based on their retrieval 

accuracy, retrieval robustness and token usage. For a test dataset with 100 biomedical questions 

(S1 Text), Full-Text Index, Cypher-RAG and KG-RAG showed 61%, 75% and 97% retrieval 

accuracy respectively (Fig 2B top). To test the robustness in context retrieval, we introduced a 

slight perturbation to the test dataset by converting the entity names to lowercase (Fig 2B 

insight). We observed a significant decrease in the retrieval accuracy of Cypher-RAG to 0% 

(indicating failure to retrieve any context from the graph). This mainly occurs because Cypher-

RAG utilizes precise matching of the entity keywords provided in the user prompt to formulate 

the Cypher query for extracting graph context. Compared to Cypher-RAG, Full-Text Index and 

KG-RAG showed robustness against perturbation. Full-Text Index showed a slight decrease in 

the accuracy after query perturbation (dropped to 58% from initial 61%), but KG-RAG was able 

to maintain its retrieval accuracy at 97% which indicates its higher robustness against input 

perturbation (Fig 2B top). This is because KG-RAG employs a semantic embedding approach to 

extract graph context, which enhances its ability to effectively handle various representations of 

entities within user prompts. Next, we analyzed the total token usage of each framework for 
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generating the response for the same test dataset (Fig 2B bottom). We found that Full-Text Index 

had an average token usage of 10,590 tokens,  while Cypher-RAG averaged 8,006 tokens. 

However, KG-RAG had an average token usage of only 3,693 tokens (Fig 2B bottom). This 

represents a 53.9% reduction in the token usage compared to Cypher-RAG and 65.1% reduction 

compared to Full-Text Index. This highlights the significant cost-effective retrieval ability of 

KG-RAG.           

 

Performance on True/False and MCQ datasets 

Fig 3 shows bootstrap distributions of performance (accuracy) of the three LLMs using prompt-

based and KG-RAG framework on True/False (Fig 3A) and MCQ (Fig 3B) datasets. Table 1 

summarizes the performance of the three LLMs across these datasets. We observed a consistent 

performance enhancement for the LLM models under KG-RAG framework on both True/False 

and MCQ datasets (Table 1). KG-RAG significantly elevated the performance of Llama-2 by 

approximately 71% from its initial level (0.31±0.03 to 0.53±0.03) on the more challenging MCQ 

dataset (Table 1). Intriguingly, we also observed a small but significant drop in the performance 

of GPT-4 model (0.74±0.03) compared to GPT-3.5-Turbo model (0.79±0.02) on MCQ dataset 

using KG-RAG framework (T-test, p-value < 0.0001, t-statistic = -47.7, N = 1000) but not in the 

prompt-based approach. We have also conducted an additional comparative analysis between 

Cypher-RAG and KG-RAG using the same benchmark datasets, where KG-RAG showed 

significantly higher performance on both datasets (S1 text, Fig S2, Table B). 
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Fig 3. LLM performance on True/False and MCQ datasets Performance (Accuracy) distributions of LLMs on 

(A) True/False and (B) MCQ datasets. Blue distribution denotes the performance using prompt-based approach and 

red distribution denotes the performance using KG-RAG based approach. Black vertical dashed line indicates the 

mean value of the distribution. The higher the value, the better the performance. 

 

 

 

 

 

 

 

Table 1. LLM performance (Accuracy: mean ± std) on True/False and MCQ dataset 
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Model True/False dataset MCQ dataset 

Prompt-

based 

KG-RAG Prompt-

based 

KG-RAG 

Llama-2-13b 0.89±0.02 0.94±0.01 0.31±0.03 0.53±0.03 

GPT-3.5-

Turbo 

0.87±0.02 0.95±0.01 0.63±0.03 0.79±0.02 

GPT-4 0.9±0.02 0.95±0.01 0.68±0.03 0.74±0.03 
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Discussion 

In this work, we introduce a simple but highly effective framework that combines a biomedical 

knowledge graph with LLM chat models in a token optimized fashion. This integration resulted 

in a domain-specific generative system whose responses were firmly grounded in well-

established biomedical knowledge. We compared the proposed framework with other approaches 

that utilize Cypher query and Full-Text Indexing and showed that KG-RAG was more robust to 

prompt perturbation and more efficient in token utilization. In addition, KG-RAG consistently 

demonstrated superior performance compared to the prompt-based baseline LLM model on all 

human-curated benchmark datasets. We hypothesize that this performance improvement arises 

from the fusion of the explicit knowledge from the KG and the implicit knowledge from the 

LLM. This shows the value of providing domain-specific ground truth at a fine-grained 

resolution as context at the prompt level.   

A heterogeneous knowledge graph with diverse concepts (the biomedical concepts in this case) 

interconnected at a massive scale has the potential to generate new knowledge as an “emergent 

property” (Morris et al. 2023; Baranzini et al. 2022). In fact, as LLMs scale up in various 

dimensions like model parameters, training data, and training compute, they have been thought 

to exhibit reasoning or “emerging capabilities” (Wei, Tay, et al. 2022) although this observation 

could also be explained by “in-context learning” or other aspects of the examples (Min et al. 

2022; Brown et al. 2020; Lu et al. 2023). In any case, KG-RAG capitalized this capability and 

generated biomedical text with rich annotations such as provenance and statistical evidence (if 

available) thereby resulting in more reliable and knowledge-grounded responses. Additionally, 

the optimized and fine-grained context retrieval capability of KG-RAG ensured a budget friendly 

RAG system to apply on proprietary LLMs. This way, KG-RAG democratizes SPOKE’s vast 

https://paperpile.com/c/aSnWyV/pdCrp+ytaGT
https://paperpile.com/c/aSnWyV/VCMLe
https://paperpile.com/c/aSnWyV/iYhXu+sfRx+w47KJ
https://paperpile.com/c/aSnWyV/iYhXu+sfRx+w47KJ
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biomedical knowledge by enabling researchers, clinicians, and other professionals to leverage its 

comprehensive information through natural language interactions. This approach facilitates 

access to complex biomedical data without requiring specialized graph query language skills. 

Previous studies have utilized KG in conjunction with LLM for knowledge intensive tasks such 

as question-answering (Yasunaga et al. 2021), multi-hop relational reasoning (Feng et al. 2020), 

commonsense reasoning (Lin et al. 2019; Lv et al. 2019) and model pre-training (Yasunaga et al. 

2022; Moiseev et al. 2022). Furthermore, enhancing prompts by incorporating structured 

knowledge has been described and studied (Lewis et al. 2020; Xiang Chen Zhejiang University, 

China et al., n.d.; Pan et al. 2023). Naturally, these approaches have bolstered the positive 

reinforcement between KG and LLM.  Nevertheless, it's worth noting that these approaches are 

often task-specific and, in some cases, the knowledge infusion could grow exponentially with the 

inclusion of higher-order relations (Bauer, Wang, and Bansal 2018; Lin et al. 2019). Such 

approaches could compromise the limited token space of the LLM. Alternative methods 

employed knowledge infusion through the direct use of query languages like SPARQL (Brate et 

al. 2022). However, this could render the system constraint to the schema of the underlying KG, 

potentially affecting the flexibility and adaptability of prompts. Moreover, as the KG expands 

and its schema grows, it could potentially occupy a significant portion of the LLM input token 

space. This explains why we noticed a greater token usage with the Cypher-RAG method 

(average usage of 8,006 tokens), as it incorporates the entire graph schema into the input prompt 

for converting natural language into structured Cypher queries. In contrast, KG-RAG requires 

minimal graph schema, thus eliminating the need to include it in the prompt and resulting in 

substantial token savings, with a reduction of over 50% in token utilization compared to Cypher-

RAG.   This finding suggests that Cypher-RAG, when dealing with a graph as large as SPOKE 

https://paperpile.com/c/aSnWyV/jQEl5
https://paperpile.com/c/aSnWyV/VLGfO
https://paperpile.com/c/aSnWyV/Ltm9m+PKyyu
https://paperpile.com/c/aSnWyV/bixwp+1JTQ0
https://paperpile.com/c/aSnWyV/bixwp+1JTQ0
https://paperpile.com/c/aSnWyV/4Jpne+TdaWJ+Rff40
https://paperpile.com/c/aSnWyV/4Jpne+TdaWJ+Rff40
https://paperpile.com/c/aSnWyV/zXbGk+Ltm9m
https://paperpile.com/c/aSnWyV/qsM7g
https://paperpile.com/c/aSnWyV/qsM7g
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(which contains over 40 million nodes), requires LLMs that enable a larger context window. This 

limitation was also observed with traditional information retrieval frameworks such as full-text 

indexing using Apache Lucene. In contrast, KG-RAG is capable of managing this with LLMs 

that require a relatively smaller window size. 

To conduct robust benchmarking, we curated datasets that underwent review by domain experts. 

Given the swift progress in LLM research, we believe that such rigorously vetted datasets could 

serve as valuable resources not only for evaluating KG-RAG but also for assessing other ongoing 

LLM endeavors in biomedicine. In our benchmarking analysis, we found an enhancement in 

LLM performance as a function of the model size in terms of the number of parameters. 

Intriguingly, with the KG-RAG framework the performance of GPT-4 on the MCQ dataset, 

despite its model size, dropped significantly compared to that of the GPT-3.5-Turbo on the MCQ 

dataset. In fact, the performance of GPT-3.5-Turbo under KG-RAG framework was on par with 

that of the GPT-4 model on True/False datasets. These results suggest that at present, GPT-3.5 

may be a better context listener than GPT-4. In fact, a recent study compared the March 2023 

version of GPT-4 with the June 2023 version, shedding light on the drift in the LLM 

performance over time (Chen, Zaharia, and Zou 2023). The study revealed that, as time 

progressed, GPT-4 exhibited a reduced tendency to adhere to user instructions (Chen, Zaharia, 

and Zou 2023). In contrast, there was no consistent alteration observed in the instruction-

following behavior of GPT-3.5 over time (Chen, Zaharia, and Zou 2023). Studies have also 

shown that GPT-4's larger model size and more diverse training data enable it to excel in a 

multitude of complex reasoning tasks (Baktash and Dawodi 2023; OpenAI et al. 2023). GPT-3.5-

Turbo has shown to excel in few-shot learning by context adherence (Brown et al. 2020). We 

believe that the context adherence nature of GPT-3.5, in contrast to the general application of 

https://paperpile.com/c/aSnWyV/0yZtq
https://paperpile.com/c/aSnWyV/0yZtq
https://paperpile.com/c/aSnWyV/0yZtq
https://paperpile.com/c/aSnWyV/0yZtq
https://paperpile.com/c/aSnWyV/FabX+EZDv
https://paperpile.com/c/aSnWyV/sfRx
https://paperpile.com/c/aSnWyV/sfRx
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GPT-4, might make it more suitable for frameworks like KG-RAG. Therefore, these factors 

could have contributed to GPT-3.5's superior performance over GPT-4 in the KG-RAG 

framework. 

When the proprietary GPT models were compared to the open-source Llama-2-13b model, they 

showed a narrow margin in performance on the biomedical True/False dataset. However, on the 

more challenging MCQ dataset, Llama-2 initially demonstrated lower performance compared to 

GPT models. Interestingly, the KG-RAG framework provided a substantial performance boost to 

Llama-2, improving its performance by ~71% from the baseline. Despite this boost that 

narrowed the performance gap, the performance of Llama-2 remained lower than that of the GPT 

models. This suggests that the KG-RAG framework has the potential to capitalize the intrinsic 

context comprehension capabilities of open-source pretrained models like Llama-2, making them 

more competitive with proprietary models like GPT. The findings underscore the importance of 

context enrichment techniques for improving the performance of language models on complex 

tasks in specialized domains.   

While the proposed framework has successfully addressed numerous challenges, we recognize 

there are opportunities for improvement.  Currently, this approach is limited to handling 

biomedical questions centered around diseases, as our focus has been on embedding disease 

concepts from the SPOKE KG for recognizing disease entities in the prompt. However, we have 

implemented a proof of concept that extends KG-RAG to non-disease-centric questions by 

embedding more than 87,000 nodes from SPOKE, including genes, proteins, enzymes, 

symptoms, compounds, reactions, anatomical structures, and side effects (S1 Text). Future work 

may expand this scope by including all biomedical concepts (nodes) in SPOKE and other KG. 

Since SPOKE contains more than 40 million biomedical nodes, this expansion will enable the 
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KG-RAG framework to address a broader range of biomedical questions and thereby enhance its 

versatility.  Currently, we have implemented the KG-RAG framework exclusively on the 

SPOKE biomedical knowledge graph, which is maintained as a Neo4j property graph database. 

While we utilize embeddings to enhance node and context retrieval, all operations are performed 

within this Neo4j graph structure. As future work, we plan to extend KG-RAG to other 

biomedical KGs and domains, demonstrating its versatility and broader applicability. Finally, the 

quality of the retrieved context relies on the information stored in the underlying graph. In our 

case, SPOKE utilizes meticulously curated knowledge bases to construct its nodes and edges; 

however, we do not assert that it is entirely error-free or ready for clinical use. Thus, while 

SPOKE’s reliability has been demonstrated through its successful application in various 

biomedical contexts (S1 Text) (Soman, Nelson, Cerono, Goldman, et al. 2023; Nelson, Bove, et 

al. 2021; Tang et al. 2024; Daniel Scott Himmelstein et al. 2017; Daniel S. Himmelstein and 

Baranzini 2015; Nelson, Acuna, et al. 2021; Nelson, Butte, and Baranzini 2019; Baranzini et al. 

2022; Morris et al. 2023; Soman, Nelson, Cerono, and Baranzini 2023),  it is important to note 

that this work primarily focused on the development of a framework, rather than conducting a 

rigorous and formal evaluation of the KG itself. 

   

In summary, the KG-RAG framework retrieves semantically meaningful context from a 

knowledge graph using minimal tokens, then combines this explicit knowledge with the 

parameterized implicit knowledge of an LLM. This knowledge integration results in the 

generation of domain-specific, reliable and up-to-date meaningful biomedical responses with 

rich annotations.  

  

https://paperpile.com/c/aSnWyV/kX9KI+EibDw+36JAl+feMhY+ikor8+SMNsy+zTJUh+ytaGT+pdCrp+FHZRa
https://paperpile.com/c/aSnWyV/kX9KI+EibDw+36JAl+feMhY+ikor8+SMNsy+zTJUh+ytaGT+pdCrp+FHZRa
https://paperpile.com/c/aSnWyV/kX9KI+EibDw+36JAl+feMhY+ikor8+SMNsy+zTJUh+ytaGT+pdCrp+FHZRa
https://paperpile.com/c/aSnWyV/kX9KI+EibDw+36JAl+feMhY+ikor8+SMNsy+zTJUh+ytaGT+pdCrp+FHZRa
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Materials and Methods 

Knowledge Graph based Retrieval Augmented Generation (KG-

RAG) Framework 

The schema of the proposed KG-RAG framework is shown in Fig 4. The following sections 

explain each component of this framework. 

 

Fig 4. Schema for the Knowledge Graph based Retrieval-Augmented Generation (KG-RAG) Framework. 

The direction of the arrows indicates the flow of the pipeline in this framework 

 

Disease entity recognition 

This is the first step in KG-RAG. The objective of this step is to extract the disease concept (an 

entity) from the input text prompt and then find the corresponding matching disease node in the 

KG (a concept in SPOKE graph). This was implemented as a two-step process: i) entity 
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extraction from prompt and ii) entity matching to SPOKE. Entity extraction identifies and 

extracts disease entities mentioned in the input text prompt, otherwise called as ‘Prompt Disease 

extraction’ (Fig 5). To achieve this, zero-shot prompting (Kojima et al. 2022) was used on GPT-

3.5-Turbo model (Version: 0613) (Fig 5). Specifically, a system prompt was designed to extract 

disease entities from the input text and return them in JSON format (S1 Text). We compared the 

GPT-based entity extraction method with more traditional approaches that use models 

specifically trained for this task. However, we chose the zero-shot GPT option due to its superior 

performance in terms of precision and recall (Supplementary Fig S1, Supplementary Table A) 

and its flexibility in handling various entity types (S1 Text).  

Next, entity matching was used to obtain the concept name of the disease as it is represented 

within the KG. For this, the embeddings for all disease concepts (i.e., nodes) in SPOKE were 

precomputed using the ‘all-MiniLM-L6-v2’ sentence transformer model (i.e. Disease Latent 

space in Fig 5) (Reimers and Gurevych 2019). This procedure translates names of the disease 

concepts into a 384-dimensional dense vector space, making it suitable for semantic search. We 

chose ‘MiniLM’ for two main reasons: firstly, when combined with entity extraction, it 

successfully retrieved the disease nodes from the graph with an accuracy of 99.7% (S1 Text). 

Second, it produced lightweight embeddings (384 dimensions) compared to other sentence 

transformers like the PubmedBERT model (Yu Gu Microsoft Research, Redmond, WA et al. 

2021) (768 dimensions), making it more memory efficient. Next, these newly created disease 

concept embeddings were stored in the ‘Chroma’ vector database (Dhungana 2023). Disease 

concepts with the highest vector similarity to the extracted entity are selected for subsequent 

context retrieval (Fig 5). If the zero-shot approach fails to identify a disease entity in the prompt, 

https://paperpile.com/c/aSnWyV/PA3dy
https://paperpile.com/c/aSnWyV/lJam6
https://paperpile.com/c/aSnWyV/3dbBW
https://paperpile.com/c/aSnWyV/3dbBW
https://paperpile.com/c/aSnWyV/VXeQJ
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five disease concepts from the vector database with the most significant semantic similarity to 

the entire input text prompt are selected instead. 

 

Fig 5. Detailed schema of KG-RAG. Dashed boxes show the details of ‘Disease entity recognition’ and ‘Prompt-

aware context extraction’ from the Knowledge Graph 

 

Disease context retrieval from SPOKE 

The SPOKE KG connects millions of biomedical concepts through semantically meaningful 

relationships (Morris et al. 2023). The KG consists of 42 million nodes of 28 different types and 

160 million edges of 91 types, implemented as a property graph and is assembled by 

downloading and integrating information from 41 different biomedical databases (Morris et al. 

2023). Notably, the vast majority of SPOKE is composed of curated information determined by 

https://paperpile.com/c/aSnWyV/pdCrp
https://paperpile.com/c/aSnWyV/pdCrp
https://paperpile.com/c/aSnWyV/pdCrp
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systematic experimental measurements, not text mining from the literature. In this study, SPOKE 

was used as the source of biomedical context for the diseases mentioned in the input prompt.  

The process of converting the graph data to natural language involves the following steps: 

(a) Context Extraction: We utilize SPOKE's REST-API service, specifically the 

'/api/v1/neighborhood/' endpoint, to fetch neighbors associated with a disease node (S1 Text). To 

ensure high-quality context, we apply filters such as restricting treatment associations to those 

with clinical phase ≥ 3, using only SwissProt-curated protein nodes, and excluding text-mining-

based gene-disease associations. 

(b) Predicate to Natural Language Transformation: SPOKE uses a specific schema for 

predicates: upperCase(predicateName)_<upperCase(firstLetter(subjectType)), 

lowerCase(firstLetter(predicateName)), upperCase(firstLetter(objectType))>. For example, 

'ASSOCIATES_DaG' is a predicate that connects Disease nodes with Gene nodes. 

The context triples (Subject, Predicate, Object) associated with a disease node from SPOKE KG 

(Morris et al. 2023) follow a specific schema for its predicates (S1 Text): 

upperCase(predicateName)_<upperCase(firstLetter(subjectType)), 

lowerCase(firstLetter(predicateName)), 

upperCase(firstLetter(objectType))>. For example, 'ASSOCIATES_DaG' is a 

predicate that connects Disease nodes with Gene nodes with the predicate name ASSOCIATES. 

This schema allowed for the direct conversion of the extracted triples into English language 

using the following rule (S1 Text): 

(S, P, O) → Subject lowerCase(predicateName) Object 

For example:  

https://paperpile.com/c/aSnWyV/pdCrp
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(Disease hypertension, ASSOCIATES_DaG, Gene VHL) → `Disease 

hypertension associates Gene VHL` 

This makes it compatible for inputting into the LLM (Fig 4) (S1 Text).  

   

(c) Provenance and Evidence Incorporation: In addition to extracting the connectivity between 

the disease and its neighbors, we also extracted the provenance information associated with those 

edges which is given as the edge attribute.  Additionally, we've implemented an option ('-e' flag 

in our KG-RAG script) to include supporting evidence like p-values or z-scores in the output (S1 

Text). 

Context Pruning 

Next, the extracted disease context was pruned by selecting the most semantically pertinent 

context that could be used to answer the given prompt. First, the input prompt and all the 

extracted contextual associations were embedded to the same vector space (Context Latent space 

in Fig 5) using a sentence transformer model (model selection was done using hyperparameter 

tuning). Next, for context selection, prompt-context cosine similarity should satisfy two 

conditions: (i) greater than 75th percentile of the similarity distribution encompassing all the 

context related to the chosen disease node and (ii) having a minimum similarity value of 0.5. 

This makes the retrieved context more fine-grained and contextually relevant (i.e. ‘prompt-aware 

context’). 

 

Large Language Model (LLM) 

The input prompt, when combined with the prompt-aware context, resulted in an enriched 

prompt that was used as input to the LLM for text generation. For that purpose, three pre-trained 
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chat models were used:  Llama-2-13b (Touvron et al. 2023), GPT-3.5-Turbo (Version: 0613) and 

GPT-4 (Brown et al. 2020). A Llama model with 13 billion parameters and with a token size of 

4,096 was downloaded and deployed in the Amazon Elastic Compute Cloud (EC2) GPU P3 

instance. GPT models were accessed using the OpenAI API. Since GPT models featured a higher 

parameter count in comparison to Llama, this gave us the opportunity to compare the 

performance of KG-RAG as a function of the size of the LLM in terms of its parameter count. In 

this study, the ‘temperature’ parameter (Brown et al. 2020), governing the level of randomness in 

the LLM output, was set to 0 for all LLMs.    

 

Hyperparameter analysis and validation  

The performance of KG-RAG was evaluated across two sets of hyperparameters such as 

‘Context volume’ and ‘Context embedding model’. Context volume defines the upper limit on 

the number of graph connections permitted to flow from the KG to the LLM. This 

hyperparameter introduced a balance between context enhancement and input token space 

utilization of the LLM (S1 Text). Next hyperparameter called ‘Context embedding model’ 

determined which model exhibited greater proficiency in retrieving the accurate biomedical 

context from the KG to respond to the input prompt. Since ‘MiniLM’ (Reimers and Gurevych 

2019) was used in the disease entity recognition stage, we considered that as a candidate for 

‘Context embedding model’. Acknowledging that biomedical contexts often utilize vocabulary 

that could differ from general domain scenarios, we next considered ‘PubMedBert’ (Yu Gu 

Microsoft Research, Redmond, WA et al. 2021; Deka, Jurek-Loughrey, and Deepak 2022) as 

another candidate for this hyperparameter since it was pre-trained on biomedical text. 

Additionally, two sets of validation data (total 165 questions) were created using prompts 

https://paperpile.com/c/aSnWyV/42ZgO
https://paperpile.com/c/aSnWyV/sfRx
https://paperpile.com/c/aSnWyV/sfRx
https://paperpile.com/c/aSnWyV/lJam6
https://paperpile.com/c/aSnWyV/lJam6
https://paperpile.com/c/aSnWyV/3dbBW+FppNO
https://paperpile.com/c/aSnWyV/3dbBW+FppNO
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mentioning a single disease (75 questions), while the other set involved prompts mentioning two 

diseases (90 questions) (S1 Text). The second set of ‘two disease prompts’ were created to see if 

KG-RAG had the ability to retrieve contexts related to multiple diseases. These prompts were 

executed using the GPT-4 model in the KG-RAG framework, utilizing specific system prompts 

to return the results in JSON format (S1 Text). Jaccard similarity was computed by parsing 

these JSON responses and comparing them with the ground truth. Through these analyses, an 

empirical selection of hyperparameters for the downstream tasks was made. 

 

Test dataset 

Three types of test datasets were used to quantitatively analyze the performance of the proposed 

framework (Supplementary Table D): (i) True/False dataset; (ii) Multiple Choice Question 

(MCQ) dataset; and (iii) RAG comparison dataset. Datasets i and ii were consolidated from 

external knowledge bases and were further thoroughly reviewed by domain experts to remove 

any false positives.  

A True/False dataset was created from three external data sources, such as DisGeNET (Piñero et 

al. 2016) MONDO (Vasilevsky et al. 2022) and SemMedDB (Kilicoglu et al. 2012). DisGeNET 

consolidates data about genes and genetic variants linked to human diseases from curated 

repositories, the GWAS catalog, animal models, and the scientific literature (Piñero et al. 2016) 

(S1 Text). MONDO provides information about the ontological classification of Disease entities 

in the Open Biomedical Ontologies (OBO) format (Vasilevsky et al. 2022) (S1 Text). 

SemMedDB contains semantic predications extracted from PubMed citations (Kilicoglu et al. 

2012) and we used this resource to formulate True/False questions about drugs and diseases (S1 

Text). MCQ, comprising five choices with a single correct answer for each question, were 

https://paperpile.com/c/aSnWyV/5Brvr
https://paperpile.com/c/aSnWyV/5Brvr
https://paperpile.com/c/aSnWyV/JmHJe
https://paperpile.com/c/aSnWyV/b0Jgw
https://paperpile.com/c/aSnWyV/5Brvr
https://paperpile.com/c/aSnWyV/JmHJe
https://paperpile.com/c/aSnWyV/b0Jgw
https://paperpile.com/c/aSnWyV/b0Jgw
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created using data from the Monarch Initiative (Mungall et al. 2017) and ROBOKOP (Reasoning 

Over Biomedical Objects linked in Knowledge-Oriented Pathways) (Bizon et al. 2019) (S1 

Text). To assess the graph context retrieval capabilities of various RAG frameworks, we 

extracted Disease-Gene associations from the SPOKE graph and designed questions based on 

these associations. These questions were then used on KG-RAG, Cypher-RAG and Full-Text 

Indexing frameworks to compare how well they retrieve the associated context from SPOKE 

graph. 

Thus, 311 True/False, 306 MCQ and 100 RAG comparison biomedical question datasets were 

created for a systematic quantitative analysis of the proposed framework. To assess the 

performance of LLMs on True/False and MCQ datasets, 150 questions were randomly sampled 

with replacement 1000 times (using bootstrapping). The accuracy metric was then calculated for 

each sampling iteration, resulting in a performance distribution. 

 

Cypher-RAG  

Cypher-RAG is a technique utilized for retrieving context associated with a node in a Neo4j 

graph database (Bratanic 2023). This context can then be leveraged to generate information 

about the node in natural language using a LLM. The method involves explicitly embedding the 

schema of the graph into the input prompt, directing the LLM to generate a structured Cypher 

query based on this schema. The resulting Cypher query is used to make a call to the Neo4j 

database, and the returned information is utilized as context to respond to the user's prompt. This 

methodology is integrated into the LangChain python library as GraphCypherQAChain class 

(Bratanic 2023). An advantage of this approach is that it allows for the creation of Cypher 

queries directly from natural language, eliminating the need for users to have the knowledge of 

https://paperpile.com/c/aSnWyV/KwdCi
https://paperpile.com/c/aSnWyV/H0Yek
https://paperpile.com/c/aSnWyV/3YFdx
https://paperpile.com/c/aSnWyV/3YFdx
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Cypher query syntax. However, our analysis revealed certain limitations of this approach. We 

found that the explicit embedding of the graph schema restricts the input token space and 

increases token usage for this method. As the complexity of the graph schema increases, users 

may need to utilize LLMs with longer context window sizes for optimal performance. 

Additionally, we demonstrated that this method can be sensitive to how the prompt is 

formulated. Even slight perturbations to the prompt can lead to incorrect Cypher queries and 

subsequently impact downstream generative processes.  

 

Full-Text Index 

Neo4j offers Full-text indexing that is powered by the Apache Lucene indexing and search 

library. In the context of the SPOKE graph, all nodes were full-text indexed on their ‘name’ and 

‘identifier’ properties. This indexing method stores individual words within these string 

properties and allows semantic interpretation of string data beyond simple exact or substring 

matching. Hence, this enables content-based matching. When processing user queries, the full-

text index procedure in Neo4j was employed to compare the query against the indexed disease 

names. This comparison yields a proximity score, indicating the semantic closeness between the 

query and stored values. The disease node with the highest score was selected as the mapped 

node for subsequent context extraction. Compared to traditional exact or pattern-based matching, 

this method provides a more nuanced and flexible approach to node matching, potentially 

improving the information retrieval process. 
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Supporting information 

S1 Text : Supplementary information about SPOKE and its applications, semantically 

pertinent Context extraction from SPOKE, Hyperparameter analysis, Disease entity 

recognition retrieval analysis, Disease entity extraction comparative analysis, Validation 

data creation, Test data creation, KG-RAG extended version – A proof of concept, System 

prompts used, two Supplementary figures and four Supplementary tables: Table A shows 

the comparative analysis between different methods for disease entity extraction. Table B 

shows the comparative analysis between Cypher-RAG and KG-RAG using benchmark 

datasets. Table C displays additional biomedical prompting examples and Table D 

consolidates sources for the test dataset used in this study. 


