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PROTEIN DESIGN

Scalable protein design using optimization in a

relaxed sequence space

Christopher Frank?, Ali Khoshouei'?, Lara Fup'?, Dominik Schiwietz"?, Dominik Putz'?,
Lara Weber*?, Zhixuan Zhao®, Motoyuki Hattori®, Shihao Feng®, Yosta de Stigter*?,

Sergey Ovchinnikov®®*, Hendrik Dietz"%*

Machine learning (ML)-based design approaches have advanced the field of de novo protein design,
with diffusion-based generative methods increasingly dominating protein design pipelines. Here, we
report a “hallucination”-based protein design approach that functions in relaxed sequence space,
enabling the efficient design of high-quality protein backbones over multiple scales and with broad scope
of application without the need for any form of retraining. We experimentally produced and
characterized more than 100 proteins. Three high-resolution crystal structures and two cryo-electron
microscopy density maps of designed single-chain proteins comprising up to 1000 amino acids
validate the accuracy of the method. Our pipeline can also be used to design synthetic protein-protein
interactions, as validated experimentally by a set of protein heterodimers. Relaxed sequence
optimization offers attractive performance with respect to designability, scope of applicability for
different design problems, and scalability across protein sizes.

he landscape of protein design has been

fundamentally transformed by machine

learning (ML) methods (7-10). Structural

prediction networks such as AlphaFold2

(AF2) (11), ESMFold (12), and RoseTTAFold2
(13) enable a variety of protein design tasks by
accurately predicting protein structures from
input sequences (17-13), which enables filtering
of candidate designs. Generative models based
on diffusion and flow matching (6, 8, 14-18),
such as RFDiffusion (19) and Chroma (20),
have gained substantial popularity for their
ability to create de novo protein designs for
various design tasks (19, 20).

An alternative approach considers leverag-
ing structure prediction networks such as AF2
through iterative sequence evolution in a pro-
cess that was previously coined “hallucination”
(3, 4, 7). However, slowly converging random
search algorithms (3, 4, 7) and challenges with
implementing robust gradient descent-based
optimization in a discrete sequence space (21)
have hindered expanding this approach to
more complex protein design tasks. Here, we
hypothesized that gradient descent-based hal-
lucination toward target objectives could be
improved by operating beyond the confines of
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discrete (i.e., physically realistic) protein se-
quence space to facilitate smoother and more
direct optimization transitions (Fig. 1A).

To implement this “relaxed hallucination”
process, we expanded upon prior work that
facilitated backpropagation through the AF2
network (21, 22). In this framework, a sequence
is input into the network and a loss based on a
target objective is calculated using the result-
ing predicted structure. The loss is then back-
propagated with respect to the input sequence
and a gradient is obtained. This gradient is
used to update the input sequence toward the
target objective. Updating the sequence with
the obtained gradient usually does not produce
a one-hot-encoded sequence, but rather a logit-
like or position-specific scoring matrix (PSSM).
These “relaxed” representations are physically
unrealistic because each residue position is pop-
ulated seemingly by a superposition of all the
20 amino acids, each with a specific numeral
weight. Previous methodologies commonly
forced the updated, relaxed sequence back
into a real-world one-hot-encoded sequence
representation by applying argmax operations
(21, 23), causing substantial deviations away
from the optimal gradient direction (Fig. 1A,
top). In our approach, which we call relaxed se-
quence optimization (RSO), we directly return
the updated relaxed sequence back into the
structure prediction network (Fig. 1A, bot-
tom, and movies S1 and 2) and iterated until
convergence.

RSO exhibited rapid and stable convergence
(fig. S1A and movies S1 to S4) and improved
performance relative to previous protocols
(8, 2I). By incorporating loss functions to
numerically measure the differences between
predicted designs and targets, RSO thus en-
ables rapid prototyping for various target
properties without the need for retraining.
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We found that RSO can converge along com-
plex gradients, allowing the design of intricate
design problems, including binder design and
functional site scaffolding, and enabling the
design of large single-chain proteins compris-
ing up to 1000 amino acids (Fig. 1B).

Once RSO is converged, our pipeline discards
the relaxed sequence and feeds the converged
backbone geometry to the protein message-
passing neural network (ProteinMPNN) mod-
ule (5) to generate candidate protein sequences
for the converged backbone geometry (Fig. 1C).
ProteinMPNN is a key component because it
was specifically trained to design protein se-
quences that will also fold experimentally into
a given backbone structure. The ProteinMPNN-
generated sequences are handed to structure
prediction networks such as ESMFold or AF2
to repredict structures, which are then tested
for agreement with the converged backbone
geometry initially produced by RSO. This
pipeline facilitates the swift engineering of
de novo-designed proteins by simply adjust-
ing the loss function to address user-defined
design tasks.

Computational benchmarking

To evaluate the quality of RSO-designed back-
bones, we conducted designability tests (9, 19)
by generating sequence sets with ProteinMPNN
for RSO-designed backbones and repredict-
ing the encoded structure using ESMFold. We
assessed similarity to the initial RSO back-
bones by calculating the root mean square
deviation (RMSD) and the template-modeling
(TM) score (24) and then selecting the best
matching sequence.

‘We RSO-designed protein chains of increas-
ing lengths, from 100 amino acids up to 1000
amino acids, with 100 candidate backbones
per length. Our loss function optimized for con-
fidence, a small radius of gyration, and a high
number of intrachain contacts, and reduced
helical content. For each backbone design, we
created eight ProteinMPNN candidate sequences
(using the soluble weights) (25), which were
then (re)predicted with ESMFold (Fig. 2, A to
C) and AF2 single sequencing (fig. S1B).

In our tests, RSO produced designs with a
lower RMSD (indicating better matching)
relative to RFDiffusion, particularly for larger
protein sizes, as evaluated by ESMFold (Fig. 2B).
RSO successfully generated promising designs
for proteins as large as 1000 amino acids with
median TM scores of 0.89 for 1000 amino acids
(Fig. 2C). Although RFDiffusion performed well
for smaller proteins, it faced challenges with
producing viable backbones beyond 600 amino
acids. In these tests, we also observed a trend in
which the RMSD for larger proteins increased
when using AF2 single sequence for repre-
dicting (fig. S1B), whereas this trend was absent
in ESMFold repredictions. By supplementing
information about the target backbone as an
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Fig. 1. Schematics of the protein design pipeline. (A) Schematic representation how the free gradient descent in RSO enables an efficient search for minima
of the loss function. (B) Exemplary design tasks that can be accomplished using the RSO method. (C) Schematic view of the design process consisting of backbone
design, sequence generation with ProteinMPNN, and candidate design filtering with ESM-Fold/AF2.

initial guess (26, 27) to AF2’s Evoformer module
and by invoking “big bang initialization” (28),
AF2 single sequencing could also (re)predict the
larger proteins with improved quality, approach-
ing the level of ESMFold (Fig. 2D).

We also tested whether the RSO relaxed se-
quences generated together with a converged
backbone could be used directly for creating
candidate sequences. Simply converting the
relaxed sequences into one-hot-encoded se-
quences using argmax operations resulted in
strong deviations of the repredicted structures
from the target backbones (fig. S1C). Using
more sophisticated approaches such as simu-
lated annealing from the relaxed sequences
improved the in silico success rates. This means
that the in silico structures repredicted from the
candidate sequences matched better to the in-
itial backbone design, but the experimental
testing of the sequences produced by anneal-
ing from relaxed sequences showed poor suc-
cess rate (fig. S1D), which is consistent with
previous work on AF2-only designed sequences
(3, 4). AF2 structure predictions exhibited a
high tolerance toward mutations (fig. S1E),
which could conversely limit their ability to
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distinguish between valid and adversarial se-
quences. The inclusion of a component such
as ProteinMPNN, which is specifically con-
structed for creating valid sequences for a
given input backbone, thus improves the over-
all experimental success.

The RSO-generated proteins are structur-
ally diverse (fig. S1F) and mostly globular (fig.
S2A). The addition of a helical loss can reduce
a bias toward generating helical secondary
structures (Fig. 2E). To investigate the novelty
of the proteins, we compared them with the
entirety of currently known structures as pro-
vided by the Protein Data Bank (PDB) using
foldseek (29). As in previous methods (19), for
small proteins, there was significant similar-
ity to existing proteins in the PDB, whereas
for larger designs, there were fewer and fewer
homologs in the PDB, suggesting that RSO
may leverage AF2 generalization beyond the
known protein space to create truly new folds
(Fig. 2F and fig. S2B). Regarding computational
efficiency, the use of back-propagation in RSO
increases the time that it takes to complete
one backbone design iteration for larger de-
signs relative to RFDiffusion (fig. S2C) (how-
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ever, note that RFDiffusion had difficulties
with creating valid designs beyond 600 ami-
no acids). In terms of the success rate for gen-
erating designs with <3 A RMSD to their
target, RSO and RFDiffusion were similar-
ly graphics processing unit (GPU) efficient
(fig. S2D).

We also tested RSO on more complex design
tasks, including discontinuous site scaffolding
using a previously developed scaffolding prob-
lem benchmark set (19) (Fig. 2G). We used the
same settings for all designs and adapted the
same success criterion of whole backbone
RMSD <2.0 A and motif RMSD <1.0 A com-
bined with having high confidence [predicted
local-distance difference test (pLDDT) >85]. We
chose the maximum length of each designed
loop between motifs and kept the full sequence
of the scaffolded structural elements constant
(one-hot) for simultaneous design of discrete
amino acids and relaxed sequences. We used
two design approaches, called “fixed” or “free”
on the basis of whether the motifs were fixed
in three-dimensional space with or without
a structural template, respectively. RSO suc-
cessfully found solutions for all designs tasks
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Fig. 2. In silico benchmarking of relaxed sequence optimization. (A) Exemplary
ESM-Fold structure prediction overlaid to a RSO-designed backbone. (B and

C) Comparison between RSO and RFDiffusion (RFD) for Ca-RMSD and TM score.
RFDiffusion was run with 200 denoising steps and RSO with 100 steps. Eight MPNN
sequences were generated using “soluble weights,” and reprediction was done
with ESMFold. (D) Boxplot showing how AF2 single sequencing supplemented
with initial guess and all-atom initialization (AA_IG) can achieve RMSD values
between design and prediction similar to ESMFold (ESM). (E) Pie charts showing
secondary structure content for backbones generated without or with helix

loss. (F) Violin plot showing the highest reported TM score of the repredicted
proteins from (B) against the PDB. TM scores were calculated using foldseek
(24). Higher TM values mean higher homology to known protein structures.
(G) Conditional benchmarking results using the benchmarking set from (14).
(H) Binder design campaigns against the human activin type Il A and and B receptor.
Histograms show the distribution of the interface-predicted align error (I_PAE)
for designed binders. Rendering shows exemplar AF2 predictions of binder
candidates bound to the receptor. PDBs used for design were 5NH3 (31)

and 5NGV (3I).

(Fig. 2G, fig. S2E, and table S3). The addition
of templates (“fixed”) reduced the average
steps needed to converge toward low-RMSD
designs, enabling the production of more can-
didate designs per unit time. The template-free
method yielded designs of similar quality but
converged more slowly. Combining a distogram-
based loss with a RMSD loss yielded improved
performance relative to using a pure frame-
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aligned point error-based loss (fig. S2F). Over-
all, RFDiffusion and RSO performed similarly
well in these scaffolding problems (Fig. 2G),
with success rates varying in a design task-
specific fashion.

To test whether RSO can also generate protein-
protein binders, we designed binders toward
the activin type 2 A and B receptors follow-
ing a previously reported strategy (19, 26, 30).

25 October 2024

After AF2 multimer filtering, we obtained be-
tween 10 and 16% binder candidates with an
interaction-predicted aligned error (I_PAE)
<10 (Fig. 2H), indicating the successful in silico
design of promising binder candidates (79, 26, 30).
The binder candidates were structurally di-
verse and included all beta to beta-alpha mixes
or classical helical bundles (fig. S3, A and B).
In addition, RSO yielded promising in silico
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Fig. 3. Experimental characterization of designed monomers. (A) Biophysical
analysis of designed monomers. Left: protein models representing AF2 predictions.
Middle: SEC traces collected with Superdex 75 Increase Resin. Right: circular
dichroism spectra collected at room temperature and at 95°C. (B) Left: overlay of
SEC traces for 76 proteins collected with a Superdex 200 Increase 5/150 column.
Middle: molecular weights determined based on the sec elution volumes peak

binder candidates for other challenging binder
design problems, including designing a two-
domain connector for the human growth hor-
mone receptor (fig. S3, C and D) and the design
of binders to viral surface receptors (fig. S3F).

Experimental validation

Using RSO, we designed 85 proteins with sizes
ranging from 100 to 300 amino acids. Nine

Frank et al., Science 386, 439-445 (2024
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monomeric proteins were purified exemplarily
through affinity chromatography and analyzed
using native size-exclusion chromatography
(SEC). Eight of those proteins expressed well,
showed one predominant peak on SEC, and
eluted at the expected fraction given their
designed molecular weight (Fig. 3A). Circu-
lar dichroism spectroscopy gave characteristic
spectra that agreed with the expectation derived

25 October 2024

positions. Right: pie chart showing the success rate of the binder design campaign.
(C) Characterization of large proteins through SEC. Top: AF2-predicted models.
Bottom: SEC traces acquired with Superdex 200 Increase 10/300. (D) Left:
observed versus expected molecular weight (kDa) as obtained through SEC for
designs ranging from 500 to 1000 amino acids. Right: nsTEM reconstructions of
large monomers overlayed with AF2 model.

from the designed secondary structure content
of the proteins (Fig. 3A). The proteins were ther-
mostable up to 95°C, which is consistent with
previous reports on the high thermostability
of de novo-designed proteins (19, 30, 3I). The
remaining 76 proteins were expressed and pu-
rified in a higher-throughput fashion adopting
previously described strategies (3, 19, 30); 58%
of them had molecular weights matching the
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Fig. 4. Structural characterization of designed proteins. (A to C) Top and
middle: overlay of an experimentally determined crystal structure (colored) of a
200-, 400-, and 600-amino acid designed protein with the AF2-predicted
structure based on sequence (gray). Bottom: magnified views into the structures.
(D and E) Top and middle: overlay of experimentally determined atomic
models from the cryo-EM densities (colored) of a 950- and 1000-amino acid

expectation from molecular weight-calibrated
SEC (Fig. 3B).

We also designed a set of larger proteins
comprising 500 to 1000 amino acids. We fil-
tered candidate designs using AF2 supple-
mented with initial guess (26) and big bang
initialization (28) and/or ESMFold repredic-
tion. Although the overall in silico structure of
the proteins was mostly correct and predicted
with high confidence, a fraction of repredicted
candidate designs had minor deviations from the
RSO-designed backbone, such as low-confidence
loop regions or routing problems in which do-
mains were connected with long, unstructured
regions (fig. S4). We constructed genes for 14
of the large candidate proteins; 13 of them ex-
pressed and 11 had a dominant peak at the cor-
rect molecular weight as seen by SEC (Fig. 3, C
and D, and figs. S5, A and B, and S6, A and B).
The structures of three of the proteins large

Frank et al., Science 386, 439-445 (2024
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enough for analysis using negative-stain trans-
mission electron microscopy (nsTEM) agreed
with the designed structure (Fig. 3D and fig. S7).

Structural investigation

We designed and crystallized exemplarily three
proteins comprising 200, 400, and 600 amino
acids (figs. S5A, S8, and S9, A to G), and ob-
tained crystal structures using x-ray diffraction
at 2.2-A (200 amino acids), 2.1-A (400 amino
acids), and 2.8-A (600 amino acids) resolutions,
respectively (Fig. 4, A to C). The atomic models
constructed into the respective electron densities
agreed with the predictions of the designed back-
bones with Ca-RMSD values (reported by TM
score) of 0.90 A (200 amino acids), 1.28 A (400
amino acids), and 0.92 A (600 amino acids),
respectively. These low RMSD values reflect
overall agreement with respect to the side-chain
conformations and demonstrate the atomic de-
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® CryoEM structure
@ Design model

@ Atomic model

E 1000 AA
® CryoEM structure
® Design model

designed protein with the ESMFold-predicted structure based on sequence
(gray). (D) Bottom: overlay of the atomic model (blue) into the cryo-EM density
map. (E) Bottom: magnified view into the structure. In (A) to (E) for design
models, we show the predicted structures from AF2 or ESMFold, whichever matches
the initial hallucinated backbone the best (showing lowest RMSD) because this
allows us to show the placement of side chains.

sign accuracy of RSO. Loops predicted with low
confidence did show some deviations in the
crystal structure relative to the designed ge-
ometry. However, loops predicted with high
confidence were also reproduced well in the
experimental structures (fig. S10, A and B).
We also performed single-particle cryo—-electron
microscopy (cryo-EM) with two larger can-
didate designs, having ~100 kDa molecular
weight (comprising 950 and 1000 amino acids)
(fig. S11, A and B). We determined and refined
a high-resolution consensus cryo-EM map for
the 950 amino acids design at a resolution of
2.7 A (fig. S12, A and B), which allowed the out-
of-the-box construction of an atomic model
using Model Angelo (32) (Fig. 4D and fig. S13E).
The final, refined atomic model constructed
from the experimental cryo-EM data had a Ca-
RMSD of 1.08 A relative to the prediction of the
designed structure. Regions in the design that
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Fig. 5. Experimental characterization of protein interaction design.

(A) Schematic overview of heterodimer design using RSO. (B) Rendering of the
C5C6 heterodimer pair. (C) Characterization of heterodimeric pair C5C6 using
SEC. (D) Binding isotherms of the C5C6 heterodimer pair acquired using the
fluorescent polarization assay (triangles) and microscale thermophoresis

had low AF2 pLDDT also were modeled with
low confidence by Model Angelo in the cryo-EM
map, indicating flexibility (fig. S13F). Initially, we
could not resolve the N-terminal region com-
prising 130 amino acids in this 950-amino acid
design (fig. S14:A), presumably due to flexibility.
Single-particle cryo-EM analysis of samples
stored at low temperatures revealed homodi-
meric species that were linked in a domain-
swapping configuration through the flexible
N-terminal part (fig. S14, B and C).

Single-particle cryo-EM analysis with the
1000-amino acid design candidate (Fig. 4E and
fig. S11B) yielded a 3.3-A resolution cryo-EM
reconstruction (fig. S15). Using Model Angelo
and PHENIX (33), we constructed an atomic
model from the cryo-EM data. The model had a
Ca-RMSD of 1.91 A relative to the repredicted
structure of the designed backbone (Fig. 4E and
fig. S16), indicating good agreement between
design and experimental structure.

These five experimentally determined protein
structures demonstrate that RSO can be used
for accurate protein structure design tasks.

Design of protein-protein interactions

Many current and emerging applications for
de novo protein design involve designing protein-
protein interactions. By including residue in-
dex gaps (34), AF2 can also be used for designing

Frank et al., Science 386, 439-445 (2024
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protein complexes comprising multiple separate
chains (Fig. 5A). We used this feature to design
homo-oligomers (fig. S17A) and heterodimers
using RSO. To this end, we designed a loss func-
tion including two partial radius of gyration
losses and an additional homodimer filter to
favor heterodimers (Fig. 5A). This approach
successfully created heterodimer designs in
which individual monomers stayed monomeric
when expressed separately, but formed a di-
meric complex when mixed, as observed with
SEC analysis (Fig. 5, B and C). Microscale ther-
mophoresis and fluorescent polarization anal-
ysis yielded dissociation constants of 560 and
480 nM, respectively, for the heterodimeric
design (Fig. 5D). We designed a second set
of heterodimers but omitting in silico homo-
oligomer filtering. These proteins indepen-
dently formed homo-oligomers at the elution
concentrations (fig. S17B), but at low concen-
trations, three out of the four proteins were
monomeric. However, when we mixed the two
distinct monomers designed for a heterodimer,
all designs transitioned to the desired hetero-
dimeric complex (Fig. 5E and fig. S17C). Binding
affinity analysis using fluorescence polariza-
tion assays yielded dissociation constants for
the heterodimeric interactions ranging from
<4.0 to 790 nM (Fig. 5F). These findings demon-
strate that RSO can also be used for interface

25 October 2024
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(circles). (E) Expected versus observed molecular weight of a second set of
heterodimers as determined through molecular weight—calibrated SEC. (F) Top:
predicted structures of heterodimers analyzed in (E) and binding isotherms as
obtained through fluorescent polarization. Error bars show SD of the mean
computed from three replicates.

design tasks in conjunction with ProteinMPNN
sequence optimization.

Conclusions

The emerging de novo protein design pipeline
comprises backbone design, sequence genera-
tion, and design filtering. ProteinMPNN and
ESMFold provide fast and reliable methods for
generating sequences for given backbones and
for repredicting structures from candidate se-
quences for filtering, respectively. However,
the quality of the input backbone remains a
critical factor driving the overall success of
protein design. Our work with RSO shows that
innovations in backbone design methods can
continue to push the boundaries of protein
design. Specifically, RSO achieves high design-
ability and efficiently generates promising in
silico candidates for large proteins, including
tasks such as site scaffolding and binder gen-
eration. It also allows design objectives to be
encoded in custom loss functions, enabling
rapid adaptation to individual research ques-
tions without retraining entire networks. Fur-
thermore, RSO operates in sequence space,
allowing backbone structure design with se-
quence constraints. High-quality backbones
such as those produced by RSO can provide the
foundation for ProteinMPNN to excel, where-
as ProteinMPNN’s capabilities allow us to fully
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realize the potential of advanced backbone
design.

The flexibility of this approach may expand
toward building synthetic proteins with a vari-
ety of user-defined conformations by combin-
ing loss functions for multiple predicted states
into one common gradient. RSO pushes the
size range of designable protein monomers
beyond the 100-kDa molecular weight barrier
while retaining excellent accuracy, thereby ap-
proaching the size of therapeutically relevant
protein scaffolds such as antibodies. The con-
cept presented herein may likely extend to
other structure prediction methods such as
AlphaFold-3 (35) and RoseTTAFold All-Atom
(10) to accomplish tasks such as small-molecule
binding and protein-DNA hybrid structures
with marginal modifications to the predic-
tion networks.
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