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Protein language models (pLMs) have emerged as potent tools for predicting and
designing protein structure and function, and the degree to which these models
fundamentally understand the inherent biophysics of protein structure stands as an
open question. Motivated by a finding that pLM-based structure predictors erroneously
predict nonphysical structures for protein isoforms, we investigated the nature of
sequence context needed for contact predictions in the pLM Evolutionary Scale
Modeling (ESM-2). We demonstrate by use of a “categorical Jacobian” calculation
that ESM-2 stores statistics of coevolving residues, analogously to simpler modeling
approaches like Markov Random Fields and Multivariate Gaussian models. We further
investigated how ESM-2 “stores” information needed to predict contacts by comparing
sequence masking strategies, and found that providing local windows of sequence
information allowed ESM-2 to best recover predicted contacts. This suggests that pLMs
predict contacts by storing motifs of pairwise contacts. Our investigation highlights
the limitations of current pLMs and underscores the importance of understanding the
underlying mechanisms of these models.

language models | interpretability study | protein structure prediction

Determining the structure of a protein is a critical first step to understanding its function
in biology; therefore, tremendous efforts have been devoted to the task of predicting
protein structure from sequence. AlphaFold2 (AF2) (1) dramatically improved the
prediction accuracy of single protein structures in the Critical Assessment of protein
Structure Prediction (CASP14) challenge. Central to AF2’s methodology are multiple
sequence alignments (MSA) that contain information on evolutionary couplings between
amino acids within a structure. However, proteins’ folding in solution know nothing
of their evolutionarily related counterparts and methods that can accurately predict
structure from a single sequence alone would ideally bring us closer to understanding the
biophysics of protein folding. Furthermore, using MSAs to predict structure limits the
usefulness of these methods in contexts where few sequence homologs are available. These
motivations have driven the development of single-sequence, i.e. MSA-free, structure
prediction methods, such as OmegaFold (2), Recurrent Geometric Network (RGN2) (3),
and ESMFold (4). OmegaFold is based on the protein language model OmegaPLM,
RGN2 is based on the language model aminoBidirectional Encoder Representations
from Transformers (aminoBERT), and ESMFold is based on the protein language model
Evolutionary Scale Modeling (ESM-2). Given that these methods do not require MSAs
as input, this has raised the question whether protein language models have learned the
intrinsic physics of folding a single amino acid sequence? More generally, how do they
achieve high predictive accuracy from a single sequence? A deeper understanding and
interpretation of these models is needed for them to be used reliably. We speculated that
though superficially, MSA-based methods such as AF2 and protein language models may
appear quite different in their input information (MSA vs. unaligned sequences) and
training (supervised on structure vs. unsupervised), the two methods may be achieving
the same outcome, be it explicitly learning to extract the coevolutionary information from
input MSA or implicitly learning to lookup the same stored evolutionary information in
the parameters of the model.

In this work, we dissected how the language model ESM-2 enables highly accurate
structure prediction by evaluating three different hypotheses for its function (Fig. 1).
We start with hypothesis 1 that ESM-2 truly has learned protein folding from physics.
This is already contradicted by the result that ESM-2 performance is highly correlated
with the number of sequence neighbors in the training set across all model sizes (4, 5).
If ESM-2 truly had learned the physics of protein folding, its performance should not
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Fig. 1. Three hypotheses of how language models predict protein struc-
tures.

depend on the number of sequence neighbors of a given protein.
This hypothesis was further contradicted by a striking consistent
error we observed in structure predictions for isoforms from
alternative splicing—some of which, from the perspective of a
sequence-based model, can be thought of as fragments of full-
length sequences. Based on this finding, we formulated two
alternate hypotheses. Hypothesis 2 is that ESM-2 stores a separate
coevolution model for each protein family (at the domain or
fold level). Given an entire protein sequence, it would match
contact predictions to a particular protein family. Alternatively,
hypothesis 3 is the model stored small coevolutionary models for
each pair of interacting fragments that are independent of each
other and may be shared across protein families. We designed
a series of experiments to test these hypotheses and provide
evidence for supporting the third hypothesis: that ESM-2 has
learned pairwise dependencies conditioned on sequence motifs
and the relative separation between the sequences. This suggests
an analogous mechanism to many prior approaches to predict
and design protein structure using modular sets of interacting
motifs (6–9).

Results

Language Models Predict Unrealistic Structures for Protein
Isoforms. Protein isoforms are proteins that originate from a
single gene family and formed from alternative splicings or
other posttranscriptional modifications (10). Protein isoforms
resulting from splicing events within structured domains have
long been presented as a pathology for homology-based structure
modeling (11–14), since their sequences are very similar to their
full-length proteins, yet are often likely unfolded and nonfunc-
tional (14). These isoforms offered an opportunity to evaluate the
capabilities of the current protein structure prediction methods.
If state-of-the-art protein structure prediction approaches predict
such isoforms as either unfolded or alternately structured, it
would imply an intrinsic understanding of the biophysics of
protein folding. We curated a dataset of 18 domain-splitting
isoforms that had previously been identified in refs. 11–14, and
made structure predictions using AlphaFold2 (with MSA input),
OmegaFold (language model), and ESMFold (language model)
(Materials and Methods) (15).

An example isoform from human myoglobin, first discussed
as an example of this phenomenon in ref. 13, is depicted in
Fig. 2A. The isoform’s predicted structures in AF2, OmegaFold,
and ESMFold have 0.49, 1.01, and 0.81 Å root-mean-squared
deviation (RMSD), respectively, to the segment of the full-
length protein that aligns to the isoform. However, this three-
dimensional fold is improbable: Multiple hydrophobic residues
are exposed in a cleft that in the full-length form of myoglobin,
would be occupied by helices A and B. We quantified this
effect using the spatial aggregation propensity (SAP) score (16).

The Bottom row of Fig. 2A depicts the surface of the sequence
corresponding to the isoform within the full-length protein, as
well as the isoform structure models, colored by the calculated
per-residue SAP score. Structure predictions of isoforms from
human Prostaglandin E synthase 3 (Fig. 2B), human Caspase-9
(Fig. 2C ), and human Nfs1 cysteine desulfurase (Fig. 2D) all
share similar trends, where the isoform structure model contains
a significant patch of residues with high SAP score. We observed
low RMSD to the reference full-length structure, accompanied
by high model confidence and increased mean SAP scores across
many isoforms (Fig. 2E), indicating both MSA-based and Protein
language models, pLM-based models are prone to the error of
predicting structures of modified sequences within the context of
the full-length protein, countering hypothesis 1.

An Unsupervised Method of Extracting Coevolutionary Signal
from Language Models. Following our observations regarding
isoforms, we proceeded to further explore how the language
model ESM-2, the language model underlying ESMFold (Fig. 3),
predicts contacts and how it might be storing coevolutionary
information. In ref. 17, the authors first developed a method for
contact prediction by supervising training on attention matrices
from within the language model, the so-called “Contact Head.”
Ref. 4 furthered this work by developing the “Folding Trunk”
to predict 3D structure from ESM-2 embeddings. Both of
these extensions to the original ESM-2 model were developed
using supervised learning on sets of contacts or 3D structures.
We wished to develop an approach to evaluate coevolutionary
signal in a completely unsupervised manner, to understand
what information the original ESM-2 model, trained only using
the unsupervised task of masked language modeling, holds.
We formulated the “categorical Jacobian” calculation (Fig. 3)
described below toward this end.

For a biological sequence of length L with A possible tokens
(i.e., amino acids for proteins), we extract a set of weights
defining the “categorical Jacobian” J as follows (illustrated in
Fig. 4A). We mutate each residue in the sequence to each
of A possible tokens, and calculate how each of these L × A
mutations perturbs the probabilities of each amino acid across
all positions output by the language model, i.e. the logits, which
have shape L × A. Accordingly, the shape of the tensor J is
L×A×L×A. Applying the same procedure to a Markov Random
Field (MRF) (18–20) or multivariate Gaussian (MG) (21) model
results in exactly returning the pairwise coupling tensorWL,A,L,A,
and could be also calculated by perturbing the value of the
original token, yet we found that in the context of ESM-2, this
“categorical” perturbation is critical. In a linear model (MRF or
MG), perturbation of any step size returns the same value in the
Jacobian (22), yet in ESM-2, a small perturbation to the one-
hot encoded input is insufficient to perturb the output (Fig. 5
A–C ). We noticed that increasing the step size improves contact
map accuracy (Fig. 5A) and changing the actual category (amino
acid type) results in the best contact accuracy (Fig. 5D). This
unsupervised Jacobian method allows us to directly compare
pairwise coupling weights from language models to pairwise
coupling weights derived from MRF and MG-based models.

With this categorical Jacobian calculation in hand as an unsu-
pervised approach for assessing pairwise coevolutionary weights
of pLMs, we next set out to evaluate how these pairwise weights
compare to linear models in the task of contact prediction, as
well as the supervised “Contact Head” that was trained on top of
ESM-2 embeddings. From our Jacobian tensor, we can calculate
a predicted contact map of size L × L analogously to MRFs
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Fig. 2. Deep learning structure-based methods predict isoforms as fragments of full-length structures with exposed aggregation-prone residues. (A) Top:
alignment between human myoglobin (UniProt: P02144) and human isoform Q8WVH6 (UniProt: Q8WVH6). Left: X-ray structure of human myoglobin [Protein
Data Bank (PDB): 3RGK] shown with the heme cofactor, and the two missing helices A and B in the isoform colored in gray. Right: predicted structures of
isoform Q8WVH6 of Myoglobin from AlphaFold2, OmegaFold, and ESMFold have low root-mean-squared deviation (RMSD) to structure 3RGK (0.49, 1.01, and
0.81 Å respectively). Bottom: surfaces of protein fragments corresponding to the isoform sequence. The isoform structure models all have exposed hydrophobic
residues corresponding to where helices A and B reside in the full-length structure (indicated with an arrow), quantified here using the spatial aggregation
propensity (SAP) score (16). Structure predictions of isoforms from Human Prostaglandin E synthase 3 (B), Human Caspase-9 (C), and Human Nfs1 cysteine
desulfurase (D) all share similar trends, where the isoform structure model contains a significant patch of residues with high SAP score. In (B–D), the structure
model depicted is from ESMFold. (E) For 18 isoforms previously identified in the literature as isoforms where splicing events occur in structured domains, we
calculated RMSD to a reference structure of the full-length protein, and the change in average SAP for the isoform fragment in comparison to the sequence
aligned in the full-length protein. We found that for AlphaFold2, OmegaFold, and ESMFold, isoform structure models generally had low RMSD to the reference
structure, predicted with relatively high pLDDT, along with increased average SAP.

and MGs (Materials and Methods) (23, 24). Fig. 4B depicts an
example comparison of pairwise coevolutionary weights for the
large ribosomal subunit protein RL29 calculated with 2 methods:
on the Top, using a multivariate Gaussian approach inferred
from an MSA for the family (25), and on the Bottom, from
the categorical Jacobian of ESM-2 with 3 billion parameters.
The Left coloumn depicts summed contact weights from both
methods and the Right column depicts an example 20× 20 set of
weights corresponding to pairwise amino acid dependencies for a
given pairwise contact, demonstrating striking visual similarities
between the two methods. Analogous sets of weights for other
ESM-2 model sizes are depicted in SI Appendix, Fig. S1. We
note that in the couplings calculated from a set number of
sequences in an MSA, some residue types may not be observed in

every position, and the couplings, therefore, cannot be inferred
(indicated in grey in Fig. 4B). In contrast, pLM infers a pairwise
coupling value for every residue type at every position, including
interactions which may never appear in the finite number of
sequences in the MSA.

We compared the accuracy of contacts predicted with a
standard linear model for pairwise couplings (25, 26) or predicted
with the categorical Jacobian of the ESM-2 3-billion-parameter
model, quantifying accuracy via precision of theL/2 top-weighted
long-range contacts (Materials and Methods). We used the
3-billion-parameter model because it showed similar performance
to the 15-billion-parameter model (4). The categorical Jacobian
calculation demonstrated improved performance at predicting
contacts than the linear model across our dataset of 1,431 proteins
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Fig. 3. Scheme comparing strategies to extract structure and coevolution-
ary information from the language model ESM-2. We present an unsuper-
vised “categorical Jacobian” calculation to extract coevolutionary couplings.

(see Materials and Methods for dataset construction) (Fig. 4C,
average accuracy of 0.80 and 0.67, respectively). Contacts from
the categorical Jacobian had lower accuracy than the supervised

contact head (Fig. 4D), average accuracy of 0.80 and 0.87,
respectively).

Next, we were curious how similar the actual underlying
weight matrices were between these two methods, i.e., a
linear model and the ESM-2 categorical Jacobian calculation.
Estimating a linear model involves fittingL×A×L×A parameters
for each family, which is very likely overdetermined, and many
of the weights are driven to zero. We assessed the correlation at
different cutoffs of removing weights closest to zero (Materials
andMethods). In our benchmark of 1,431 proteins, we found that
the correlation between pairwise coupling weights from ESM-2
and from a linear model increased with the size of the ESM-2
model (Fig. 4E), with performance plateauing at the 150-million
to 3-billion parameter model sizes.

Language Models Predict Structures by Looking Up Segment
Pairings. Given that we could calculate a Jacobian of ESM-2
that contained coevolutionary signal rivalling the information
predicted by the supervised Contact Head, we wished to more
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PDB: 3A0Y which is the Catalytic domain of histidine kinase ThkA. (C) Jacobian
of PDB: 3A0Y. (D) Categorical Jacobian of PDB: 3A0Y.

thoroughly investigate the mechanism of precisely how the
Contact Head predicts contacts given an input sequence. We
tested what information is most used in contact prediction by
monitoring prediction from the Contact Head when information
from various sequence locations is masked. We used the Contact
Head for these experiments because it is faster to compute than
the categorical Jacobian for large-scale studies. We first masked
the whole sequence and only unmasked two 11 aa segments to
examine their interaction. Then, we compared three unmasking
strategies to disentangle the impact of local context and global
context on contact prediction. The first approach was unmasking
residues flanking the target segments to reveal the impact of
local context. As controls, we either randomly unmasked the
same amount of residues throughout the protein or randomly
unmasked residues but avoided unmasking residues within 30
aa to the termini of the segments (Fig. 6A). We hypothesized
that a model that stores local motifs would better be able to
recover contacts by gradually unmasking residues next to the
contact in question while a model that stores complete domains
or folds would be able to recover contacts similarly via randomly
unmasking residues and unmasking flanking regions. Testing
these unmasking strategies revealed that ESM-2 more rapidly
recovered contacts by unmasking flanking regions, with 50%
being recovered with approximately 16 residues unmasked on
each side, and contact recovery from flanking unmasking being
roughly 3 times as effective as randomly unmasking (Fig. 6B and
SI Appendix, Table S1).

We found similar trends when analyzing how much context
ESM-2 needs to recover contacts between more distant secondary
structure elements (SSEs). We took two 11-residue segments
from a pair of interacting SSEs, with centers separated by at
least 50 residues, and masked the rest of the protein. Then,
we gradually unmasked more flanking regions on the outer

sides of the segments (Fig. 6A) and monitored the contact
recovery. We found that 50% of the SSE pairs’ contacts were
restored with a flanking length of 22 or 30 residues (Fig. 6F )
for pairs separated by 50 to 100 or more than 100 residues,
respectively. The contact recovery from flanking unmasking is
roughly 2.5 times as effective as random unmasking (Fig. 6B and
SI Appendix, Table S1).

We observed a striking step-function type behavior in how
ESM-2 uncovered contacts while unmasking flanks for the starch-
binding protein SusD (PDB: 3CKC) (27) (Fig. 6C ). ESM-2
shifted from not predicting the contact between two �-helices
centered at residue 225 and residue 421 using 13 flanking
residues on each side to complete contact recovery at 14 residues
(Fig. 6 C and D). This intriguing contact recovery pattern was
observed in multiple cases (Fig. 6D) and motivated us to charac-
terize the prevalence (Materials and Methods and SI Appendix,
Figs. S2–S4). We calculated the maximal recovery increase
achieved upon adding one residue for each segment pair (Fig. 6E).
For segments separated by 15 aa, 50 to 100 aa, and > 100 aa,
82%, 76%, and 64% out of these that reached recovery have
a “jump” of more than 0.5 in recovery with one residue. The
number of total unmasked residues needed for 90% of these
jumps to occur was between 85 to 94 (Fig. 6F ), which we
calculated by unmasking asymmetrically to ensure we found
the more precise motif size (Materials and Methods). Alternate
behaviors upon unmasking that did not fall into our “jump”
classification are described in SI Appendix, Figs. S2–S4.

One limitation of our study is that we are only unmasking
residues flanking the outward regions of the segment, and such
unmasking could also be done inward. Thus, the minimal total
unmasked residues needed for recovery might be lower than the
number we showed.

Further, we observed contacts predicted even for some masked
part of the sequence (Fig. 6C and SI Appendix, Fig. S3, contacts
outside the blue boxes), indicating that in some cases the size of
the learned motif may be larger than the amount of context used
to recover part of the motif.

Discussion

The development of pLMs has brought significant excitement
into the field of protein structure prediction. Some have
wondered whether pLMs have finally solved the “protein folding
problem,” given their accurate structure prediction from single
sequences and no supplied coevolutionary signal in an input
multiple sequence alignment (2). This was quickly debunked,
as the accuracy of models was found to be highly correlated
to the number of related proteins in the training set (3, 4),
indicating that the models store evolutionary information in their
parameters, but precisely how has been unclear.

A clue for how ESM-2 might be storing coevolutionary
information came via a consistent error we encountered in
the predicted structures of isoforms, which we found were
consistently predicted to fold to fragments matching their
structure context within the full-length proteins, but which
left nonphysical patches of hydrophobic residues exposed. We
figured whether the model learned protein folding and not
simply looked up evolutionary statistics, it should be able to
model a more-likely unfolded conformation. Our results caution
against assuming pLMs as oracles of protein properties without
consideration of potential adversarial and out-of-distribution
behaviors. Notably, AF2 is prone to this error as well. As
of January 2024, we identified one such erroneous structure,
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Fig. 6. Contact recovery experiments revealed that pLMs predict structures by looking up segment pairings. (A) Scheme depicting segment pair contact
recovery experiment. Orange: segment where contact is detected. Blue: unmasked aa. Gray: masked aa. (B) The percentage of segment pairs with contact
recovered at different numbers of unmasked residues. N = 4,022, 1,273, and 304 segment pairs for segments separated by 15 aa (cyan), 50 to 100 aa (pink),
and >100 aa (purple). (C) Left: Structure of starch-binding protein SusD with example helix–helix contact visualized in orange (PDB: 3CKC). Right: ESM2 contact
maps of fully unmasked and partially unmasked sequences. The contact prediction is not present with 13 residues unmasked (marked with #), but appears with
14 residues unmasked (marked with *). (D) Contact recovery at different unmasked flank lengths for 3CKC 225-421 (red) and other segment pairs from other
proteins (gray). (E) Distribution of the maximum recovery increased from adding one residue to the unmasked flanking region (calculated for segment pairs
that reached a contact recovery of 0.5). N = 3,264, 1,027, and 170 segment pairs for segments separated by 15 aa, 50 to 100 aa, and >100 aa. (F ) Distribution
of total unmasked residues at the “jump” of recovery by asymmetrical unmasking of the outer flanking regions (calculated for segment pairs with a “jump” in
contact recovery). N = 2,625, 763, and 103 segment pairs for segments separated by 15 aa, 50 to 100 aa, and >100 aa, respectively.

Myoglobin isoform CHS.35702.2 predicted with predicted
Local Distance Difference Test (pLDDT) 94.3 (SI Appendix,
Fig. S5), from the isoforms we analyzed in the “Comprehensive
Human Expressed SequenceS (CHESS) human protein structure
database” public database of AF2 isoform predictions (28). A
clear limitation of this study is that we do not have experimental
evidence for the actual in vitro structure landscapes of these
isoform examples.

Motivated to develop a framework to assess coevolution-
ary signals within language models, we developed a general
calculation to calculate a “categorical Jacobian” of a pLM for
a given sequence. The values of the categorical Jacobian can be
directly compared to the pairwise weights of a Markov Random
Field (18–20) or multivariate Gaussian model (21) calculated for
a given MSA, approaches which have long been used to assess
coevolutionary couplings in protein families.

Another approach to extract contacts in an unsupervised way
from nonlinear models is to do all combinations of single and
double mutations and take the differences (double—singles) in
the likelihoods (29). Though this is similar, it is prohibitively
expensive to compute for pLMs, and we find doing a scan of

single mutations is all that is needed to extract the pairwise
dependencies.

We were curious if we could detect patterns in how ESM-2
uses coevolutionary information to predict contacts. We tested
unmasking residues in various patterns surrounding contacts,
which revealed that the model best recovers contacts by gradually
unmasking residues next to the contact in question compared to
random unmasking. This suggests that pLMs learned statistics of
motif pairings. We suggest that this relationship can be roughly
represented as:

P(contact[a, b]|seq[a : a± s], seq[b : b± s]), [1]

where s depends on the motif the contact is in. Without this
context, the pLMs are unable to correctly predict the interaction
between fragments.

Our analysis does not completely rule out that pLMs have
learned the concept of full folds, since the continuous segment
unmasked in the flanking region might have helped the model to
match to full proteins. Nevertheless, our results underscore that
the information of the full fold is not required for the model to
function.
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Storing the coevolutionary statistics* of all known protein
families in UniProt (roughly 20,000), assuming an average length
of 256, would require

20,000 families×
(

256
2

)
pairwise interactions

× 202 amino acids = 261 billion parameters. [2]

If we assume each position makes at most 4 contacts—2
sequence neighbors and roughly 2 long-range contacts—this
corresponds to

20,000 families× 256× 4 pairwise interactions

× 202 amino acids = 4 billion parameters, [3]

which is the same order of magnitude at which ESM-2 models
start to taper off in their improvement (roughly 3 billion
parameters) (17). A model that segments a protein into common
motifs, as our work suggests pLMs are doing, offers a clear route
to compression. A downside of such compression is that within-
family evolutionary effects such as multiple stable conformations
are inaccurately predicted by ESM-2 (SI Appendix), a clear area
for future improvement.

In summary, our work has demonstrated how a fundamen-
tally powerful unsupervised learning approach—that of masked
language modeling—enables storing coevolutionary statistics
agnostically for thousands of protein families. Although they
have not yet reached the ability to directly model the physics
of protein folding, we anticipate that this research and other
ongoing interpretability studies will shed light on how we might
actually use deep learning to approximate the fundamentals of
biophysics.

Materials and Methods

Isoform Dataset Curation and Analysis. We collected examples of isoforms
identified previously (11–14) as cases where splicing would disrupt ordered
domains, along with associated structures. For each, we identified a corre-
sponding isoform and full-length protein in UniProt. We predicted structure
models in AlphaFold2 (1) using ColabFold (30); OmegaFold (2) using the
OmegaFold notebook available at https://colab.research.google.com/github/
sokrypton/ColabFold/blob/main/beta/omegafold.ipynb; and ESMFold (4) using
the ESMFold server available at https://esmatlas.com/resources?action=fold.

We calculated the SAP score of isoform models using the “per_res_sap.xml”
script from SI Appendix of ref. 31. We calculated RMSD between structure
models of isoforms and the full-length experimental structure in PyMOL (32)
for �-carbons for aligned regions. Aligned regions were manually determined
from alignments of each isoform to each full-length sequence using the “global
alignment with free end gaps” setting and the BLOSUM62 matrix in the Geneious
Prime software.

Dataset for Model Comparison and Contact Recovery. We obtained 2,245
structures from the Generative Regularized ModeLs of proteINs (GREMLIN)
Coevolution predictions database for PDB_EXP with more than 1,000 sequences
in MSA (19). Similar structures were filtered based on a TMalign (33) score
exceeding 0.5. We used proteins with a length from 200 to 600 amino acids
to ensure a similar size across proteins and enough length for exploring the
effect of flanking region (SI Appendix, Fig. S6A). We selected only proteins that
were missing fewer than 50 residues in the structure to ensure the majority of
residues are present in the experimental structure. With these filtering steps,
we obtained a dataset of 1,431 proteins in total.

*Storing sequence conservation requires (20,000 protein families × 256 sequence
positions × 20 amino acids) = 100 million parameters for any model.

Weights and Contact Maps from a Linear Model. To calculate pairwise
coupling weights and contact maps from MSAs via a linear model, we use the
inverse covariance method presented in ref. 25. Dauparas et al. demonstrated
that MRF and MG models can be mapped to the same graphical model
representation (25). The main difference is that MRFs consider the tokens in
biological sequences as categorical, and MGs approximate them as continuous
variables. Estimating a set of pairwise coupling weights WL,A,L,A for either thus
depends primarily on the loss function used. Dauparas et al. demonstrated
empirically that the following estimation, which derives from a mean-squared-
error loss for an MG formalism, performs comparably to cross-entropy loss in an
MRF, as used in GREMLIN ref. 18 and other models, but with substantially less
compute. We defer the reader to ref. 25 for the complete derivation.

The MSA sequences are filtered with HHfilter (34) based on a sequence
identity cutoff of 90% to reduce sequence redundancy and coverage of 75%
to remove those with too many gaps (35). The sequences are one-hot-encoded
and written in the form X ∈ RN×LA, where N is the number of sequences, L is
the sequence length, and A is the number of letters available in the alphabet
(A = 20 for proteins). The pairwise coupling weights W are calculated as

W = −

(
Cov(X̂) +

4.5
√
N
I
)−1

, [4]

where X̂ is the mean-centered MSA, i.e. X̂ = X− X, and Xn,jk = 1
N
∑N

i=1 Xi,jk
for all n. The 4.5√

N
term is introduced for shrinkage and is empirically estimated

in ref. 25. Note that the expression for W above is technically the weight matrix
minus the identity matrix. This is expressed in ref. 25 as W̃ = W + I, but this
makes no difference in calculation.

We calculate a contact matrix C ∈ RLxL with entries cij from the above tensor
W using

cij = APC


 20∑
n=1

20∑
m=1

W[i, n, j, m]2

1/2
 , [5]

where APC is the average product correction (36). For a matrix in RL×L

composed of entries mij, we calculate the APC as

APC(i, j) = mij −

∑L
i′=1 mi′ j

∑L
j′=1 mij′∑L

i′=1
∑L

j′=1 mi′ j′
. [6]

Calculation of Long-Range Contact Prediction Accuracy. We evaluated
the contact prediction performance based on the precision of the top L/2
(L is the length of the protein) predicted long-range contacts (separated by
more than 24 residues) by confidence (4). The contacts from experimental
structures were identified based on the criterion that two amino acids have C�
distance < 10 Å.

Language Model Contact Map via Jacobian. To calculate the categorical
Jacobian of a language model, each of L positions in a sequence is mutated
to all A possible tokens (for proteins, A = 20) and input into the language
model to predict the resulting logits across the entire sequence, where the
logits are shaped L × A. The difference between the logits of the original
sequence and the logits of the mutated sequences was calculated to get the
Jacobian matrix.

Written formally, we define the categorical Jacobian J for a protein language
model f(X), which accepts as its input a protein sequence X with length L and
alphabet size A, as

J =

f [X(x1 → a1)]− f [X] · · · f [X(x1 → a20)]− f [X]
...

. . .
...

f [X(xL → a1)]− f [X] · · · f [X(xL → a20)]− f [X]

 . [7]

Above, f [X] is the original logits output by the language model, a matrix
of logits with size L × A. f [X(xi → an)] represents the logits returned when
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position i has been mutated to token an. The Jacobian is therefore a tensor with
size [L, A, L, A]. J is mean-centered and symmetrized. We obtain a contact map
from J analogously to Eqs. 5 and 6. It can be shown that applying the same
categorical Jacobian operation to an MRF or MG model will return the pairwise
weights matrix W.

To evaluate the correlation between the pairwise couplings from ESM-2
models and the couplings from a linear model, we first selected the top-weighted
L interresidue contacts from the contact map calculated from the linear model
(following average product correction). This results in L× L× 20× 20 weights
from both the linear model couplings (W) and the ESM-2 jacobian J. We expect
many of these weights to be close to zero and not meaningful, so we calculate
Spearman correlation over a range of cutoffs filtering values close to zero.

If Ŵ is this reduced mean-centered set of couplings from the linear model,
and Ĵ is the reduced mean-centered ESM-2 jacobian, we calculate the Spearman
correlation over the subset of Ŵ and Ĵ whose absolute value is greater than b
SDs of Ŵ, where b ∈ [0, 4]. The Spearman correlation is calculated in SciPy (37).

Recovery of Contact with Increasing Flanking Region. For contact recovery
between segments closer in distance, we created the following procedure to
account for the fact that ESM-2 was masked to not predict contacts between
residues closer than 6 residues apart. We scanned over the contact map output
by the ESM2 Contact Head for pairs of segments (each 11 aa in length) whose
ends are separated by 5 aa (i.e., the centers of the segments are separated
by 15 aa). We only selected segment pairs that have extensive contacts
based on:

m+10∑
i=m

n+10∑
j=n

aij > 10, [8]

where aij is the contact probabilities corresponding to positions i, j from the LM
contact of the sequence.

For each of the 1,431 proteins, we sampled at most 3 segments. We randomly
picked the first segment pair and then selected the next two pairs by choosing
the pairs that were the furthest from the already selected pairs. In total, 4,022
segment pairs from 1,429 proteins were examined.

For examining the interaction between pairs of segments that are further
apart, we chose pairs of SSEs with centers separated by at least 50 amino acids,
because the contact probability derived from the GREMLIN dataset showed
correlations diminished beyond 40 residues (SI Appendix, Fig. S6B). To extract
secondary structures, we predicted structures using ESMFold (4) and then used
Python dictionary of Secondary Structure of Protein (PyDSSP) (38) to calculate
secondary structure. To standardize the lengths of SSE segments, we took the
centers of SSEs and selected 5 residues on both sides of the center. We selected
SSE segment pairs with more than 10 residues to the protein termini. We
again selected only SSE pairs with extensive contacts. We randomly sampled
maximally 3 segments per protein. For SSE segment pairs separated by 50
to 100 residues, 1,273 segment pairs from 821 proteins were examined. For
SSE segment pairs separated by more than 100 residues, 304 pairs from 266
proteins were examined.

After selecting the segment pairs, we compared the recovery from
unmasking the region flanking the outer sides of the segment pairs and from
random unmasking. We conducted the unmasking in three different ways:
1) symmetrically increase the unmasked residues flanking each of the outer
sides of the segment pairs, 2) randomly unmask an increasing number of
residues, 3) randomly unmask residues but avoid the nearest 30 aa around the
ends of the segment pairs.

The contact recovery was calculated via

Recovery =
∑
i,j

aijbij

a2
ij

, [9]

where aij andbij are the contact probabilities corresponding to positions i, j from
the LM contact of the original and masked sequences, respectively. When the
score was higher than 0.5, we regarded it as a recovery of contact.

During ESM-2 training, Beginning-of-sequence (BOS) and End-of-sequence
(EOS) tokens are used to indicate the start and end of the protein for the model
to distinguish a full-sized protein from a cropped one. For recovery experiments
in Fig. 6 and SI Appendix, Figs. S2–S4, we replaced these tokens at the start and
end of each protein with a mask token.

Analysis of Step-Function Type Behavior of Contact Recovery Exper-
iments. Different behaviors in contact recovery were characterized in the
following way. For segments that ultimately achieved contact recovery higher
than 0.5, we calculated the maximal recovery increase over a flank length increase
of 1 residue. A cutoff of 0.5 was used to define an “abrupt” change in recovery.
To examine the cases where a sudden increase of recovery was achieved when a
certain residue was included, we analyzed recovery increase v.s. the number of
unmasked flanking residues, and we noticed that a small number of segment
pairs have a lot of fluctuations. We filtered out these cases based on the criteria
that fewerthan3residues inthenext10residuesafter the“jumpinrecovery”have
a drop in recovery value of 0.2. For the cases where there was a “jump in recovery”
and the recovery values stayed relatively stable after the “jump,” we evaluated
the total number of unmasked residues needed for each segment pair. We also
examined the minimum number of unmasked residues needed by asymmetri-
cally unmasking the outer flanking region. The examples of different recovery
curves and the detailed filtering process are shown in SI Appendix, Figs. S2–S4.

Data, Materials, and Software Availability. The dataset of 18 iso-
forms and scripts to perform analysis are available at https://github.com/
HWaymentSteele/Isoforms_benchmark_2024 (15). The code for categorical
Jacobian and contact prediction analyses is available at https://github.com/
zzhangzzhang/pLMs-interpretability (23). The modified positional embed-
ding version of ESM-2 and ESMFold are available at https://github.com/
garykbrixi/esm_gap_distance (39). Interactive Google Colab notebook for
extracting conservation and coevolution (categorical Jacobian) from ESM models
is available at https://colab.research.google.com/github/sokrypton/ColabBio/
blob/main/categorical_jacobian/esm2.ipynb (24).
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