

Adaptation Challenges Experienced by Entities Serving Alaska Native Village Infrastructure Needs

Meredith J. Brown¹, Paola Passalacqua², Cristina Poleacovschi³, and Leif Albertson⁴,
and Kasey Faust^{5*}

^{1,2,5} Fariborz Maseeh Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 301 Dean Keeton C1752, Austin, TX 78712, USA

³ Civil, Construction and Environmental Engineering, Iowa State University, Town Engineering Building, 394 Town Engineering, Ames, IA 50011

⁴ College of Rural and Community Development, The University of Alaska Fairbanks, 219 E. International Airport Road Suite 100A, Anchorage, AK 99518

12 *corresponding author: faustk@utexas.edu

13 KEYWORDS: Alaskan infrastructure, human-infrastructure interactions, Arctic communities,
14 climate policy

15
16 SYNOPSIS: This study determined how development actors' source of funding is associated
17 with barriers to adaptation of infrastructure

19 Word Count: 6622

21 Abstract:

Infrastructure adaptation is critical to Alaskan communities in the face of rapid climate change. Here, infrastructure adaptation refers to retrofitting existing systems and creating new infrastructure that can withstand the dynamic and extreme impacts of climate change. Despite the established urgency to pursue infrastructure adaptation in rural Alaska, these projects are often costly and inefficient due to a myriad of barriers, such as lack of essential knowledge or sufficient financial resources. The barriers experienced by development actors—i.e., external entities or stakeholders with decision-making power that operationalize adaptation projects—is largely unknown. To begin to understand these challenges and how to mitigate them, we observe barriers to adaptation experienced by developments actors are related to how these organizations are

31 funded. Enabling this study are open-ended responses from a survey that inquired on interagency
32 coordination and barriers to adaptation, completed by regional development actors (n=37) in 2020
33 and 2021. Our results show that barriers to adaptation faced by development actors are not random
34 and vary according how their funding is acquired. From this, we recommend the prioritization of
35 Indigenous-led adaptation activity through (1) increased flexible federal funding available to local
36 development actors and adaptation recipients (i.e., local communities) and (2) increased
37 coordination between adaptation recipients and development actors during all stages of the
38 adaptation process (e.g., planning, design, implementation, etc.).

39 **1. INTRODUCTION**

40 Climate change destabilizes critical infrastructure in rural Alaska, such as utilities (e.g. water,
41 energy) and transportation networks (Huddleston et al. 2022; Taylor et al. 2022). Environmental
42 changes such as permafrost subsidence, coastal land loss, and flooding, push the built system
43 beyond its original design capacity, decreasing the level of service that it provides to communities.
44 These decreases in levels of service often exacerbate existing infrastructure inequities, such as
45 spatiotemporal disparities in access to in-home plumbing (National Research Council (U.S.) et al.
46 2010; Ouyang 2014; Center for Disease Control 2017; Brown et al. 2022; Taylor et al. 2022). For
47 instance, a drinking water pipeline in Unalakleet, Alaska (AK) has a high-risk of collapse after
48 excessive erosion removed the structure's protective soil barrier and exposed the pipeline to severe
49 weather (Waldholz and Anchorage 2017). The loss of this village's sole water supply would
50 contribute to the region's overall infrastructural decline and public health consequences (Gessner
51 2008; Mosites et al. 2020; Mattos et al. 2021). Similarly, extreme erosion in Napakiak, AK
52 removed shoreline that served as a protective barrier from excessive wave damage to the local
53 transportation network. After a storm in May 2018 destroyed the town's hovercraft landing,
54 residents lost affordable access to critical supplies for one year (Kitka 2018). During this time,
55 supplies were delivered by plane, which was considerably costlier. Many other communities
56 struggle with similar infrastructure challenges arising from a changing climate. The Denali
57 Commission found that 144 Alaska Native communities are facing major infrastructural concerns
58 as a result of warming temperatures statewide (The Denali Commission 2019). Developers,
59 planners, and residents in rural Alaska must pursue community-level adaptation, meaning
60 retrofitting existing systems and creating new infrastructure to withstand the dynamic and extreme
61 impacts of climate change, in order to avoid further decline of critical infrastructure services

62 (Bierbaum et al. 2013; Hall et al. 2019). Some examples of infrastructure adaptation are
63 community relocation, weatherization of homes and businesses, and shoreline protection measures
64 (Taylor et al. 2022), among others.

65 To be defined as successful infrastructure adaptation, such engineering must provide
66 substantial benefits while being both socially and ecologically appropriate. An adaptation project
67 that faces few barriers but does not effectively mitigate climate threats to infrastructure fails to
68 protect community-level public health and safety. Conversely, a project that protects critical
69 infrastructure services but disregards social needs is inappropriate, as well. For instance, in the
70 1970s, the federal government funded a centralized water system for Shishmaref, AK. However,
71 community members continued to use and prefer traditional water sources, such as rainwater and
72 surface water, over water from the piped system due to distrust of treatment chemicals and
73 devotion to traditional ways of life (Marino et al. 2009). This resulting infrastructure project could
74 be viewed as minimally beneficial for this location, which here we argue is maladaptation. Further,
75 as Alaska Native populations often experience profound legal, spiritual, and cultural connections
76 to the physical land that they inhabit (Abate and Kronk 2013; Brady and Leichenko 2020), socially
77 and ecologically appropriate adaptation in such villages are often synonymous. An adaptation suite
78 that fails to account for these elements is unsuccessful adaptation, or maladaptation.

79 Despite the established and urgent need for infrastructure adaptation in Alaska (The Denali
80 Commission 2019), regional-level adaptation activity remains inefficient and under-resourced,
81 with many obstacles that impede cost-effective and successful community-level adaptation (Taylor
82 et al. 2022). Obstacles that prevent successful adaptation, referred to as *barriers to adaptation*, are
83 conceptualized as the actors' subjective interpretations of the operating factors and conditions (i.e.,
84 physical, environmental, legal, social, practical/logistical, economical) that negatively impact the
85 adaptation process and reduce the chances of success (Biesbroek et al. 2013). Alaska-specific
86 research often focuses on costly technical barriers to adaptation experienced by operators and
87 planners (Taylor et al. 2022), such as short construction seasons and the usage of building materials
88 specialized for Arctic conditions (Larsen et al. 2008; Melvin et al. 2017; Sohns et al. 2021; Brown
89 et al. 2022). However, technical barriers to adaptation alone are not sufficient to fully describe the
90 barriers to adaptation that exist in rural Alaska (Taylor et al. 2022). In fact, the literature has
91 described many non-technical barriers to adaptation that can extend infrastructure adaptation
92 projects' timelines and costs, or even prevent adaptation from even occurring in the locations that

93 need it the most (Bierbaum et al. 2013; Azevedo de Almeida and Mostafavi 2016; Fitton et al.
94 2021; Taylor et al. 2022). These barriers often fall under four broad themes: (1) community
95 involvement and capacity (Ristroph 2018), (2) financial (Pearce et al. 2012), (3) operational
96 (Pearce et al. 2012), and (4) access to knowledge (Alessa et al. 2016; Ristroph 2018; Bronen et al.
97 2020) (Table 1). Some of these themes are exemplified through the infrastructural relocation of
98 Newtok, AK, a lengthy and unfinished process that began in 1994 and is currently the only example
99 of formal and federally sponsored relocation as a method of infrastructure adaptation in the U.S.
100 (Ristroph 2021). This project faced several financial barriers to adaptation, including lack of clear
101 funding channels, and many community capacity barriers to adaptation, such as local workforce
102 limitations (Ristroph 2021). This timeline is insufficient for coastal villages currently at risk of
103 irreversible infrastructure damage from erosion within as little as 10-15 years. With the imminent
104 danger to communities, coupled with the fact that adaptation of infrastructure becomes more
105 expensive and less effective with increasing climate change (Bierbaum et al. 2013), it is imperative
106 that these projects overcome these obstacles.

107 In adaptation processes in rural Alaska, internal stakeholders (i.e., the village) work in tandem
108 with external stakeholders, such as operators and planners with decision-making power, referred
109 to here as development actors (Pisar et al. 2022). An example of a development actor is the Cold
110 Climate Housing Research Center (CCHRC) (Hickel et al. 2018; Granger 2020), which builds
111 housing and provides solutions towards energy efficiency for buildings located in circumpolar
112 regions (Garber-Slaght and Craven 2012; Zufelt 2017). In the context of Alaska, non-technical
113 barriers to adaptation are typically described from the perspective of residents through case studies,
114 such as Newtok, AK (Ford et al. 2010; Marino 2012; Pearce et al. 2012) and first-hand accounts
115 from Alaskan media (Goode 2016; Plummer 2018; Flavelle 2022). While fewer studies probe
116 directly into barriers to adaptation experienced by development actors (Eisenack et al. 2014;
117 Taylor et al. 2022), their internal perspective could reveal barriers that are difficult to perceive as
118 the adaptation recipients (Nader 1972). Further, identification of barriers alone does not reveal
119 barriers' origins or the conditions that allow barriers to emerge or persist (Eisenack et al. 2014).
120 This knowledge is critical to effective interventions because if the conditions that foster barriers
121 are known, those conditions may be altered in the planning phase, allowing infrastructure
122 adaptation to become more cost- and time-efficient while still providing substantial and positive
123 results (Moser and Ekstrom 2010; Eisenack et al. 2014). Since development actors make critical

124 decisions about what adaptation projects are selected and how the projects are operationalized
125 statewide (Taylor et al. 2022), we argue these organizations' characteristics are contextual factors
126 that can describe a regional synthesis of some conditions that foster barriers to adaptation (Meeker
127 and Kettle 2017).

128

129 1.1 RESEARCH OBJECTIVE

130 Infrastructure adaptation projects are funded and operationalized by several development
131 actors that complete various tasks (Pearce et al. 2012; Ford et al. 2015). Federal and state agencies
132 typically focus on high-level adaptation tasks, such as funding, technical assistance, education,
133 and policy, while local development actors that are funded by federal grants typically implement
134 adaptation through activities such as design, construction, and maintenance (2021a). In completing
135 these tasks, institutional inefficiencies (Table 1) can hinder successful and cost-effective
136 infrastructure adaptation. For instance, successful adaptation planning requires a blend of Western
137 knowledge (e.g., instrument-based sensing of erosion, temperature, etc.), Indigenous knowledge
138 (e.g., cultural practices, historical insight into climate change impact through storytelling), and local
139 knowledge from adaptation recipients (e.g., up-to-date perceptions of adaptive capacity) (Kettle et
140 al. 2014; Ristroph 2018; Birchall and Bonnett 2019; Bronen et al. 2020). However, since the tasks
141 that are delegated to state and federal agencies do not require direct interaction with adaptation
142 recipients (e.g., adaptation planning, risk assessment, environmental monitoring, etc.), these
143 agencies often do not possess the financial and physical resources to foster a communication
144 channel with such stakeholders. As a result, high-level decision-makers may have limited access
145 to local input that comprises essential Alaska- and community-specific knowledge. Lack of
146 financial resources within these agencies can also cause operational barriers, such as the hiring
147 freeze at the Alaska Division of Geological & Geophysical Surveys that limited the human
148 resource capacity needed to complete relocation planning for Kivalina, AK and Shaktoolik, AK
149 (Immediate Action Workgroup 2009).

150 In this study, we explore how barriers to adaptation experienced by development actors vary
151 according to how these organizations are funded, as this characteristic reflects the specific roles
152 each development actor plays in the adaptation process. We do not argue that one type of
153 development actor is more equipped to provide successful adaptation than others, or one type of
154 development actor works in the better interest of adaptation recipients. For instance, while local

155 organizations supported by federal grants (e.g., tribal health consortiums) interact directly with
156 adaptation recipients during the tasks delegated to them (i.e., construction, design, etc.), these
157 development actors may experience similar barriers to adaptation to high-level agencies regarding
158 community capacity and involvement. Rather, we attempt to trace regional patterns between the
159 specific barriers and the type of development actors that experience them, showing the most
160 common challenges within specific roles in the adaptation process. By doing so, results can suggest
161 tangible methods to mitigate these obstacles and rectify pervasive oversights, such as alternative
162 delegation of tasks and funding decisions (e.g., reallocation, deregulation, etc.). This study adds to
163 the body of literature that adaptation providers can utilize to anticipate barriers at the institutional
164 level, making adaptation activity more efficient at preventing additional infrastructure
165 deterioration and inequities. Here, we pursue the following research objectives: (1) Identify the
166 barriers to adaptation experienced by development actors that operate in rural Alaska; and (2)
167 Understand how these barriers relate to the development actor's acquisition of funding.

168

169 **2. METHODS**

170 This study is based on a survey (n=37), distributed between the fall of 2020 and the spring
171 of 2021, that assessed the barriers to adaptation faced by organizations that operationalize regional
172 or statewide infrastructure adaptation services in rural Alaska. This approach provides a regional
173 synthesis of barriers to adaptation across rural Alaska, rather than on a case-by-case basis. Since
174 development actors operate throughout large portions of Alaska, a small network of development
175 actors is sufficient to describe barriers to adaptation across the state, despite Alaska's considerable
176 geographic size.

177

178 **2.1 DATA COLLECTION & SURVEY DISTRIBUTION**

179 A total of 41 key development actors were identified through three paths: (1) consultation
180 with the Cold Climate Housing Research Center (CCHRC), (2) review of Alaska Housing Finance
181 Corporation reports on housing in Alaska (Bristol Bay Housing 2020), and (3) semi-structured
182 interviews with 25 stakeholders involved in infrastructure adaptation in rural Alaska (Taylor et al.
183 2022). To increase the reliability of the identified list, participants were asked to indicate other
184 organizations they coordinated with on infrastructure projects that were not listed in the survey.
185 There were five organizations identified by participants that were not in the list provided. Only

186 one of the additional organizations identified was added to the list of organizations in the survey.
187 The other four organizations were excluded from the list as they were organizations that worked
188 with only a single community, or the organizations did not have a strong tie to infrastructure.

189 Once the development actors were identified, the survey was distributed online via Qualtrics
190 (see Taylor et al. 2022 for more details on survey deployment). While the full survey comprises
191 22 questions, three were analyzed here pertaining specifically to barriers to adaptation. These
192 questions/prompts were open-ended and captured challenges that the organizations experience
193 during infrastructure adaptation, as follows:

- 194 • For housing services, what challenges does your organization experience when engaging
195 with communities?
- 196 • Identify the top three factors that limit your organization's ability to integrate climate
197 change adaptation into your housing services/projects.
- 198 • Describe housing projects you have worked on or services you have provided in rural
199 Alaska that you consider to be unsuccessful or less successful and describe what specific
200 characteristics make them unsuccessful or less successful.

201 Participants were provided with an informed consent document that described the purpose and
202 funding of the research. Further, this research follows IRB protocol approved by Iowa State
203 University IRB. Participants were given a \$40 Amazon gift card in exchange for their participation.
204 The response rate was 63% (n=26 organizations) and a total of 37 respondents.

205
206 2.2 QUALITATIVE CODING OF SURVEY RESPONSES

207 Open-ended responses in this survey underwent qualitative content analysis (Saldana 2013)
208 via Dedoose (2021b) to identify emergent themes in barriers to adaptation, according to operators
209 and managers. This analysis process started with an inductive coding process to identify the
210 challenges experienced by operators and planners (Elo and Kyngäs 2008). These codes are defined
211 in the coding dictionary (Table 1). Each respondent was assigned a descriptor based on their source
212 of funding – Federal Agency, State Agency, Local Agency funded by Federal Grants, or Private
213 Organization Funded by Shareholders and Donations – to describe the context in which the barriers
214 to adaptation are occurring. This information was included in the survey and confirmed through
215 literature. Coding was validated through intercoder reliability with two individuals other than the
216 primary coder, reaching a Kappa value of 0.66, classified as “substantial” agreement (R.A.
217 Singleton, B.C. Straits, M.M Straits 1993; De Vries et al. 2008; Saldana 2013).

219 **Table 1:** Coding Dictionary

THEME	CODE	DEFINITION
Community Involvement & Community Capacity	Empowerment of Community Members to Make Decisions and Give Input	Encouragement of community members to take an active role in decision-making for infrastructure adaptation
	Lack of Understanding about Agencies	Role and limitations of agencies unknown to clients (community members)
	Lack of Community Engagement	Lack of community participation in meetings and input
	Sociocultural differences between local communities and external agencies	Language barriers and cultural differences between communities and external stakeholders that lead to maladaptation
	Local Workforce Capacity	Lack of community members to carry out adaptation plans, as well as high turnover in local leadership
	Lack of physical infrastructure within communities to complete tasks	Lack of required infrastructure, such as Insufficient bandwidth or lack of telephone infrastructure in remote communities, to effectively complete adaptation activity
Financial	Funding Inflexibility for Project Type	Lack of available funds due to strict allocation of financial resources and guidelines for how funding is utilized
	Lack of Access to Capital for Planning/Design and Construction	Lack of available financial resources for sufficient planning and construction
	Lack of Access to Capital for Community Engagement	Lack of available financial resources for sufficient involvement of the community
Operational Challenges	Administrative Capacity	Lack of sufficient personnel to complete tasks
	Excessive or Inflexible Regulations	Strict guidelines that hinder a development actor's ability to complete tasks, "red tape"
	Conflict Between Planning and Community Adaptation Needs	Discrepancy between the planned adaptation activity (or lack thereof) and what action is needed, in terms of scope and project goals
	Interagency Collaboration, Resource- and Data-Sharing Across Agencies	Lack of communication and collaboration between multiple agencies
	Logistical Challenges during Implementation	Difficult coordination of complex infrastructure adaptation projects – time,

Slow decision-making	remoteness, weather-related challenges, inefficient communication
Alignment of Priorities Across Agencies	Untimely decision-making
	Mismatch across agencies over which adaptation needs take precedence, if any
Knowledge	Knowledge about Alaska-specific nuances, like Arctic construction and socio-cultural norms in ANVs.
Lack of accessible climate projections	Lack of reliable data about climate change impact.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

3. RESULTS & DISCUSSION

Table 2 contains code counts that show the relative prevalence of different barriers to adaptation amongst the development actors, according to how each acquires funding. Specifically, federal agencies cited the most barriers to adaptation per respondent (7.75), while privately funded development actors cited the least barriers per respondent (5.4). Further, federal development actors accounted for the largest proportion of operational challenges, even though only 20% of the total respondents were from this type of agency. More broadly, the lack of community engagement is the most predominant barrier across all development actors, account for 13% of all references to barriers to adaptation. All development actors frequently cited that adaptation projects are “less successful when they do not have a high level of community input and participation.” This statement makes sense, as community members can help to make important decisions (e.g., new site for community relocation, when to pivot from protection-in-place to relocation, etc.) and can provide essential local and Indigenous knowledge, such as how create adaptation plans that are feasible for Alaskan communities and how local vulnerability and exposure to climate change changes with sociocultural factors, rather than physical changes alone (Bronen et al. 2020). However, several respondents claim that adaptation recipients are apathic, and developments actors struggle with “convinc[ing]…customers that it’s a worthwhile investment” (2021a). Due to the long history of disenfranchisement, erasure of Indigenous culture through mandatory westernization, and ineffective adaptation projects (Ferguson-Bohnee 2020; Bronen et al. 2020; Sohns et al. 2021), mistrust of external agencies and subsequent disinterest in adaptation activity is not surprising. For instance, during the infrastructure relocation planning process of the Isle de Jean-Charles in Louisiana, such challenges impeded state planners’ goal of using community input to identify a new location for the town (2016). Due to the necessity of community engagement in

244 adaptation activity, this finding describes a deeply destructive feedback loop that must be
245 interrupted for improve adaptation activity.

246 The lack of access to capital for planning and implementation is the second predominant
247 barrier to adaptation across all development actors, accounting 10% of all references to barriers to
248 adaptation. This finding is not surprising, as previous literature has established that there is a multi-
249 billion dollar gap between available adaptation funding and comprehensive adaptation need in the
250 United States (McNeeley 2012; Pearce et al. 2012; Azevedo de Almeida and Mostafavi 2016;
251 Ristroph 2018, 2021). However, local development actors supported by federal grants cited
252 financial and knowledge barriers to adaptation at a higher rate than other types of development
253 actors, claiming that “lack of funding” and “learning as we [go]” are some of the top factors that
254 limits the organization’s ability to adaptation infrastructure (2021a). However, high level agencies
255 (i.e., federal and state agencies) are typically responsible for financial decisions, gathering climate
256 and conducting exposure assessments, and technical support for adaptation processes – meaning
257 that local development actors funded by federal grants experience these barriers to adaptation very
258 profoundly but have limited agency to mitigate them (Moser and Ekstrom 2010). Further, literature
259 has found that high-level agencies’ inflexible funding environments and inaccurate perceptions of
260 community-level adaptation needs result in inadequate financial resources for grant recipients, as
261 well as inaccurate perceptions of a community’s hazard risk, resilience to climate impact, and
262 adaptation priorities (Huntington et al. 2019; Blair and Kofinas 2020). On the other hand, local
263 authorities’ perceptions of these traits tend to be more accurate, despite their limited ability to
264 operationalize this knowledge.

265
266 **Table 2:** Count of barriers to adaptation by type of development actor. The most frequent challenge within each type
267 of development actor is typed in italics.

	Type of Development Actor				Total by Barrier to Adaptation
	Federal Agency	State	Local Organization Funded by Federal Grants	Private organization, funded by donations or shareholders	
Frequency of Descriptor	8	11	13	5	
Total Challenges by Type of Development Actor	62	46	79	27	214
BARRIERS TO ADAPTATION					
Community Involvement & Community Capacity	18	24	24	8	74
Empowerment of community members to make decisions and give input	1	5	1	1	8
Lack of understanding about agencies	1	1	4	0	6

Lack of community engagement	5	7	9	1	22
Sociocultural differences between local communities and external agencies	4	1	3	0	8
Local workforce capacity	2	5	4	4	15
Lack of physical infrastructure within communities to complete tasks	5	5	3	2	15
Financial	10	6	23	8	47
Funding inflexibility for project type	2	5	7	1	15
Lack of access to capital for planning and implementation	6	1	16	5	28
Lack of access to capital for community engagement	2	0	0	2	4
Operational Challenges	27	11	20	7	65
Administrative capacity	1	0	2	1	4
Excessive or inflexible regulations	6	1	2	1	10
Conflict between planning and adaptation/community needs	2	4	7	1	14
Interagency collaboration, resource- and data-sharing across agencies	5	0	1	1	7
Logistical challenges during implementation	5	3	5	2	15
Slow decision-making	1	0	0	0	1
Alignment of priorities across agencies	7	3	3	1	14
Knowledge	7	5	12	4	28
Alaska- and community-specific expertise	7	1	7	3	18
Lack of accessible climate projections	0	4	5	1	10

268

269

270 4. PRACTICAL IMPLICATIONS

271 Regional barriers to adaptation must be surmounted so that adaptation activity can become
 272 more time- and cost-effective at preventing further infrastructure degradation and subsequent
 273 health and safety risks. These results indicate that financial and community engagement barriers
 274 are the greatest challenges to development actors that operate in rural Alaska. This finding, along
 275 with patterns between the source of a development actor's funding and the barriers to adaptation
 276 that they experience, reveals possible leverage points to mitigate these barriers and improve the
 277 capacity for adaptation through targeted financial investments and inclusion of local communities
 278 in the adaptation process.

279 Currently, local development actors do not take lead roles in funding and planning
 280 decisions, limiting their ability address their greatest challenges, and lack of community
 281 engagement is a significant obstacle across adaptation processes. Based on these results, we
 282 suggest pursuing Indigenous-led adaptation activity through two methods: (1) increasing the
 283 amount of flexible funding available to adaptation recipients and local development actors that are

284 supported by federal grants, and (2) increased coordination between adaptation recipients and all
285 development actors throughout planning and implementation stages. While increased funding
286 necessary for comprehensive adaptation across the U.S. (Davenport and Flavelle 2021), research
287 suggests that in regions with decades of infrastructural neglect, such as Alaska Native villages,
288 adaptation funding must be increased in both amount and flexibility (Henson et al. 2020; Cohen
289 and Marx 2021). As localized decision-makers tend to have accurate perceptions of climate
290 change's impact on a community and how to best tend to those impacts according to available
291 resources (Kettle et al. 2014; Blair and Kofinas 2020), funding is used more productively when
292 tribal nations and local communities can spend according to their own priorities and needs. This
293 approach minimizes the risk of maladaptation due to high-level decision-making in funding and
294 planning that may not reflect the needs of adaptation recipients. For instance, federal funding is
295 often siloed by infrastructure type, meaning that infrastructure sectors (e.g., roads, housing,
296 utilities) are funded through different avenues. As a result, communities are forced to adapt
297 infrastructure piecemeal, promoting unsustainable adaptation activity since climate change
298 impacts many components of critical infrastructure simultaneously (Taylor et al. 2022). By
299 increasing flexible funding available to local development actors and adaptation recipients,
300 adaptation activity can avoid such situations, becoming more cost-effective and impactful.

301 Further, coordination between adaptation recipients, local entities, and high-level agencies
302 (Knapp et al. 2017; Brock et al. 2021) cultivates essential trust and community engagement
303 throughout the adaptation process (Bronen et al. 2020). For instance, the Department of the Interior
304 hosted consultations with tribal leaders in planning how to best protect subsistence lifestyles in the
305 Arctic (U.S. Department of the Interior 2022). Similarly, in August 2022, the Alaska Native Tribal
306 Health Consortium partnered with the National Oceanic and Atmospheric Administration (NOAA)
307 to accomplish several objectives, including the creation of the Alaska Tribal Climate Change
308 Advisory Group that aims to ensure that Tribal climate change efforts are led by Alaska Natives
309 (National Oceanic and Atmospheric Administration 2022). Consultations and partnerships such
310 as these examples may help to avoid detrimental oversight by out-of-state contractors and external
311 agencies, particularly in the planning stages. This coordination could also promote the use of
312 Indigenous knowledge throughout adaptation tasks. For instance, climate impact and exposure
313 assessments are typically conducted by high-level development actors, such as federal and state
314 agencies. However, these assessments often are unrobust and cannot be applied to localized

315 decision-making (U.S. Army Corps of Engineers, Alaska Division 2009; Immediate Action
316 Workgroup 2009; The Denali Commission 2019). However, Indigenous communities typically
317 have intimate knowledge of the local ecological systems within a cultural context, creating a
318 human sensor network that traditional sensors cannot replicate. The collective memory of Arctic
319 residents, acquired by generations of storytelling, contains data on historical environmental
320 variability that ranges beyond the relatively sparse data acquired by Western science in the past
321 few decades (Alessa et al. 2016; Williams et al. 2018). Research has shown that community-based
322 observation networks are organized to methodically collect observers' memories of environmental
323 change and effectively relay essential information to non-local development actors (Johnson et al.
324 2015). This information can supplement instrument-derived datasets from outside organizations,
325 such as the Arctic Observing Network and the Sustaining Arctic Observing Network (Alessa et al.
326 2016), to create a comprehensive dataset that is a robust portrayal of environmental change in the
327 Arctic (Ford et al. 2010; Johnson et al. 2015; Alessa et al. 2016; Wilson et al. 2018). By employing
328 community-based monitoring networks along with the tactics discussed in this section, adaptation
329 activity can become more cost-effective and more deeply engaged with adaptation recipients
330 throughout all stages of decision-making.

331

332 4.1 LIMITATIONS

333 While this study reveals interesting trends, as with all studies, limitations are present. First,
334 it is important to note that this survey measures perception of barriers to adaptation. Perception is
335 subjective, shaped by experiences and worldviews of the respondents. However, since all data,
336 even instrument-based observations, is susceptible to bias, this is not to mean that survey data is
337 less valid than other kinds of data. Further, this survey focused on development actors related to
338 housing infrastructure. It is possible that development actors that interact with other types of
339 infrastructure (e.g., water, telecommunications, transportation, etc.) may cite different patterns
340 between barriers to adaptation and funding. These limitations provide the opportunity for future
341 research to develop literature's understanding of the interactions between infrastructure adaptation
342 and the characteristics of development actors. For example, a future study could diversify the types
343 of development actors included in their surveys.

344 In addition, although there is a relatively small participation number in this study, rural
345 Alaska is remote with small communities, allowing development actors to work regionally across

346 Alaska. As such, important trends can still be revealed on a regional basis. Similar studies have
347 used similar sample sizes (Spearing and Faust 2020; Blair and Kofinas 2020). Although some
348 participants are Alaska Native and live in this region, community members were not explicitly
349 included, and this research does not claim to represent the perspective of these communities.
350 Analysis of development actors' perspectives provides a robust understanding of the barriers to
351 adaptation of infrastructure of those serving Alaska Natives, externally to the village. Stakeholders
352 from tribal organizations were included in the scope of development actors, including nonprofit
353 tribal consortiums and tribal housing authorities.

354

355 **5. CONCLUSION**

356 Infrastructure adaptation is essential for rural Alaskans in the face of intensifying climate
357 change. While regional adaptation activity exists in a limited capacity, several barriers to effective
358 and efficient adaptation consequentially result in increased project timelines and costs. Although
359 such obstacles are often analyzed at the community level, less is known about institutional barriers
360 to adaptation. By analyzing challenges faced by development actors, this study found that barriers
361 experienced by a development actor and who that development actor is—e.g., how the
362 development actor acquires funding—are not independent. For example, one key finding is that
363 federal agencies tended to experience more barriers to adaptation than other development actors,
364 such as local organizations funded by federal grants. By understanding such relationships, we can
365 suggest productive mitigation strategies. In sum, we have the following key recommendations.
366 Adaptation funding at the federal level is currently insufficient for the needs in rural Alaska, and
367 federal dollars are typically spent inefficiently when local groups cannot prioritize action items for
368 their specific communities. Accordingly, we recommend the prioritization of Indigenous-led
369 adaptation activity through the (1) increased amount of flexible funding available to adaptation
370 recipients and local development actors funded by grants, and (2) increased coordination between
371 all external agencies and adaptation recipients through consultations and community-based
372 monitoring networks.

373

374 **Acknowledgements:**

375 We thank Dr. Jessica Taylor for her role in data collection.

376 **Funding:**

377 This material is based upon work supported by the National Science Foundation [Grant Nos.
378 2127353, 928105].

379 **REFERENCES**

380 Alessa L, Kliskey A, Gamble J, et al (2016) The role of Indigenous science and local knowledge
381 in integrated observing systems: moving toward adaptive capacity indices and early
382 warning systems. *Sustain Sci* 11:91–102. <https://doi.org/10.1007/s11625-015-0295-7>

383 ASCE (2021) Report Card for Alaska's Infrastructure. ASCE

384 Azevedo de Almeida B, Mostafavi A (2016) Resilience of Infrastructure Systems to Sea-Level
385 Rise in Coastal Areas: Impacts, Adaptation Measures, and Implementation Challenges.
386 *Sustainability* 8:1115. <https://doi.org/10.3390/su811115>

387 Bierbaum R, Smith JB, Lee A, et al (2013) A comprehensive review of climate adaptation in the
388 United States: more than before, but less than needed. *Mitig Adapt Strateg Glob Change*
389 18:361–406. <https://doi.org/10.1007/s11027-012-9423-1>

390 Biesbroek GR, Klostermann JEM, Termeer CJAM, Kabat P (2013) On the nature of barriers to
391 climate change adaptation. *Reg Environ Change* 13:1119–1129.
392 <https://doi.org/10.1007/s10113-013-0421-y>

393 Blair B, Kofinas G (2020) Cross-scale risk perception: differences between tribal leaders and
394 resource managers in Arctic Alaska. *Ecology and Society* 25:.
395 <https://doi.org/10.5751/ES-11776-250409>

396 Bristol Bay Housing (2020) Home | Bristol Bay Housing Authority. In: Bristol Bay Housing.
397 <https://www.bristolbayhousingauthority.org>. Accessed 16 Jan 2023

398 Brock T, Reed MG, Stewart KJ (2021) Indigenous community participation in resource
399 development decision-making: Practitioner perceptions of legal and voluntary
400 arrangements. *Journal of Environmental Management* 283:111922.
401 <https://doi.org/10.1016/j.jenvman.2020.111922>

402 Bronen R, Chapin FS (2013) Adaptive governance and institutional strategies for climate-
403 induced community relocations in Alaska. *PNAS* 110:9320–9325.
404 <https://doi.org/10.1073/pnas.1210508110>

405 Bronen R, Pollock D, Overbeck J, et al (2020) Usteq: integrating indigenous knowledge and
406 social and physical sciences to coproduce knowledge and support community-based
407 adaptation. *Polar Geography* 43:188–205.
408 <https://doi.org/10.1080/1088937X.2019.1679271>

409 Brown MJ, Spearing LA, Roy A, et al (2022) Drivers of Declining Water Access in Alaska. *ACS
410 EST Water*. <https://doi.org/10.1021/acsestwater.2c00167>

411 Center for Disease Control (2017) CDC SVI Documentation 2014. In: Agency for Toxic
412 Substances and Disease Registry.
413 https://www.atsdr.cdc.gov/placeandhealth/svi/documentation/SVI_documentation_2014.html. Accessed 2 Dec 2021

415 Cohen O, Marx R (2021) Funding and Flexibility Would Allow Tribes to Better Adapt to
416 Climate Change. In: Housing Matters. <https://housingmatters.urban.org/articles/funding-and-flexibility-would-allow-tribes-better-adapt-climate-change>. Accessed 19 Oct 2022

418 Davenport C, Flavelle C (2021) Infrastructure Bill Makes First Major U.S. Investment in Climate
419 Resilience. The New York Times

420 De Vries H, Elliott MN, Kanouse DE, Teleki SS (2008) Using Pooled Kappa to Summarize
421 Interrater Agreement across Many Items. *Field Methods* 20:272–282.
422 <https://doi.org/10.1177/1525822X08317166>

423 Eisenack K, Moser SC, Hoffmann E, et al (2014) Explaining and overcoming barriers to climate
424 change adaptation. *Nature Clim Change* 4:867–872. <https://doi.org/10.1038/nclimate2350>

425 Elo S, Kyngäs H (2008) The qualitative content analysis process. *Journal of Advanced Nursing*
426 62:107–115. <https://doi.org/10.1111/j.1365-2648.2007.04569.x>

427 Ferguson-Bohnee P (2020) How the Native American Vote Continues to be Suppressed.
428 https://www.americanbar.org/groups/crsj/publications/human_rights_magazine_home/voting-rights/how-the-native-american-vote-continues-to-be-suppressed/. Accessed 20 Oct
429 2021

431 Fitton JM, Addo KA, Jayson-Quashigah P-N, et al (2021) Challenges to climate change
432 adaptation in coastal small towns: Examples from Ghana, Uruguay, Finland, Denmark,
433 and Alaska. *Ocean & Coastal Management* 212:105787.
434 <https://doi.org/10.1016/j.ocecoaman.2021.105787>

435 Flavelle C (2022) As Climate Change Worsens, US Weighs Which Communities to Save - The
436 New York Times. <https://www.nytimes.com/2022/11/02/climate/native-tribes-relocation-climate.html>. Accessed 28 Nov 2022

438 Ford JD, Bell T, St-Hilaire-Gravel D (2010) Vulnerability of Community Infrastructure to
439 Climate Change in Nunavut: A Case Study From Arctic Bay. In: Hovelsrud GK, Smit B
440 (eds) *Community Adaptation and Vulnerability in Arctic Regions*. Springer Netherlands,
441 Dordrecht, pp 107–130

442 Ford JD, McDowell G, Pearce T (2015) The adaptation challenge in the Arctic. *Nature Clim
443 Change* 5:1046–1053. <https://doi.org/10.1038/nclimate2723>

444 Garber-Slaght R, Craven C (2012) Evaluating WIndow Insulation for Cold Climates. *Journal of
445 Green Building* 7:32–48. <https://doi.org/10.3992/jgb.7.3.32>

446 Gessner BD (2008) Lack of Piped Water and Sewage Services is Associated with Pediatric
447 Lower Respiratory Tract Infection in Alaska. *The Journal of Pediatrics* 152:666–670.
448 <https://doi.org/10.1016/j.jpeds.2007.10.049>

449 Goode E (2016) A Wrenching Choice for Alaska Towns in the Path of Climate Change. *The
450 New York Times*

451 Granger K (2020) The Unmet Infrastructure Needs of Tribal Communities and Alaska Native
452 Villages in Process of Relocating to Higher Ground as a Result of Climate Change

453 Hall JW, Mullan M, Pant R, et al (2019) Adaptation of Infrastructure Systems. 64

454 Henson EC, Hill MM, Jorgensen MR, Kalt JP (2020) Federal COVID-19 Response Funding for
455 Tribal Governments: Lessons from the CARES Act. *The University of Arizona Native
456 Nations Institute*

457 Hickel KA, Dotson A, Thomas TK, et al (2018) The search for an alternative to piped water and
458 sewer systems in the Alaskan Arctic. *Environ Sci Pollut Res* 25:32873–32880.
459 <https://doi.org/10.1007/s11356-017-8815-x>

460 Huddleston P, Smith T, White I, Elrick-Barr C (2022) Adapting critical infrastructure to climate
461 change: A scoping review. *Environmental Science & Policy* 135:67–76.
462 <https://doi.org/10.1016/j.envsci.2022.04.015>

463 Huntington HP, Carey M, Apok C, et al (2019) Climate change in context: putting people first in
464 the Arctic. *Reg Environ Change* 19:1217–1223. <https://doi.org/10.1007/s10113-019-01478-8>

466 Immediate Action Workgroup (2009) Recommendations to the Governor's Subcabinet on
467 Climate Change. Juneau, AK

468 Johnson N, Alessa L, Behe C, et al (2015) The Contributions of Community-Based Monitoring
469 and Traditional Knowledge to Arctic Observing Networks: Reflections on the State of the
470 Field. *Arctic* 68:28–40

471 Kettle NP, Dow K, Tuler S, et al (2014) Integrating scientific and local knowledge to inform
472 risk-based management approaches for climate adaptation. *Climate Risk Management* 4–
473 5:17–31. <https://doi.org/10.1016/j.crm.2014.07.001>

474 Kitka J (2018) Erosion and Alaska Native Communities. Alaska Federation of Natives,
475 Anchorage, AK

476 Knapp CN, Fresco N, Krutikov L (2017) Managing Alaska's National Parks in an era of
477 uncertainty: an evaluation of scenario planning workshops. *Reg Environ Change*
478 17:1541–1552. <https://doi.org/10.1007/s10113-017-1126-4>

479 Larsen PH, Goldsmith S, Smith O, et al (2008) Estimating future costs for Alaska public
480 infrastructure at risk from climate change. *Global Environmental Change* 18:442–457.
481 <https://doi.org/10.1016/j.gloenvcha.2008.03.005>

482 Marino E (2012) The long history of environmental migration: Assessing vulnerability
483 construction and obstacles to successful relocation in Shishmaref, Alaska. *Global*
484 *Environmental Change* 22:374–381. <https://doi.org/10.1016/j.gloenvcha.2011.09.016>

485 Mattos KJ, Eichelberger L, Warren J, et al (2021) Household Water, Sanitation, and Hygiene
486 Practices Impact Pathogen Exposure in Remote, Rural, Unpiped Communities.
487 *Environmental Engineering Science* 38:355–366. <https://doi.org/10.1089/ees.2020.0283>

488 McNeeley SM (2012) Examining barriers and opportunities for sustainable adaptation to climate
489 change in Interior Alaska. *Climatic Change* 111:835–857.
490 <https://doi.org/10.1007/s10584-011-0158-x>

491 Meeker D, Kettle N (2017) A Synthesis of Climate Adaptation Planning Needs in Alaska Native
492 Communities. Alaska Center for Climate Assessment and Policy, Fairbanks, AK

493 Melvin AM, Larsen P, Boehlert B, et al (2017) Climate change damages to Alaska public
494 infrastructure and the economics of proactive adaptation. *Proc Natl Acad Sci USA*
495 114:E122–E131. <https://doi.org/10.1073/pnas.1611056113>

496 Moser SC, Ekstrom JA (2010) A framework to diagnose barriers to climate change adaptation.
497 *Proceedings of the National Academy of Sciences* 107:22026–22031.
498 <https://doi.org/10.1073/pnas.1007887107>

499 Mosites E, Seeman S, Fenaughty A, et al (2020) Lack of in-home piped water and reported
500 consumption of sugar-sweetened beverages among adults in rural Alaska. *Public Health*
501 *Nutr* 23:861–868. <https://doi.org/10.1017/S1368980019002477>

502 Nader L (1972) Up the Anthropologist: Perspectives Gained From Studying Up

503 National Oceanic and Atmospheric Administration (2022) Pilot project to support Tribal climate
504 resilience in Alaska. <https://www.noaa.gov/news-release/pilot-project-to-support-tribal-climate-resilience-in-alaska>. Accessed 17 Jan 2023

506 National Research Council (U.S.), National Research Council (U.S.), National Research Council
507 (U.S.), America's Climate Choices (Project) (eds) (2010) Adapting to the impacts of
508 climate change. National Academies Press, Washington, D.C

509 Ouyang M (2014) Review on modeling and simulation of interdependent critical infrastructure
510 systems. *Reliability Engineering & System Safety* 121:43–60.
511 <https://doi.org/10.1016/j.ress.2013.06.040>

512 Pearce T, Ford JD, Caron A, Kudlak BP (2012) Climate change adaptation planning in remote,
513 resource-dependent communities: an Arctic example. *Reg Environ Change* 12:825–837.
514 <https://doi.org/10.1007/s10113-012-0297-2>

515 Pisor AC, Basurto X, Douglass KG, et al (2022) Effective climate change adaptation means
516 supporting community autonomy. *Nat Clim Chang* 1–3. <https://doi.org/10.1038/s41558-022-01303-x>

518 Plummer B (2018) ‘Impossible to Ignore’: Why Alaska Is Crafting a Plan to Fight Climate
519 Change - The New York Times. <https://www.nytimes.com/2018/05/15/climate/alaska-climate-change.html>. Accessed 28 Nov 2022

521 R.A. Singleton, B.C. Straits, M.M Straits (1993) Approaches to Social Research

522 Ristrop EB (2018) Improving the quality of Alaska Native Village climate change planning.
523 *Journal of Geography and Regional Planning* 11:143–155.
524 <https://doi.org/10.5897/JGRP2018.0708>

525 Ristrop EB (2021) Navigating climate change adaptation assistance for communities: a case
526 study of Newtok Village, Alaska. *J Environ Stud Sci* 11:329–340.
527 <https://doi.org/10.1007/s13412-021-00711-3>

528 Saldana J (2013) The Coding Manual for Qualitative Researchers

529 Sohns A, Ford JD, Adamowski J, Robinson BE (2021) Participatory Modeling of Water
530 Vulnerability in Remote Alaskan Households Using Causal Loop Diagrams.
531 *Environmental Management* 67:26–42. <https://doi.org/10.1007/s00267-020-01387-1>

532 Spearing LA, Faust KM (2020) Cascading system impacts of the 2018 Camp Fire in California:
533 The interdependent provision of infrastructure services to displaced populations.
534 *International Journal of Disaster Risk Reduction* 50:101822.
535 <https://doi.org/10.1016/j.ijdrr.2020.101822>

536 Taylor JE, Poleacovschi C, Perez M (2022) Evaluating the climate change adaptation barriers of
537 critical infrastructure in rural Alaska. *Climate and Development* 0:1–12.
538 <https://doi.org/10.1080/17565529.2022.2123698>

539 The Denali Commission (2019) Statewide Threat Assessment: Identification of Threats from
540 Erosion, Flooding, and Thawing Permafrost in Remote Alaska Communities

541 U.S. Army Corps of Engineers, Alaska Division (2009) Alaska Baseline Erosion Assessment.
542 U.S. Army Corps of Engineers, Alaska Division, Anchorage, AK

543 U.S. Census Bureau (2021) Alaska. In: *Census.gov*.
544 <https://www.census.gov/geographies/reference-files/2010/geo/state-local-geo-guides-2010/alaska.html>. Accessed 15 Feb 2023

546 U.S. Department of the Interior (2022) Federal Partners to Hold First-Ever Tribal Consultations
547 on Alaska Fisheries Protection and Restoration.
548 <https://www.doi.gov/pressreleases/federal-partners-hold-first-ever-tribal-consultations-alaska-fisheries-protection-and>. Accessed 17 Jan 2023

550 Waldholz R, Anchorage AED- (2017) Climate change hits Alaska's rural water and sewer
551 systems. In: Alaska Public Media. <https://www.alaskapublic.org/2017/04/06/climate->
552 change-hits-alaskas-rural-water-and-sewer-systems/. Accessed 19 Jun 2022

553 Williams P, Kliskey A, Witmer F, et al (2018) Community-based observing networks and
554 systems in the Arctic: Human perceptions of environmental change and instrument-
555 derived data. *Regional environmental change* 18:547–559.
556 <https://doi.org/10.1007/s10113-017-1220-7>

557 Wilson NJ, Mutter E, Inkster J, Satterfield T (2018) Community-Based Monitoring as the
558 practice of Indigenous governance: A case study of Indigenous-led water quality
559 monitoring in the Yukon River Basin. *Journal of Environmental Management* 210:290–
560 298. <https://doi.org/10.1016/j.jenvman.2018.01.020>

561 Zufelt JE (2017) Congress on Technical Advancement 2017.
562 <https://doi.org/10.1061/9780784481011>

563 (2021a) Rural Alaska Housing Survey

564 (2016) The Resettlement of Isle de Jean Charles. U.S. Department of Housing and Urban
565 Development

566 (2021b) Dedoose

567

568