

1 **Article Title**

3 Draft Genome Sequence of *Sanguibacter* species strain 25GB23B1, Cultivated from Arctic
4 Surface Water

6 **Authors**

8 Kiana Mitchell, Grace Busch, Indu Sharma[#]

10 **Affiliations**

12 Department of Biological Sciences, Hampton University, Hampton, Virginia, USA

14 **Running Title**

16 Draft Genome Sequence of *Sanguibacter* species strain 25GB23B1

18 **Corresponding Author's Email Address**

20 [#]Address correspondence to Indu Sharma, indu.sharma@hamptonu.edu

22 **Abstract**

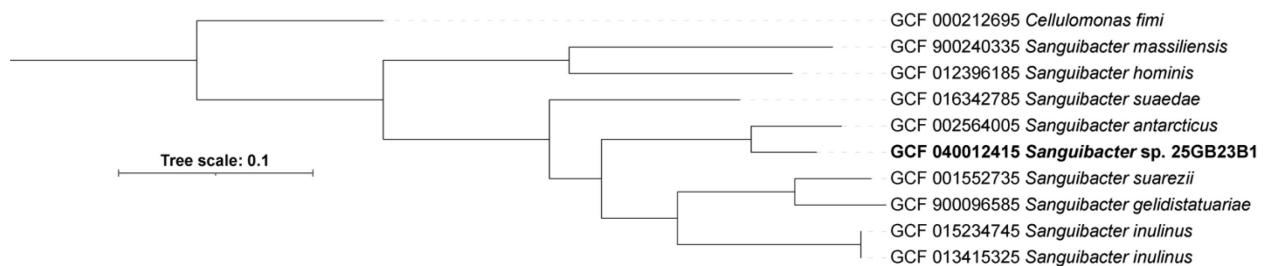
24 We report a draft genome sequence for *Sanguibacter* species strain 25GB23B1, isolated from
25 arctic surface water off the coast of Alaska. The whole genome sequence will provide knowledge
26 of the bacteria's relationship to its environment and possibly a new species of *Sanguibacter*.

28 **Announcement**

30 *Sanguibacter* is a genus of gram-positive, coryneform bacteria under the family of
31 *Cellulomonadaceae*. Members of this genus have been found in marine environments;
32 specifically in coastal sediment from the Eastern China Sea (1) and in ice in Antarctica (2). The
33 *Sanguibacter* strain of this study was isolated from arctic seawater accessed one meter below the
34 water's surface through drilling holes with an ice auger near North Slope Borough, Alaska on
35 May 22, 2023 at the coordinates 70° 27' 30.0" N, 148° 25' 06.2" W and named 25GB23B1.

36

37 An enrichment was performed with a medium modified from Unfried et al. (3)(342.2 mM NaCl,
38 14.8 mM MgCl₂·6H₂O, 1.0 mM CaCl₂·2H₂O, 6.71 mM KCl, 100 mg casamino acids, 100 mg
39 peptone, 20 mM MOPS [pH 8.0], 10 mM NH₄Cl, 10 mM KH₂PO₄, 1 mM Na₂SO₄, 1 mM trace
40 metals, 0.5% Laminarin). The culture was incubated for 7 days at 30°C on orbital shaker (100
41 rpm shaking). From this enrichment, 100 µL was plated on an artificial seawater complete
42 medium (342.2 mM NaCl, 14.8 mM MgCl₂·6H₂O, 1.0 mM CaCl₂·2H₂O, 6.71 mM KCl, 5 g
43 Bacto-tryptone, 1 g yeast extract, 20 mM MOPS [pH 8.0], 0.3% glycerol) and agar at a final
44 concentration of 1.5%. The colony was selected for its bright yellow color and streaked for
45 isolation on the same artificial seawater media.


46

47 For whole genome sequencing, DNA was extracted from 2ml culture of microbial isolate
48 *Sanguibacter* sp. 25GB23B1 using the Zymo Quick-DNA Fungal/ Bacterial Miniprep Kit
49 (Zymo). The sample was received and quantified using an Invitrogen Qubit 4 Fluorometer and
50 1x dsDNA High Sensitivity Assay Kit (ThermoFisher Scientific). The genomic library was
51 prepared using DNA extracts and the Nextera XT DNA Library Preparation kit (Illumina)
52 according to the manufacturer's protocol. The library was quality checked using an Agilent 2100
53 Bioanalyzer and DNA High Sensitivity kit and then pooled in an equimolar ratio. The pool was
54 gel purified using a 2% agarose gel and the Qiagen QIAquick gel extraction kit (Qiagen).
55 Following purification, the pool was sequenced on an Illumina NextSeq 550 instrument using a
56 Mid-Output v2.5 chemistry 300-cycle kit to produce 2x150 bp reads. Amplification of the 16S
57 rRNA gene using the primers 533F and 1100R and sequencing confirmed that the isolate is a
58 member of the genus *Sanguibacter*.

59

60 The raw genome data was analyzed using FastQC (4) and found to have a total number of
61 7,418,186 raw sequences with a sequence length of 151 bp. Trimmomatic v0.39 (5) was used for
62 quality filtering and trimming the raw Illumina reads using the following parameters:
63 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:60. A combined 3,513,311
64 individual forward and reverse reads were retained which were used to generate the genome
65 assembly. For all the following programs, default settings were used. Assembly was performed
66 from the trimmed reads using SPAdes v3.13.0 (6), and assembly summary statistics were
67 generated with QUAST v5.0.2 (7). The draft genome's total length is 4,303,413 bp, composed of
68 66 contigs (N_{50} : 96,636 bp, L_{50} : 14), with an average GC content of 70.68% and an average
69 genome coverage of ~123-fold. The genome was annotated by Rapid Prokaryotic Genome
70 Annotation (PROKKA) (8) and found to contain 3,972 protein coding sequences, three complete
71 rRNA genes, 54 tRNA genes, and one tmRNA gene. A phylogenomic tree was created using the
72 Interactive Tree of Life (iTOL) (9) and GToTree program (10) with *Cellulomonas fimi* as an
73 outlier for comparison (fig. 1). The average nucleotide identity, calculated using pyANI v0.1.2
74 (11) default settings, between 25GB23B1 and *S. anarcticus* ([GCF_002564005.1](#)) was 84.57%,
75 with ~68% of the two genomes aligning. As a genome needs to share 97% or more DNA with
76 another genome to be considered the same species, the *Sanguibacter* strain 25GB23B1 ascribes
77 to one of the criteria of being a new species of *Sanguibacter* (12).

78
79
80

82 **Figure 1. Phylogenomic tree** for *Sanguibacter* sp. isolate 25GB23B1 based on 74 unique single-
83 copy core genes (SCG) depicting the phylogenomic position relative to other *Sanguibacter* sp.
84 *Cellulomonas fimi* was used as an outlier.

85

86 **Data Availability Statement**

87 This whole-genome shotgun genome assembly has been deposited at NCBI GenBank under
88 accession number [JBDYKL000000000.1](#). The BioProject accession number is [PRJNA1113969](#)
89 and the BioSample accession umber is [SAMN41472747](#). Raw sequencing reads were deposited
90 in NCBI's Sequence Read Archive under accession number [SRX25616898](#).

91

92

93 **Acknowledgments**

94

95 This work was supported by National Science Foundation award #2205569. We would like to
96 thank Dr. Krista Longnecker from Woods Hole Oceanographic Institution for providing water
97 samples and Dr. John McNabb, Research Assistant Professor, Department of Atmospheric and
98 Planetary Sciences, Hampton University, Hampton, VA, for computational help in establishing
99 and maintaining a genome assembly pipeline at the Hampton University pirate cluster. We thank
100 Wright Labs for the whole genome sequencing services and to Hampton University in Hampton,
101 Virginia for providing the laboratory space and equipment to conduct this research.

102

103 **References**

1. Huang Y, Dai X, He L, Wang Y-N, Wang B-J, Liu Z, Liu S-J. 2005. *Sanguibacter marinus* sp. nov., isolated from coastal sediment. International journal of systematic and evolutionary microbiology 55:1755-1758.
2. Pikuta EV, Lyu Z, Williams MD, Patel NB, Liu Y, Hoover RB, Busse H-J, Lawson PA, Whitman WB. 2017. *Sanguibacter gelidistatuariae* sp. nov., a novel psychrotolerant anaerobe from an ice sculpture in Antarctica, and emendation of descriptions of the family Sanguibacteraceae, the genus *Sanguibacter* and species *S. antarcticus*, *S. inulinus*, *S. kedieii*, *S. marinus*, *S. soli* and *S. suarezii*. International Journal of Systematic and Evolutionary Microbiology 67:1442-1450.
3. Unfried F, Becker S, Robb CS, Hehemann J-H, Markert S, Heiden SE, Hinzke T, Becher D, Reintjes G, Krüger K. 2018. Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. The ISME journal 12:2894-2906.
4. Andrews S. 2017. FastQC: a quality control tool for high throughput sequence data. 2010.
5. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.
6. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology 19:455-477.

121 7. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome
122 assemblies. *Bioinformatics* 29:1072-1075.

123 8. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30:2068-2069.

124 9. Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
125 display and annotation. *Nucleic acids research* 49:W293-W296.

126 10. Lee MD. 2019. GToTree: a user-friendly workflow for phylogenomics. *Bioinformatics* 35:4162-
127 4164.

128 11. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. 2016. Genomics and taxonomy in
129 diagnostics for food security: soft-rotting enterobacterial plant pathogens. *Analytical Methods*
130 8:12-24.

131 12. Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Würdemann CA, Quast C, Kuhl H,
132 Knaust F. 2006. Whole genome analysis of the marine Bacteroidetes 'Gramella forsetii' reveals
133 adaptations to degradation of polymeric organic matter. *Environmental Microbiology* 8:2201-
134 2213.

135