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Abstract

The privacy concerns associated with the use of Large
Language Models (LLMs) have grown dramatically with
the development of pioneer LLMs such as ChatGPT.
Differential Privacy (DP) techniques that utilize DP-
SGD are explored in existing work to mitigate their
privacy risks at the cost of generalization degradation.
Our paper reveals that the flatness of DP-SGD trained
models’ loss landscape plays an essential role in the
trade-off between their privacy and generalization. We
further propose a holistic framework Privacy-Flat to
enforce appropriate weight flatness, which substantially
improves model generalization with promising privacy
protection. It innovates from three coarse-to-grained
levels: Perturbation-aware min-max optimization within
a layer, flatness-guided sparse prefix-tuning across layers,
and weight knowledge distillation between private &
non-private weights copies. We empirically demonstrate
that our framework Privacy-Flat outperforms vanilla
private training baseline while protecting privacy from
membership inference attacks (MIA). Comprehensive
experiments of both black-box and white-box scenarios
are conducted to demonstrate the effectiveness of our
proposal in enhancing generalization. The code link is
provided at https://github.com/tiejin98/Privacy_
Flatness.

1 Introduction

Large Language Models (LLMs) such as GPT-4 [37]
and Llama 2 [47] have become integral in various
real-world applications, including story generation [61]
53], Al agents [32] [10], chatbots [29] and sim-to-real
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learning [9]. Despite their widespread use, these models
raise significant privacy concerns. Previous studies have
shown that LLMs can memorize and potentially leak
sensitive information from their training data [4] B3],
which often includes personal details like emails [19],
phone numbers and addresses [4]. There are also
LLMs trained especially for clinical and medical usage
with highly sensitive data [54]. The leakage of such
information from LLMs may cause a severe privacy issue.
The leakage of such information from LLMs may cause
a severe privacy issue.

Differential Privacy (DP) has emerged as a key
method for protecting data privacy in LLMs, yet sacri-
ficing the generalization ability. Specifically, techniques
such as Differentially Private Stochastic Gradient De-
scent (DP-SGD) [1] have been employed to improve the
trade-off between privacy and performance. However,
there remains a noticeable performance gap between
DP-trained models and standard models in both full fine-
tuning and parameter-efficient training settings [24] [14].
Moreover, most current works focus on improving privacy
for white-box LLMs, which have limited applicability to
closed-source LLMs in real-world scenarios. Therefore,
there is an urgent call for pioneering efforts to design
effective algorithms in black-box privacy-protection op-
timization.

To understand this performance gap, we examine
the loss landscape of DP-trained models compared to the
ones from non-private training. As shown in Figure[l] it
illustrates the analysis with the following formula:

fm)=LD|w+n-d),

where D and w represent the dataset and model weights,
respectively, and d is a random noise sampled from a
standard Gaussian distribution and 7 is the magnitude.
It reveals that DP-trained models tend to have a sharper
(i.e., less flatness) loss landscape with respect to model
weights. Then, a natural question comes:

Q: Does the Loss Flatness Affect the Privacy and
Performance Trade-off in LLMs with good privacy?
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Figure 1: Left: Weight loss landscape for DP-trained
LLMs and normal (non-private) training on SST-2. The
DP-trained model has a sharper loss landscape. Right:
The privacy-performance trade-off for DP-trained LLMs:
Compared with normal trained models, the DP-trained
model has lower privacy risks (better privacy) under
Membership Inference Attack (MIA), while it shows
lower classification accuracy (worse performance).

If so, could we take one step further — improving
performance with competitive privacy by appropriately
enhancing the loss landscape’s flatness? We present a
holistic framework, consisting of three novel strategies
to promote weight-level flatness from three coarse-to-
grained perspectives:
> Within-layer flattening. We introduce a perturbation-
aware min-max optimization to encourage the loss
landscape flatness within the weight space of each LLM
layer.
> Cross-layer flattening. We propose a sparse prefix-
tuning algorithm to facilitate the landscape flatness
across LLM layers [23], where a flatness-ware indicator
will guide the sparse layer selection.
> Cross-model flattening. We design a novel approach
using non-private prefixes to guide DP-SGD training
through knowledge distillation regularization with non-
private weights, aiming to improve the flatness in the
whole weight space of LLMs.

Our main contributions can be summarized as
follows:

e We conduct pioneering efforts to investigate the critical
role of weight flatness in DP-trained LLMs. We show
that appropriately enforced weight flatness improves the
performance of LLMs that protect private information.
e We propose a holistic framework named Privacy-Flat
to promote weight flatness in three coarse-to-grained lev-
els, including perturbation-ware mix-max optimization
on weights within a layer, flatness-guided sparse prefix-
tuning on weights across layers, and weight knowledge
distillation between Privacy-Flat & non-private weight
copies.

e We make pioneering efforts to propose effective privacy-
preserving algorithms for closed-source large language
models with tailored black-box optimization.

e Comprehensive experiments in both black-box and
white-box settings are conducted to show that our pro-
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posed methods can bridge the notorious gap between non-
private LLMs and LLMs with good privacy. For example,
on the text classification dataset QNLI, Privacy-Flat
even outperforms non-private full fine-tuning.

2 Related Work

Learnable Prompts for LLMs: Prompt-based learn-
ing has gained traction, initially focusing on discrete,
task-specific prompts [41]. The shift to continuous, learn-
able prompts (soft prompts) has led to improved perfor-
mance [21], 27]. Unlike traditional prompt tuning, prefix-
tuning [23] and P-tuning V2 [26] incorporate prompts
at each transformer layer. For prompt tuning or prefix-
tuning, zeroth-order optimization (ZO) methods like ZO-
SGD [45] are employed for black-box settings without
requiring knowing the parameters of the original model.
MEZO, introduced by Malladi et al. [31], optimizes ZO-
SGD for LLM fine-tuning with lower memory needs.
While other works also explored black-box optimization
methods for both discrete [7] and soft prompts [46], they
do not investigate the issue of privacy leakage in the
model training.

Privacy Leakage in LLMs: The potential of
Large Language Models (LLMs) to memorize training
data poses privacy risks [33] 6, 20]. Such memorization
enables the extraction of private information or even
direct reconstruction of training data [39, [19, 4] [59]
17].  Studies have demonstrated the feasibility of
recovering keywords or predicting training words from
sentence embeddings using auxiliary datasets [38] [44].
A notable advancement was made by Li et al. [22], who
introduced an attack model to enhance the efficacy of
attacks on sentence embeddings. Recent comprehensive
analyses, including those on GPT-4, further underline
the seriousness of this issue [50, [37]. In this paper, we
employ the Membership Inference Attack (MIA) [5] 53]
42] to evaluate LLMs’ vulnerability to privacy leakage
issues. To mitigate the privacy leakage in LLMs, DP-
SGD [1] and its variants [34] [12] have been applied to fine-
tuning of LLMs [561, [3] [16] 24] [14] 30 [15]. Compared with
previous methods, Privacy-Flat cannot provide strict DP
guarantee while Privacy-Flat can still have good privacy.

3 Methods

In this paper, we mainly focus on the DP-SGD [1] and its
variants for providing privacy even without a strict DP
guarantee. € and ¢ are the privacy budgets for DP-SGD
where small values of € and § indicate strong privacy
protection. DP-SGD algorithm could be realized via
three interleaved steps: clipping per-sample gradient,
sampling a random noise z ~ N(0,0%I), and adding
z to the accumulated clipped gradient. The variance
parameter o2 is determined by several factors including
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Figure 2: Our methods improve the flatness of the weight loss landscape from three aspects: (1) Within-layer
flattening, where a perturbation-aware min-max optimization is utilized to encourage the loss flatness within the
weight space of each LLM layer. (2) Cross-layer flattening, where a sparse prefix-tuning algorithm guides layer
selection with a flatness-ware indicator. (3) Cross-model flattening, where non-private prefixes are used to guide
DP-SGD training through weight knowledge distillation regularization.

total training steps, €, and §.

3.1 Enmnhancing Flatness in White-box Setting
It is notorious that DP-SGD often sacrifices a larger
degree of model accuracy to gain the required data
privacy. In this work, we propose to investigate this
trade-off from a novel perspective, i.e., comparing the
metric of model flatness before and after DP training.
As shown in Figure [I, LLMs under DP training are
prone to converge to sharp local minima, where the
loss value increases quickly in the neighborhood around
model weights. In other words, a slight perturbation
in the model weights will lead to poor generalization
in unseen data. Many previous work has revealed
the strong correlation between sharp local minima and
unacceptable accuracy in vision and natural language
processing [8) [13] [2].

To balance between privacy and accuracy, we pro-
pose a flatness-aware framework, termed as Privacy-Flat.
Specifically, considering a multi-layer white-box model,
we smooth the sharp local minima of LLMs comprehen-
sively from three perspectives, including within-layer,
cross-layer, and cross-model weight flattening.

Within-layer Weight Flattening. Many pioneer-
ing works have been explored to regularize the layer-wise
independent weights, among which adversarial weight
perturbation (AWP) shows superior results [52]. AWP
flattens the weight loss landscape and aims to improve
adversarial robustness, whereas we adopt it with the
intuition that the negative impact of DP-SGD noise for
model accuracy could be lowered.

Let w represent the trainable parameters in LLMs,
and let D represent the training dataset. Typically in
prefix tuning of LLMs, w is given by the appending
learnable tokens at each layer [23]. AWP updates the
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model weights with two gradient backpropagation steps:

v = argmaxy L(D;w + v);

(3.1) W ¢~ (WHV) Ve L(D;w+v)—v.

The first step seeks perturbation gradient v via gradient
ascent, which represents the case of worst loss centered
around the current weights w. After adversarially
applying the perturbation gradient on the model (i.e.,
w + v), the second step updates the model weights with
another complete forward and backward pass. In this
way, the weight loss landscape has a smaller curvature
at the final learned weights, which in turn shrinks the
accuracy loss.

We tailor AWP to DP-SGD with two critical
changes. First, we only consider applying the adversarial
perturbation gradients in the first T rounds of training,
following which the normal model updating is turned
on. With this procedure, we can save the external time
cost of adversarial computation while guiding the model
towards a smooth loss region. Second, during the initial
T rounds, the required noises in DP-SGD are only added
to the final gradient Vv L(D;w + v), instead of the
process of computing v. This ensures the correct location
of the adversarial gradient.

Cross-layers Weight Flattening. Beyond the reg-
ular weight regularization, we manipulate prefix weights
in LLMs to further improve flatness via considering their
cross-layer dependencies. In particular, the prefix tuning
adds the differential parameters in every layer of LLMs:
Given a n-layer LLMs, prefix weights w,; are appended
at the i-th layer and we have w = [wy, ..., w,,]. However,
as the prefix added to a layer influences its following
output, the flatness of the weight loss landscape is de-
termined by where the prefix modules are added. Thus
we explore how to quickly quantify the model sharpness
and how to adopt it for controlling the positions of prefix
layers.
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DEFINITION 1. (PREFIX SHARPNESS) Given prefix pa-
rameters w' within a box in parameter space C, with
stdes of length n > 0, centered around a minima of in-
terest at parameters w, the sharpness of loss VL(w) at
w is defined as:

maxwec, (L(W') — L(W))
(14 L(w))?

In practice, we approximate the above prefix sharpness
by sampling prefix weights w':

w' € {w —nVL(w|D)|n € [0,1]}.

Sharpness :=

Based on the sharpness definition, we design a greedy
solution to gradually eliminate the prefix layers and keep
those resulting in the lowest sharpness. First, with the
prefix initialization at all the layers of LLMs, we can
compute its sharpness value. Next, we remove one prefix
layer each time and obtain:

(32) WwW_; = [Wl,..,Wl;l,WiJrh..Li: 1--- ,n.

For each prefix detaching, we calculate the corresponding
sharpness of the remaining model parameters. The prefix
layer where its removal is associated with the lowest
sharpness will be permanently deleted. We will continue
this loop until the remaining prefixes meet our sparse
requirement or the sharpness metric does not decrease.
We get all the sharpness results right after the same
random initialization and do not require fine-tuning.
After this greedy procedure, LLMs are appended with
the sparse prefixes only at the chosen layers and used
for DP-SGD.

Cross-models Weight Flattening. Recall that
private training inevitably results in a sharper loss
landscape than that of normal training. One of the
intuitive ways to generalize the private model is to
regularize it with the normal counterpart via knowledge
distillation [18]. For this purpose, given parameters
w fine-tuned with DP framework, we create their
duplicates wy,, using the same network architecture
and initialization but fine-tuning them normally. We
then define a new term of the loss function to force the
weight closeness between w and wy,:

(33) »Cg = ||W - Wnor”2~
Therefore, the final loss function will be:
(3.4) Ly =L(D|w)+ ALy,

where £ can be any loss function in general, such as
cross-entropy loss for sentence classification tasks, and A
is the balancing factor for regularization. Then the final
loss is trained with DP-SGD or its variants. Finally, we
summarize our training pipeline for white-box setting in
Algorithm
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Algorithm 1 Privacy-Flat on White-box training
pipeline

1: Input: A\, n,warm-up epochs E, DP training total epochs
T4p, normal training epochs Thor, elimination rounds R,
random initialization prefix w = [w1, ..., Wy].

. if Cross-layers Weight Flattening then

for r=1to R do

Smin =0
P=0
fori=1tondo
Get w_; in Equation
Compute sharpness S for w_;
if S < Smin then
Smin =S5, P=1
end if
end for
W< W_p

end for

: end if

Y Wnor = W

: for t =1 to Thor do

Wnor <~ Wnor — nVleor‘C(D|Wn0r)

: end for

: fort=1to 7T do

21: if t <= E and Within-layer Weight Flattening then

22: Compute v

I R T O e S
L XA RN 2O

23: Ly =L(Dlw+v)

24:  else

25: Ly = L(D|w)

26:  end if

27:  if Cross-model Weight Flattening then
28: Ly=Ls+ AW —Wnor|l2

29: else

30: Lr=Ly

31: end if

32:  Update w with £; and DP-Adam
33: end for

3.2 Analysis of Sharpness over Landscape We
calculate the sharpness over the landscape for proposed
methods on SST-2 by integrating the proposed weight
flattening method with DP-trained prefix tuning. The re-
sults in Figure [3|show that all our proposed three weight
flattening methods flatten the weight loss landscape.
This matches the design intuition that Privacy-Flat
smooths the sharp local minima of LLMs comprehen-
sively by three aspects. Later in Section |4 we will vali-
date how Privacy-Flat improves the performance with
competitive privacy by enhancing the loss landscape.

3.3 Enhancing Flatness in Black-box Setting
While LLMs of interest are often black boxes, i.e., their
weights are not accessible for training, in this section,
we extend our framework to the black-box settings.

To deal with black-box settings of neural networks,
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Figure 3: Sharpness for DP trained prefix tuning plus
our proposed three weight flattening methods on SST-2.
Our proposed model has a flatter loss landscape.

the zeroth-order (ZO) optimizers [31] are often used to
estimate the gradient of neural networks using output
differences without any backpropagation. To enable
private training for black-box LLMs, DPZero [58] was
proposed: Let g represent the noise sampled from
Gaussian distribution N'(0,0?), the gradient will be
updated with the equation:

(3.5)

VL (w: B) = (cilp(ﬁ(w + ez; B) 2—€£(W —ez;B)

)+ 8)z.

Here, z is a random noise sampled from standard
Gaussian distribution, € is the perturbation scale and B
represents the batch data. We will focus on the DPZero
framework in our paper.

In the black-box setting, we consider improving
through non-private duplication. Compared with the
white-box setting, w,, is also trained with the black-
box setting. Note that in the black-box setting, it is
impractical to improve the cross-layer weight flatness
since we do not have access to the internal weights of
each layer in LLMs. It is also difficult to enhance the
within-layer weight flatness since the min-max training
framework with zeroth order optimization suffers from
the high variance of an additional gradient estimation
to compute the v [60]. Though ablating these two
components, we empirically found that our Privacy-Flat
still delivers the outperforming accuracy with privacy.

3.4 Discussion Since Privacy-Flat does not consider
the DP framework every time like generating model
perturbation gradient v, Privacy-Flat cannot provide a
strict DP guarantee. Though our method cannot provide
a strict DP guarantee, we show that under the framework
of DP training, our method can still have good privacy
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in the experimental parts and thus improve the trade-off
between accuracy and privacy. We leave the theoretical
proof of why Privacy-Flat can still maintain good privacy
in future work.

4 Experiments

4.1 Experimental Settings

Datasets To assess the effectiveness of our proposed
model, Privacy-Flat, we explore two principal NLP tasks,
i.e., text classification and text generation, across 7
datasets: (1) For text classification, we engage with
datasets from the GLUE benchmark [49]: SST-2 [43]
for sentiment classification; MNLI [51] and QNLI [49]
for sentence pair classification; QQP and TREC [48] for
topic classification. (2) For text generation, we utilize
E2E [36] and DART [35] for table-to-text generation.
This selection of datasets allows us to comprehensively
evaluate Privacy-Flat across a spectrum of linguistic
tasks and complexities.

Setups In the white-box setting, we mainly use
Roberta-base [28] and BERT [11] for encoder-only archi-
tectures and GPT-2 [40] for decoder-only architectures.
In the black-box setting, we adopt Roberta-base. For the
DP-SGD framework, we follow the common practice of
setting the privacy budget as e = [3,8] and § = ﬁ for
all settings. Here € and ¢ are only used for determining
the noise level in Privacy-Flat. All experiments were run
on a single RTX 4090 with 64GB memory on Ubuntu
22.04.

Training Hyperparameters Different tasks and
methods require different parameters. For example,
full fine-tuning requires a much smaller learning rate
while prefix tuning needs a much larger learning rate.
Besides, tasks like table-to-text generation require a
small learning with a large training epoch. The only fixed
hyperparameter is the batch size. We set the batch size to
1024 for all settings with gradient accumulation. Detailed
hyperparameters for MNLI and E2E can be found in
Table [I. For Privacy-Flat, we set the regularization
weight A in Equation to 0.01 for all experiments.

Baselines For white-box settings, we mainly com-
pare with full fine-tuning and prefix tuning under non-
private and DP training; for black-box settings, we com-
pare with prompt-tuning.

4.2 Empirical Evaluation of Privacy Risks In
this section, we conduct experiments to show that
Privacy-Flat shows a similar capability in privacy-
preserving as vanilla DP training. Following existing
work [57) [16], we evaluate the privacy risks empirically
by membership inference attack (MIA), which targets
judging whether a data sample belongs to a training set
or not. In this paper, we consider a simple but efficient
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Figure 4: Comparison of MIA accuracy under both white-box and black-box settings across text classification
datasets. The lower the accuracy, the lower the privacy risk. The results show that our proposed method will not
affect the privacy protection for both white-box and black-box settings.

Methods Learning Rate Training Epoch A
Non private-MNLI
Full Fine-tuning 5e-5 5 0.01
Prefix Tuning 0.01 20 0.01
Privacy-Flat 0.01 20 0.01
DP SGD-MNLI
Full Fine-tuning 5e-4 5 0.01
Prefix Tuning 0.01 20 0.01
Privacy-Flat 0.01 20 0.01
Non private-E2E
Full Fine-tuning 2e-3 15 0.01
Prefix Tuning 5e-4 30 0.01
Privacy-Flat 5e-4 30 0.01
DP SGD-E2E
Full Fine-tuning 2e-3 15 0.01
Prefix Tuning 5e-4 100 0.01
Privacy-Flat 5e-4 100 0.01

Table 1: Detailed hyperparameters for DP training and
normal training on MNLI and E2E.

loss-based MIA [55], which considers the samples with a
loss lower than a threshold as the training dataset. We
compute the loss for all samples in D and rank every
sample by its loss. We label all the samples with 1%
lowest loss as training data and compute the success rate
of MIA only on samples with 1% lowest loss. Note that
a model that preserves more privacy indicates that the
success rate of MIA is closer to 50% because if attackers
get an MIA success rate below 50%, they could use
reverse results to implement attacks. A model with
higher accuracy in MIA indicates higher privacy risks
since the successes mean that the attackers may be
able to reveal information about the data used to train
the model. From the results in Figure [4, we have the
following observations:

(1) Compared with non-private training (e = c0),
all DP baselines show lower accuracies against MIA,
indicating better protection. This matches with existing
literature that DP training lowers privacy risks [14] [25].

(2) Under the same privacy budget, Privacy-Flat
shows very similar MIA accuracies with DP-trained
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prefixes, indicating that Privacy-Flat does not hurt the
privacy protection. We prove that though our method
cannot have a strict DP guarantee, our method still
maintains good privacy.

4.3 Evaluation in Classification and Generation
We conduct experiments in both black-box and white-
box settings. We report test accuracy in classification
tasks, and BLEU and ROUGE-L for generation tasks.

4.3.1 White-box Setting

Text Classification We first explore whether
Privacy-Flat can bridge the gap between private models
and non-private models (e = oo) in a white-box setting.
In Table [2| we provide the results of the experiment for
Roberta-base with different tasks. We have the following
observations:

(1) Privacy-Flat can increase the performance of
DP prefix tuning significantly, and even outperforms
full fine-tuning. Compared with DP prefix tuning,
Privacy-Flat improves at most 8.39% on QNLI and at
least 2.5% on SST-2. Though Privacy-Flat is not the
best performance on BERT, Privacy-Flat still shows
an improvement over prefix tuning, enjoying a much
lower memory cost than full fine-tuning. This is because
Privacy-Flat considers three flattening aspects that can
mitigate the negative impact of DP-SGD and achieve a
better trade-off between privacy and performance.

(2) Privacy-Flat can also work well across different
base models. We train Privacy-Flat on Bert-base with
the same tasks for Roberta-base. Similar performances
as in Roberta-base are also found in BERT: Privacy-Flat
outperform DP prefix tuning in all settings and bridge
the gap between non-private models (e = oo0) and DP-
trained models.

(3) Though prefix tuning can outperform full fine-
tuning in some tasks under Roberta, there is no
consistent winner between DP prefix tuning and DP full
fine-tuning considering their performance on all datasets,
which is coherent with the conclusion made in the
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Method Roberta-base BERT
MNLI QNLI SST-2 QQP TREC MNLI QNLI SST-2 QQP TREC
Non-private (e = o)
Full Fine-tuning  85.95 91.06 94.68 88.05 93.00 83.09 88.94 91.85 90.17 92.60
Prefix Tuning 86.12 91.59 94.15 87.79 9140 79.95 86.34 91.62 89.25 96.00
e=3
Full Fine-tuning 80.95 86.03 92.08 83.61 79.00 72.57 81.70 87.50 81.46 73.60
Prefix Tuning 79.03 83.70 91.28 80.13  78.40 60.07 65.15 81.19 71.99  48.40
Privacy-Flat 84.12 90.72 93.57 86.05 82.20 65.32 71.02 88.53 74.68 47.80
e=28
Full Fine-tuning 81.42 86.03 92.18 83.61 85.40 73.64 82.37 88.30 81.92 80.60
Prefix Tuning 79.56 84.64 91.51 81.02  86.80 62.72 67.62 8234 7246 61.80
Privacy-Flat 85.30 91.29 94.03 87.13 90.60 67.42 72.08 89.56 74.29 70.20

Table 2: Performance of our weight flattening methods with baselines for the sentence classification task w.r.t
accuracy on white-box settings across different language models. The higher, the better. The best performance
under the same privacy budget is highlighted. The results show that Privacy-Flat can increase the performance of
DP-SGD-trained LLMs for various text classification tasks.

Method F2B DART
BLEU ROUGE-L BLEU ROUGE-L
Non-private (e = c0)
Full Fine-tuning  66.59 69.54 43.16 57.85
Prefix Tuning 64.79 68.24 37.08 53.35
€e=3
Full Fine-tuning 60.3 65.31 30.75 51.69
Prefix Tuning 58.2 64.51 30.26 51.43
Privacy-Flat 62.13 65.84 33.14 52.40
e=8
Full Fine-tuning 62.9 66.69 32.92 53.43
Prefix Tuning 62.7 67.19 33.45 53.45
Privacy-Flat 64.30 67.22 37.06 53.49

Table 3: Comparison of our weight smooth methods
with baselines for the table-to-text task on GPT2 and
white-box settings. The higher, the better. The
best performance under the same privacy budgets is
highlighted. Privacy-Flat performs consistently better
than strictly DP-trained methods on text generation.

previous work [24]. In comparison, Privacy-Flat achieves
consistently the best performance under Roberta-base.

Text Generation For the table-to-text generation,
where LLMs are asked to generate the natural language
description for the given table entry. We adopt the
decoder-only GPT2 for this task and the results are
shown in Table [3| We have the following observations:

(1) Privacy-Flat outperforms DP-trained models
across all datasets. With the same privacy budget e,
Privacy-Flat consistently performs the best.

(2) For tasks with different difficulties, Privacy-Flat
shows competitive or better performances. In simple
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tasks (E2E dataset), When € = 8, Privacy-Flat can even
compete with prefix tuning with non-private training.
For difficult tasks (DART dataset), the performance
gap between the non-private model and the DP-trained
model becomes much larger. However, The performance
of DP prefix tuning can compete or become even better
than DP full fine-tuning, indicating the advantages of
full fine-tuning rely on the easy dataset.

4.3.2 Black-box Setting In this section, we test
Privacy-Flat in the black-box setting where we can only
manipulate input embedding. Therefore, instead of
prefix tuning, only prompt tuning could be implemented.
We compare with the following baseline methods for
prompt tuning: (1) non-private prompt tuning with
zeroth order optimization method MEZO [31], (2) DP
prompt tuning with zeroth order optimization method
DPZero [58]. The results are shown in Table [ across
different datasets with Roberta-base. We have the
following observations:

(1) Compared with the white-box setting, the bridge
between the non-private model and the DP-trained
model in the black-box setting becomes bigger than the
bridge white-box setting in general, indicating further
effort should be made to improve the stability in the
black-box setting.

(2) Privacy-Flat remains comparable performance
for the QQP dataset and consistently improves the per-
formance in all other datasets. Despite the difficul-
ties of black-box settings in calculating the gradients,
Privacy-Flat still shows better accuracy under the pri-
vacy setting with better flatness.
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Roberta-base

MNLI QQP SST-2 TREC

Method

Non-private (e = c0)

Prompt Tuning with MEZO  64.51 60.93 88.46  70.61

e=3
Prompt Tuning with DPZero 53.99 53.41 85.2 52.14
Privacy-Flat 55.07 53.22 86.12 55.46

e=38
Prompt Tuning with DPZero 55.41 53.51 86.35 53.02
Privacy-Flat 57.13 5342 87.38 56.44

Table 4: Comparison of our flattening methods with
baselines for the sentence classification task on black-
box setting. The higher, the better. The best
performance under the same DP training is highlighted.
Under the black-box setting, only prompt tuning could
be implemented. Privacy-Flat achieves competitive
performance under different text classification tasks
with different levels of privacy.
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Figure 5: Influences of gradually removing different
flatness methods on the classification performance w.r.t.
accuracy under SST-2 dataset on Roberta-base. The
higher, the better. The results show that each part of
Privacy-Flat helps increase the performance.

4.4 Ablation Study To test how much each part
of Privacy-Flat contributes to the final results, we
conduct ablation studies to show the performance
while gradually removing our methods. Specifically,

we conduct experiments on SST-2 and Roberta-base.

Figure [5 shows the performance of variants of our
method. We can see that each component will help
the performance, indicating the effectiveness of the
proposed flattening methods. Note that our method
will downgrade to DP-trained prefix tuning when all
three aspects are removed.

4.5 Sensitivity Analysis In this section, we focus on
the sensitivity on different A. The regularization factor
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Figure 6: Influences of different values of factor A on the
classification performance w.r.t. accuracy under SST-2
dataset on Roberta-base. The higher, the better.

in Equation balances the flattening with knowledge
distillation and DP training. As is shown in Figure [6]
when we use knowledge distillation, Privacy-Flat per-
forms better Privacy-Flat without knowledge distillation.
Note that when A = 0, our method will not consider
cross-model flattening. In this paper, we set A as le™?
as it performs the best empirically.

5 Conclusion

In this paper, we address the challenge of balancing pri-
vacy with performance in Large Language Models. We
introduce a novel framework aimed at enhancing the
flatness of the loss landscape in DP-SGD-trained models,
proposing strategies at three levels: within-layer flatten-
ing, cross-layer flattening, and cross-model flattening.
Our approach provides a better balance between privacy
and performance, as well as offering pioneering solu-
tions for privacy-preserving algorithms in closed-source
settings. Our comprehensive experiments demonstrate
significant performance improvements across different
tasks in both black-box and white-box settings while
maintaining good privacy.
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