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ABSTRACT

Performance during perceptual decision-making exhibits an inverted-U relationship with arousal, but the underlying
network mechanisms remain unclear. Here, we recorded from auditory cortex (A1) of behaving mice during passive
tone presentation, while tracking arousal via pupillometry. We found that tone discriminability in A1 ensembles
was optimal at intermediate arousal, revealing a population-level neural correlate of the inverted-U relationship. We
explained this arousal-dependent coding using a spiking network model with a clustered architecture. Specifically,
we show that optimal stimulus discriminability is achieved near a transition between a multi-attractor phase with
metastable cluster dynamics (low arousal) and a single-attractor phase (high arousal). Additional signatures of this
transition include arousal-induced reductions of overall neural variability and the extent of stimulus-induced variability
quenching, which we observed in the empirical data. Altogether, this study elucidates computational principles
underlying interactions between pupil-linked arousal, sensory processing, and neural variability, and suggests a role
for phase transitions in explaining nonlinear modulations of cortical computations.
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I. INTRODUCTION

Cognitive function is impacted by fluctuations in brain and behavioral states [1–7]. For example, variations in arousal
– generally defined as an animal’s overall level of alertness – play a critical role in the regulation of sensory processing
during wakefulness [1–4, 6, 7]. The impacts of arousal are mediated by broadly-projecting neuromodulatory pathways,
including the cholinergic and noradrenergic systems [8–12], as well as by thalamocortical pathways [2, 13, 14]. Changes
in arousal can also be non-invasively monitored with pupillometry [15–17], and fluctuations in pupil-linked arousal
are accompanied by changes in behavioral task performance across multiple sensory modalities and species [1, 18–26].

The relationship between arousal and performance is often discussed in the context of the Yerkes-Dodson “inverted-
U” law [27]. This model posits that animals’ performance on difficult tasks should be poor at both low arousal
(when inattentive) and high arousal (when anxious), with optimal performance achieved during states of intermediate
arousal. The inverted-U law has been particularly well-studied in the context of auditory processing, with examples
reported in mice performing sound detection [20] and discrimination tasks [22], and in humans performing auditory
oddball [19] and pitch discrimination [18] tasks.

Past work has begun to uncover neural signatures of the inverted-U relationship during auditory processing. In mice
trained on a tone-in-noise detection task, evoked responses from auditory cortex were found to be largest and most
reliable at intermediate levels of arousal [20]. Broadly consistent with those findings is the observed suppression of
sound-evoked responses in auditory cortex during high-arousal states associated with locomotion [28–31]. However, the
network-level dynamical principles underlying optimal performance states, especially in regard to population coding
of auditory stimuli, remain unclear. To gain mechanistic insight, here we utilize a combination of electrophysiological
experiments, network simulations, and theoretical analysis.

Given that neural correlates of the inverted-U relationship have been observed in auditory cortex even without task
engagement [20], we examined how arousal impacts neural discriminability of pure tones during passive presentation.
To achieve this, we used Neuropixels probes to record activity from ensembles of primary auditory cortex (A1) neurons
in awake mice, and simultaneously monitored arousal state with pupillometry. We found that tone frequency was
best decoded from A1 ensemble activity during periods of intermediate pupil dilation, in line with an inverted-U
relationship. This finding extends previous results on optimal sound detection in auditory cortex [1] to population
coding.

To illuminate potential network mechanisms underlying the inverted-U relationship between arousal and neural
discriminability, we modeled A1 as a network of spiking neurons arranged in a clustered architecture. As shown
previously, this model generates metastable dynamics characterized by the transient activation of neural assemblies
[32–34]. By modeling arousal as a modulation of background inputs to the A1 circuit, we show that stimulus decoding
accuracy can be controlled by regulating the spontaneous metastable cluster dynamics. Namely, we demonstrate
that the inverted-U relationship emerges via a transition from a multi-attractor phase (low arousal condition) to a
single-attractor phase (high arousal condition), with optimal stimulus encoding achieved near the transition region.
This nonlinear effect was absent in networks with uniform connectivity, and thus relies specifically on the presence
of metastable dynamics in the clustered network. The clustered model additionally predicts that spontaneous and
evoked neural variability should be reduced at high arousal, as should the amount of stimulus-induced quenching of
variability [35]. We found evidence for these predictions in the experimental data, lending support to the proposed
network mechanism. As a whole, our results suggest that arousal-induced transitions in the dynamical regime of a
cortical circuit may explain key aspects of arousal-dependent stimulus processing and neural variability in auditory
cortex.

II. RESULTS

We measured neural activity from A1 of awake, head-fixed mice while simultaneously monitoring locomotion speed
and pupil-indexed arousal (Fig. 1A-C; Sec. IV A). Single-unit activity was recorded using Neuropixels probes both
during sound presentation (Fig. 1D, “evoked” periods) and in the absence of auditory stimuli (Fig. 1E, “spontaneous”
periods). During, evoked periods, mice were presented with 25 ms tones (2, 4, 8, 16, or 32 kHz). A full spectrum of
arousal states was thoroughly-sampled in many recordings, and either the lower or upper half of the pupil range was
well-sampled in the remaining sessions (Fig. S1).

A. Encoding of tone frequency in A1 populations is optimal at intermediate arousal

To determine if tone frequency was robustly encoded in recorded A1 ensembles, we trained a linear decoder to dis-
criminate between the five tones given single-trial population activity (Sec. IV C). As expected, frequency information
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FIG. 1. Neuropixels recordings from A1 of awake mice during a range of arousal states. (A) Awake, head-fixed
mice were situated on a treadmill while neural activity was recorded using a Neuropixels probe. Throughout a session, mice
were presented with pure tones of five different frequencies and arousal state was monitored with pupillometry. (B) Pupil
diameter distributions from an example recording during rest periods (dark gray) or running periods (light gray). (C) Running
speed and pupil diameter traces from an example recording session. Light green areas indicate spontaneous periods (no stimulus
presentation) and white areas indicate evoked periods. (D) Pupil diameter trace and population raster across 5 seconds of
evoked activity; vertical lines above the raster indicate stimulus onset times and colors correspond to the frequencies in A. (E)
Pupil diameter trace and population raster across 5 seconds of spontaneous activity.
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FIG. 2. Encoding of tone frequency in A1 populations is enhanced at intermediate arousal. (A) Decoding accuracy
vs. time relative to stimulus onset using all trials from an example session. The light gray area denotes the 5th to 95th percentile
range of the shuffled accuracy distribution (Sec. IV C). Inset: Peak accuracy in each session. The gray line indicates chance
performance. (B) Histogram of the pre-stimulus pupil diameter in an example session; black lines indicate deciles. (C) Peak
accuracy in each pupil decile from (B). (D) Peak accuracy (z-scored) vs. pupil diameter. Within each session, peak accuracy
values were z-scored across pupil deciles. The normalized data was then pooled across sessions (n = 15), and binned by pupil
diameter. For each bin, we show individual data points (gray), the mean (red), and corresponding boxplot (Sec. IV C 5). (E)
Left: Peak accuracy in the most central and first pupil decile of a session (p < 0.01, n = 9 sessions; Wilcoxon signed-rank test).
Right: Peak accuracy in the most central and last pupil decile of a session (p < 0.001, n = 15 sessions; Wilcoxon signed-rank
test). Only sessions where the first (last) decile was centered at < 25% (> 75%) of maximum dilation were included in the top
(bottom) analyses (Sec. IV C 6). (F) Same as (D) but for the population-averaged D′

sc (Sec. IV G). (G) Top: Distribution of
the difference in D′

sc between the most central and first pupil deciles; D′
sc was significantly larger for central deciles (Wilcoxon

signed-rank test, p < 0.001, n = 898). Bottom: Distribution of the difference in D′
sc between the most central and last pupil

deciles; D′
sc was significantly larger for central deciles (Wilcoxon signed-rank test, p < 0.001, n = 1555). For the top (bottom)

histogram, cells were pooled across all sessions for which the first (last) decile was centered at < 25% (> 75%) of maximum
dilation. 4



could be reliably decoded in all sessions (Fig. 2A; Fig. S3). We next tested whether arousal modulates the encoding
of tones in A1. To this end, we grouped trials by pupil diameter (Fig. 2B; Fig. S2 for all sessions), and computed the
maximum decoding accuracy in each pupil-based partition (Fig. 2C; Sec. IV C). On average across sessions, decoding
performance followed an inverted-U relationship with pupil diameter (Fig. 2D; Fig. S4 for individual sessions), and
there was a statistically significant increase in accuracy at mid-range pupil diameters relative to either the lowest
or highest diameters ( Fig. 2E; Sec. IV C 6). Moreover, in all sessions, the best performance was achieved at mod-
erate pupil diameters, and the worst performance at low or high pupil diameters (Fig. S5A). The session-averaged
decoding performance still exhibited an inverted-U relationship with pupil diameter after excluding locomotion trials
(Fig. S6A), though the trend was less pronounced. However, this difference may in part be due the fact that average
pupil diameters were smaller without movement data (Fig. S6B). As a whole, these findings indicate that frequency
information is best represented in A1 population activity at moderate arousal.

To further understand the population decoding results, we also examined how a single-cell discriminability index
(D′

sc) varied with pupil diameter (Sec. IV G). On average across cells and sessions, D′
sc followed an inverted-U re-

lationship with pupil diameter, similar to the decoding performance (Fig. 2F; Fig. S7 for individual sessions). At
the level of individual units, intermediate pupil diameters were associated with significant increases in D′

sc relative
to either small or large diameters (Fig. 2G), and at the cell-averaged level in individual recordings, D′

sc was always
highest at moderate pupil diameter (Fig. S5B). Taken together, these findings suggest that arousal-related modula-
tions of decoding performance at the population-level are accompanied by overall changes in discriminability at the
single-neuron level.

B. Diverse impacts of arousal on spontaneous firing rates can be explained by a network model with
heterogeneous modulation of background inputs

What circuit mechanisms can explain the inverted-U relationship between tone discriminability and arousal in A1?
Because this relationship is nonlinear, we reasoned that it may stem from a complex modulation of recurrent circuit
dynamics. To investigate this, we modeled A1 as a recurrently-connected network of excitatory (E) and inhibitory (I)
spiking neurons (Fig. 3A,B; Sec. IV B). Within this class of models, we compared alternative scenarios that differed
in regard to two aspects: (i) the network architecture, and (ii) the implementation of arousal. By testing alternative
models, we aimed to elucidate potential dynamical principles underlying the experimental observations.

We considered two different network architectures, which we refer to as “uniform” (Fig. 3A, Left) and “clustered”
(Fig. 3B, Left). In the uniform model, neurons were connected randomly with homogeneous coupling strengths. In
the clustered model, neurons were instead arranged into strongly-coupled clusters [36] (Sec. IV B 2), motivated by
evidence of structural and functional assembly organization in cortical ensembles [37–46]. The two networks give
rise to distinct dynamics: the uniform model generates asynchronous-irregular activity (Fig. 3A, Right), whereas the
clustered model can generate metastable attractor dynamics [32–34, 36, 47–49] (Fig. 3B, Right). In the metastable
regime, which occurs with strong intracluster coupling (Fig. S11), clusters spontaneously transition between states of
high and low firing rate. Metastable activity has previously been shown to explain contextual modulations of stimulus
processing and neural variability across a variety of settings [33, 34, 36, 48–54].

FIG. 3. Alternative network models for explaining arousal-dependent modulations of A1 activity. (A, B) A1 is
modeled as a recurrent network of spiking neurons arranged in either a uniform architecture (A Left) or a clustered architecture
(B Left). In both cases, a change in arousal is implemented as a modulation of background external input to the circuit. Raster
plots show baseline network activity for a subset of neurons from either the uniform network (A Right) or clustered network (B
Right). See Sec. IV B for model details. (C) Fraction of units whose spontaneous firing rate increases or decreases with pupil
diameter in the experimental data; bar heights and error bars indicate the mean ± 1 S.D. across sessions (Sec. IV E). There
was no significant difference between the fraction of positively and negatively modulated units (Wilcoxon-signed rank test,
p = 0.135, n = 15). (D) A unit whose spontaneous firing rate increases with pupil diameter (Spearman correlation rs = 0.9,
p < 0.01). (E) A unit whose spontaneous firing rate decreases with pupil diameter (Spearman correlation rs = −0.05, p < 0.01
(F, G) Alternative choices for the arousal modulation in the circuit models (Sec. IV B 4). (F Left) An increase in arousal
is modeled as an increase in the heterogeneity of background inputs across E cells (parameterized by ∆E

H), while keeping the
mean input across cells fixed. Formally, this was achieved by drawing the input to a given E cell from a Gaussian with a fixed
mean but increasing variance. (F Right) Fraction of all neurons whose spontaneous firing rate increases or decreases with
∆E

H in the clustered network (see Fig. S14A for similar results in the uniform network). (G Left) An increase in arousal is
modeled as a uniform increase in the strength of the background input to E cells (parameterized by ∆E

M ). (G Right) Fraction
of all neurons whose spontaneous firing rate increases or decreases with ∆E

M in the clustered network (see Fig. S14B for similar
results in the uniform network).
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Experimental studies indicate that arousal-induced modulations of cortical activity are mediated by external projec-
tions from neuromodulatory systems (e.g., the cholinergic and noradrenergic systems) and thalamic pathways [1–3, 8].
Consistent with prior work [36, 48], here we aimed to capture the phenomenological effects of arousal by incorpo-
rating it as a modulation of the background (i.e., non-stimulus specific) input to the circuit (Figs. 3A,B). Because
variations in pupil-linked arousal occur on slower timescales than stimulus-evoked neural responses [1, 14, 20, 55],
such modulations were introduced as constant shifts in the level of background drive to a particular cell.

To constrain the nature of the arousal modulation in the network model, we quantified how spontaneous firing rates
varied with pupil diameter in the experimental recordings (Sec. IV E). For cells that exhibited a monotonic trend
between firing rate and pupil diameter, we observed comparable fractions of positive and negative rate modulations
(Fig. 3C-E; Fig. S8 for individual sessions). This analysis indicates that arousal has heterogeneous impacts on
spontaneous activity in A1, and can induce both increases and decreases in firing rate.

To capture this diversity of responses, we modeled arousal as a heterogeneous modulation of the background input
to E cells (Sec. IV B 4). Namely, we considered a scenario in which, with increasing arousal, some E neurons received
a larger background input, while other E neurons received a smaller background input; these modulations were
performed in a spatially-random fashion and the average input across all E neurons was left unchanged (Fig. 3F,Left;
inputs to I cells were not modulated). The strength of the modulation is controlled by a single parameter – the “input
heterogeneity” (∆E

H) – which is proportional to the spread of the background input distribution. To compare against
the data, we computed the fraction of neurons in the model whose spontaneous rates increased or decreased with ∆E

H
(Sec. IV F). Similar to the experiments, single-cell responses were mixed (Fig. 3F, Right), with large proportions of
cells exhibiting either enhanced or suppressed spontaneous rates with increasing ∆E

H .
A natural alternative to the input heterogeneity model would be to implement arousal as a uniform increase in the

background input to E cells (Fig. 3G,Left; Sec. IV B 4). However, this “input mean” modulation, parameterized by
the quantity ∆E

M , resulted in only positive rate modulations (Fig. 3G Right). We thus conclude that of the simple
scenarios considered, the input heterogeneity model is the one that captures the diversity of arousal-related rate
changes observed in the empirical data.

C. The clustered model captures the inverted-U relationship between decoding performance and arousal

We next examined whether the “inverted-U” relationship (see recap in Fig. 4C) could be reproduced in either
circuit model (“uniform” or “clustered”) as a function of the input heterogeneity arousal modulation (∆E

H). To
study stimulus coding in the network models, we modeled auditory stimuli as additional excitatory inputs that were
localized to specific subgroups of E cells (Fig. 4A,B; Sec. IV B 3). In the clustered networks, a given stimulus targeted
a randomly-chosen subset of the clusters, and in the uniform networks, each stimulus targeted a random subset of the
E cells; the total number of stimulated cells was the same in both models. To match the experiments, we modeled
five stimuli and allowed for overlap in the cell subgroups targeted by different stimuli, in line with the fact that cells
could respond to multiple tones in the empirical data (Fig. S9).

As for the neural recordings, we trained a linear decoder to classify stimulus identity from single-trial population
activity (Sec. IV C). The uniform and clustered networks exhibited distinct relationships between decoding perfor-
mance and the ∆E

H arousal modulation. In the uniform model, decoding accuracy monotonically decreased with ∆E
H

(Fig. 4D), inconsistent with the experimental data. By contrast, the clustered model exhibited optimal performance
at intermediate values of ∆E

H (Fig. 4E), and reproduced the inverted-U relationship in the data (Fig. 4C). We note
that an inverted-U also arose in clustered networks under strong increases of the mean input to E cells (Fig. S16A); but
crucially, this alternative modulation fails to reproduce the heterogeneity of spontaneous rate changes with arousal
(Fig. 3G), and drives the network to an unrealistic regime characterized by excessive activity (Fig. S16B). We also
computed the single-cell discriminability index (D′

sc) as a function of the ∆E
H (Sec. IV G). We observed that the

population-averaged D′
sc was maximal at an intermediate value of ∆E

H (Fig. 4F), matching the non-monotonic trend
in the data (Fig. 4C).

Altogether, we conclude that the clustered architecture in conjunction with the input heterogeneity modulation can
capture the observed inverted-U relationships between stimulus discriminability and arousal at both the population
and single-cell levels. In the next section, we examine the network mechanism underlying these effects.

D. The arousal modulation controls the dynamical regime of the clustered network model

Because the inverted-U relationship emerged in the clustered networks but was absent in the uniform model, we
reasoned that it must rely on a modulation of the metastable dynamics that are unique to the clustered circuit. To
investigate this, we used mean-field theory (MFT) to elucidate how the ∆E

H arousal modulation impacts spontaneous
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FIG. 4. The clustered model captures the inverted-U relationship between decoding performance and arousal.
(A,B) Schematics demonstrating the inclusion of sensory stimuli into the uniform and clustered network models (Sec. IV B 3).
Each stimulus (five in total) was presented several times, and a linear decoder was trained to predict stimulus identity given
activity from a random subsample of the E cells (Sec. IV C). (C) Recap of key findings from the experimental data. Left:
Peak accuracy (z-scored) vs. pupil diameter. Right: Population-averaged Dsc′ (z-scored) vs. pupil diameter. The two panels
are reproduced from Figs. 2D and F; solid lines and shaded areas represent the mean ± 1 S.D. of the session-pooled data. (D)
Peak accuracy (z-scored) vs. the ∆E

H arousal modulation in the uniform model. (E) Same as (D) but for the clustered model.
(F) Population-averaged Dsc′ (z-scored) vs. the ∆E

H arousal modulation in the clustered model. In panels D-F, solid lines and
shaded areas indicate the mean ± 1 S.D. across ten simulations. See Fig. S15 for results without normalization.

cluster dynamics (Sec. IV L). Although the MFT does not quantitatively describe the simulations (Sec. IV L 3), it
provides useful qualitative insight.

At low ∆E
H , MFT reveals the presence of multiple attractors, in which different subsets of the clusters are highly

active (cluster states; Sec. IV L 4). Increasing ∆E
H decreases the firing rate of active clusters and increases the firing

rate of inactive clusters, thus reducing the distinction between active and inactive states (Fig. 5A). Beyond a certain
∆E

H , the theory predicts a transition from a multi-attractor to a single-attractor phase in which all clusters have the
same moderate firing rate (uniform state). Network simulations qualitatively confirmed the intuitions from the MFT
(Fig. 5B; Sec. IV H 2), though the sharp transition to a uniform state was softened in the simulations.

The arousal modulation also impacts the timescale of cluster switching dynamics. In order to theoretically elucidate
the effect, we analyzed a reduced network composed of only two excitatory clusters (Fig. 5C Left; Sec. IV M). This
network also displays cluster states, but has a simplified landscape with two attractors in which either cluster is active
and the other inactive (Fig. S13). Using effective mean field theory [36, 48, 56], the attractors can be represented by
two potential wells separated by a barrier (Fig. 5C Right; Sec. IV M). The height h of this barrier controls the rate of
stochastic transitions between the two attractors, where larger barriers indicate slower switching and longer cluster
activation periods [33, 48, 57].

The attractor landscape is significantly altered by the ∆E
H arousal modulation. For small ∆E

H , the two wells
are separated by a relatively large barrier, indicating inflexible dynamics with slow switching between attractors.
At intermediate ∆E

H the two wells are preserved but the barrier height decreases (Fig. 5D Left, Middle), implying
more flexible cluster dynamics with faster switching between states. For yet larger ∆E

H , there is a transition from a
2-attractor phase to a single-attractor phase, wherein the two wells merge into a single well (Fig. 5D, Right); this
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FIG. 5. The arousal modulation controls the dynamical regime of the clustered network model. (A) Mean-field
firing rates of active and inactive excitatory clusters as a function of the ∆E

H arousal modulation (Sec. IV L). We show results
for the multistable cluster state with nA = 3 active clusters (Sec. IV L 4; see Fig. S12A for results with different nA). Note that
beyond a certain ∆E

H , only the uniform solution exists. In these analyses, the mean-field calculations used a larger intracluster
coupling than the simulations, so the comparison is only qualitative ( Sec. IV L 3). (B) Average firing rate of active and inactive
excitatory clusters from simulations as a function of ∆E

H (Sec. IV H 2). We show the cluster rates conditioned on nA = 3 active
clusters (Sec. IV H 2; see Fig. S12B for results with different nA). (C) Schematic of the reduced mean-field analysis using
a simplified network of two excitatory clusters. The behavior of the two clusters can be described via an effective potential
energy, where the two wells correspond to the network’s two attractors (Sec. IV M; Fig. S13). (D) The effective potential of
the 2-cluster network at three increasing values of ∆E

H . (E) The barrier height h of the effective potential vs. ∆E
H . (Note that

the absolute range of ∆E
H values is not directly comparable between the reduced and full networks). (F) Example raster plots

from simulations of the full clustered networks at three increasing values of ∆E
H . (G) The average cluster activation timescale

computed from simulations of the full clustered networks vs. ∆E
H (Sec. IV H 3). In panels B and G, solid lines and shaded areas

show the mean ± 1 S.D. across ten network realizations.
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FIG. 6. Modulations of cluster dynamics provide intuition for the inverted-U relationship. (A) Schematics
demonstrating variations in single-trial evoked responses as a function of the ∆E

H arousal modulation in the clustered model.
The rectangular panels illustrate cluster firing rates in response to a stimulus s (plotted relative to the time of peak decoding
accuracy). At a given ∆E

H , we compute two quantities to characterize the cluster activity pattern: the “cluster signal” Cs and
the “cluster reliability” Cr (Sec. IV I). (B) The cluster signal as a function of ∆E

H . C The cluster reliability as a function of
∆E

H . Solid lines and shaded areas indicate the mean ± 1 S.D. across ten network realizations. The vertical blue lines indicates
the value of ∆E

H where decoding performance is optimal (see Fig. 4E).

transition indicates the loss of metastable cluster states. The theoretical insights from the reduced circuit were verified
in simulations of the full clustered model, where we observed a shortening of cluster activation periods with increasing
∆E

H (Fig. 5F Left, Middle; Fig. 5G), consistent with the shrinking barrier in the reduced network (Fig. 5E). Visual
inspection of network activity also revealed a degradation of metastable cluster states for large ∆E

H (Fig. 5F, Right),
consistent with a transition to a near-uniform phase.

E. Modulations of cluster dynamics underlie the inverted-U relationship in the network model

Since stimulus properties do not depend on the arousal modulation, any variations in stimulus processing with ∆E
H

must be driven by changes in the spontaneous dynamics. We can thus use the insights of the previous section to
develop intuition for the inverted-U nature of the decoding performance. To begin, we note that stimulus identity
would be perfectly read-out from population activity if each stimulus could strongly activate all of its targeted clusters
on every trial and strongly suppress all non-targeted clusters. To examine the extent to which this ideal scenario
occurs, we quantified two properties of the cluster activation pattern in response to stimulus presentation (Fig. 6A):
(i) the difference between the average firing-rates of targeted and non-targeted clusters (i.e., the “cluster signal”
(Sec. IV I 1); and (ii) the difference between the fractions of targeted and non-targeted clusters that are activated (i.e.,
the “cluster reliability” (Sec. IV I 2).
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The cluster signal increased slightly and then strongly decreased as a function of the ∆E
H arousal modulation

(Fig. 6B). At low ∆E
H , there is a large separation in the spontaneous firing rates of active and inactive clusters

(Fig. 5A,B). Because stimulus presentation biases the activation of targeted clusters (Fig. S17A,B), the cluster signal
is thus high in this regime (Fig. 6A Left). When ∆E

H is increased slightly, the contrast between active and inactive
clusters remains large; at the same time, transitions between cluster states become easier and more frequent (Fig. 5D-
G). This enables an increase in the relative amount of targeted cluster activation in response to a stimulus (Fig. S17C),
which yields the small rise in the cluster signal. As ∆E

H is increased further, the spontaneous firing rates of active and
inactive clusters converge (Fig. 5A,B). In consequence, the distinction between the evoked firing rates of targeted and
non-targeted clusters also decreases, and the cluster signal falls off (Fig. 6A Right).

The cluster reliability exhibited the opposite trend as the cluster signal and increased with ∆E
H (Fig. 6C). For small

∆E
H , spontaneous cluster dynamics are slow and inflexible (Fig. 5D-G) and only a fraction of all clusters activate in a

fixed time window (Fig. S17D). Because stimuli are not strong enough to completely override the ongoing dynamics,
the same is true during evoked dynamics. In consequence, only a fraction of all targeted clusters become activated in
response to stimulation, and sometimes non-targeted clusters fail to deactivate (Fig. S17E). This results in inconsistent
activation of targeted clusters and low cluster reliability (Fig. 6A Left). At intermediate ∆E

H , cluster dynamics become
faster and more malleable (Fig. 5D–G) and a larger fraction of clusters can spontaneously activate in a fixed time
window (Fig. S17D). In consequence, stimuli can more dependably activate targeted clusters (Fig. S17B), and the the
cluster reliability increases (Fig. 6A Middle). The slight increase in the cluster reliability at larger ∆E

H is driven by an
overall increase in the number of clusters that transiently activate during the decoding window (Fig. S17D). However,
it is difficult to estimate the reliability in this regime, because the boundary between activated and inactivated states
is less well-defined.

The variations in the cluster signal and reliability together provide intuition for the inverted-U shape of the decoding
performance (Fig. 4E). For intermediate ∆E

H , both the signal and reliability are relatively high (Fig. 6B-C). In this
optimal regime, the decoding performance is maximal. For both lower and higher ∆E

H , either the reliability or signal
drops significantly, leading to worse performance. The key insight is that the arousal modulation affects both the
overall strength and consistency of cluster activation patterns, which combine to determine the efficacy with which
stimuli are encoded.

F. The clustered network model captures changes in neural variability with arousal

In the clustered model, the transition from a metastable attractor phase to a uniform phase underlies the inverted-U
nature of the decoding performance. Importantly, this transition also results in specific predictions about how arousal
should impact the variability of spiking activity, which we can test for in the experimental data. For low values
of the ∆E

H arousal modulation, clusters slowly switch between active and inactive states. These dynamics produce
slow rate fluctuations at the level of single-neuron activity (Fig. 7A bottom), which disappear as ∆E

H increases and
activity becomes more homogeneous (Fig. 7B top). To quantify this change in the temporal structure of spontaneous
activity, we estimated the amount of low-frequency power in the spike spectra of individual cells (Fig. 7B; Sec. IV J).
As expected from visual inspection of neural activity, we found a strong reduction in spontaneous low frequency power
(PL

spont) with increasing ∆E
H (Fig. 7E). The suppression of slow temporal fluctuations by the arousal modulation is

accompanied by reductions in the trial-to-trial variability of neuronal spike counts as quantified by the Fano factor
(FF; Sec. IV K 1). Indeed, we found that both the spontaneous FF (FFspont; Fig. 7D) and the evoked FF (FFevoked;
Fig. 7E) monotonically decreased with ∆E

H . The fact that FFspont and FFevoked behave similarly is a consequence of
the evoked activity being strongly shaped by the spontaneous dynamics (Fig. 6A). That is, while stimulus presentation
does bias the activation of targeted clusters, stimuli are not so strong as to be able to activate all of them together
on every trial. In this way, the evoked dynamics inherit much of the intrinsic variability present in the spontaneous
dynamics.

We next tested for the predictions of the clustered model in the experimental recordings. Fig. 7G shows activity
from an example unit whose spontaneous low-frequency power and FF are substantially reduced during high arousal.
To quantify how arousal impacts low-frequency fluctuations and trial-to-trial variability in general, we computed the
change in PL

spont, FFspont, and FFevoked between low and high arousal states (Sec. IV J 2 and IV K 2). We found
significant reductions in all three measures for high arousal (large pupil diameter; Fig. 7I-K). To further examine
the pupil-dependence of these quantities, we computed the cell-averaged PL

spont, FFspont, and FFevoked as a function
of pupil diameter within each session. At the session-average level, we observed that the low-frequency power and
spontaneous FF clearly decreased with pupil diameter (insets of Fig. 7I,J). The evoked FF also decreased, but tended
to plateau at moderate-to-large pupil sizes (Fig. 7K). As a whole, these findings are qualitatively consistent with
the predictions of the clustered model, and support the conclusion that low-frequency fluctuations and across-trial
variability generally decrease with arousal in A1.
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FIG. 7. The clustered network captures changes in neural variability with arousal. (A) Spontaneous activity of
a single neuron from the clustered model across several 1-second epochs. The ∆E

H arousal modulation is low in the bottom
panel and high in the top panel. (B) Rate-normalized spike spectra of the neuron in panel (A) at low and high ∆E

H . (C)
The cell-averaged low-frequency power during spontaneous activity (z-scored) vs. ∆E

H . (D) The cell-averaged spontaneous FF
(z-scored) vs. ∆E

H . (E) The cell-averaged evoked FF (z-scored) vs. ∆E
H . (F) The cell-averaged spontaneous minus evoked FF

(z-scored) vs. ∆E
H . (G) Spontaneous activity of a single-unit from A1 across several 1-second epochs. The pupil diameter was

small (< 25% of max dilation) in the bottom panel and large (> 75% of max dilation) in the top panel. (H) Rate normalized
spike spectra of the unit in panel (G) for small and large pupil diameters. (I) Distribution of the difference in spontaneous
low-frequency power (PL

spont) between small (< 25% of max dilation) and large (> 75% of max dilation) pupil diameters; the
histogram contains cells pooled across sessions that sampled a broad range of arousals. There is a significant reduction in PL

spont

for large pupil diameters (Wilcoxon signed-rank test, n = 339 units, p-value < 0.001). Inset: The cell-averaged low-frequency
power vs. pupil diameter. (J) Same as (I) but for the spontaneous FF (FFspont). There is a significant reduction in FFspont

for large pupil diameters (Wilcoxon signed-rank test, n = 361 units, p-value < 0.001). (K) Same as (I) but for the evoked FF
(FFevoked). There is a significant reduction in FFevoked for large pupil diameters (Wilcoxon signed-rank test, p < 0.001, n = 361
units). (L) Same as (I) but for the difference between spontaneous and evoked FFs (∆FF ). There is a significant reduction in
∆FF for large pupil diameters (Wilcoxon signed-rank test, p < 0.001, n = 361 units). For panels C-F: Solid lines and shaded
areas indicate the mean ± 1 S.D. across 10 simulations. For panels I-L: Red markers indicate the distribution mean. In the
insets, solid lines and shaded areas indicate the mean ± 1 S.D. across sessions. Only sessions that sampled a broad pupil range
were included (9 sessions in panel (I) and 7 sessions in panels (J-L)). See Sec. IV J and Sec. IV K for details on the spectral
and Fano factor analyses.
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Although we found overall reductions in both the spontaneous and evoked FF at large pupil diameters, the effect
was weaker for the evoked condition. One reason for this might be that stimulus presentation itself reduces neural
variability, which could make the effects of arousal less apparent in evoked conditions. To test for stimulus-induced
quenching of variability, we computed the difference between the spontaneous and evoked FF (∆FF = FFspont −
FFevoked), marginalized across all pupil diameters (Sec. IV K 2). Consistent with past reports [35], we observed a
significant reduction in the FF in evoked conditions (Fig. S10). Clustered networks with metastable attractor dynamics
were previously proposed to explain this phenomenon [32, 33], and we indeed observe clear stimulus-induced quenching
of variability in the model at low ∆E

H (Fig. 7F).
We also tested for the presence of an interaction between arousal-induced and stimulus-induced quenching of

variability. The clustered model indicates that ∆FF is larger for small values of ∆E
H (Fig. 7F), such that stimulus-

related reductions in variability are strongest in the regime where spontaneous variability is largest. Given this
prediction, we thus investigated whether ∆FF differed between low and high arousal states in the experimental data
(Sec. IV K 2). We found a small but significant reduction in ∆FF for large pupil diameters (Fig. 7L). Moreover, we
observed a roughly decreasing trend in the session-averaged ∆FF as a function of pupil diameter (Fig. 7L, inset).
Though the effects are slight, these findings show that variability quenching may be arousal-dependent, which could
potentially be explained by arousal-induced modulations of metastable assembly dynamics.

III. DISCUSSION

We investigated potential network mechanisms governing the relationship between arousal and sound discriminabil-
ity in auditory cortex. Our analysis resulted in three main conclusions: (1) In recordings from mouse A1 during passive
listening, the ability to decode tone frequency from population activity followed an inverted-U relationship with pupil-
linked arousal; (2) The inverted-U relationship can be explained by a clustered network model via modulations of
metastable attractor dynamics, with optimal stimulus coding achieved near a transition in the dynamical regime of the
network; (3) The clustered model predicts reductions in neural variability and stimulus-induced variability quenching
with arousal, which were observed in the empirical data.

This study was motivated by results in both humans [18, 19, 58] and mice [20, 22] showing that performance on
auditory tasks follows an “inverted-U” relationship with arousal [1, 7, 27]. Despite characterization at the behavioral
level, the neural origins of the non-monotonic relationship between performance and arousal are incompletely under-
stood. A previous study found that in mice trained on a sound detection task, neural correlates of the inverted-U
relationship emerged in A1 (and medial geniculate nucleus) during passive listening [20]. Specifically, the authors
reported reduced variability of spontaneous membrane potential dynamics and increased magnitude and reliability
of evoked responses (in both whole-cell and multi-unit recordings) at moderate arousal. Our results indicate that
an inverted-U relationship can also emerge in population-level neural representations pertinent to sound discrimina-
tion. Although we showed this in the context of passive listening, future work could attempt to more directly link
arousal-induced modulations of A1 activity to performance on perceptual decision-making tasks [22].

Not all studies have reported non-monotonic relationships between evoked response properties and arousal in mouse
A1. Of note, one investigation that analyzed calcium imaging recordings found that that arousal monotonically im-
proved population coding of tones [59]. Several factors could contribute to across-study discrepancies, including
differences in recording technique (e.g., electrophysiology vs. calcium imaging) or stimulus properties (e.g., tone dura-
tion). Follow-up efforts could further examine the conditions under which monotonic vs. non-monotonic relationships
emerge. A number of studies have also quantified the effects of locomotion – typically a very high arousal state – on
activity in mouse A1 [28–31]. These investigations show that movement tends to suppress sound-evoked responses,
which is generally consistent with the right-most part of the inverted-U curve.

Arousal regulates sensory processing via several pathways, including neuromodulation by cholinergic and nora-
drenergic centers [1, 2, 8–12]. These neuromodulatory systems project to auditory cortex [16, 60–62], and changes
in cholinergic and noradrenergic activity in A1 track fluctuations in pupil diameter [16, 17]. Several studies have
also highlighted the central role of thalamocortical projections (possibly relaying neuromodulatory signals [13, 63])
in mediating the impacts of arousal on sensory areas [1–3, 8, 14, 64–66]. In our phenomenological network model,
arousal effects were mediated by changes in background input to a local cortical circuit representing A1. Although the
model is agnostic to specific arousal pathways, we constrained the nature of the arousal modulation by examining the
impact of arousal on spontaneous firing rates in A1. Broadly consistent with previous studies [30, 31, 67], we found
that arousal and locomotion have heterogeneous effects on spontaneous firing rates. The physiological source of this
diversity is unclear. Our circuit model incorporated the impact of arousal in an effective manner meant to capture
the presence of both positive and negative rate modulations in the data. That said, integrating more physiological
realism into the arousal mechanism would be an important extension of the model.

We showed that the inverted-U relationship between arousal and sound discrminability can be recovered in a spiking
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model in which neurons are organized into strongly-coupled clusters representing functional assemblies [33, 34]. Aside
from its ability to reproduce the inverted-U relationship, this model is motivated by evidence of clustered organization
and/or functional assemblies in sensory areas. For example, simultaneous whole-cell recordings show evidence of
strongly-connected neuronal subnetworks in both rodent visual [37–40] and somatosensory cortex [41]. Further studies
with electron-microscopy have additionally revealed structural modules in a much larger network containing hundreds
of cells [42]. Cells in strongly-coupled ensembles also exhibit similar responses to sensory stimuli [38, 40, 42], indicating
that these assemblies may act as basic cortical processing units [68]. In A1 specifically, one calcium imaging study
showed that the functional architecture of population activity is consistent with the presence of partially-overlapping
and strongly connected subnetworks [44].

Unlike networks with uniform connectivity, the clustered model naturally generates metastable attractor dynamics
[32, 33, 47, 49, 69], which were crucial for recovering the inverted-U relationship. These metastable dynamics are
characterized by the transient activation of neural assemblies on subsecond timescales, and arise due to stochastic
transitions between a multiplicity of attractors [32–34]. Metastable dynamics consistent with the clustered model
have been used to explain several features of cortical dynamics and computation [47, 49, 69], including stimulus-
induced quenching of neural variability [32, 33] or dimensionality [50], motor generation [51], and different aspects of
context-dependent sensory processing [34, 36, 54, 70].

In auditory cortex, some analyses have suggested the presence of attractor-like assembly dynamics and metastable
activity patterns. In particular, Bathellier et al. [45] found that evoked firing patterns in A1 populations were
organized into a small number of discrete “response modes”, where each mode was a subgroup of cells co-activated by
certain stimuli. Transitions between different response modes were abrupt, indicative of attractor-like dynamics, and
different local populations contained modes that were activated by distinct sets of sounds. In this way, a given sound
could be represented by a specific activation pattern of multiple local “response modes” [46], akin to the encoding of
stimuli via a particular cluster activation pattern in our circuit model. Other studies in auditory cortex have observed
transient, subsecond “packets” of elevated population activity that occur sporadically during spontaneous periods and
that constrain stimulus responses [71, 72], as well as evidence of locally-clustered activity in more superficial layers
[73]. These empirical findings are broadly reminiscent of the metastable activity underlying our model, but more
spatially-distributed recordings and targeted perturbation studies are necessary to directly test for the presence of
these dynamics in A1.

Previous modeling studies examined the response of clustered networks to relatively small external perturbations,
leading to monotonic variations in stimulus processing efficacy [36, 48]. Our study builds on those efforts to explore
a broader range of state (arousal) modulations, which was necessary to observe the non-monotonic variation in
decoding performance. Underlying the inverted-U relationship is a shift in the dynamical regime of the network
from a metastable attractor phase with a multiplicity of states to a single-attractor phase. At one extreme, clusters
alternate between strongly active and inactive modes, but switching dynamics are slow and inflexible. At the other
extreme, cluster states are abolished in favor of a uniform state. Our crucial finding was that stimulus discriminability
is maximized between these two extremes, where stimulus responses are both relatively strong and reliable. This result
is reminiscent of the idea that information processing capabilities in neural systems can sometimes be enhanced in
the vicinity of phase transitions [74–80]. In the clustered model, the transition from the metastable to the uniform
phase was realized by introducing quenched disorder in the background inputs to the network. The disorder-induced
transition we observe here adds to recent theoretical work showing that modulations of quenched input enable rich
dynamical phenomena in recurrent circuits by unlocking a repertoire of network phases [80].

The clustered model also predicts arousal-induced reductions of neural variability. We observed this effect in the
empirical data, providing some support for the proposed mechanism. In the model, decreases in variability are driven
by a suppression of slow rate fluctuations as the network transitions from the multistable to uniform phase with
increasing arousal. This mechanism is also related to past work in which modulations of bistable up-down dynamics
were used to explain changes in variability during attention [53] and across different brain states in anesthetized rats
[81]. The clustered model additionally displays a decrease in stimulus-induced quenching of variability at high arousal.
Although one in study in ferrets found that variability quenching was independent of pupil size [67], we found some
evidence for a reduction of stimulus-induced quenching in high arousal states, as suggested by the model. Because of
the ubiquity of stimulus-induced variability quenching [35], investigating the detailed features of its state-dependence
could be an interesting direction for future study.

The network mechanism presented here is likely one of several that could explain the non-monotonic relationship
between arousal and population coding accuracy. Indeed, one recent study proposed a circuit model in which an
inverted-U relationship between arousal and performance is generated via a disinhibitory pathway involving two
interneuron classes [58]; however, it remains unclear if that model is consistent with neural data and if it would also
explain arousal-dependent effects on variability. An additional limitation of our model is that it does not include the
large-scale tonotopic organization of A1 that is intermixed with more local “salt-and-pepper” organization [44, 82–
84]. Incorporating this additional spatial structure could allow for capturing a greater diversity of experimentally-
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observed phenomena linking the spatiotemporal structure of spontaneous and evoked dynamics, cell-type-specific state
modulations, and neural variability.
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IV. METHODS

A. Experimental Procedures

1. Subjects

All procedures were carried out with approval from the University of Oregon Institutional Animal Care and Use
Committee. Wild-type animals (female and male mice, 8-15 weeks at time of surgery) were of C57BL/6J background
purchased from Jackson Laboratory and bred in-house. Mice were kept on a reverse light cycle and had ad-libitum
access to food and water.

2. Surgical procedures

All surgical procedures were performed in an aseptic environment with mice under 1-2 isoflurane anesthesia, main-
taining an oxygen flow rate of 1.5 L/min, and homeothermic maintenance at 36.5 degrees Celsius. Mice were admin-
istered systemic analgesia (Meloxicam SR: 4 mg/kg & Buprenorphine SR: 0.5 mg/kg, Wildlife Pharmaceuticals) and
a fluid supplement (1 ml lactated ringer’s solution) subcutaneously. Fur was removed from the skull, and the skin was
sterilized. To access auditory areas, the skin, connective tissue, and part of the right temporalis muscle were resected,
and cleaned as necessary. A custom-designed headplate was affixed to the skull using dental cement (RelyX Unicem
Aplicap, 3M) and covered with silicone elastomer (Kwik-sil, World Precision Instruments), and skin was affixed to the
outside edge of the headpost as necessary (Vetbond, 3M). Mice were allowed to recover for three days in an incubator
recovery chamber. A more detailed procedure can be found in [22, 85].

Mice were habituated to handling and head fixation for 2-3 days with increasing duration prior to craniotomy.
This is a necessary step for well-being and also helps increase the likelihood that mice enter a broad range of arousal
states across the wakefulness spectrum. The habituation of head-fixation atop a treadmill allowed mice to choose to
locomote or remain still and quiescent. Craniotomy followed the same aseptic and analgesic procedures as mentioned
above. Mice were anesthetized with isoflurane and affixed to the stereotax where a <1 mm circular craniotomy was
drilled over the right auditory cortex (AP: -2.9 mm, LM: 4.4 mm, relative to bregma) with dura left intact. A small
well was created surrounding the craniotomy with flowable composite (Flow-it, Pentron), and a piece of plastic was
secured lateral to the well to act as a shield for the probe. The craniotomy was filled with silicone elastomer (Kwik-sil,
World Precision Instruments) until the start of the recording session. Mice were allowed to recover overnight, and
recovery was monitored.

3. Extracellular recordings

On the day of a recording, a mouse was affixed onto a treadmill and the Kwik-sil was removed. The craniotomy was
immediately filled with saline, and a high-density silicone probe (Neuropixels 1.0, imec) [86] was inserted perpendicular
to the brain surface using a motorized micromanipulator (M225A, Sutter Instruments) at low speed (∼ 2-4 µm/second)
until all layers of the auditory cortex were covered (1.5-2.5 mm). After the Neuropixels probe reached a desired depth,
the remaining saline was removed and the craniotomy was filled with 1% agarose mixture in saline and covered with
mineral oil to keep the brain surface moist. A recording was started at least 20 minutes after the completion of probe
insertion to ensure the stability of the probe and the brain. Recordings were made in up to 5 sessions from one mouse
depending on the status of the brain surface. For the last recording session, the Neuropixels probe was covered with
DiI (Vybrant solution, Thermofisher Scientific) for histology.

Neurophysiology data was acquired using the PXIe acquisition module (imec) in a NI PXIe-1071 chassis (National
Instruments) and open-ephys software (OpenEphys) at gain of 250 (LFP), and 500 (APs). An output pulse from
the OpenEphys software was manually toggled between 1 Hz and 10 Hz to give an accurate and discrete timestamp
to the Power 1401 digitizer, which allowed for accurate alignment and further synchronization of the behavioral
data. Neuropixels data was sampled at a rate of 30 kHz. The recorded data was pre-processed with common-average
referencing [87], [88] sorted with Kilosort2 [89], and then manually curated with phy GUI (https://github.com/cortex-
lab/phy). For manual curation, each cluster was compared with other clusters based on the spike waveforms and cross-
correlation. The clusters with high similarity were mainly inspected to determine whether they should be merged.
Then, the cluster was labeled as a good single unit, multi-units, or noise depending on the quality of the cluster
assessed by waveform consistency, amplitude, cross-correlation, and inter-spike intervals. To determine if the good
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single units were within the auditory cortex, the depth from phy was referenced. Then, it was confirmed with DiI
track spanning after histology. Sessions where timestamps were not able to be aligned were discarded.

4. Auditory stimulus presentation and spontaneous periods

Auditory stimuli were delivered using custom LabView (National instrument) scripts. Tones were calibrated to 60
dB SPL and waveforms were generated (NI PXI-4461, National Instruments) at 200 kHz sampling rate, conditioned
(ED1, Tucker Davis Technologies), and transduced by electrostatic speakers (ES1, Tucker Davis Technologies). Each
experimental session consisted of alternating spontaneous and auditory stimulation blocks, repeated for up to 2 hours.
During spontaneous blocks, neural activity was recorded in the absence of stimulus presentation; each block lasted
for five minutes. A spontaneous block was followed by 25 minutes of auditory stimulation. This design enabled us
to record substantial amounts of both spontaneous activity (∼ 20-25 minutes/session) and evoked activity (∼ 75-
100 minutes/session). The stimulus set consisted of five pure tones (2, 4, 8, 16, or 32 kHz), which were randomly
interleaved and sampled from a uniform distribution. Each tone lasted for 25 ms (cosine ramp-up) followed by a 775
ms inter stimulus interval (ISI).

5. Behavioral measures acquisition and analysis

All data collection was conducted using custom LabView scripts. Mice were headfixed atop a cylindrical treadmill
(15 cm diameter, 20 cm width) and allowed to freely locomote. Locomotion speed was calculated via a rotary encoder
(Encoder Products CO.; 15T-01SF-2500NV1RPP-F03-S1) attached to the axle of the treadmill. Signals from the
rotary encoder were continuously converted into cm/s in real-time using LabView software at a rate of 100 Hz, and
data was recorded using a Power 1401 digitizer.

The face was lit using an infrared LED (Digi-Key TSHG8200, 830 nm) adjusted to achieve uniform illumination
of the face and eye. Additionally, a white LED (RadioShack 5 mm 276-0017) was manually titrated to achieve a
wide dynamic range of the pupil, ensuring it remained visible during full dilation. Pupil videos were collected from
a camera (Grasshopper 3, FLIR) with a lens (Telecentric TEC-55, Computar) and near-IR Bandpass filter (BNB10-
43, MidOpt) with FlyCapture software (FLIR). Frames were triggered at 30 Hz through a Power 1401 Digitizer
(Cambridge Electronic Design), and camera exposure times were recorded at a rate of 25 kHz. Online pupillometry
was performed using LabView software according to previously described methods [22], and post-hoc analysis was
performed using custom python scripts. See “Processing of raw pupillometry data”.

6. Histological Analysis

Following the last recording session, a mouse was anesthetized and perfused using phosphate buffer and 4%
paraformaldehyde. Then, the brain was kept in 4% paraformaldehyde, cryo-sectioned (CM3050S, Leica) at 100 µm
thickness, and DAPI-stained. Slides were imaged and DiI tracks were manually registered with the Franklin-Paxinos
atlas [90].

7. Additional unit selection criteria

After following the procedures described in Sec. IV A 3 to identify putative single units from the Neuropixels
recordings, we applied some additional criteria for the final unit selection process. First, we discarded all clusters
whose average firing rate across the duration of the recording was less than 0.25 spikes/second. The remaining criteria
mainly involved further analysis of the spike template amplitudes of each cluster that was identified as “good” after
performing the spike sorting and manual curation steps detailed above. Examining the behavior of the template
amplitudes (output by Kilosort) for a given cluster across time can reveal potential issues with electrode drift and
the general quality of the cluster. Our analysis was designed to search for two potential issues in the spike template
amplitudes. First, we considered the shape of the amplitude distribution in a sliding time window, and in each
window, we looked for signatures of multiple peaks occurring in the corresponding distribution. The presence of
multiple peaks in the amplitude distribution computed from a short block of time is an indication that the particular
cluster should not be marked as a well-isolated single unit. Second, we looked for cases when the amplitude appeared
to drift towards or away from very low values (i.e., towards or away from the “noise floor”) over time. This scenario
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implies that the cluster was not stably-tracked across the recording, and could result in the cluster exhibiting firing
rate drift unrelated to changes in behavioral state.

To determine if the distribution of template amplitudes in a short time segment was composed of two or more
separate peaks, we examined the amplitude data in non-overlapping, 5-minute windows over the entire dataset. For
each window, we used the ‘gaussian_kde’ function from the ‘scipy.stats’ python package to estimate the probability
density function (pdf) of the amplitude data via kernel density estimation with a Gaussian kernel. For each window,
we then determined the locations (i.e., amplitude values) and heights of all peaks in the corresponding pdf. If the pdf
from a given window had more than one peak, we computed two additional quantities. First, we computed the ratio
of the height of the tallest peak to the height of the second tallest peak in the window; we refer to this quantity as
the “peak height ratio”. Smaller peak height ratios tend to correspond to more even splits of the data between the
two groups. Second, we computed the percent difference between the locations of the two highest peaks in a window.
Larger percent differences between the peak locations correspond to more well-separated groups. After computing
these quantities, we found the set of time windows for which the peak height ratio was less than or equal to ten and
for which the percent difference between peak locations was greater than or equal to forty. These cut values were
selected so as to find time windows for which there were two (or more) well-separated template amplitude ranges that
each contributed substantially to the total amount of data in the window. If at least 10% of all time windows satisfied
the above criteria, then the corresponding cluster was not used in subsequent analyses.

To determine if the template amplitude for a given cluster appeared to drift into or out of the “noise floor” over
time, we first estimated the noise floor as the smallest template amplitude of the cluster across the whole recording.
As above, we then considered the pdf of the amplitudes in 5-minute bins. First, we computed the percent difference
between the location of the tallest peak in the pdf of a given window and the location of the noise floor. If this percent
difference was less than or equal to fifteen, then the corresponding window was marked as having template amplitudes
that were concentrated near the noise floor. For each window, we also determined the location (i.e., amplitude) of the
tallest peak in the pdf. We then computed the smallest and largest of those amplitudes across all time windows, and
computed the percent difference between the resulting two values. This quantity, which we refer to as the maximum
peak location difference, provides information about the range of template amplitudes sampled across the recording.
We removed a cluster from subsequent analyses if the following criteria were met: (i) more than 10% (but not all) of
time windows either had template amplitudes concentrated near the noise floor or in the bulk, and ( ii) the maximum
peak location difference was greater than or equal to twenty-five. These cut values were chosen so as to try and
isolate clusters with significant drift towards or away from low amplitude values. All analyses in the main text were
performed after applying the unit selection procedures described in this section.

8. Processing of raw pupillometry data

Raw pupil diameter traces were subject to three processing steps: (1) artifact removal, (2) smoothing, and (3)
normalization. The pupil-tracking procedure is imperfect, which can lead to artifacts in the pupil diameter traces
such as abrupt drops or spikes. To mitigate the effect of these artifacts, we performed both automated and manual
cleaning of the pupil traces in each session. Automated artifact removal consisted of finding and discarding periods
of time associated with unnaturally-sharp jumps in pupil diameter values between nearby time points. At each time
point tn in the pupil trace, we compared the difference in pupil diameter (normalized to the maximum value across
the trace) between tn and tn + 0.5 ms. If the absolute difference in the normalized pupil diameter between those
times exceeded a threshold of 0.08, then we removed the pupil data within a time window starting 250 ms before
tn and ending 500 ms after tn. This automated procedure removed a large majority of pupil artifacts, but pupil
traces were still manually inspected afterwards for outstanding abnormalities. Remaining problematic time windows
were tabulated, and the corresponding pupil data was removed from those periods. Pupil traces were also smoothed
after artifact removal for easier manipulation. This was achieved by taking a moving average of the pupil diameter
timecourses using windows of length 1/30th of a second sliding forward in 1 ms steps. Finally, the resulting pupil
diameter trace of each session was re-normalized to the maximum value across the recording. Throughout the text,
we display pupil diameters as a percentage of the maximum value (denoted as “% max”).

B. Details of the circuit model

We modeled a local cortical circuit representing A1 as a recurrently-connected network of N spiking neurons, NE

of which were excitatory (E) cells and NI of which were inhibitory (I) cells. Further details on the circuit modeling
are provided below. All model parameters are shown in Table S1.
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1. Model of neuronal dynamics

Neuron activity evolved according to the leaky-integrate-and-fire (LIF) model with exponential excitatory and
inhibitory synapses. In this model, the dynamics of the membrane potential of the ith neuron in population α ∈ {E, I}
are described by

ταm
dV α

i

dt
= −V α

i + ταmI
α
rec,i + ταmI

α
b,i + ταmI

α
stim,i, (1)

where ταm is the membrane time constant of cells in population α. Iαrec,i is the recurrent input to cell i in population α
from other neurons in the network, Iαb,i represents background external input, and Iαstim,i is an additional external input
representing sensory stimulation. When the membrane potential V α

i reaches a threshold V α
thresh, a spike is emitted by

the neuron and its membrane potential is reset to a value V α
r . After spike emission, the membrane potential remains

clamped at the reset value for a refractory period of length ταref .
The recurrent input is a sum of excitatory and inhibitory synaptic currents, such that Iαrec,i = IαErec,i + IαIrec,i. These

currents obey the following differential equations:
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In Eq. 3, τEsyn and τ Isyn are the excitatory and inhibitory synaptic time constants, and Wαβ
ij represents the strength of

the synapse from the jth neuron of population β ∈ {E, I} to the ith neuron of population α; these weights depend on
the network architecture (see Sec. IV B 2 below). Finally, tk,βj is the time of the kth spike emitted by the jth neuron
of population β.

In addition to the recurrent input, each neuron in population α received CαE
ext connections from other excitatory

cells outside of the local network. The background synaptic input at the ith neuron of population α evolved according
to

τEsyn
dIαb,i
dt

= −Iαb,i + JαE
ext

CαE
ext∑

j=1

∑

k

δ(t− tα,kij ), (4)

where JαE
ext is the strength of external excitatory synapses to cells in population α, and where tα,kij is the kth spike

time of the jth external cell targeting neuron i in population α. The spike times tα,kij were generated from a Poisson
process with rate ναext,i; spike trains were independent for each external synapse to a given cell, and there was no
shared input across different cells. Under default conditions (i.e., no arousal modulation), ναext,i = ναo ∀ i.

Finally, sensory stimuli were modeled as smoothly-varying, deterministic external inputs Iαstim,i(t) that directly en-
tered the voltage equation of the corresponding neuron. Further details on the stimulus inputs are given in Sec. IV B 3.

2. Recurrent network architectures

In the circuit model, the network architecture was either “uniform” or “clustered” (Fig. 3A,B). In the uniform case,
neurons of type α ∈ {E, I} received a synaptic connection from Cαβ = pαβNβ randomly chosen neurons of type
β ∈ {E, I}. The weight of non-zero synaptic contacts from presynaptic neurons of type β to postsynaptic neurons of
type α were set to Jαβ .

In the clustered model, excitatory and inhibitory neurons were arranged into p non-overlapping clusters. Each
cluster contained fαNα randomly chosen neurons of type α, and the remaining (1−pfα)Nα neurons were placed into
an unclustered “background” population. Each neuron in a given cluster of type α received fβCαβ connections from
other neurons in the same cluster of type β, (p − 1)fβCαβ connections from neurons in different clusters of type β,
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and (1− pfβ)Cαβ connections from neurons in the background population of type β. Each neuron in the background
population of type α received pfβCαβ connections from neurons in clusters of type β and (1− pfβ)Cαβ connections
from other neurons in the background population of type β. In this way, the total number of non-zero synaptic
connections was the same for the uniform and clustered networks. The weights of non-zero synaptic connections
between neurons in the same cluster, Jαβ

+ , were generally stronger relative to the uniform case (|Jαβ
+ | > |Jαβ |).

Moreover the weights of non-zero synaptic connections between neurons in different clusters, Jαβ
− , were generally

weaker relative to the uniform case (|Jαβ
− | < |Jαβ |). Synaptic contacts between cells in the background population

and cells in the clusters were also weakened relative to the uniform model, and given by Jαβ
− . Finally, connection

weights between background neurons were unchanged relative to the uniform architecture and equal to Jαβ .
The uniform and clustered networks were constructed such that the sum of all synaptic weights was the same for

the two architectures. This was accomplished by fixing Jαβ and Jαβ
+ and solving for the appropriate Jαβ

− . Following
this procedure gives

Jαβ
− =

(fα + fβ − pfαfβ)Jαβ − fαfβJαβ
+

fα + fβ − pfαfβ − fαfβ
. (5)

3. Sensory stimuli

To model stimulus-evoked activity, sensory signals were incorporated as additional, depolarizing external inputs to
the cortical circuit (Eq. 1). For the clustered networks, 50% of the assemblies were chosen at random to receive input
from a particular stimulus; for each selected cluster, stimulus-related input was applied to 50% of its E cells (chosen at
random). In this way, two different stimuli in general targeted unique but overlapping sets of clusters. For the uniform
networks, a given stimulus was modeled as an external input that was applied to a randomly-selected subset of the E
cells; for each stimulus, the total number of stimulated neurons was chosen to be the same as in the clustered model.
Throughout the text, we refer to cells and/or clusters that receive input from a particular stimulus s as “targeted” by
that stimulus, and cells and/or clusters that do not receive input from stimulus s as “not-targeted” by that stimulus.
Matching the five tones used in the experiments, we presented each model network with five different stimuli.

If the ith cell of population α ∈ {E, I} was targeted by a given stimulus, then the stimulus-related input to that
cell took the form

Iαstim,i(t) =

{
0 if t < tstim
Aα

stim × ναo C
αE
ext J

αE
ext × s(t) if t ≥ tstim;

(6)

otherwise, Iαstim,i(t) = 0 ∀t. In Eq. 6, tstim is the onset time of the stimulus, Aα
stim ≥ 0 sets the amplitude of the

stimulation signal for cells in population α, and s(t) describes the stimulus timecourse. Here, AI
stim = 0 since only E

cells receive sensory stimulation. For the timecourse s(t), we used a difference of exponentials:

s(t) = γ[e−(t−tstim)/τd − e−(t−tstim)/τr ], (7)

where γ =
[
(τr/τd)

τr
τd−τr − (τr/τd)

τd
τd−τr

]−1, τr is the rise time constant, and τd is the decay time constant.

4. Arousal modulations

We modeled arousal as cell-type specific modifications of the background inputs to the recurrent circuit. Throughout
the text, we refer to these modifications generally as “arousal modulations”. Here, we modeled scenarios where (i) the
mean background input to E and/or I cells was uniformly increased (“input mean modulation”), or (ii) the background
input to a given E and/or I cell was drawn from a Gaussian distribution with a fixed mean but increasing spread
(“input heterogeneity modulation”).

For the input mean modulation, the rate of background external input to the ith cell in population α ∈ {E, I} was
given by
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ναext,i = ναo +∆α
Mναo , (8)

where ναo is the baseline input rate to cells in population α (see Sec. IV B 1) and ∆α
M ≥ 0 is a constant. Increasing

∆α
M uniformly increases the background drive to all cells in population α. For the input heterogeneity modulation,

the rate of background external input to the ith cell in population α was instead given by

ναext,i = ναo + zi∆
α
Hναo , (9)

where zi is a standard Gaussian random variable and where ∆α
H ≥ 0 is a constant. Increasing ∆α

H increases the
variance of the background input rates across the cells in population α [var(ναext) = (∆α

Hναo )
2] while leaving the spatial

average across cells approximately unchanged (inputs were not allowed to go negative). In other words, when ∆α
H

is non-zero, some cells in population α receive more input relative to baseline and others receive less input relative
to baseline, but the average input across all cells in the population stays at the baseline value. The larger ∆α

H , the
greater the heterogeneity of background inputs across the cell population. In the clustered networks, each assembly
was subject to the same realization of the background input distribution; in this way, all clusters received the same
amount of (spatially-averaged) input. In this study, we considered background input modulations that affected (i)
the input heterogeneity of the excitatory population alone (i.e., ∆E

H ∈ [0, 0.4] and ∆I
H = 0), or (ii) the mean input of

the excitatory population alone (i.e., ∆E
M ∈ [0, 0.4] and ∆I

M = 0).

5. Numerical simulations

The dynamical system defined by Eqs. 1-4 was integrated using a discrete time step dt = 0.5 × 10−4 seconds. All
spike times were forced to the simulation grid, and exact updates were performed between time steps. For each type of
background input/arousal modulation (Sec. IV B 4), we performed simulations on several realizations of the clustered
and/or uniform networks (5 realizations when ∆E

M was varied and 10 realizations when ∆E
H was varied). For the ∆E

H
modulation, different network realizations were also associated with different realizations of the quenched disorder
induced by the Gaussian random variable in Eq. 9. For most analyses, we simulated 30 trials of network activity
per stimulus for each instance of the network architecture. For the Fano factor analyses of the clustered network
model (Sec. IV K; Fig. 7C-F), we ran an additional set of simulations with a larger number of stimulus repetitions
(200) per network realization. In all the simulations described thus far, each trial lasted 3.5 seconds and stimulus
onset occurred at tstim = 1 second; the pre-stimulus period of each trial was considered “spontaneous” activity. We
also ran an additional set of simulations for the power spectra analyses in the clustered model (Sec. IV J; Fig. 7B)
in order to obtain longer continuous blocks of spontaneous activity. In this case, for each network realization, we
simulated 30 trials of spontaneous-only activity (no stimulus presentation), where each trial lasted 2.7 seconds. In all
simulations, different trials used different random initial conditions for neurons’ membrane potentials. All simulations
of the network model were carried out in Python version 3.9.5.

C. Population decoding analyses

Population decoding analyses assess the extent to which stimulus identity can be read-out from single-trial responses
of a neural ensemble [91]. In the electrophysiological data, we used decoding techniques to examine how well tone
frequency could be discriminated from population responses in auditory cortex. These analyses were performed either
using all the available data within a session (i.e., without conditioning on arousal state; Fig. 2A; Fig. S3), or after
parsing the data according to pupil-indexed arousal level with (Fig. 2B-E; Fig. S4; Fig. S6). In the model, we examined
how decoding performance varied as a function of the ∆E

H arousal modulation in either uniform (Fig. 4D) or clustered
networks (Fig. 4E), or as a function of the ∆E

M arousal modulation in the clustered networks (Fig. S16A). Below, we
provide details on the decoding procedures applied to the electrophysiological data and the circuit models.
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1. Data selection procedure for decoding in the data

For analysis of the electrophysiological experiments, all good units (Sec. IV A 7) were used as features for the
population decoding. Trials were defined as the time period spanning [−0.1, 0.6] seconds relative to tone onset. To
perform decoding of tone frequency without conditioning on arousal state, all evoked trials of a session – regardless of
their pupil diameter – were gathered and considered for the analysis. To avoid biasing the decoder, we ensured that
the number of trials per frequency was the same across all tones. If this wasn’t the case, we randomly subsampled
the trials of each frequency to meet this criteria.

To quantify how arousal level impacts decoding performance, we parsed the trials in a given session according to
pupil diameter. To begin, we computed the average pupil diameter across the pre-stimulus period of each evoked trial.
We then split the trials into ten equally-sized partitions according to the deciles of the pre-stimulus pupil diameter
distribution (Fig. S2); this partitioning procedure allowed us to use the maximum number of trials for the decoding
analysis. Within each decile bin, we also randomly subsampled the trials to ensure that each partition contained the
same number of trials per tone frequency. Subsequent decoding analyses were then performed independently for each
pupil-based partition of the data. When examining the relationship between decoding performance and arousal in the
absence of locomotion, trials with a treadmill velocity exceeding 1 cm/sec over the entire pre-stimulus period were
excluded from the analysis.

2. Data selection procedure for decoding in the circuit models

To decode stimulus identity in the circuit models, we randomly sampled a subset of excitatory cells to be used
as features in the classification analysis. In the clustered networks, we drew one neuron from each cluster and one
from the background population for a total of p+ 1 = 19 neurons/features. In the uniform networks, we drew p+ 1
excitatory neurons at random from the full population. We then averaged the decoding performance over 25 different
runs, where each run used a different random sample of cells.

3. Decoding stimulus identity as a function of time within trials

After gathering the relevant set of cells and trials for a particular decoding analysis, we trained a linear classifier to
discriminate between stimuli given population activity from a particular time bin within a single trial. To this end,
spikes from each cell were counted in a sliding window moving along the length of a trial. In the data, we used 100
ms time windows stepped forward in 10 ms increments; in the model, we used 100 ms windows stepped forward in
20 ms increments. Spike counts were computed in all relevant trials, yielding a large spike-count array of dimension
Nunits ×Ntrials ×Nwindows. Stimulus decoding was then performed separately on the data within each time bin.

Stimulus classification was carried out using version 0.24.2 of the scikit-learn Python package, and proceeded in
several steps. Within a given time window, trials were split into training and testing sets. This was achieved using ten
repetitions of stratified, 5-fold cross-validation. By using stratified folds, we ensured that the training and testing sets
contained the same proportion of trials per stimulus. For each train-test split (50 in total), the training data was then
used to fit a multiclass, linear discriminant classifier (‘sklearn.discriminant_analysis.LinearDiscriminantAnalysis’with
the ‘svd’ solver). Afterwards, the trained model was used to predict the stimulus identity of each trial in the test set.

To assess decoding performance, we examined the classification accuracy. Within a given time bin, the accuracy
of a single train-test split was defined as the fraction of test trials whose stimulus identity was correctly predicted
(for a single tone, it was the fraction of stimulus-specific test trials that were correctly predicted). The total, cross-
validated accuracy of the time window was then computed as the average classification accuracy across all train-test
splits. Repeating this process for each time bin yielded a time-course of decoding accuracy relative to stimulus onset
(Fig. S3). The maximum of this time-course (i.e, the peak accuracy) was then computed to summarize the overall
decoding performance (Fig. 2A, inset). Throughout the text, we refer to the time window corresponding to peak
decoding accuracy as the “peak decoding window”.

4. Significance of the overall decoding accuracy

To determine if tones could be decoded from A1 population activity using all the available trials (i.e., without
conditioning on arousal state), we compared the true decoding accuracy to the distribution of accuracies obtained
after random shufflings of the stimulus labels. For a given time window, we randomly permuted the tone frequency
labels across trials, removing any association between population activity patterns and stimulus identity. In a stratified
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manner, we then randomly selected 80% of the label-shuffled trials for a training set, and used the remaining 20%
for a test set. Using this train-test split, we followed the same classification procedure used for the un-shuffled data
(Sec. IV C 3) to obtain one estimate of the null decoding accuracy. This process was then repeated for 100 random
shufflings of the stimulus labels, yielding a distribution of null decoding accuracies for the given time bin. Finally,
the true decoding accuracy in a given time bin was considered significantly above chance level if it was larger than
the 95th percentile of the null distribution. The peak decoding accuracy was well-above chance levels in all sessions
(Fig. S3).

5. Averaging decoding performance across experimental sessions and network simulations

In the arousal-conditioned decoding analysis, the peak accuracy was computed for each pupil diameter decile bin of
a given session (Fig. 2C). To combine the results across recordings (Fig. 2D), we first standardized the ten accuracy
values within a given session via z-score normalization. In this way, the normalized values indicate how far the
decoding accuracy in a particular pupil decile deviates from the average accuracy across all pupil deciles. Each data
point in a session (one per decile) was then binned according to it’s pupil diameter (i.e., the diameter at the middle
of it’s decile). For this discretization, we used non-overlapping bins of width 10% of the maximum pupil diameter. If
more than one data point from the same session fell within a single pupil diameter bin, we stored the average value
of the normalized accuracy in that bin. This process was then repeated for each session, yielding a set of normalized
accuracies in each pupil diameter bin (gray data points in Fig. 2D). Note that because different sessions explored
different pupil dilation ranges, not all sessions contributed to every pupil diameter bin; specifically, there was more
data at intermediate diameters relative to very small or large ones. To summarize how decoding performance varied
with arousal, we computed the average normalized accuracy across sessions within each pupil diameter bin; the spread
of the data was indicated by either a boxplot (Fig. 2D) or by the standard deviation (Fig. 4C) in each pupil diameter
bin.

In the circuit models, the peak accuracy was computed separately at each value of the ∆E
H arousal modulation for

a given network realization. Peak accuracies were z-scored within a realization, and the normalized values were then
averaged across ten different simulations at each value of ∆E

H (Fig. 4D,E). Non-normalized versions of the decoding
results are shown in Figs. S15A and B for the uniform and clustered networks, respectively. In the Supplement, we
also show the peak accuracy as a function of the ∆E

M arousal modulation (average across 5 network realizations;
Fig. S16).

6. Comparing decoding performance between different pupil diameter conditions

To statistically quantify whether moderate arousal was associated with improvements in population-level decoding,
we compared the peak decoding accuracy at moderate pupil diameters to the accuracy at either low or high diameters
(Fig. 2E). For a given session, we first determined the pupil diameter decile bin that was centered closest to 50% of
maximum pupil dilation. We then compared the accuracy in that central decile to the accuracy in either the first decile
or last decile. Importantly, only a subset of recordings thoroughly sampled highly-constricted or highly-dilated pupil
states (S2). For statistical comparison of moderate and low arousal conditions, we thus only considered sessions whose
first pupil diameter decile was centered below 25% of maximum dilation (9 sessions total). Similarly, for comparing
moderate and high arousal states, we considered sessions whose last pupil diameter decile was centered above 75% of
maximum dilation (all 15 sessions met this criteria).

D. Determining tone-responsiveness in the data

To determine if a cell responded significantly to a particular tone, we compared activity at a given time point in
the 200 ms period after tone presentation (evoked period) to activity from the 200 ms period preceding tone onset
(baseline period). To begin, trials were aligned to stimulus onset and grouped according to tone frequency; we denote
the number of trials per tone as Ntrials. For a given cell and tone, single-trial spike trains were binned in a 100
ms sliding window incremented in 1 ms steps. For each time bin ending in the evoked period, we compared the set
of Ntrials spike counts in that bin to the set of Ntrials × Nbase bins spike counts from all baseline time bins (i.e., all
bins that were fully contained in the pre-stimulus period). To determine whether activity in the evoked time bin
was significantly different from baseline, we used the Mann-Whitney U test; p-values for each evoked time bin were
corrected for the multiple comparisons in the evoked period using the Bonferroni correction. The tone response was
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considered significant in a given time bin if the corrected p-value was < 0.05, and a cell was considered responsive to
the tone if the response was continuously significant for at least 5 ms during the evoked period.

E. Quantifying relationships between single-unit spontaneous activity and arousal level in the data

To examine how spontaneous firing rates varied with arousal (Figs. 3C-E), we split the spontaneous periods of
each experimental session into smaller windows of length 100 ms. For each window, we computed the spike count of
every unit and the average pupil diameter over the window duration. Windows from all spontaneous periods were
collected into a single dataset, and were then divided into ten groups according to the deciles of their pupil diameter
distribution. For each decile bin, we computed (i) the average pupil diameter across all windows in the bin, and (ii)
the average firing rate of each unit across all windows in the bin (see Figs. 3D,E for examples). Finally, we tested for a
monotonic relationship between spontaneous firing rate and arousal by computing the Spearman correlation between
a unit’s average firing rate in each pupil decile bin and the average pupil diameter in each decile bin. A correlation
with p < 0.05 was considered statistically significant, and the sign of the correlation indicated whether the firing
rate of the corresponding unit tended to increase (positive modulation) or decrease (negative modulation) with pupil
diameter; non-significant correlations indicated the absence of a clear monotonic relationship between spontaneous
firing rate and pupil diameter. Fig. 3C shows the fraction of units (averaged across sessions), with significant positive
or negative correlations computed with this method. Results for individual sessions are shown in Fig. S8.

F. Quantifying relationships between spontaneous activity and arousal modulations in the network models

To quantify how spontaneous activity was impacted by a given arousal modulation in the circuit models, we com-
puted single-cell firing-rates in the absence of sensory stimuli. Specifically, for a fixed value of the arousal modulation
(i.e. value of ∆E

H or ∆E
M ; Sec. IV B 4), rates of all cells were computed during the 800 ms window preceding stimulus

onset in 150 trials (5 stimuli × 30 trials/stimulus) per network realization. We then averaged the spontaneous rates
of each neuron across trials, and computed the Spearman correlation between the trial-averaged rate of each cell and
the arousal modulation strength. A significant (p < 0.05) positive/negative correlation indicated a cell whose firing
rate tended to monotonically increase/decrease with the arousal modulation. Figs. 3F and G show the fraction of
all neurons in the clustered networks that exhibited significant positive or negative correlations with the ∆E

H or ∆E
M

arousal modulations, respectively. Similar results for the unstructured networks are shown in Fig. S14.

G. Single-cell discriminability

To examine neural discrminability on a single-cell level, we computed a standard metric for quantifying the separa-
bility between two stimulus response distributions. Given the responses of an individual cell to repeated presentations
of two stimuli sa and sb, the single-cell discriminability (d′) is:

d′(sa, sb) =
|µa − µb|√
1
2 (σ

2
a + σ2

b )
, (10)

where µa and µb denote the average responses to the two stimuli, and where σa and σb denote the standard deviations
of the two response distributions.

To compute an overall discriminability index in both the model and the data, we began by computing timecourses
of the single-cell discriminability relative to stimulus presentation. To begin, all trials were aligned to stimulus onset.
For each trial of a given stimulus, we computed binned spike counts of every cell in a sliding window (see subsections
below for window parameters used in the model and data). In total, we obtained an array of spike counts (i.e.,
responses) of dimension Ncells × Nstimuli × Ntrials × Ntime bins. In each time bin, the across-trial mean and standard
deviation of the spike counts were used to compute d′ for each cell and pair of stimuli, according to Eq. 10. To
summarize the discriminability of an individual cell i in time bin t, we computed its average d′ over all stimulus
pairs, denoted here as d′i,t. We then computed the average across all cells in each time bin, denoted as ⟨d′t⟩. A final
population-averaged discrminability index was defined as the maximum of the timecourse ⟨d′t⟩; we denote this index
as either the population-averaged D′

sc (or simply ⟨D′
sc⟩). We also determined the time point t∗ at which ⟨d′t⟩ was

maximized, from which we computed an overall discrminability index for each cell i as D′
sc,i = d′i,t∗ .
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1. Network model

To compute the single-cell discriminability in the clustered network model, spikes were binned using 100 ms windows
incremented in 20 ms steps. For a given network realization, results were based off 30 trials per each of 5 stimuli.
To summarize how the overall single-cell discriminability varied with the ∆E

H arousal modulation, we computed the
population-averaged D′

sc (⟨D′
sc⟩) at each value of ∆E

H for a given network realization. We then z-scored ⟨D′
sc⟩ across

∆E
H , and computed the average of the normalized quantity over network realizations to obtain the final result in

Fig. 4F (Fig. S15C shows results without z-score normalization).

2. Experimental data

To compute the single-cell discriminability in the experimental data, tone trials were grouped according to the
deciles of their pre-stimulus pupil diameter distribution, as described in Sec. IV C 1 for the population decoding
analysis; each pupil-based partition (decile bin) was analyzed independently. After collecting the relevant subset of
data, we computed binned spike counts of each cell in every trial using 100 ms windows incremented in 10 ms steps.
We then followed the procedure above to compute the population-averaged D′

sc in each pupil decile bin of a session
(see Fig. S7 for single-session results). To combine the population-averaged D′

sc across sessions (Fig. 2F) we used the
method described in Sec. IV C 5 for the decoding performance.

To quantitatively test whether single-cell discrminability was improved at intermediate arousal relative to either low
or high arousal, we compared the distributions of single-cell D′

sc values at different pupil diameters. First, we found
the pupil decile bin that was centered closest to 50% of maximum dilation in each session. We also found the set of
sessions whose first pupil decile bin was centered below 25% of maximum dilation (“low pupil sessions”, LS) and the
set of sessions whose last pupil decile bin was centered above 75% of maximum dilation (“high pupil sessions”, HS). To
compare D′

sc between low and middle pupil diameters, we pooled the single-cell D′
sc values from the first decile bin and

central decile bin of each low pupil session into two groups: {D′
sc,low pupil}LS and {D′

sc,mid pupil}LS. To compare D′
sc

between high and middle pupil diameters, we instead pooled the D′
sc values from the last decile bin and central decile

bin of each high pupil session into two sets: {D′
sc,high pupil}HS and {D′

sc,mid pupil}HS. We then compared {D′
sc,low pupil}LS

and {D′
sc,mid pupil}LS (or {D′

sc,high pupil}HS and {D′
sc,mid pupil}HS) using paired statistical tests. In Fig. 2G, we show the

distributions of the differences {D′
sc,mid pupil−D′

sc,low pupil}LS (top panel) and {D′
sc,mid pupil−D′

sc,high pupil}HS (bottom
panel).

H. Calculation of cluster rates and cluster timescale in the network model

1. Time-varying cluster firing rates

To compute cluster firing rates in the clustered model, we first computed the time-dependent firing rate ri(t)
of each neuron i by convolving its spike train with a Gaussian kernel of width σ = 25 ms, incremented in 1 ms
steps. The firing rate rc(t) of a given cluster c, was then computed as the average rate of its constituent neurons:
rc(t) = ⟨ri(t)⟩i ∈ cluster c.

2. Active and inactive cluster rates

To quantify how cluster activity varied with the ∆E
H arousal modulation (Fig. 5B) or intracluster coupling J+

EE
(Fig. S11), we computed active and inactive cluster firing rates during the pre-stimulus period of simulated trials
(here taken as the window spanning [-0.8, -0.1]s relative to stimulus onset). In a given trial, we first computed the
time-dependent cluster firing rate rc(t) of every excitatory cluster (Sec. IV H 1). A cluster was considered “active” at
time t if rc(t) ≥ 15 spks/sec. Given this criteria for cluster activation, we determined the number of active clusters
nA as a function of time during the pre-stimulus period. By pooling across all time points with a particular value of
nA, we then calculated the probability of finding nA clusters active, as well as the average rate of active and inactive
clusters as a function of nA. We denote the trial-averaged active and inactive cluster firing rates as a function of nA as
rnA,↑ and rnA,↓, respectively, and the trial-averaged probability of finding nA active clusters as P (nA). We determined
the most likely number of active clusters, n∗

A, as the value corresponding to the maximum of the probability P (nA)
(after averaging across network realizations).
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For a fixed set of network parameters, only a few values of nA occurred with high likelihood (see Fig. S12C for
the probability of finding nA active clusters at different values of the ∆E

H arousal modulation). For all values of the
∆E

H arousal modulation, the most likely number of active clusters was n∗
A = 3. To summarize the behavior of the

clustered networks as a function of ∆E
H , we examined the active and inactive cluster rates conditioned on n∗

A (rn∗
A,↑

and rn∗
A,↓, respectively; Fig. 5B). We also performed a supplementary analysis that examined the cluster rates for

different values of nA (Fig. S12). Both of the aforementioned analyses were based on 150 trials per network realization
(5 stimuli × 30 trials/stimulus). See Sec. IV L 3 and Fig. S11 for details on the analysis of active and inactive cluster
rates as a function of the intracluster coupling J+

EE .

3. Cluster activation timescale

To calculate the average cluster activation timescale, we first used the threshold criteria in Sec. IV H 2 to determine
the time points of cluster activation and inactivation during the pre-stimulus period of each trial (here taken as the
window spanning [-0.8, -0.1]s relative to stimulus onset). The cluster timescale of a given trial was then calculated
as the average duration across all cluster activation periods. For each network realization, we then averaged the
timescale across 150 trials (5 stimuli × 30 trials/stimulus). Fig. 5G shows the average cluster activation timescale as
a function of ∆E

H .

I. Analysis of evoked dynamics in the clustered network model

We characterized the evoked dynamics of the clustered networks using a number of quantities. In each case, we
began by computing the time-dependent firing rate rc(t) of each excitatory cluster in every trial (Sec. IV H 1). To
determine whether or not a cluster was active relative to its pre-stimulus activity, we computed a baseline-subtracted
rate for each cluster, gc(t), by subtracting the time- and trial-averaged cluster rate during the 800 ms window preceding
stimulus onset. A given cluster c was considered to be activated above baseline at time t if gc(t) exceeded a threshold
of 1 spk/sec. All quantities below were computed over the 100 ms window that yielded peak decoding accuracy
(i.e., the “peak decoding window”; Sec. IV C 3), and averaged over 150 trials per network realization (5 stimuli × 30
trials/stimulus).

1. Cluster signal

To calculate the cluster signal (Cs; Fig. 6B), we began by computing the average, time-dependent firing rates of
targeted and nontargeted clusters, rT(t) and rN(t), in every trial. We then computed the difference between the
two average rates: ∆rT,N(t) = rT(t) − rN(t). Finally, we averaged the difference ∆rT,N(t) across the peak decoding
window; this resulted in a single number ∆r∗T,N for each trial of every stimulus. For a given network realization, the
cluster signal was defined as the average of ∆r∗T,N across all trials and stimuli.

2. Cluster reliability

To compute the cluster reliability (Cr; Fig. 6C), we determined the fractions of targeted and nontargeted clusters,
fT↑ and fN↑ , that remained activated (relative to baseline) for at least 25 ms during the peak decoding window. We
then computed the difference between those two fractions: ∆fT↑,N↑ = fT↑ − fN↑ . For a given network realization,
the cluster reliability was defined as the average of ∆fT↑,N↑ across all trials and stimuli. In the supplement, we also
show the fraction of all clusters that remained activated above baseline for at least 25 ms during the peak decoding
window (fC↑ ; Fig. S17D), as well as fT↑ and fN↑ separately (Fig. S17E).

3. Additional measures

To quantify the probability that the active clusters at a given time were part of the stimulus-targeted subset, we
computed the fraction f↑∈T(t) of active clusters that were part of the targeted subset at each time point in every
trial. A single value for the pre-stimulus period, f spont

↑∈T , was obtained by averaging f↑∈T over the 100 ms window
preceding stimulus onset. This baseline value was compared to the average of f↑∈T(t) across the peak decoding
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window, denoted by f evoked
↑∈T . For a given network realization, we then averaged f spont

↑∈T and f evoked
↑∈T across all trials and

stimuli (Fig. S17A,B).
We also quantified the overall amount of time that targeted and nontargeted clusters were activated above baseline

during the peak decoding window. To begin, we computed the fraction of the peak decoding window τ̃c↑ for which
each cluster c was active relative to baseline. The quantity τ̃c↑ was then averaged across all targeted or nontargeted
clusters, yielding two numbers, τ̃T↑ or τ̃N↑ , respectively. To summarize the difference in the amount of targeted vs.
nontargeted cluster activation, the quantity ∆τ̃N↑,T↑ = τ̃T↑ − τ̃N↑ was computed in each trial. For a given network
realization, we then averaged ∆τ̃N↑,T↑ across all trials and stimuli to obtain the final summary statistic (Fig. S17C).

J. Spectral analyses

We utilized spectral analyses to characterize the temporal structure of spike trains during spontaneous periods in
both the network model (Fig. 7B,C) and the experimental data (Fig. 7H,I). To compute the power spectrum of a
neuronal spike train from a single trial (time window) of length T , we first binned the spike train at a fine temporal
resolution of ∆t = 1 ms. The power spectrum of the binned spike train was then estimated using the multitaper
method applied to point processes, as described in [92] and numerically-implemented in [93]. For the multitaper
estimates, we used a time-bandwidth product of TW = 5 and averaged over 2TW − 1 = 9 tapers. The multitaper
estimate of the spectrum from a given trial was then normalized by the average firing rate of the neuron across
that trial; this rate-normalization is equivalent to normalizing the spectrum by that of a Poisson process with the
same firing rate. Normalized spectra for a given neuron were then averaged across all trials of a particular condition
to obtain a final, normalized power spectrum Snorm(f). The low-frequency power was computed as the average of
Snorm(f) between 1-4 Hz.

1. Network model

In the clustered network model, single-neuron spectra were estimated from several simulated trials of spontaneous
activity conditioned on a particular value of the arousal modulation ∆E

H . Specifically, for a given network realization
and value of ∆E

H , we used the method described above to compute the normalized spectrum Snorm,i(f) and the low-
frequency power PL

spont,i of cell i; these calculations were based on 30, 2.5 second trials of spontaneous activity. To
summarize the overall extent of low-frequency fluctuations, we computed the average low-frequency power across all
excitatory cells that had a firing rate of at least 1 spike/second for each value of ∆E

H ; we refer to this cell-averaged
low-frequency power as ⟨PL

spont⟩. Fig. 7C shows ⟨PL
spont⟩ as function of the arousal modulation ∆E

H .

2. Experimental data

To compute power spectra in the neural data, the spontaneous blocks of each session were split into 2.5 second
windows, and the average pupil diameter was computed across each one. The windows were then discretized into non-
overlapping pupil diameter bins with upper boundaries located at [25%, 35%, 45%, 55%, 65%, 75%, 100%] of maximum
dilation. This partitioning allowed us to evaluate changes in the spectra across a full range of arousal states and
maintain a substantial number of trials in each pupil diameter bin for several of the sessions. To account for the
uneven sampling of different pupil diameters within a given session, we subsampled the data such that all pupil bins
in a session contained the same number of windows; results were then averaged across 50 different subsamplings. In
total, 9 sessions exhibited a broad range of arousal states with at least 2 windows per pupil diameter bin.

For a given pupil diameter bin, we followed the procedure above to compute the normalized spectrum Snorm,i(f)
and low-frequency power PL

spont,i of each unit i in a session. To test for changes in low-frequency power between low
and high arousal states, we pooled the single-unit PL

spont values from the first and last pupil bin across all sessions
that sampled a broad range of pupil diameters, yielding two groups of values: {PL

spont, low pupil} and {PL
spont, high pupil}.

We then compared the groups using a paired statistical test, and visualized results by plotting the distribution of
the difference {PL

spont, low pupil − PL
spont, high pupil} (Fig. 7I). For each session, we also computed the cell-averaged low-

frequency power, ⟨PL
spont⟩, in each pupil diameter bin. To combine results across recordings, we z-score normalized

⟨PL
spont⟩ across pupil bins within each session, and averaged the normalized values across sessions in each pupil diameter

bin (Fig. 7I, inset). For these analyses, we only included cells that responded to at least one tone, had a spontaneous
firing rate of at least 1 spike/second in all pupil diameter bins, and that had a non-zero spike count in all sampled
time windows.
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K. Fano factor analyses

We used the Fano factor to characterize single-cell spiking variability in both the network model and the experimental
data. For a given cell, the Fano factor (FF ) is defined as

FF =
var[nsp]

⟨nsp⟩
, (11)

where nsp indicates the spike count of the cell within a fixed time window, and where var[·] and ⟨·⟩ indicate the
variance and mean across repeated trials (or observation windows), respectively. In both the model and the data, we
computed the FF during both spontaneous and evoked conditions.

1. Network model

In the clustered network model, FFs were computed across 200 trials of a single stimulus for each network realization
at a fixed value of the ∆E

H arousal modulation (see Sec. IV B 5 for details on the simulations). For this analysis, we
focused on cells in stimulated clusters, excluding those that had a low spontaneous rate of < 1 spike/second at any
∆E

H . To compute the FF of cell i, we binned the spikes in each trial using a 100 ms window incremented in 20 ms steps.
The FF was then computed in each time bin (up to 200 ms after stimulus onset) according to Eq. 11, yielding a time
course FFi(t). The spontaneous FF of cell i (FFspont,i) was defined as the value of FFi(t) in the bin immediately
preceding stimulus onset. To summarize the evoked FF, we first averaged FFi(t) across cells and determined the
time point tFFmin corresponding to the minimum of the population-averaged trace. For each cell i, the evoked FF
(FFevoked,i) was then defined as the value of FFi(t) at the time tFFmin . For each cell, we also computed the difference
between the spontaneous and evoked FFs: ∆FFi = FFspont,i − FFevoked,i. To summarize the results, we averaged
each quantity across neurons; we refer to these population-averaged values as ⟨FFspont⟩, ⟨FFevoked⟩, and ⟨∆FF ⟩.
Figs. 7D-F show ⟨FFspont⟩, ⟨FFevoked⟩, and ⟨∆FF ⟩, respectively, as a function of the ∆E

H arousal modulation.

2. Experimental data

To compute spontaneous FFs as a function of arousal, the spontaneous blocks of each session were divided into
100 ms windows. Windows were then binned by average pupil diameter, using the same bins as the for the spectral
analysis (Sec. IV J 2). To compute evoked FFs as a function of arousal, we parsed tone trials according to the average
pupil diameter across the 100 ms window preceding stimulus onset, using the same pupil diameter bins as for the
spontaneous data. This procedure ensured that spontaneous and evoked Fano factors were evaluated across similar
pupil dilation ranges. To account for the differing numbers of windows and trials across pupil bins, we subsampled the
data such that all pupil bins contained the same number of windows and trials per tone. In total, there were 7 sessions
that thoroughly sampled a broad range of arousal states, defined as having at least 25 windows per pupil diameter
bin in the spontaneous condition and at least 25 trials per pupil diameter bin and tone in the evoked condition.

For the spontaneous data, single-unit spike counts were computed in each window within a given pupil-based
partition. The FF of each cell i was then computed via Eq. 11, and a final estimate of the spontaneous Fano factor,
FFspont,i, was obtained by averaging across 100 random subsamples of the data. For the evoked FF, trials were first
aligned to stimulus onset. In each trial, spikes from each cell were binned using 100 ms windows incremented in 1
ms steps. Using the trials for a given tone and pupil partition, FFs were calculated in each time bin (up to 200 ms
after stimulus onset) according to Eq. 11, and results were averaged across 100 random subsamples of the data. This
process yielded a time course FFi,s(t) for each cell i and stimulus s. To summarize evoked FFs, we first averaged the
FF time courses for a particular stimulus s across the tone-responsive cells (Sec. IV D) and determined the time point
tFFs,min corresponding to the minimum of the average trace. The evoked FF of cell i for stimulus s (FFevoked,i,s) was
then defined as the value of FFi,s(t) at the time point tFFs,min . Finally, we obtained a summary statistic FFevoked,i by
averaging FFevoked,i,s across all tones that induced a significant response in cell i. In each pupil bin, we also computed
the difference ∆FFi between the spontaneous and evoked FFs of cell i: ∆FFi = FFspont,i − FFevoked,i. Only cells
that responded to at least one tone and that had an average spontaneous rate of ≥ 1 spk/second in every pupil bin
were included in the analyses.

To test for a difference in the spontaneous FF between low and high arousal states, we pooled the single-unit
FFspont values from the first and last pupil bin across all sessions that sampled a broad range of pupil diameters,
yielding two groups of data: {FFspont, low pupil} and {FFspont, high pupil}. We then compared the two groups with a
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paired statistical test, and visualized results by plotting the pooled distribution of the difference between low and high
pupil states: {FFspont, low pupil−FFspont, high pupil} (Fig. 7J). The same procedure was also used to compare FFevoked

and ∆FF between low and high arousal states (Figs. 7K,L). To examine session-average trends in FFspont, FFevoked,
and ∆FF as a function of pupil diameter, we first averaged each measure across all relevant units in a session (see
above). For a given session, this step yielded a cell-averaged spontaneous FF (⟨FFspont⟩), evoked FF (⟨FFevoked⟩),
and difference between spontaneous and evoked FFs (⟨∆FF ⟩) in each pupil diameter bin. Within a given session, we
z-score normalized ⟨FFspont⟩, ⟨FFevoked⟩, and ⟨∆FF ⟩ across pupil diameter bins, and then averaged the normalized
values within each pupil diameter bin across sessions (Fig. 7J-L, insets).

To test for overall decreases in neural variability during stimulus presentation relative to spontaneous conditions,
we marginalized the data in a session across all pupil diameters. Specifically, we combined the evoked trials or
spontaneous windows from each pupil diameter bin (see above) into two aggregate datasets. Using the aggregate
datasets, we then followed the methods described above to compute (i) a pupil-aggregated spontaneous Fano factor
FFspont,i of each cell i, and (ii) a pupil-aggregated evoked Fano factor FFevoked,i of each cell i. Only cells that
responded to at least one tone and that had an average spontaneous rate of ≥ 1 spk/second were included in the
analysis. To test for stimulus-induced variability quenching, we pooled the single-unit FFspont and FFevoked values
across all sessions that thoroughly sampled a broad pupil range (see above) to obtain two groups of data: {FFevoked}
and {FFspont}. We then compared {FFevoked} and {FFspont} using a paired statistical test (Fig. S10A). We also
compared the cell-averaged spontaneous ⟨FFspont⟩ and evoked ⟨FFevoked⟩ in each session (Fig. S10B).

L. Mean-field analyses on full clustered networks

To obtain theoretical insight into the effects of the ∆E
H arousal modulation on network activity, we performed a

series of mean-field analyses for the clustered model. Mean-field theory is a commonly-applied technique for studying
the collective dynamics of large, recurrently-connected networks of integrate-and-fire neurons [94], and has previously
been used to study attractor dynamics in networks of LIF neurons with clusters [34, 36, 48, 95]. In what follows,
we first explain the mean-field analysis carried out for the full clustered networks with both excitatory (E) and
inhibitory (I) assemblies (associated with Fig. 5A of the main text). We then describe the effective mean-field theory
performed on the reduced 2-cluster network (associated with Figs. 5C-E of the main text). Because observed changes
in stimulus processing result only from changes in network dynamics induced by ∆E

H (versus from changes in the
stimuli themselves), all mean-field analyses were performed for the “spontaneous” condition (i.e., in the absence of
sensory stimulation).

Consider a network of LIF neurons composed of p E clusters, p I clusters, 1 “background” (unclustered) E population,
and 1 “background” I population, for a total of 2(p + 1) populations. We label the populations with a pair of
superscripts (α, γ). The first superscript α ∈ {E, I} labels populations as excitatory or inhibitory, and the second
superscript γ ∈ {1, ..., p+1} specifies the population number, where the first p indices correspond to the cluster labels
and the p+1 index corresponds to the background population. All neurons within the same population described by
a given (α, γ) pair are assumed to have the same intrinsic parameters and receive exactly the same number and types
of recurrent connections; the parameters describing the synaptic connectivity within and between each population
type are given in Sec. IV B 2.

1. No quenched randomness

To begin, we consider the scenario in which there is no arousal modulation acting on the network (i.e., ∆α
H = 0 for

α ∈ {E, I}). In this case, there is no quenched randomness in the external currents and the statistics of the inputs
to cells in the same population are identical. Under these conditions, all neurons in population (α, γ) will share the
same average firing rate, να,γ .

To perform the mean-field analysis – and arrive at an equation describing the average rates – one makes a set
of assumptions about the operating regime of the network. The analysis proceeds by assuming that each neuron
receives a large number of uncorrelated inputs, that the input and output spike trains received and emitted by cells
in the network are independent, stationary Poisson processes, and that individual spikes from a presynaptic neuron
induce only a small change in the voltage of a postsynpatic neuron relative to it’s firing threshold [94]. Under these
conditions, one can make the diffusion approximation and replace the presynaptic input to population (α, γ) by a
Gaussian white noise with mean µα,γ and standard deviation σα,γ . Assuming exponentially-decaying synapses with
time constant τs, the dynamics of a neuron i in population (α, γ) becomes
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ταm
dV α,γ

i

dt
= −V α,γ

i (t) + ταmIα,γi (t) (12)

τs
dIα,γi

dt
= −Iα,γi (t) + µα,γ + σα,γηi(t) (13)

where ταm is the membrane time constant of neurons in population α, V α,γ
i is the membrane potential, Iα,γi (t) is the

total synaptic input from both external and recurrent sources, and where ηi(t) is a Guassian white noise obeying
⟨ηi(t)⟩ = 0 and ⟨ηi(t)ηi(t′)⟩ = δ(t − t′). The mean µα,γ and variance (σα,γ)2 of the input depend on the network
architecture. For the clustered networks studied here, we have

µα,γ =
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and

(σα,γ)2 =
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where νβ,λ is the firing rate of population (β,λ) with β ∈ {E, I}, λ ∈ {1, ..., p+1}; all other parameters in Eqs. 14-15
are defined in Sec. IV B. For each population, µ and σ contain recurrent contributions from the same population
and from the other populations in the network, as well as an external contribution from the background input. The
system given by Eqs. 12, along with the threshold and reset conditions for the membrane potential, can be analyzed
using the Fokker-Planck framework [94]. When τs << ταm, the steady-state firing rate of neurons in population (α, γ)
satisfies the self-consistent relationship

να,γ = Φα,γ [µα,γ(ν),σα,γ(ν)]. (16)

In Eq. 16, ν = [νE,1, ..., νE,p+1, νI,1, ..., νI,p+1] is the vector of firing rates of each population and Φα,γ is the transfer
function for population (α, γ), given by

Φα,γ =

[
τr + ταm

√
π

∫ qα,γ
t

qα,γ
r

ex
2

erfc(−x)dx

]−1

(17)

where

qα,γr =
V α
r − ταmµα,γ

√
ταmσα,γ

+ a
√
τs/ταm (18)

qα,γt =
V α
t − ταmµα,γ

√
ταmσα,γ

+ a
√
τs/ταm (19)
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and with a = −ζ(1/2)/
√
2 [96].

To find allowed states of the network, we numerically solved the set of 2(p+1) self-consistent equations defined by
Eq. 16 in conjunction with Eq. 14 and 15. Importantly, multiple solutions – corresponding to different numbers of
active and inactive clusters – can exist for the same set of parameters. In such cases, the solution obtained will depend
on the initial guess for firing rate vector. To systematically deal with this fact, we looked for solutions with nA active
clusters and p− nA inactive clusters by setting the initial rates for the first nA E and first nA I populations to νEhigh
and νIhigh, respectively, and the initial rates for the remaining E and I populations to νElow and νIlow, respectively. By
choosing νEhigh > νElow and νIhigh > νIlow we biased the numerical solver to search for solutions with nA active clusters;
the solution space was then be mapped by varying nA ∈ {0, ..., p}.

We denote a self-consistent solution with nA active clusters as νnA . The solution in which all clusters have the same
firing rate (i.e., nA = 0) is referred to as the “uniform state” and solutions with nA ≥ 1 active clusters are referred to
as “cluster states”. In the cluster states, the nA active clusters of type α ∈ {E, I} have steady-state rate ναnA,↑ and
the p − nA inactive clusters of type α have rate ναnA,↓, where ναnA,↑ > ναnA,↓. Depending on the network parameters,
cluster states for a particular nA may or may not exist.

2. In the presence of quenched variability

When ∆E
H ̸= 0, the mean background input to excitatory neurons varies across the population due to the quenched

randomness in the external inputs (Sec. IV B 4). To perform a mean-field analysis under these conditions, the formalism
can be adapted to account for the distribution of firing rates induced within each population as a result of the
quenched variability [97–99]. The analysis proceeds by assuming that the spatial distribution of mean inputs to cells
in population (α, γ) is Gaussian, with population average µα,γ and population standard deviation ∆α,γ for α ∈ {E, I},
γ ∈ {1, ..., p+ 1}. The population average µα,γ is given by

µα,γ =
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(20)

where νβ,λ is the spatially-averaged rate across cells in population (β,λ) with β ∈ {E, I}, λ ∈ {1, ..., p + 1}. The
mean input to the ith cell in population (α, γ) can then be written as

µα,γ
i = µα,γ +∆α,γzi (21)

where zi ∼ N (0, 1). The spatial variance ∆α,γ of the mean inputs across population (α, γ) has contributions from
the quenched randomness in the external input and from the induced spatial variability of the firing rates within each
recurrent population. Taking into account these two sources, we have
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where (sβ,λ)2 is the spatial variance of the firing rates in population (β,λ) and where the last term is the contribution
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from the external inputs. As is typical, spatial heterogeneity of the input variance σα,γ is neglected [97, 98]. In this
way, σα,γ is the same for all neurons in population (α, γ) and given by

(σα,γ)2 =
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The mean firing rates are parameterized by the standard Gaussian random variable z, and are determined self-
consistently via

να,γ(z) = Φα,γ [µα,γ(z,ν, s2),σα,γ(ν, s2)], (24)

where Φα,γ is defined by Eqs. 17-19, and where ν = [νE,1, ..., νE,p+1, νI,1, ..., νI,p+1] is the vector of average firing rates
and s2 = [(sE,1)2, ..., (sE,p+1)2, (sI,1)2, ..., (sI,p+1)2] is the vector of firing rate variances. Finally, the across-population
mean να,γ and variance (sα,γ)2 of the firing rates in population (α, γ) are given by

να,γ =
1√
2π

∫
dze−z2/2να,γ(z) (25)

and

(sα,γ)2 =
1√
2π

∫
dze−z2/2[να,γ(z)]2 − (να,γ)2, (26)

which must be solved for self-consistently in conjunction with Eq. 24. Akin to the analysis in the absence of quenched
variability (Sec. IV L 1), we searched for solutions with a certain number of active clusters by varying the initial rates
for the numerical solver. We denote a self-consistent solution with nA active clusters as the pair of vectors (νnA , s

2
nA

).
As before, the uniform state corresponds to the case nA = 0, and is characterized by all clusters having the same
population average rate. In cluster states (which have nA ≥ 1 active clusters), the active and inactive cluster rates
are denoted by ναnA,↑ and ναnA,↓, respectively, where ναnA,↑ > ναnA,↓ and α ∈ {E, I}.

3. Selecting the E-to-E intracluster connection strength for the mean-field analyses

To study the effect of the ∆E
H arousal modulation in the mean-field theory, we first examined the effect of the

E-to-E intracluster coupling strength (JEE
+ ), which controls the dynamical regime of the network [34]. We considered

the standard scenario ∆E
H = 0, and varied JEE

+ ∈ [12, 19.5] using steps of size ∆JEE
+ = 0.025. At each JEE

+ , we
searched for self-consistent solutions νnA with nA = [0, ..., 5] active clusters. Whether or not a cluster solution exists
for a particular nA ≥ 1 depends on the value of JEE

+ (Fig. S11A).
To compare to the mean-field theory, we ran an additional set of network simulations in which JEE

+ was varied in the
range [12, 19.5] in steps of size ∆JEE

+ = 0.075. For these simulations, no arousal modulations or sensory stimuli were
applied, and we ran 20 trials per each of 5 network realizations; all other parameters were as described in Table S1 and
Sec. IV B 1. For each simulated trial at a given JEE

+ , we computed (i) the active cluster rate νEnA,↑ conditioned on a
given number of active clusters nA (Sec. IV H 2), (ii) the probability P (nA) of finding nA active clusters (Sec. IV H 2),
and (iii) the population average firing rate of all E neurons. Analyses were based on 3.3 seconds of simulated activity
per trial, and all quantities were averaged across trials and network realizations. Results are shown in Fig. S11B; note
that the active cluster rate νEnA,↑ is only plotted for values of nA satisfying P (nA) ≥ 0.1.

We observed that cluster states emerged at lower values of JEE
+ in the simulations compared to the mean-field
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(Fig. S11A,B). This is potentially due to the finite-size of the simulated networks and the inexact incorporation of
synaptic dynamics in the mean-field. Although the mean-field does not quantitatively capture the behavior of the
simulations, it can still provide insight into the effects of ∆E

H . In order to qualitatively compare the theory and
simulations as a function of ∆E

H , we considered a fixed intracluster coupling for the simulations (JEE
+,sim), and then

ran mean-field calculations at a larger intracluster coupling JEE
+,mft that gave the best match to the simulations run

at JEE
+,sim in the absence of the arousal modulation (∆E

H = 0). Specifically, we fixed JEE
+,sim = 15.75 (default value

used throughout the main text), and computed the active cluster rate νEn∗
A,↑,sim[J

EE
+ = 15.75] conditioned on the

most likely number of active clusters n∗
A = 3. In the mean-field, we then determined the value of JEE

+ for which the
active cluster rate νEn∗

A,↑,mft[J
EE
+ ] most closely matched the value νEn∗

A,↑,sim[J
EE
+ = 15.75] from the simulations. This

procedure yielded a mean-field intracluster coupling of JEE
+,mft = 16.725 (Fig. S11A), which was then used for the

mean-field calculations performed as a function of ∆E
H in the main text (Fig. 5A).

4. Mean-field analysis of clustered network dynamics as a function of the input heterogeneity

The mean-field analysis provides the steady-state firing rates of active and inactive clusters, conditioned on a
particular number nA of active clusters. Together, these rates summarize the collective activity patterns of the
network. To elucidate how the ∆E

H arousal modulation affects the dynamics of the clustered networks, we fixed the
E-to-E intracluster coupling JEE

+ according to the procedure in Sec. IV L 3; all other network parameters were set
to the values given in Table. S1. For a particular choice of nA, we then solved for the mean-field rates νnA,↑ and
νnA,↓ (Sec. IV L 2) as a function of ∆E

H ; this process was then repeated for different numbers of active clusters nA.
In general, whether or not a cluster state solution is found for a particular nA ≥ 1 depended on ∆E

H ; for some values
of ∆E

H , only the uniform state was found (Fig. S12A).
In the main text, we examined excitatory mean-field rates νEnA,↑ and νEnA,↓ as function of the ∆E

H arousal modulation.
(Sec. II D). In Fig. 5A, the rates are shown for the case of nA = 3 active clusters, which was the most frequently
observed state in the simulations (Sec. IV H 2; Fig. S12C). If the cluster state solution was not found at a given value
of ∆E

H , then the rate corresponding to the uniform solution was plotted. In a supplementary analysis, we also show the
rates for different values of nA separately as a function of ∆E

H (Fig. S12). Note that because the mean-field analysis
used a different intracluster coupling than the simulations (JEE

+,mft ̸= JEE
+,sim; Sec. IV L 4), the comparison between the

mean-field and simulations in Fig. 5 is only meant to be qualitative.

M. Effective mean-field theory of reduced 2-cluster networks

The mean-field theory presented in the previous section yields the steady-state cluster firing rates, but it cannot
make predictions about dynamical transitions between the metastable states. To further understand the switching
behavior of the clustered networks (Fig. 5D,E), we adapted the effective mean-field theory developed by [56] and
utilized in [36, 48]. For these calculations, we analyzed a reduced version of the full LIF clustered networks composed
of two excitatory clusters E1 and E2, one background (unclustered) excitatory population Eb, and one background
inhibitory population Ib; this 2-cluster network was constructed as described in Sec. IV B 2, with the exception that
we did not depress inter-cluster weights (see Table S2 for reduced network parameters). With the chosen parameters,
the standard mean-field theory in the absence of the ∆E

H arousal modulation (Sec. IV L 1) predicts the presence of
a uniform fixed point and two configurations in which one cluster is active and the other inactive (Fig. S13B). The
effective MFT enables insight into dynamical transitions between the two cluster states via a dimensionality reduction
process that results in a description of the cluster states as wells in an effective potential energy landscape.

Following Mascaro and Amit [56], the analysis proceeds by splitting the network’s populations into two groups: (1)
a set of “in-focus” populations whose dynamical behaviors are of interest, and (2) a set of “ambient” populations.
Here, the two clusters E1 and E2 are taken as the in-focus populations, and their rates νF are treated as parameters;
Eb and Ib are taken as the ambient populations. For some frozen combination of the in-focus rates νF

in = (νE,1
in , νE,2

in ),
the rates of the ambient populations νA = (νE,b, νI,b) are allowed to adapt, and are computed self-consistently
(Sec. IV L 1) by solving the coupled system of equations

νE,b = ΦE,b
[
µE,b(νF

in,ν
A),σE,b(νF

in,ν
A)

]
(27)

νI,b = ΦI,b
[
µI,b(νF

in,ν
A),σI,b(νF

in,ν
A)

]
. (28)
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Feedback from the ambient populations then induces new output rates νF
out = (νE,1

out , ν
E,2
out ) for the in-focus populations,

which are given by

νE,1
out = ΦE,1

[
µE,1(νF

in,ν
A),σE,1(νF

in,ν
A)

]
= ΦE,1

eff

[
νF
in

]
(29)

νE,2
out = ΦE,2

[
µE,2(νF

in,ν
A),σE,2(νF

in,ν
A)

]
= ΦE,2

eff

[
νF
in

]
(30)

In Eqs. 27-30, the µ’s, σ’s, and Φ’s are computed similarly to Eqs. 14, 15, and 17, but adjusted for the 2-cluster
system.

The induced rates νF
out are in general different from the initial rates νF

in. By varying νF
in and computing the difference

νF
out − νF

in at each point, we obtain a flow map in the (νE,1
in , νE,2

in ) plane (see Fig. S13C). This flow map captures the
response of the clusters to a particular set of quenched input rates (νE,1

in , νE,2
in ), and contains the effect of feedback

from the ambient populations. In this way, the map reveals the system’s fixed points and the flow of the cluster rates
νE,1 and νE,2 away from the stationary points. Examination of this reduced 2D description indicates that the two
cluster states are attractors of the system, and are linked by an unstable fixed point corresponding to the uniform
state (νE,1 = νE,2; Fig. S13D).

To perform the effective MFT in the presence of the arousal modulation ∆E
H , we neglected the influence of the

firing rate variance s2 (i.e., we set s2 = 0 for all populations in Eq. 22; Sec. IV L 2) [36, 48]. With this simplification,
Eq. 24 becomes

να,γ(z) = Φα,γ [µα,γ(z,ν),σα,γ(ν)], (31)

where the µα,γ , σα,γ , and Φα,γ are computed similarly to Eqs. 21, 23, and 17, but adjusted for the 2-cluster system.
Each population in the network is then described only by its population average rate να,γ (Eq. 25); note that for
the 2-cluster network, α ∈ {E, I} and γ ∈ {1, 2, b}. From this point, the 2D flow map in the νE,1 − νE,2 plane can
be computed using the dimensionality reduction procedure described above. We found that neglecting the spatial
variance of the rates had only a small effect on the self-consistent solution for the population average rates ν.

To understand how the arousal modulation impacts the cluster dynamics, we performed the effective MFT for
several values of ∆E

H (see Table S2). In each case, we obtained a compact representation of the system by numerically
integrating the 2D flow-field along a trajectory connecting the two cluster states via the unstable fixed point (see
Fig. S13C). This process results in a 1D effective potential with two wells – corresponding to the two cluster states –
separated by a barrier whose maxima corresponds to the uniform state (Figs. 5D). The height h of this barrier controls
the rate of stochastic transitions between the two cluster states [33, 36, 48, 57]. Computing the barrier height as a
function of ∆E

H thus provides insight into the effects of ∆E
H on the cluster dynamics, with lower barriers indicating

faster switching and shorter-lived cluster activation periods (Fig. 5E).

N. Statistical analysis

Boxplots display the median and the first and third quartiles of the data, with the whiskers extending from the
quartiles to ± 1.5 of the interquartile range. All statistical tests were non-parametric (Wilcoxon signed-rank test for
paired data and Mann-Whitney U test for unpaired data).
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V. TABLES

Parameter Description Value

NE number of E cells 1600
NI number of I cells 400
τEm membrane time constant of E cells 20 ms
τ Im membrane time constant of I cells 20 ms
τEsyn E synaptic time constant 5 ms
τ Isyn I synaptic time constant 5 ms
τEref refractory period of E cells 5 ms
τ Iref refractory period of I cells 5 ms
V E
t threshold potential of E cells 1.5 mV

V I
t threshold potential of I cells 0.75 mV

V I
r reset potential of I cells 0 mV

V I
r reset potential of I cells 0 mV

pEE E-to-E connectivity fraction 0.2
pIE E-to-I connectivity fraction 0.5
pEI E-to-I connectivity fraction 0.5
pII E-to-I connectivity fraction 0.5
JEE uniform E-to-E synaptic strength 0.63/

√
N mV

JIE uniform E-to-I synaptic strength 0.63/
√
N mV

JEI uniform E-to-I synaptic strength 1.9/
√
N mV

JII uniform E-to-I synaptic strength 3.8/
√
N mV

p number of E and I clusters 18
fE fraction of E cells/cluster 0.05
fI fraction of I cells/cluster 0.05
J+
EE within-cluster E-to-E synaptic strength 15.75× JEE mV

J+
IE within-cluster E-to-I synaptic strength 5.45× JIE mV

J+
EI within-cluster E-to-I synaptic strength 6.25× JEI mV

J+
II within-cluster E-to-I synaptic strength 5.0× JII mV

CEE
ext number of external synapses to E cells 320

CIE
ext number of external synapses to I cells 320

JEE
ext external E-to-E synaptic strength 2.3/

√
N mV

JIE
ext external E-to-I synaptic strength 2.3/

√
N mV

νEo baseline external rate to E cells 7 spks/s
νIo baseline external rate to I cells 7 spks/s
AE

stim relative stimulus amplitude for E cells 0.05
AI

stim relative stimulus amplitude for I cells 0
tstim stimulus onset time 1 s
τr stimulus rise time 75 ms
τd stimulus decay time 100 ms
∆E

M strength of mean input modulation for E cells variable
∆I

M strength of mean input modulation for I cells variable
∆E

H strength of input heterogeneity across E cells variable
∆I

H strength of input heterogeneity across I cells 0

TABLE S1. Parameter values for the spiking circuit model.
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Parameter Description Value

NE number of E cells 640
NI number of I cells 160
τEm membrane time constant of E cells 20 ms
τ Im membrane time constant of I cells 20 ms
τ syn synaptic time constant 5 ms
τEref refractory period of E cells 5 ms
τ Iref refractory period of I cells 5 ms
V E
t threshold potential of E cells 4.86 mV

V I
t threshold potential of I cells 5.98 mV

V I
r reset potential of I cells 0 mV

V I
r reset potential of I cells 0 mV

pEE E-to-E connectivity fraction 0.2
pIE E-to-I connectivity fraction 0.5
pEI E-to-I connectivity fraction 0.5
pII E-to-I connectivity fraction 0.5
JEE uniform E-to-E synaptic strength 0.8/

√
N mV

JIE uniform E-to-I synaptic strength 2.5/
√
N mV

JEI uniform E-to-I synaptic strength 10.6/
√
N mV

JII uniform E-to-I synaptic strength 9.7/
√
N mV

p number of E and I clusters 2
fE fraction of E cells/cluster 0.125
fI fraction of I cells/cluster 0
J+
EE within-cluster E-to-E synaptic strength 20× JEE mV

J+
IE within-cluster E-to-I synaptic strength 1× JIE mV

J+
EI within-cluster E-to-I synaptic strength 1× JEI mV

J+
II within-cluster E-to-I synaptic strength 1× JII mV

CEE
ext number of external synapses to E cells 128

CIE
ext number of external synapses to I cells 128

JEE
ext external E-to-E synaptic strength 12.9/

√
N mV

JIE
ext external E-to-I synaptic strength 14.5/

√
N mV

νEo baseline external rate to E cells 7 spks/s
νIo baseline external rate to I cells 7 spks/s
∆E

H strength of input heterogeneity across E cells [0, 0.275]
∆I

H strength of input heterogeneity across I cells 0

TABLE S2. Parameter values for the reduced 2-cluster circuit model.
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VI. SUPPLEMENTARY FIGURES
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FIG. S1. Pupil diameter trace for each session. Light green areas indicate time segments during which no stimuli were presented
(“spontaneous periods”) and white areas indicate segments during which pure tones were presented (“evoked periods”).
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FIG. S2. Histogram of the pre-stimulus pupil diameter (average across 100 ms period before stimulus onset) in each session.
Red lines indicate the deciles of the distribution.
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FIG. S3. Overall decoding accuracy vs. time relative to stimulus onset for each experimental session. In each panel, the
vertical bar denotes the time of stimulus onset and the dark gray curve shows the average cross-validated time-course of the
decoding performance; all trials (regardless of pupil diameter) were used to determine the overall decoding accuracy. The
dashed gray line shows the mean of the shuffled accuracy distribution, and the light gray area denotes the 5th to 95th percentile
range of the shuffled distribution. See Sec. IV C for methodological details.
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FIG. S4. Peak decoding accuracy vs. pupil diameter for all experimental sessions. In most recordings that achieved a
broad range of arousal states, the decoding performance follows an inverted-U relationship with the extent of pupil dilation.
For the remainder of sessions, in which only low-to-intermediate or intermediate-to-high diameters were thoroughly sampled,
the corresponding upward or downward sloping portions of the curve are apparent (e.g., LA12_session3. See Sec. IV C for
methodological details.

42



FIG. S5. Pupil diameter distributions corresponding to the best and worst decoding performance (A) or population-averaged
D′

sc (B). (A) For each session, we determined the pupil decile bin for which the peak decoding accuracy was largest (best
decile) or smallest (worst decile). The histogram shows the distribution of the pupil diameter at the middle of the best decile
(teal) and worst decile (gray) across all experimental sessions. (B) For each session, we determined the pupil decile partition for
which the population-averaged D′

sc was largest (best decile) or smallest (worst decile). The histogram shows the distribution
of the pupil diameter at the middle of the best decile (teal) and worst decile (gray) across all experimental sessions.

FIG. S6. Population decoding of tone frequency after excluding locomotion trials. (A) Peak decoding accuracy (z-scored)
vs. pupil diameter when locomotion trials are excluded. Within each session, peak accuracy values were z-scored across pupil
decile bins. The normalized data was then pooled across all sessions (n = 15), and binned by pupil diameter. For each bin, we
show individual data points (gray), the mean (red), and corresponding boxplot. The session-averaged decoding performance
still follows an inverted-U with pupil diameter, even when locomotion trials are discarded. However, without locomotion trials,
large pupil diameters are not as well-sampled and the inverted-U trend is less distinct compared to the case when all data is
used (Fig. 2D). See Sec. IV C for methodological details. (B) The average pupil diameter of trials in the last decile bin of a
session without locomotion trials vs. when all data is used. The average pupil diameter is noticeably smaller when locomotion
trials are excluded.
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FIG. S7. Population-averaged D′
sc vs. pupil diameter for all experimental sessions. In most recordings that achieved a

broad range of arousal states, the population-averaged D′
sc follows an inverted-U relationship with the extent of pupil dilation.

For the remainder of sessions, in which only low-to-intermediate or intermediate-to-high diameters were thoroughly sampled,
the corresponding upward or downward sloping portions of the curve are apparent (e.g., LA12_session3. See Sec. IV G for
methodological details.

FIG. S8. Fraction of units in each experimental session whose spontaneous firing rate increases (green) or decreases (purple)
as a function of pupil diameter. See Sec. IV E for methodological details.
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FIG. S9. Fraction of tone-responsive cells that respond to 1, 2, 3, 4, or 5 tones. For a given number of tones, each gray dot
corresponds to one experimental session, and the red triangle indicates the mean across sessions. See Sec. IV D for details on
determining tone-responsiveness.

FIG. S10. Stimulus-induced quenching of variability in pupil-aggregated data. To test for overall reductions of neural
variability during stimulus presentation, we computed spontaneous and evoked Fano factors using data combined across all
pupil diameters in a session (see Sec. IV K 2 for methodological details). (A) The pupil-aggregated evoked Fano factor vs.
the pupil-aggregated spontaneous Fano factor of individual units. The scatter plot contains cells pooled across all sessions
that sampled a broad pupil diameter range (i.e., the same sessions analyzed in the pupil-dependent analysis in Fig. 7). There
is a significant reduction in the Fano factor in the evoked condition (Wilcoxon signed-rank test, p < 0.001, n = 503 units),
indicating that stimulus presentation leads to a general quenching of neural variability. (B) The cell-averaged spontaneous
and evoked Fano factor (pupil-aggregated) in each session. There is a significant reduction in the Fano factor in the evoked
condition (Wilcoxon signed-rank test, p = 0.016, n = 7 sessions).
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FIG. S11. Strength of E-to-E intracluster coupling controls the onset of cluster states. (A) Effect of the E-to-E intracluster
coupling strength J+

EE on the mean-field solutions of the clustered networks in the absence of the arousal modulation (∆E
H = 0).

The gray curve shows the rate of the excitatory populations for the solution in which no clusters are active (“uniform” state),
and the colored curves show the firing rates of active excitatory clusters for solutions in which nA ∈ {1, ..., 5} clusters are
active (“cluster” states). When J+

EE is below a critical value, the mean-field theory has a single, uniform solution (gray), in
which all clusters have the same moderate firing rate. As J+

EE is increased above a critical value, additional solutions emerge.
These cluster states are characterized by nA ≥ 1 active clusters with a rate νnA,↑. Note that the stability of the solutions
is not indicated. (B) Effect of the E-to-E intracluster coupling strength J+

EE in the simulations. The gray curve shows the
average firing rate of all excitatory neurons and the colored curves show the firing rates of active excitatory clusters conditioned
on a particular number nA of active clusters; cluster rates are only plotted for values of nA that occurred with probability
P (nA) ≥ 0.1 at a given J+

EE . For most values of J+
EE , only three clusters are simultaneously active, and the active cluster rate

increases significantly with J+
EE . Though there are differences between the theory and simulations (specifically, cluster states

emerge at lower J+
EE in the simulations), the same qualitative behavior is observed in both cases. In panel A, the black line

corresponds to the value of the E-to-E intracluster coupling strength J+
EE,mft at which the mean-field theory is performed as

a function of the ∆E
H arousal modulation. In panel B, the black line corresponds to the value of the E-to-E coupling strength

J+
EE,sim that is used in the simulations when studying the impact of ∆E

H . Note that the mean-field calculations use a larger J+
EE

than the simulations in order to start with a better match between the mean-field and simulated firing rates when ∆E
H = 0.

See Sec. IV L 3 for details.
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FIG. S12. (A) Firing rate of active (solid lines) and inactive (dashed lines) excitatory clusters computed from the mean-field
theory as a function of the ∆E

H arousal modulation. Different colors show the cluster rates for solutions with a particular
number nA of active clusters (see Secs. IV L 2 and IV L 4). As ∆E

H increases, the distinction between active and inactive
cluster rates is decreases; at large values of ∆E

H , only the uniform state is present. For this analysis, the mean-field calculation
was performed with a larger E-to-E intracluster coupling strength than the simulations (J+

EE,mft > J+
EE,sim); the mean-

field intracluster coupling was chosen such that the mean-field and simulated rates approximately matched in the absence of
the arousal modulation (Sec. IV L 3). Because the mean-field and simulations are performed at different values of J+

EE , the
comparison between the two is only qualitative. (B) Firing rate of active (solid lines) and inactive (dashed lines) excitatory
clusters as a function of the ∆E

H arousal modulation in the simulations. Different colors show the cluster rates conditioned on a
particular number nA of active clusters (see Sec. IV H 2). The behavior of the simulations qualitatively matches the mean-field
theory, but there is not exact agreement. Lines and shaded areas correspond to the mean ± 1 S.D. over ten network realizations.
(C) Probability of observing a certain number of active clusters nA for different values of the ∆E

H arousal modulation in the
simulations (see Sec. IV H 2). Each curve shows the mean over ten network realizations.
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FIG. S13. Details on the mean-field analysis of the 2-cluster circuit. (A) Schematic of the 2-cluster network, which contains two
excitatory clusters and one background excitatory and inhibitory population (Sec. IV M). (B) Effect of the E-to-E intracluster
coupling J+

EE on the mean-field solutions of the reduced 2-cluster network (Fig. 5C; Sec. IV M) in the absence of the arousal
modulation (∆E

H = 0). When J+
EE is below a critical value, the only solution is one in which the two clusters have the same

moderate firing rate (“uniform state”). As J+
EE is increased above a critical value, an additional solution emerges in which one

cluster is active and the other is inactive (“cluster states”), with rates given by the green and purple curves. Note that the
stability of the solutions is not indicated. All analyses of the 2-cluster networks in the main text (Fig. 5D-E) were performed at
a fixed E-to-E intracluster coupling J+

EE = 20 (black vertical line). (C) We studied the dynamics of the 2-cluster network using
the effective mean-field theory developed in [56]. To begin, we numerically constructed the rate flow map of the two excitatory
clusters, which indicates how the two cluster firing rates will evolve from some initial configuration νE

in. To accomplish this,
we tiled the νE,1

in -νE,2
in plane with a grid, and at each grid location, we computed the induced output rates νE,1

out and νE,2
in using

the effective theory (Sec. IV M). Here, the rate flow map is visualized by plotting the vector F = νE
out − νE

in at each grid point.
From the rate flow diagram, one can identify the three fixed points from the full mean-field theory in (B), corresponding to the
uniform solution (SU ) and the cluster states in which either the first (SC,1) or second (SC,2) cluster is active. Moreover, the
flow map indicates that the uniform solution is unstable, while the two cluster states are attractors. (D) To obtain intuition
about transitions between the two attractors, we considered a path Γ (gray dotted line in (C) connecting the two cluster states
SC,1 and SC,2 through the unstable fixed point SU . For each point Pi on the path, we computed the line integral −

∫
ΓPi

F ·dνE
in,

where ΓPi denotes the segment of the path from P0 to Pi. This procedure yields a 1-dimensional effective potential U , which
summarizes the cluster dynamics. Specifically, the potential wells correspond to the two attractors SC,1 and SC,2, and these
configurations are separated by a barrier at the unstable fixed point SU whose height controls the rate of switching between
the two cluster states.
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FIG. S14. Effects of the input heterogeneity (∆E
H) and input mean (∆E

M ) arousal modulations on spontaneous firing rates in
the uniform networks. (A) Fraction of units whose spontaneous firing rate increases (green) or decreases (purple) with ∆E

H in
the uniform networks. (B) Fraction of units whose spontaneous firing rate increases (green) or decreases (purple) with ∆E

M

in the uniform networks. Bar heights and error bars correspond to the mean ± the S.D. across 5 network realizations. See
Sec. IV F for methodological details.

FIG. S15. (A) Peak accuracy vs. the ∆E
H arousal modulation in the uniform circuit model. (B) Peak accuracy vs. the

∆E
H arousal modulation in the clustered circuit model. (C) Population-averaged D′

sc vs. the ∆E
H arousal modulation in the

clustered circuit model. In all panels, solid lines and shaded areas indicate the mean ± 1 S.D. over 10 network realizations.
See Secs. IV C and IV G for methodological details on the decoding analysis and discrminability index D′

sc, respectively.
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FIG. S16. (A) The peak decoding accuracy exhibits an inverted-U relationship with the input mean arousal modulation (∆E
M )

in the clustered network model. (B) Example raster plots showing spontaneous network activity at several values of ∆E
M . As

∆E
M increases, more and more clusters become simultaneously active; eventually, the entire network is in a highly-active state.
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FIG. S17. Additional measures of evoked activity in the clustered model. (A) Fraction of active clusters that are part
of the stimulus-targeted group (f↑∈T) in the absence of the ∆E

H arousal modulation. During the pre-stimulus window, the
likelihood that an active cluster is part of the targeted group is at chance-level (f spont

↑∈T = 50%). In contrast, during the peak
decoding window, active clusters are significantly more likely to be the stimulated clusters (fevoked

↑∈T > 50%). (B) Fraction of
active clusters that are part of the stimulus-targeted group during the peak decoding window (f evoked

↑∈T ) as a function of the ∆E
H

arousal modulation. For all ∆E
H , f evoked

↑∈T is well above chance levels, indicating that stimuli consistently bias the activation of
targeted clusters. Moreover, f evoked

↑∈T is maximized at intermediate ∆E
H ; in this regime, the transient activation of a cluster is

most-strongly related to whether or not that cluster was stimulated. (C) The fraction of time that targeted clusters are active
during the peak decoding window relative to nontargeted ones (∆τ̃N↑,T↑) as a function of the ∆E

H arousal modulation. As
∆E

H increases, stimulated clusters spend more time activated than non-stimulated ones. (D) The fraction of all clusters that
remain activated for at least 25 ms during the pre-stimulus window (f spont

↑ , light gray) or the peak decoding window (f evoked
↑ ,

black) as a function of the ∆E
H arousal modulation. Both quantities increase with ∆E

H . (E) The fraction of targeted (f evoked
T↑ )

and non-targeted (f evoked
N↑ ) clusters that remain activated for at least 25 ms during the peak decoding window as a function

of the ∆E
H arousal modulation. At moderate ∆E

H , the increase in f evoked
T↑ is driven both by the overall increase in the number

of clusters that become activated within a fixed time window (panel C) and the increase in the likelihood that active clusters
are part of the stimulated subset (panel B). The further increase in f evoked

T↑ at large ∆E
H is driven by the former of those two

effects. See Sec. IV I for details on how each quantity was computed.
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