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Abstract
Visual Language Models (VLMs) have gained
significant popularity due to their remarkable
ability. While various methods exist to enhance
privacy in text-based applications, privacy risks
associated with visual inputs remain largely
overlooked such as Protected Health Informa-
tion (PHI) in medical images. To tackle this
problem, two key tasks: accurately localizing
sensitive text and processing it to ensure pri-
vacy protection should be performed. To ad-
dress this issue, we introduce VisShield (Vi-
sion Privacy Shield), an end-to-end framework
designed to enhance the privacy awareness of
VLMs. Our framework consists of two key
components: a specialized instruction-tuning
dataset OPTIC (Optical Privacy Text Instruc-
tion Collection) and a tailored training method-
ology. The dataset provides diverse privacy-
oriented prompts that guide VLMs to perform
targeted Optical Character Recognition (OCR)
for precise localization of sensitive text, while
the training strategy ensures effective adap-
tation of VLMs to privacy-preserving tasks.
Specifically, our approach ensures that VLMs
recognize privacy-sensitive text and output pre-
cise bounding boxes for detected entities, al-
lowing for effective masking of sensitive in-
formation. Extensive experiments demonstrate
that our framework significantly outperforms
existing approaches in handling private infor-
mation, paving the way for privacy-preserving
applications in vision-language models. Our
dataset and code can be found here.1.

1 Introduction

Vision Language Models (VLMs) (Alayrac et al.,
2022; Liu et al., 2024b; Bai et al., 2023), which
are developed following the impressive success of
LLMs, show a remarkable ability to solve image-
related tasks. Similar to text-only Large Language
Models (LLMs) (Dubey et al., 2024; Abdin et al.,

1https://github.com/tiejin98/VLM_
Deidentification

Figure 1: An illustrative example of medical imaging
containing protected health information (PHI), shown
in the top-left region, adapted from Rutherford et al.
(2021). The displayed information is synthetic and thus
remains unmasked for demonstration purposes.

2024), which pose potential privacy risks by mem-
orizing and outputting sensitive information from
training data (Mireshghallah et al., 2022; Huang
et al., 2022; Carlini et al., 2021), VLMs also suffer
from privacy risks because VLMs share the genera-
tion part with LLMs (Liu et al., 2024c).

To mitigate the privacy risks of text-only LLMs,
several methods are proposed. For example, Jang
et al. (2022) utilized knowledge editing to make
LLMs forget the private information. Moreover,
Zeng et al. (2024) proposed privacy restoration to
remove the private information in the input and
Yang et al. (2024a) leveraged an auxiliary LLM
to remove the sensitive information in the training
data. However, most of them focus on the text
while neglecting the potentially sensitive informa-
tion in visual input. For example, medical images
often contain protected health information (PHI),
which is considered sensitive information. We also
show an example of PHI in Fig. 1.

To tackle privacy issues arising from vi-
sion data, one promising solution is data de-
identification (Ribaric et al., 2016). De-
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Figure 2: The proposed de-identification pipeline. Our approach leverages instruction-tuned VLMs to first perform
targeted OCR on privacy-sensitive regions, followed by selective masking of identified confidential information.

identification is the process of removing or mask-
ing personally identifiable information (PII) from
datasets to ensure privacy. However, previous
works on image de-identification mainly focus on
faces, which aim at obscuring identifiable facial fea-
tures using generative models (Brkic et al., 2017;
Cao et al., 2021). There is a lack of work focusing
on textual private information in vision data. To the
best of our knowledge, only Presidio (Microsoft,
2023) attempts to de-identify such information.
However, Presidio lacks the flexibility to define
what constitutes private information and demon-
strates suboptimal performance in our experiments.

To address the lack of methods for de-identifying
textual private information in vision data, two key
tasks are required: accurately localizing sensitive
text and processing it to ensure privacy protection.
Therefore, in this paper, we propose an end-to-
end framework named VisShield (Vision Privacy
Shield), which leverages a Vision Language Model
to assist in the de-identification of vision data. Our
framework includes two components:
1) A specialized instruction-tuning dataset OP-
TIC (Optical Privacy Text Instruction Collection)
designed to teach VLMs how to handle privacy-
sensitive textual elements. This dataset includes
diverse, privacy-oriented instructions that guide
VLMs to perform OCR-based localization of pri-
vate text. We generate synthetic image-text pairs
with embedded fake private information, covering
both natural and medical image scenarios, ensuring

robust generalization. Our dataset comprises 50M
samples, providing a rich training resource for lo-
calizing sensitive text.
2) A tailored training methodology that enables
a VLM to accurately understand customized def-
initions of private information and apply de-
identification mechanisms effectively. We fine-
tuned a pre-trained VLM, Kosmos-2.5 (Lv et al.,
2023) on the OPTIC dataset to enable the VLM to
process sensitive text accurately.

Our framework pipeline as shown in Fig. 2 en-
ables the VLM to understand customized defini-
tions of private information and extract private in-
formation through OCR, which can then be masked
to ensure privacy. Extensive experiments demon-
strate that our VisShield achieves superior privacy-
aware OCR performance and leads to potential new
applications of VLMs. Overall, we summarize our
contribution below:

• To the best of our knowledge, we are the first
to address the problem of de-identification
with customized definitions of textual private
information in vision data.

• We collect a diverse instruction-tuning dataset,
which contains both text and image parts. This
dataset comprises up to 50M image-text pairs,
enabling VLMs to output OCR results for
identifying private information in images.

• We fine-tune Kosmos-2.5 to demonstrate that
even a small portion of our dataset suffices for
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Figure 3: Overview of our three-stage dataset gener-
ation pipeline: (1) leveraging large language models
(LLMs) to synthesize diverse instruction prompts, (2)
creating synthetic images containing private informa-
tion through controlled generation, and (3) producing
aligned instruction-label pairs by combining the gener-
ated prompts with the synthetic image dataset.

fine-tuning a pre-trained VLM to assist with
de-identification.

2 Related Work

Vinson Language Models With the help of
LLMs’ powerful reasoning abilities, Vision Lan-
guage Models (VLMs) have achieved significant
success in recent days. Different models, including
Llava (Liu et al., 2024b), BLIP2 (Li et al., 2023),
Flamingo (Alayrac et al., 2022), Qwen2-VL (Wang
et al., 2024), mini-GPT4 (Zhu et al., 2023) have
shown their impressive results among different
vision-related tasks, which contains but not limited
to Visual question answering (Biten et al., 2022;
Guo et al., 2023; Özdemir and Akagündüz, 2024;
Hu et al., 2024), image captioning (Rotstein et al.,
2024; Yang et al., 2024b) or visual grounding (Peng
et al., 2023; Yu et al., 2025). Among all tasks, doc-
ument OCR (Wei et al., 2025; Lv et al., 2023) and
its application, which outputs the bounding box
for texts in the images and answers the question
based on the texts, are the task most similar to ours,
where our task is based on the bounding boxes for
texts. However, none of the previous works have
utilized VLMs for de-identification to protect the
privacy of vision data. Our collected dataset and
model not only address this gap but also expand
the application scope of VLMs.

Instruction Tuning Instruction tuning is used
to make language models follow natural lan-
guage instructions and complete more complex
tasks (Ouyang et al., 2022; Wang et al., 2022; Wei
et al., 2021; Zhang et al., 2023a). Instruction tun-
ing improves the zero- and few-shot generalization
abilities of LLMs for both text-only LLMs, which
include ChatGPT (Achiam et al., 2023; OpenAI,
2023), Llama family (Touvron et al., 2023; Dubey
et al., 2024) and Flan family (Longpre et al., 2023;
Chung et al., 2024), to VLMs (Liu et al., 2024b,a)
with diverse vision prompts as additional inputs.

The quality of instruction tuning is highly depen-
dent on the quality of the tuning dataset (Zhou et al.,
2024). Therefore, previous works like Llava (Liu
et al., 2024b,a) leverage LLMs to expand the ex-
isting image dataset (Lin et al., 2014) to vari-
ous instruction-following datasets. In this work,
we use a similar pipeline based on the flickr30k
dataset (Plummer et al., 2015) and medical im-
ages (Rutherford et al., 2021).

De-identification De-identification is the pro-
cess of removing or obfuscating personal infor-
mation from data to prevent the identification of
individuals (Ribaric et al., 2016). For image de-
identification, most current methods aim at face
images, where replacing faces in images to pro-
tect privacy (Gross et al., 2006; Brkic et al., 2017;
Cao et al., 2021). However, to the best of our
knowledge, there is no previous work focused on
de-identifying burn-in pixels (texts in the images),
especially with the help of VLMs. Therefore, our
model fills the gap and extends the application
range of VLMs.

3 Methodology

3.1 De-identification Pipeline

As shown in Fig. 2, our full de-identification
pipeline contains prompting fine-tuned VLMs to
output OCR results. Then, we mask out the text us-
ing the top-left color of every bounding box in the
output. To achieve a successful de-identification
as shown in the pipeline, two key tasks: 1) accu-
rately localizing sensitive text and 2) processing
it to ensure privacy protection are required. To
perform these two tasks, we propose a framework
called VisShield and introduce two components
of VisShield: 1) a specialized dataset OPTIC for
instruction tuning and 2) a training methodology.
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You need to generate the instruction that guides MLLMs to do OCR for private information, your instruction should have: 
1. Define these private information: 
 You should use 1-2 sentences to define what private information is, and you should randomly choose one or more 

information including the following categories:
  [name, DOB, SSN, address, phone, email, medical record numbers, disease name] 
You should directly define what is private information like 'private information stands for names'. And you should the exact name 
I list here. Do not use the full name of information here. Please use diverse sentences to demonstrate the same meaning.

 2. Generate few-shot examples of the information:
 - Generate a random example with the information you choose 
 - Use the the generated example as few-shot examples
 - one example for every information you choose 

3. Contain the instruction:
 - must include a special token '' so that my model knows it should do OCR job.
 - You should not re-define what is private information here.
 - Please make the sentences as diverse as possible. 

Format the response without anything else: 
``` INSTRUCTION
 [The full prompt including the defined sentence of private information, few-shot examples and instruction] 
INFORMATION
 [Types of information you choose in the step 1 store in python list format like]```

Prompt Used to Generate Instruction Prompts

Figure 4: Template prompt utilized for instruction generation, implemented with GPT-4 and Claude-3.5 Sonnet.
This prompt guides the LLMs to synthesize diverse task-specific instruction prompts.

3.2 OPTIC Dataset
Our instruction-tuning approach aims to enable
VLMs to analyze and extract private information
precisely through OCR. In order to achieve this
goal, the OPTIC dataset contains in total of 50M
sample sizes with various instruction prompts and
images with private information.

3.2.1 Instruction Prompts
Config Numbers Options

Font 6 Arial, Times_New_Roman, Verdana,
courbi, DejaVuSans, NotoSansMono

Font Size N/A 3%-9% of the whole image
Font Color 9 White, Black, yellow, cyan, orange,

pink,
lightgreen, red, blue

Table 1: Detailed options of different generation con-
figurations. During generation, we will random sample
each configuration to ensure a diverse generation.

The instruction set encompasses four distinct
contextual categories, which we detail in the fol-
lowing sections.

Definition of Private Information The notion of
private information is inherently context-dependent
and domain-specific. For instance, numerical se-
quences in medical contexts may represent con-
fidential medical record identifiers, while similar
numerical patterns in other domains might have
no privacy implications. We explicitly incorpo-
rate contextual definitions within each instruction
prompt to enable VLMs to identify and process
private information across diverse scenarios accu-
rately. These definitions follow a precise format

(e.g., "Private information encompasses names and
email addresses") to eliminate ambiguity and en-
sure consistent interpretation by the model.

Few-shot Examples Providing abstract defini-
tions of private information alone is often insuffi-
cient for optimal VLM performance, as the for-
mat and structure of sensitive data vary signifi-
cantly across contexts. For instance, medical record
numbers follow institution-specific formats, while
phone number structures differ across national
boundaries. To enhance the instruction-following
capabilities of VLMs and improve OCR accuracy
for targeted information, we leverage in-context
learning (Dong et al., 2022; Zhang et al., 2023b) by
incorporating carefully curated few-shot examples
into our instructions. These examples are specifi-
cally designed to align with and contextualize the
provided definitions, enabling more robust recogni-
tion of diverse data formats.

Instruction The critical component of our in-
struction prompts is a targeted directive that guides
VLMs to extract OCR results exclusively from pri-
vate information. We leverage a specialized token
<ocr> for OCR tasks. This token is consistently in-
corporated across all instructions, serving as a stan-
dardized trigger that signals the fine-tuned VLM to
initiate OCR processing for privacy-relevant con-
tent within the prompted region.

Generation Building upon established method-
ologies (Liu et al., 2024b,a), we employ state-
of-the-art large language models to generate di-
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verse instruction prompts. Specifically, we uti-
lize GPT-4 (OpenAI) and Claude-3.5 Sonnet (An-
thropic), which represent the current frontier of
language model capabilities. Our framework en-
compasses eight distinct categories of sensitive in-
formation, ranging from personally identifiable in-
formation (PII), such as email addresses and Social
Security Numbers (SSN), to protected health infor-
mation, including disease classifications. A com-
prehensive taxonomy of these information types
is presented in Table 2. We developed structured
prompts that direct these LLMs to randomly sample
from these information categories, generate few-
shot examples, and produce diverse task-specific
instructions. The complete prompt template used
for instruction generation is illustrated in Fig. 4,
with a representative example of a generated in-
struction prompt shown in Appendix Fig. 7. We
have a total of 2500 different instruction prompts,
with 1250 generated by GPT-4o and 1250 gener-
ated by Claude-3.5-Sonnet.

Type of Information Number Example

Name 16300 Joe Dohn
DOB 16276 18 Jun 1983
SSN 16350 071-30-5000
Phone Number 16271 555-304-8389
Address 16270 086 Holt Summit, CT 58671
Email 16149 54jmz@hotmail.com
Medical Numbers 16243 MRN93987011
Disease Name 16274 Migraine

Table 2: Examples of information types we consider in
this paper. We consider 8 types with balanced numbers
of size in each type. All the information is fake.

3.2.2 Synthetic Images
To fine-tune the VLMs, we need images containing
private information and bounding box annotations
for the private information in images. However,
since we are the first to address the challenge of
textual private information in images, there is a lack
of existing image datasets. In order to obtain the
dataset, we create images with private information
based on the base image datasets.
Base Image Dataset We overlay private informa-
tion onto the base image dataset to generate vision
data, where the base image dataset plays an impor-
tant role. We hope the base image dataset includes
diverse images to enhance generalization ability.
Therefore, we first utilize the existing dataset that
already has diverse images from image caption do-
mains. In detail, we use the flickr30k dataset (Plum-
mer et al., 2015) as the first part of the base image
dataset. Additionally, we include the medical im-
ages in our base image dataset since the medical

area is the most important application area for de-
identification. Specifically, we use a public medical
dataset containing various types of medical images
from Rutherford et al. (2021).
Generation For the generation of our synthetic
dataset, we first sample one base image from our
base image datasets and then overlay the private
information on the sampled image. In detail, after
sampling the image, we determine the amount of
private information to be overlaid on the sampled
image by randomly selecting an integer between
four and ten. Then for each piece of information,
we randomly decide the type of the information
and generate fake information using the Faker pack-
age (Joke and contributors, 2024). Then, we print
the generated fake information on the sampled im-
age using PIL package (Clark and contributors,
2024), which also provides the ground truth bound-
ing box information for the text. While overlaying
the information on the sampled image, we use dif-
ferent fonts, font sizes, and colors to ensure the
diversity of generated text. The details of the gen-
eration configuration can be found at Table 1. In
total, we generate 20,000 images with more than
130,000 bounding boxes.

3.2.3 Label Generation
So far, we have introduced the input part of our
dataset. However, to fine-tune VLMs, we also need
labels to optimize the loss function. Our target is to
make VLMs output the OCR results for the defined
private information. The labels should differ based
on the same instruction prompt with different im-
ages or for different instruction prompts applied to
the same image. Therefore, we first randomly sam-
ple one prompt from instruction prompts and one
image from the synthetic image dataset to form the
full input and then generate the label corresponding
to the full input. We provide bounding boxes only
for the private information types that are used to
define private information in the instruction to gen-
erate labels. For example, if the instruction prompt
specifies that ’private information only stand for
names’, then we will only provide bounding box
for names in the given image as the label. If there
is no such information in the image, the answer
will be ’No private information’. If there is such in-
formation, the answer will be the concatenation of
each bounding box which is expressed as <bbox>
< xtl > < ytl > < xbr > < ybr > </bbox>. The
coordinates denote the top-left and bottom-right
corners of the bounding box.
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Model Name DOB SSN Email Phone Number Address Medical Number Disease Name

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Evaluation Set Generated by Training Base Image Dataset

Full 0.9733 0.9134 0.9849 0.8984 0.9781 0.9103 0.9719 0.9482 0.9736 0.9045 0.9809 0.9615 0.9762 0.8626 0.9426 0.8920
LoRA 0.9728 0.9194 0.9849 0.9196 0.9714 0.9205 0.9601 0.9419 0.9801 0.9144 0.9849 0.9690 0.9714 0.8898 0.9501 0.8782

Presidio N/A 0.0085 N/A 0.0074 N/A 0.0067 N/A 0.0119 N/A 0.0072 N/A 0.0141 N/A 0.0074 N/A 0.0067

Evaluation Set Generated by COCO

Full 0.9708 0.9058 0.9903 0.9472 0.9767 0.8997 0.9693 0.9338 0.9838 0.9017 0.9703 0.9632 0.9637 0.8706 0.9565 0.8805
LoRA 0.9713 0.9075 0.9818 0.9083 0.9859 0.9157 0.9679 0.9369 0.9772 0.9097 0.9802 0.9657 0.9818 0.8995 0.9661 0.8764

Presidio N/A 0.0067 N/A 0.0060 N/A 0.0054 N/A 0.0085 N/A 0.0057 N/A 0.1201 N/A 0.0057 N/A 0.0052

Evaluation Set Generated by ADE-20K

Full 0.9499 0.9075 0.9842 0.8849 0.9576 0.8918 0.9718 0.9252 0.9481 0.9200 0.9564 0.9508 0.9818 0.8633 0.9606 0.8863
LoRA 0.9300 0.8921 0.9769 0.9025 0.9740 0.8913 0.9496 0.9282 0.9412 0.8984 0.9513 0.9453 0.9725 0.8655 1.0000 0.8905

Presidio N/A 0.0027 N/A 0.0024 N/A 0.0021 N/A 0.0033 N/A 0.0022 N/A 0.0048 N/A 0.0023 N/A 0.0021

Evaluation Set Generated by RITE

Full 0.9836 0.9251 0.9633 0.9093 0.9863 0.9149 0.9842 0.9449 0.9911 0.9176 0.9910 0.9751 0.9902 0.8777 1.0000 0.9058
LoRA 0.9938 0.9723 0.9851 0.9785 0.9843 0.9953 0.9689 0.9669 0.9109 0.9304 0.9266 0.9491 0.9210 0.9760 0.8966 0.9118

Presidio N/A 0.0077 N/A 0.0070 N/A 0.0066 N/A 0.0096 N/A 0.0073 N/A 0.0126 N/A 0.0068 N/A 0.0062

Table 3: Comparative analysis of model performance across information categories, model architectures, and
evaluation datasets. We evaluate using randomly sampled instruction prompts from the training set. Results
demonstrate that our fine-tuned models achieve strong generalization capabilities, with full model fine-tuning
consistently outperforming other adaptation strategies.

3.3 Training on OPTIC
While the OPTIC dataset provides a rich foundation
for training privacy-aware VLMs, effectively lever-
aging it to improve the model’s capability remains
a significant challenge. To address this challenge,
we introduce our training strategy and our strategy
is built upon three key principles:
Efficiency While our dataset contains 50M sam-
ples, training on the full dataset is computationally
expensive and unnecessary. Instead, we demon-
strate that training on a small subset of 100K
samples is sufficient to significantly enhance the
model’s de-identification capabilities. This ap-
proach allows us to reduce resource requirements.

Knowledge Transfer Instead of training a VLM
from scratch, we fine-tune Kosmos-2.5 (Lv et al.,
2023), a pre-trained multimodal model that inher-
ently supports OCR extraction from images. How-
ever, to make it privacy-aware, our fine-tuning pro-
cess could improve its ability to selectively extract
only privacy-relevant text rather than all OCR con-
tent, and refine its bounding box localization for
privacy-sensitive elements.
Adaptation Strategies We explore two fine-
tuning strategies to integrate privacy-awareness
into the model. The first is full fine-tuning, where
the entire model is fine-tuned on privacy-sensitive
OCR tasks, while the second is LoRA (Hu et al.,
2021), a parameter-efficient approach that updates
only a limited set of trainable parameters, reducing
memory consumption.

With our training strategy, we ensure that our

end-to-end framework learns to effectively identify,
localize, and process private textual information.

4 Experiments

In this section, we provide our experimental results
to show the robustness of fine-tuned models. We
start with the experimental setting at first.

4.1 Experimental Setting

Dataset To evaluate the robustness and general-
ization ability of the fine-tuned model, we test the
fine-tuned models with five different datasets: 1)
Images generated from the same base image dataset
and the same instruction prompts in the training set,
2) Images from the same base image dataset and
different instruction prompts from the training set,
3) Images from different base image dataset and
different instruction prompts from the training set,
4) Images from different base image dataset with
extra private information (not in 8 types of private
information considered in training) and different
instruction prompts from the training set, and 5)
real-world images, which is annotated by human as
described in (Orekondy et al., 2018). We will pro-
vide a more detailed introduction to these datasets
in the following section.
Training Parameters For full fine-tuning, we use
an epoch of 5, learning rate 2e-5 with batch size
16. For LoRA, following previous work (Sun et al.,
2023), we use a larger learning rate 3e-4 and a
larger epoch 10 with the same batch size. For both
trainings, we use AdamW (Loshchilov, 2017) as
the optimizer. All training methods are conducted
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Model Name DOB SSN Email Phone Number Address Medical Number Disease Name

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Instruction Prompts Generated by Gemma1.5

Full 0.9493 0.9008 0.9636 0.9013 0.9842 0.9075 0.9537 0.9290 0.9114 0.9080 0.9591 0.9644 0.9760 0.8586 0.9247 0.8973
LoRA 0.9561 0.9791 0.9764 0.9491 0.9721 0.9798 0.9669 0.9767 0.8960 0.9121 0.9177 0.9429 0.9130 0.9721 0.8815 0.8948

Presidio N/A 0.0085 N/A 0.0074 N/A 0.0067 N/A 0.0119 N/A 0.0072 N/A 0.0141 N/A 0.0074 N/A 0.0067

Instruction Prompts Generated by Human

Full 0.9420 0.9247 0.9943 0.9094 0.9723 0.9211 0.9129 0.9353 0.9842 0.9010 0.9823 0.9613 0.9511 0.8749 0.9746 0.9210
LoRA 0.9758 0.9667 0.9847 0.9499 0.9799 0.9560 0.9414 0.9877 0.9196 0.9251 0.9247 0.9447 0.9333 0.9675 0.8751 0.8911

Presidio N/A 0.0085 N/A 0.0074 N/A 0.0067 N/A 0.0119 N/A 0.0072 N/A 0.0141 N/A 0.0074 N/A 0.0067

Table 4: Performance comparisons for different types of information, different models, and different instruction
prompts. The evaluation image set is chosen for the evaluation set generated by the training base image dataset.

Model Name DOB SSN Email Phone Number Address Medical Number Disease Name

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Instruction Prompts Generated by Gemma1.5

Full 0.9483 0.9062 0.9625 0.8985 0.9771 0.9000 0.9309 0.8990 0.9245 0.9090 0.9782 0.9625 0.9464 0.8673 0.8586 0.8942
LoRA 0.9852 0.9689 0.9851 0.9636 0.9576 0.9751 0.9635 0.9749 0.9017 0.9078 0.9105 0.9309 0.9100 0.9669 0.8915 0.8906

Presidio N/A 0.0067 N/A 0.0060 N/A 0.0054 N/A 0.0085 N/A 0.0057 N/A 0.1201 N/A 0.0057 N/A 0.0052

Instruction Prompts Generated by Human

Full 0.9586 0.9027 0.9928 0.9042 0.9636 0.9153 0.9234 0.9389 0.9697 0.9132 0.9129 0.9626 0.9391 0.8786 0.9139 0.8902
LoRA 0.9761 0.9826 0.9879 0.9621 0.9602 0.9564 0.9695 0.9727 0.9026 0.9094 0.9139 0.9337 0.9225 0.9668 0.8980 0.9004

Presidio N/A 0.0067 N/A 0.0060 N/A 0.0054 N/A 0.0085 N/A 0.0057 N/A 0.1201 N/A 0.0057 N/A 0.0052

Table 5: Performance comparisons for different types of information, different models, and different instruction
prompts. The evaluation image set is chosen for the evaluation set generated by COCO.

on a single Nvidia Tesla A100 80GB GPU.
Metrics In this paper, we mainly consider two dif-
ferent metrics to measure the quality. Following
previous works (Olejniczak and Šulc, 2022; Ren
et al., 2016), we use F1 to evaluate the quality of
OCR results for defined private information and
use the Intersection over Union (IoU) to evaluate
the quality of detection, which are both important
for the following mask out procedure.
Research Questions In this section, we mainly
focus on three different research questions about
the generalization ability of the fine-tuned Model:
1) Whether fine-tuned VLM is stable for different
images, 2) Whether fine-tuned VLM is stable for
various instructions and 3)Whether the fine-tuned
VLM is stable for new information types. Besides,
Our experimental results also show that our fine-
tuned VLM performs well even in real-world data
and we put the detailed results in Appendix.

4.2 RQ1: Whether Fine-tuned VLM is Stable
for Different Images

To answer this research question, we use different
base image datasets to generate the evaluation set.
We only provide the results for our method in most
cases. In detail, we consider using: 1) our training
base image dataset, 2) COCO (Lin et al., 2014),
3) ADE20K (Zhou et al., 2017), and 4) RITE (Hu
et al., 2013) to generate evaluation image datasets,

ensuring comprehensive scenarios from city scenes
to medical images considered in the experiments.
We generate 1500 images for each dataset with
the same generation methods but more generation
configurations. We compare our model with Pre-
sidio (Microsoft, 2023), which first uses an OCR
engine to extract all possible lines of text from
an image. It then applies a local recognizer. The
results are shown in Table 3. The F1 score for Pre-
sidio is N/A because it cannot output OCR results.
We have the following observations:
1) The previous tool Presidio shows a bad perfor-
mance. Since we cannot customize the private
definition for Presidio, the performance of Presidio
is highly random for different types of information.
2) Our fine-tuned model shows a very good per-
formance with a mean IoU larger than 0.9. And
this good performance remains for various image
datasets, showing the robustness of our method.
3) There is no clear winner for full fine-tuning and
LoRA. Though the LoRA model wins more times,
this winning is marginal given the good perfor-
mance of both models.

4.3 RQ2: Whether Fine-tuned VLM is Stable
for Various Instructions

To answer the research question related to various
instructions, we generate instruction prompts that
are different from our training set by involving hu-
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man writers and Gemini (Team et al., 2023), and
then pair the new prompts with three image datasets
we used before with one-shot examples. We gen-
erate 1500 text-image pairs for model evaluation,
and the results are shown in Table 4 and Table 5.
We have the following observations:
1) Compared with the results in Table 3, the perfor-
mance of both full fine-tuning and LoRA exhibits
a slight decrease. However, this decrease is mini-
mal, and the fine-tuned models continue to deliver
strong performance.
2) Even when using a different image dataset
and Instruction Prompts together, our models
still achieve strong performance for the de-
identification task.

4.4 RQ3: Whether Fine-tuned VLM is Stable
for New Information Type.

Now, we conduct experiments to test the perfor-
mance of fine-tuned VLM on new information
types. Here, we focus on two new types of in-
formation: 1) phone numbers with a format of 11
digits and 2) passport number that begins with a let-
ter and ends with eight numbers. We use a similar
method to generate the evaluation set and we re-
generate the instruction prompts with the one-shot
prompt to ask models to output OCR results for
new types of information. We present our results
in Table 2. We find that:
1) Overall, our fine-tuned models continue to
demonstrate strong performance when incorporat-
ing new types of information, further highlighting
their robustness and reliability.
2) Compared to 11-digit phone numbers, the per-
formance on passport numbers is lower because
our models had not previously encountered the for-
mat of passport numbers. In contrast, earlier phone
numbers share a similar pattern with the new ones,
aiding the model’s performance.

4.5 Ablation Study
In this section, we provide a comparison of the
performance of one-shot prompts and zero-shot
prompts. More ablation study results can be found
in the Appendix. Here, we consider the 11-digit
Phone Number and Passport Number as in Sec-
tion 4.4, and the results for various datasets are
presented in Fig. 5. We found that:
1) Compared with the one-shot prompt, using the
zero-shot prompt can lead to better performance
across different datasets, highlighting the impor-
tance of few-shot examples.

Model 11-Digit Phone Number Passport Number

F1 IoU F1 IoU

Evaluation Set Generated by Training Base Image Dataset

Full 0.9803 0.8724 0.8887 0.8596
LoRA 0.9803 0.8887 0.8725 0.8597

Presidio N/A 0.0071 N/A 0.0064

Evaluation Set Generated by COCO

Full 0.9796 0.8679 0.8920 0.8625
LoRA 0.9023 0.8167 0.8776 0.8583

Presidio N/A 0.0086 N/A 0.0054

Evaluation Set Generated by RITE

Full 0.9910 0.8761 0.9271 0.8758
LoRA 0.8678 0.7463 0.8892 0.8700

Presidio N/A 0.0075 N/A 0.0069

Table 6: Performance comparisons for new types of
information, different models, and different evaluation
image sets.

Table 1

One-Shot Phone 
Number

Zero-Shot Phone 
Number

One-Shot 
Passport Number

Zero-Shot 
Passport Number

Base 0.8724 0.8523 0.8596 0.6875

CoCo 0.8679 0.8544 0.8625 0.7122

RITE 0.8761 0.8750 0.8758 0.7292

0

0.25

0.5

0.75

1

Base CoCo RITE

1-Shot Phone Number 0-Shot Phone Number
1-Shot Passport Number 0-Shot Passport Number

1

Figure 5: IoU performance comparison with different
Dataset on 11-digit Phone Number and Passport Num-
ber. The experiments are on the full fine-tuned model.

2) The performance gap between the two prompts
is larger when we consider passport numbers. This
is because the model has seen similar phone num-
bers during training, but it has never encountered
anything similar to passport numbers before. This
highlights the importance of few-shot examples.

4.6 Comparison with OCR
In previous experiments, we have shown the ef-
fectiveness of fine-tuned VLM. However, to solve
the problem, there is another training-free method,
which first uses an OCR to extract the text and
uses another language model to analyze whether
we should mask it or not. To test the performance
of this kind of method, we compare our fine-tuned
model with Tesseract (?) as OCR and Llama2-
7B (Touvron et al., 2023) as the language model.
We present the results in Table 7 on the name cat-
egory with the test set generated by Base Image
Dataset. From the results, we could see that our
end-to-end method offers a much better perfor-
mance. Besides, using OCR with LLM cannot
deal with challenging scenarios such as detecting
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private information in a paragraph.

Method F1 IoU

Ours-Full 0.9733 0.9134
Tesseract + Llama2-7B 0.6961 0.6728

Table 7: Comparison of OCR plus LLM Methods with
our method on F1 and IoU Metrics on the name category
and Base Image Dataset.

4.7 Performance on challenging scenarios
In the real world, de-identify the private informa-
tion could be even harder due to the different rea-
sons such as hand-written data or private informa-
tion in the sentence. As mentioned in the previous
section, simply using OCR and LLMs can hardly
deal with it. Therefore, to test the further general-
ization of the proposed method. We mainly conduct
the following two experiments:
Experiments on hand-written texts. To test if the
fine-tuned model could recognize the hand-written
texts, we form a small-scale evaluation set with 20
images from COCO. Each image contains hand-
written text with phone number,email and SSN.
The results of full fine-tuned model on these images
can be found at Table 8. From the result, we could
see that the fine-tuned model could still perform
very well, which shows the effectiveness.
Experiments on sentence. To test if the fine-tuned
model could recognize private information inside
the sentence without affecting the other part. In
Fig. 6, we show a case to demonstrate how fine-
tuned model performs such scenario, where the
private information is defined as phone numbers.
From the case, we could see that fine-tuned model
successfully recognize the private information in
the sentence.

Category F1 IoU

Phone Number 0.9439 0.9042
SSN 0.9377 0.9101
Email 0.8913 0.8769

Table 8: Performance on full fine-tuned model for im-
ages with hand-written text.

5 Conclusion

In conclusion, this work presents a novel approach
to de-identify textual information in visual data by
leveraging the power of VLMs. We generate a com-
prehensive instruction-tuning dataset with diverse
images and instruction prompts. By fine-tuning

Figure 6: An example of de-identification of private
information in the sentence. This successful example
shows that flexibility of our method.

Kosmos-2.5 with this comprehensive instruction-
tuning dataset, we demonstrated that VLMs can
effectively identify and mask private information.
Our results show strong generalization and robust-
ness across different datasets and real-world sce-
narios, laying a foundation for safer integration of
VLMs into privacy-sensitive applications.

Limitation

While our approach demonstrates strong perfor-
mance, it has two key limitations. First, the
model’s effectiveness depends on the quality of the
instruction-tuning dataset, and while we have en-
sured diversity, rare or highly domain-specific pri-
vate information formats may still pose challenges.
Second, our method relies on OCR accuracy for
text extraction, meaning that errors in detecting or
recognizing text in low-quality or distorted images
could affect de-identification performance.
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A Example of Instruction prompt

B More Experiments

In this section, we provide more experimental re-
sults to support our conclusion.

B.1 mAP Results
Here, we provide the results for mean Average
Precision (mAP) to further demonstrate the results
of our experiments. Following previous works in
detection, we consider a correction if IoU > 0.5.
And the results for different images are provided in
Table 10 and Table 11. The results in both exper-
iments show that our fine-tuned models also have
a very good mAP result, which is reasonable since
our IoU results are very high.

B.2 Experiments on Real-world Data
In this section, we use real-world data to test the
robustness of the fine-tuned models. In detail, we
use images from (Orekondy et al., 2018), which
contains real-world images from different scenar-
ios. And human annotators will annotate the im-
ages with private information and the correspond-
ing bounding box information. More specifically,
we focus on names and phone numbers. Then, we
use instructions that define private information as
names and phone numbers to test the performance
on real-world data. Our results can be found in
Table 9. Our experimental results show that even
though the performance drops, our full fine-tuned
model can also perform well in real-world data,
showing good robustness of the model fine-tuned
with our dataset.

Model Phone Number Name

F1 mAP F1 mAP

Full 0.7001 0.5439 0.7229 0.6037
Presidio N/A 0.0002 N/A 0.0003

Table 9: Performance comparisons for different types
of information, different models on a real-world dataset

B.3 More ablation studies
In this section, we provide more results of our ab-
lation studies. In detail, we provide the results
for different numbers of few-shot examples and
different training sizes.

For the different number of few-shot examples,
we consider using instruction prompts as well as
few-shot examples written by human. We focus on

the Medical Numbers and Email using CoCo as the
base image dataset. And the results are shown in
Fig. 8. We can see that using few-shot examples
can boost the performance. However, without using
few-shot examples, we can still get a decent result.

In Fig. 9, we present our results for different
sizes of training datasets for using CoCo as the base
image dataset and instructions from the training set.
From the figure, we can observe that using 100k
training pairs is more than enough to get a good
result, showing the potential ability to use VLMs
to de-identify data.

B.4 Precision and Recall Results
In the paper, we mainly focus on the F1, which is
the balanced metric that considers both precision
and recall. To provide a more comprehensive result,
we also report precision and recall for the Base
Image setting. The results are shown in Table 12.

B.5 Example on Real-world Dataset
In Fig. 10, we present an example of applying
our fine-tuned model to the real-world dataset.
From the figure, we can see that the names and
phone numbers are correctly masked by our de-
identification pipeline.
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INSTRUCTION
Private information includes SSN, address, and medical record numbers, as they are 
sensitive and often used for identity verification or medical purposes.

Examples:
- SSN: 123-45-6789
- Address: 456 Elm Street, Apt. 12B, Springfield, IL 62704
- Medical Record Number: MRN-9876543210

<ocr> Extract and capture any visible private information in the image, focusing on 
elements like the specified codes, addresses, or identifiers.

INFORMATION
["SSN", "address", "medical record numbers"]

Generated Instruction Prompt

Figure 7: One instruction prompt example generated by GPT-4o.

Model Name DOB SSN Email Phone
Number

Address Medical
Number

Disease
Name

Evaluation Set Generated by Training Base Image Dataset

Full 0.9478 0.9479 0.9482 0.9482 0.9480 0.9484 0.9478 0.9492
Presidio 0.0007 0.0006 0.0005 0.0006 0.0007 0.0012 0.0004 0.0004

Evaluation Set Generated by COCO

Full 0.9470 0.9472 0.9472 0.9472 0.9473 0.9470 0.9468 0.9467
Presidio 0.0006 0.0005 0.0005 0.0006 0.0006 0.0011 0.0005 0.0004

Evaluation Set Generated by ADE-20K

Full 0.9196 0.9196 0.9198 0.9198 0.9200 0.9199 0.9197 0.9196
Presidio 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003 0.0001 0.0001

Evaluation Set Generated by RITE

Full 0.9394 0.9388 0.9398 0.9396 0.9399 0.9397 0.9398 0.9400
Presidio 0.0003 0.0003 0.0003 0.0003 0.0003 0.0007 0.0003 0.0003

Table 10: Comparative analysis of model performance across information categories, model architectures, and
evaluation datasets using mAP as the metric.

Model Name DOB SSN Email Phone Number Address Medical Number Disease Name

Instruction Prompts Generated by Gemini1.5

Full 0.8933 0.8932 0.8932 0.8930 0.8931 0.8929 0.8928 0.8933
Presidio 0.0007 0.0006 0.0005 0.0006 0.0007 0.0012 0.0004 0.0004

Instruction Prompts Generated by Human

Full 0.9221 0.9229 0.9234 0.9224 0.9231 0.9233 0.9223 0.9233
Presidio 0.0006 0.0005 0.0005 0.0006 0.0006 0.0011 0.0005 0.0004

Table 11: Performance comparisons for different types of information, different models, and different instruction
prompts. The evaluation image set is chosen to evaluation set generated by the training base image dataset using
mAP as the metric.
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Figure 8: IoU performance comparison with different
numbers of few-shot examples.

Figure 9: IoU performance comparison with different
sizes of training dataset

Information Precision Recall

Address 0.9807 0.9812
Email 0.9653 0.9786
SSN 0.9839 0.9928
Phone 0.9621 0.9855
DOB 0.9731 0.9969
Med Num 0.9619 0.9910
Name 0.9629 0.9841
Disease 0.9097 0.9427

Table 12: Recall and precision of full fine-tuned model
with Base Image setting.

Figure 10: A real-world image example that was de-
identified by our pipeline.
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