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ARTICLE INFO ABSTRACT

Keywords: Terrestrial locomotion is a complex phenomenon that is often linked to the survival of an individual and of
SLIP dynamics an animal species. Mathematical models seek to express in quantitative terms how animals move, but this
Hybrid dynamical systems is challenging because the ways in which the nervous and musculoskeletal systems interact to produce body

Poincare’ map

Stability of periodic solutions
Human running

Gait stability

movement is not completely understood. Models with many variables tend to lack biological interpretability
and describe the motion of an animal with too many independent degrees of freedom. Instead, reductionist
models aim to describe the essential features of a gait with the smallest number of variables, often concentrating
on the center of mass dynamics. In particular, spring-mass models have been successful in extracting and
describing important characteristics of running. In this paper, we consider the spring loaded inverted pendulum
model under the regime of constant angular velocity, small compression, and small angle swept during stance.
We provide conditions for the asymptotic stability of periodic trajectories for the full range of parameters.
The hypothesis of linear angular dynamics during stance is successfully tested on publicly available human
data of individuals running on a treadmill at different velocities. Our analysis highlights a novel bifurcation
phenomenon for varying Froude number: there are periodic trajectories of the spring loaded inverted pendulum
model that are stable only in a restricted range of Froude numbers, while they become unstable for smaller or
larger Froude numbers.

1. Introduction

Locomotion shapes form and function through the environment (Alexander, 1981, 1989, 2003a; Patek and Biewener, 2018) and performing
movements efficiently is key for survival of terrestrial and other species (Foster et al., 2015; Dickinson et al., 2000; Garland and Losos, 1994).
The large diversity of morphologies and locomotor gaits interests researchers who try to understand how animals move through their habitat and
why different species hop, run, or walk or why they move bipedally, quadrupedally, or multipedally (Alexander, 2003a; Gordon et al., 2017) on
horizontal (Geyer et al., 2005; Seyfarth et al., 2002) and other surfaces, such as declines (Birn-Jeffery and Higham, 2014), inclines (Birn-Jeffery
and Higham, 2014; Selvitella and Foster, 2022b; Foster and Selvitella, 2022b,a; Selvitella and Foster, 2022a), steps (Birn-Jeffery et al., 2014), and
uneven ground (Miiller et al., 2016). The complexity of locomotion is such that the performance of natural species is still superior to those of robots
and engineers have not yet been able to replicate the efficiency of animal locomotion in artificial creatures (Raibert, 1986; Raibert et al., 2008).
Although some progress has been made (Full and Koditschek, 1999; Ghigliazza and Holmes, 2005; Geyer et al., 2006b), it is very complicated
to fully describe, through a mathematical model, the interaction and cooperation between the nervous and the musculoskeletal systems, whose
fundamental principles are still largely unknown (Holmes et al., 2006; Gordon et al., 2017; Alexander, 2003b). Conceptual (Margaria, 1976; Cavagna
et al., 1977; Coleman et al., 1997), physical (McGeer, 1990b,a; lida et al., 2008; Seok et al., 2013), and mathematical (Blickhan, 1989; McMahon
and Cheng, 1990; Ghigliazza et al., 2003) descriptions have been employed to shed light on the nature and the diversity of locomotor behavior of
humans and of other animals.
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Reductionist models are mathematical models that take the form of dynamical systems and aim to describe a gait through the least possible
number of variables (Usherwood, 2010, 2016, 2020; Croft et al., 2017). Such models have been able to explain the main features of terrestrial
legged locomotion (Blickhan and Full, 1993; Holmes et al., 2006; Geyer et al., 2006a; Alexander, 2003b) using interpretable low dimensional
systems of nonlinear differential equations, mainly concentrating on the dynamics of the center of mass (CoM) (Dickinson et al., 2000; Alexander,
2003b; Geyer, 2005). Among the most successful systems are the inverted pendulum and spring—-mass models such as the spring loaded inverted
pendulum (SLIP). The SLIP model has been successful in describing the compliant dynamics of hopping (Farley et al., 1991; Seyfarth et al., 2001;
Gordon et al., 2017) in one dimension (vertical) and of running in two dimensions (sagittal plane) (Blickhan, 1989; McMahon and Cheng, 1990;
Gordon et al., 2017; Farley et al., 1993). Historically, walking was modeled using an inverted pendulum (Cavagna and Margaria, 1966; Cavagna
et al., 1963, 1977; Alexander, 1976; Mochon and McMahon, 1980; Srinivasan and Ruina, 2005) (see also (Gordon et al., 2017) for an extended
list of references), while, more recently, an extension of the SLIP model that includes the possibility of double support during stance has been able
to reproduce more accurately the ground reaction forces acting on the CoM during the contact phase (Geyer et al., 2006a). Several robots capable
of running successfully are controlled using SLIP-based models (Raibert, 1986; Saranli and Koditschek, 2003; Westervelt et al., 2003; Poulakakis
and Grizzle, 2009). In Full and Koditschek (1999), authors suggest that the SLIP models the most essential features of sagittal plane dynamics
of the CoM of many animal species, including cockroaches, dogs, kangaroos, birds, and humans. Furthermore, Blickhan and Full (1993) showed
that the SLIP model can accurately predict the energetics and dynamics of trotting, running, and hopping in a multitude of animal species (see
also Dickinson et al., 2000).

Even if conceptually simple, the SLIP model can describe a rich dynamics (Gordon et al., 2017; Patek and Biewener, 2018; Holmes et al., 2006).
The SLIP dynamical system that describes running is hybrid (Goebel et al., 2012; van der Schaft and Schumacher, 2000) in the sense that it involves
two phases, a stance phase and a flight phase for each stride, and a combination of continuous and discrete components. The SLIP model is also
piecewise holonomic (Geyer et al., 2005; Ruina, 1998; Holmes et al., 2006) in the sense that it is smooth and holonomic everywhere except at the
instants of transition (Ruina, 1998; Holmes et al., 2006; Geyer et al., 2005; Coleman et al., 1997; Coleman and Holmes, 1999). Two different vector
fields describe the two phases and they switch at the times of touch-down and take-off. During stance, a leg is in contact with the ground and
the CoM is subject to the gravitational force F, = mg (g = 9.81 m/s? is the gravitational constant, m the mass of the individual concentrated in
the CoM), but also to the ground reaction forces (which are transmitted directly to the CoM from the foot) and the elastic force with constant
linear stiffness k < +oo of the massless leg spring of length /,. During stance, the compliant, massless leg rotates around the foot. The stance phase
begins and ends with a straight leg (no leg compression) following the flight phase. During the flight phase, the motion is ballistic and only the
gravitational force acts on the CoM, until the foot hits the ground with an angle of attack «, which is constant in each stride. The dynamics is
constrained by other conditions: the apex height, which is reached during flight, must be higher than the touch-down height, and the leg cannot
crash into the ground. See Fig. 1 and Table 1 for more details on the parameters of the model.

Hybrid systems describing the dynamics of the CoM during terrestrial locomotion admit asymptotically stable periodic trajectories (Seyfarth
et al., 2002; Ghigliazza et al., 2003; Ruina, 1998; Coleman et al., 1997; Coleman and Holmes, 1999). The difficulty in proving the existence of
periodic motions for these models and in investigating their stability properties is a reflection of the lack of regularity of the transition maps
between stance and flight phases and, in fact, a consequence of the hybrid nature of the dynamical systems. Note that dynamical systems that are
holonomic and conservative do not possess solutions which are asymptotically stable (Holmes et al., 2006). The fact that these SLIP conservative
systems are only piecewise holonomic is the key for the (partial) asymptotic stability of periodic orbits (Seipel and Holmes, 2005; Ruina, 1998).
Most often, the existence of periodic orbits for hybrid systems is proven by showing the existence of fixed points of Poincaré maps, such as the apex
return map, while the stability of such periodic orbits is proven through the study of the contractive properties of these Poincaré maps. Especially
in the robotics literature and control theory, this attractive feature of periodic orbits is called self-stability (Seyfarth et al., 2002; Geyer et al., 2005;
Ghigliazza et al., 2003; Geyer, 2005) because this type of stability is intrinsic to the model and does not need any continuous sensory feedback.

Hybrid models of legged locomotion very rarely admit exact solutions that can be expressed in simple forms, other than under regimes which
might lack biological significance, such as those assuming a negligible effect of gravity during stance (g = 0) (Ghigliazza et al., 2003). Perturbative
approaches which take the effect of gravity during stance into consideration have been used too (Schwind, 1998; Schwind and Koditschek, 2000;
Geyer, 2001; Yu et al., 2012), but often they lack a simple interpretation of how the parameters of the model affect important biomechanical
variables, such as the maximal leg compression or the angle swept during stance. Another approach uses approximations of the dynamics under
biologically meaningful assumptions, such as small compression or small angle swept during stance (Geyer et al., 2005; Yu et al., 2012; Shahbazi
et al., 2016; Kilic and Braun, 2023). The resulting approximate models can be often solved in terms of elementary functions (Geyer et al., 2005;
Selvitella and Foster, 2022b,a) and have been useful for the derivation of formulas for parameters of biomechanical interest and the study of gait
stability. The authors in Geyer et al. (2005) produce a solution of the SLIP model that includes gravity and that is exact during the flight phase,
while it is approximate during the stance phase. During stance, the solution in Geyer et al. (2005) is oscillatory in the radial variable and linear plus
oscillatory in the angular variable. With this approximation, the authors were able to calculate explicit approximate formulas for the duration of the
stance phase and for the angle swept during stance. The angle swept during stance is very important for stability purposes because it appears in the
calculation of the apex return map and so it impacts both the existence of periodic gaits and their asymptotic stability. Even in the approximation
used in Geyer et al. (2005), the form of the apex return map, especially in the component that depends on the stance dynamics (e.g. the angle swept
during stance), is so complicated that the authors prove existence of periodic solutions only under the condition that the stance phase dynamics
is symmetric around midstance and under the restrictive condition that the angular velocity at touch-down is identical to the pendulum frequency
o = —4/g/l, (forward motion).

In this paper, we push the reduction of the dynamics one step further by using an approximation for the angular variable at a lower order
than the one used in Geyer et al. (2005) and we discuss the full stability problem without the restriction on the angular velocity used in Geyer
et al. (2005). In more precise terms, we approximate the angular dynamics to only linear in time, which corresponds to the approximation of
the angular variable in Geyer et al. (2005) at O-th order, instead of 1-st order. The radial component of our approximation is very similar to that
in Geyer et al. (2005), with the only difference that the potential energy is approximated with a potential energy that matches the correct potential
energy at touch-down (and at take-off, given that we consider only symmetric stance phases too) instead of at midstance used in Geyer et al.
(2005). This allows the approximate system to have the same energy of the original system when the other parameters of both the approximate
and exact models are kept with the same values (See Remark 2.1 below). Given that in both (Geyer et al., 2005) and here, we restrict the dynamics
to the case of small angle swept during stance, the difference is negligible in terms of accuracy of the approximation of the dynamics of the radial
variable (See Section 2.2 and Appendix A.4). Similar assumptions are present in Yu et al. (2012) (formula (4), page 4198) and in other references,
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Table 1
This table defines the main parameters and variables of our model.

Parameters and variables

Parameter/variable Definition

Iy Resting length of the leg

ag Angle of attack of the leg relative to the ground

m Point mass

£=9.81 m/s Gravitational constant

k Stiffness of the spring/leg

[on Linear spring frequency

® Angular velocity of the CoM during stance

t Time

trp Time of touch-down

tro Time of take-off

¢ Angular position of the CoM during stance

Ap Angle swept by the CoM during stance

r Radial position of the CoM during stance

P Angular momentum during stance

E System energy

a Relative height of oscillation of the CoM during stance
b Relative amplitude of oscillation of the CoM during stance
P Relative spring amplitude of the CoM during stance
k Dimensionless stiffness of the spring/leg

E Dimensionless system energy

€ Relative system energy

Fr Froude number

including (Arslan et al., 2009; Saranli et al., 2010; Schwind, 1998; Uyanik et al., 2015; Yu et al., 2021). Without imposing that the angular velocity
at touch-down must be identical to the pendulum frequency, the apex return map, and so its fixed points and their stability, show an explicit
dependence on a fundamental biomechanical quantity, a version of the Froude number (Fr := w®l,/g), which regulates the exchange between
potential and kinetic energy and the transitions between gaits (Alexander, 2003a). The appearance of an explicit dependence of the apex return
map on Fr is relatively new in the sense that imposing o = —\/(710 was implicitly implying Fr = 1 (as already noted in Geyer et al., 2005) and
was reducing the richness of the parameter space by one dimension. In our case, the existence and stability of fixed points of the apex return map
depend not only on the normalized stiffness k (see Section 2.1 below), the normalized energy E (see Section 2.1 below), and the angle of attack
@, but also on the Froude number Fr. This extra flexibility is crucial in the proof of a bifurcation phenomenon that we highlight in this paper:
we give examples of stable running gaits becoming unstable when Fr is moved outside an explicit interval. We validate our hypotheses and our
analysis using a dataset of humans running on a treadmill at different velocities, publicly available from Fukuchi et al. (2017). We show that the
hypothesis of constant angular velocity is valid.

In summary, (1) we propose an approximation of the SLIP model with constant angular velocity during stance; (2) we show that with the
additional assumptions of little to no leg compression and symmetric stance phase, which are commonly used in the literature, we can compute the
apex return map with elementary functions; (3) we demonstrate that, under this regime, we can derive stability conditions in terms of elementary
functions; (4) we show that the Froude number appears as a parameter which induces a bifurcation that destabilizes the running gait outside a
certain range; and (5) using publicly available data of human running on a treadmill, we validate our modeling assumptions, in particular the
assumption that the angular velocity of the body around the toe during stance can be well approximated as linear in time. These contributions
connect with many research endeavours in the biomechanics literature.

Some of our analysis relates to a question posed in Holmes et al. (2006) (page 263). There, authors discuss the difficulty in interpreting Taylor
series approximations of periodic solutions of the SLIP model and how researchers use approximations around midstance, small compressions,
and leg angles close to vertical to derive explicit solutions valid under these regimes. The authors in Holmes et al. (2006) ask for which species
particular approximations are most suitable and if more elegant approximations may be found. Our analysis answers some parts of this question
because we show that the simplified approximation of constant angular velocity during stance is well suited for some data of humans running on a
treadmill. The assumptions of small compression and small length during stance are ubiquitous in the literature (see for example Geyer et al., 2005;
Holmes et al., 2006 and references therein). We include the effect of gravity during stance in contrast to earlier studies (Geyer, 2001; Ghigliazza
et al., 2003). The authors in Ghigliazza et al. (2003) derive explicit Poincaré maps to obtain simple expressions for periodic solutions and their
stability, and to illustrate bifurcation phenomena. The deductions in Ghigliazza et al. (2003) concentrate on the integrable case, namely that in
which gravity is neglected (or high stiffness) during stance and the authors provide numerical evidence that their work is relevant also when gravity
is reintroduced. Note that their result in fact considers a restricted regime, or at least a very different regime, with respect to ours because, if g — 0
and all other parameters are kept fixed, then Fr — +oco0, while our analysis is valid also for Fr < +oco. Ghigliazza et al. (2003) do not compare the
validity of their model with specific animal species and complement the experimental study of Seyfarth et al. (2002), in which the authors found
self-stabilizing behaviors for fast enough running, suitable leg stiffness, and for a range of fixed angles of attack, via numerical simulations.

Authors in Yu et al. (2012) obtain highly accurate analytic approximate solutions to the SLIP dynamics in stance phase with gravity under the
assumptions of small angular span and relative small compression, in particular for non-symmetric dynamics in a large angle range. Differently
from our approach, they do not assume symmetric stance phase in their approximation, but they use a higher order angular dynamics, and so a
more complex angular dynamics than the one with constant angular velocity. The approximation in Kilic and Braun (2023) to the SLIP model does
not rely on the assumptions of symmetric stance phase and replaces the assumption of small step length with that of small vertical displacement,
which are relevant cases in the study of the fast walking of robots. To reach high accuracy, the authors increase the complexity of the model of
the spring force by introducing a sine wave approximation of the horizontal ground reaction force. Furthermore, Shahbazi et al. (2016) presents
a unified framework for active running, walking, and walk-run transitions, by introducing an axial-torsional SLIP (AT-SLIP) for the double-stance
phase, which is absent during running. Authors find that AT-SLIP trajectories approximate accurately the bipedal SLIP during the double stance
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The Spring Mass Model

A

Fig. 1. The spring-mass model. This picture illustrates the stance dynamics of the SLIP model. The parameters considered are: the gravitational constant g = 9.81 m/s%; «, with
7 — a, representing the angle of attack, k representing the leg stiffness of the massless leg; m representing the mass of the individual concentrated in the CoM; and the leg length
Iy. O is the contact point. The variables considered in the model are: the angle ¢ measured counterclockwise with A¢ < 0 being the angle swept during stance and the distance r
of the CoM from the point of contact with the ground.

phase, under the assumption of small angle swept during stance and small leg compression. This work expands on Geyer et al. (2005) and Arslan
et al. (2009) and is particularly relevant when the stance dynamics is not symmetric. The papers (Yu et al., 2012; Kilic and Braun, 2023; Shahbazi
et al., 2016) simulate their models with parameters emerging from biological data relevant to human locomotion, but do not directly fit their
models to experimental data.

The paper is organized as follows. In Section 2, we discussed the methodology developed in this paper. In particular: Section 2.1 describes our
approximation and the formula for the angle swept during stance; Section 2.2 describes the apex return map and it is dedicated to the stability
analysis. There, we derive the apex return map, an explicit formula for the apex height for constant angular velocity during stance, and the
conditions for stability of periodic gaits. Section 3 is devoted to the results: Section 3.1 describes the data considered in our analysis; Section 3.2
verifies the validity of our hypothesis of constant angular velocity and the accuracy of the approximate radial and angular dynamics; and Section 3.3
proves the existence of parameters of our model that allow a symmetric stance phase. In Section 4, we discuss our results: In particular, the pros
and cons of our approximation (Section 4.1), the bifurcation phenomenon (Section 4.2), the issue of asymmetric gaits (Section 4.3), and some
further considerations in Section 4.4. In Section 5, we draw our conclusions. In the Appendix (Appendix), we include the mathematical deductions
which led to the model and the formulas used in this paper. In particular: Appendix A.1 reports the calculation of the angle swept during stance;
Appendix A.2 gives details about the derivation of the formula for the apex return map; Appendix A.3 reports the calculation of the fixed point of
the apex return map; and Appendix A.4 reports the proof of the stability condition of fixed points of the apex return map under the assumptions
of our approximation. In Appendix A.5, we perform an error analysis for the apex return map with our approximation. In Appendix A.6, we report
further results of our data analysis, while in Appendix A.7 we provide a point-by-point comparison of our approximation with that of Geyer et al.
(2005).

2. Theory

This section is dedicated to the methodology developed in this paper, including our approximation of the SLIP model (Section 2.1) and a
description of the apex return map and the explicit expression of the stability conditions for symmetric periodic gaits under the regime of linear
angular dynamics (Section 2.2).

2.1. The approximate solution

In the SLIP model, the aerial phase of the motion is described with a ballistic motion. On the other hand, each stance phase is governed by the
Lagrangian:

L= (P4 2) — & (1 =) mgrsina), W

Here, r € [0, /) represents the radial coordinate of the point mass with respect to the contact point and £ its variation, while ¢ € [0, z) represents
the angle oriented from the ground (flat surface) to the leg (counterclockwise) and ¢ its derivative (See Fig. 1 or Figure 1 in Geyer et al. (2005)).
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The Lagrange equations of this model are not integrable in the sense that they do not admit solutions in terms of elementary functions (Whittacker,
1904; Holmes et al., 2006; Geyer et al., 2005), unless in trivial cases, and so solutions are often found numerically (Holmes et al., 2006; Schwind
and Koditschek, 2000) or through approximate methods (Geyer et al., 2005). In Geyer et al. (2005), the authors concentrated on the SLIP dynamics
for small angle swept during stance ¢ ~ % and small leg compression p := (r — [)/l, < 1. Under this regime, the authors were able to provide
explicit solutions for the radial and angular variables, together with an explicit formula for the angle swept during stance 4¢. Moreover, under
the restriction that the system is oscillating with the pendulum frequency w = — %, Geyer et al. (2005) derived a condition for the stability of
periodic solutions with a symmetric stance phase (4¢ = 2¢; — 7).
Here, we approximate the stance dynamics of the SLIP model even further with respect to what is done in Geyer et al. (2005). In particular,

we approximate the angular dynamics

_ w

S +p?
at zero order, namely one order less that the approximation performed by Geyer et al. (2005), which approximated the angular dynamics with
¢ ~ o(1 — 2p). Therefore, we consider constant angular velocity during stance:

p=w<0.
The negative sign comes from the fact that we are only interested in forward motion. Imposing this condition and that of ¢ ~ «), we obtain a
reduced Lagrangian

L= % (’-,2 + rzcuz) - g (lo - r)2 — mgrsin(ag)
with energy given by:

E= % (,-,2 + rza)z) + IEC (lo - r)2 + mgr sin(ay).

Here 0 < o < % Note that the potential energy E,, is approximated slightly differently with respect to that in Geyer et al. (2005), where it is
approximated by mgr. Instead, we approximate E,, with potential energy that matches the correct potential energy at touch-down, mgr sin ;. Given
that ¢ ~ ay ~ ’2—', the difference between the two approximations is small. Similar to Geyer et al. (2005), we re-scale the equations of motion, but

differently from Geyer et al. (2005), by normalizing with respect to »?, instead of normalizing with respect to g//,. Our normalization is equivalent

to that in Geyer et al. (2005), in the case of Fr = 1 considered in Geyer et al. (2005). If we define k := #, E = #wz, and € := %, we get
0 0
2(g sinay)
2 @ 22 0
€e=p"+ +w-p°+ ——(1 +p),
T W T Io ,

with w, = \/k/m representing the linear spring frequency. Approximating for small compression p := (r—1;)/l, <0 and |p| < 1 and using McLaurin
expansion (1 4+ p) 2 =1-2% p+3 % p> + O(p®), we obtain
2(gsina
€= p2 +a)2(1 -2p+ 3p2) + a)ép2 + M(l +p).
0
This equation can be solved by separation of variables. We keep /> on one side of the equality and move everything else on the other side. We
obtain:

5 2(gsinag)

€ —w2(1 — 2p+3p2) —a)gp — l—(l +p) = pz‘
0
If we take the square root on both sides and separate variables (d7 on the left and everything else on the right of the equal sign), we get
dt = 0

\/6 — (1 —2p+3p?) —a)(z)p2 - %On%)(l +p)
Integrating from time 0 to 7, we get

/ dp 1 . 2p+u

t= —_— = arcsin ——

VAP? + pp+v V=2 V> —4iv

with 4 = —(3e? + m(z)), u = 2(w? - (gsinay)/ly), and v = € — w* — 2(g sinay)/l,. Note that v = r%/lg > 0 (see Remark 2.1 below). Solving this and
getting back to the original variables, we arrive at the formula for the radial motion, given by:

r(@®) = Iy (1+ a+ bsinayt) 2
with
_ ? — (gsinay)/I
w(z) + 3w?
and

\/(co2 —(gsinay)/)? + (a)(z) +3w?)(e — w? — 2(g sinay) /1)
b= .

2 2
w0+a)

Here @, := 4 /a)g + 3w?. The radial solution is very similar to that in Geyer et al. (2005), but with a factor of sin «, appearing as a multiplier of g.
By imposing the touch-down and take-off conditions r(t7p) = r(trg) = Iy, we obtain the times of touch-down and take-off, respectively:

o= {(ors2) [ oo (2]
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and

tro = (f%o {(2n+ %)7r+ [72_1' + arcsin (—%)]},

with n € Z. From this, we can compute the angle swept during stance

To | 'ro ) a
A¢=/ ¢dt=/ wd::w(zm—zm)=7{n+2arcsin(—z)},
'Tp 'Tp @

which implies

Ap = 20320 {arccos (%)}

and so, dividing numerator and denominator by »?, we obtain

1 —sinay/Fr

Ap(k, a, E)y=- = arccos 3
Vk+3 \/(1—sina0/Fr)2+(12+3)(2E— 1 —2sinay/Fr)
with
Froo co210
g

playing the role of the Froude number. For the full list of parameters and variables, please see Table 1.

Remark 2.1. As mentioned above, authors in Geyer et al. (2005) approximated the potential energy during stance E,, with a potential energy
that matches the correct potential energy at mid-stance, E,, ~ mgr, while we approximate E,, with a potential energy that matches the correct
potential energy at touch-down, E,, ~ mgrsina,. The difference in accuracy is small because ¢ ~ a; ~ % Other approximations can be done.
With minimal adjustments, all the computations in this paper are valid if the potential energy is approximated with mgrsin(g) with «, < p < 7/2,
which includes the strategy implemented in Geyer et al. (2005) (f = n/2). For example, we would still have v = fé / 1(2) > 0, but with the proper
definition v = € — w? — 2(g sin /1, and we would still have 2E — 1 — 2sina,/Fr > 0 (See Section 2.2 and the formula for the stability condition
available in Eq. (9)). However, our choice (8 = ;) is the only case for which the energy at touch down is identical for both the approximate and the
exact SLIP dynamics. Given the conservative nature of both the true and the approximate stance dynamics (with respect to the respective flows),
the energy during stance for both the approximate and exact models are identical, using our approximation. This is important for the purpose of
inferring properties of the true dynamics from those of the approximate dynamics. An example of this is the bifurcation phenomenon described in

Section 4.2, where it is highlighted that the stability of a fixed point of the apex return map depends on the energy.
2.2. The apex return map and the stability of periodic gaits

To study the stability properties of the periodic solutions to the SLIP model, we study the fixed points of the apex return map. The apex return
map is a Poincaré map, namely a discrete dynamical system deduced from the original dynamics by intersecting a periodic orbit in the state space
with an hyperplane or a submanifold of the state space, called the Poincaré section, transverse to the flow. It is convenient to consider the apex
height as the coordinate of the section because it allows for an explicit, relatively simple representation of the map as a discrete one-dimensional
system, whose only variable is the apex height y; during stance i. If the eigenvalues of the linearization of the apex return map around a fixed point
are within the unit circle for a certain range of the parameters, then the fixed-point is stable for that range of parameters. Note that a periodic gait
can be stable for a certain set of parameters and unstable for another.

2.2.1. The apex return map

The apex-return map is a discrete map f, which recursively determines the highest vertical position y,,; in stride i + 1 from the highest vertical
position y; in stride i. A way to determine f is by composition of five maps f = f_oTofyoT 'of,, with f_ being the apex i to touch down i + 1
map (flight phase); f, being the touch down i + 1 to take off i + 1 map (stance phase); f, being the take off i + 1 to apex i + 1 map, and T and
T-! being the change of variables map from Euclidean to polar coordinates and its inverse (well defined as r > 0 during stance). During the flight
phase, most suitable coordinates are the Euclidean ones, while during the stance phase polar coordinates simplify the description of the dynamics.
Therefore, change of variables at touch down and take off need to be used. In their respective coordinate frames, we have that the y; to touch
down map is given by

. . 2
X =Xtp =1/ ;(E —mgy;)

f-= yrp = lysina 4

Yrp = — VZg(yi - Yrp)

the touch down to take off map is given by

To =TtD
Fro = —F
fo= TO TD (5)
¢ro = ¢rp + AP
1o = drp>

and the take off to y,,; map is given by

Xip1 = X70
fo=q " L 6)
Yisl = Y10 ¥ 3. V10"
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Remark 2.2. A similar formula was derived in Geyer et al. (2005). However, their expression (25) on page 345 is incorrect (there is a square
missing in their formula for y,,,, where y;, appears only as a linear term). This is probably just a typo, as formula (26) on page 345 in Geyer
et al. (2005) is actually correct.

The apex return map for the SLIP model is then given by:

1 - . 2 .

Yie1 = f) = m_g [cos(Aqb = 2ap)\/mg(y; — Iy sinay) + sin(4¢ — 2a)\/ E — mgy,-] + [y sin(ay — Ap) 7
under the condition that the apex height is higher than the touch-down height

Yig1 2 lg sin(ay),
which ensures that the apex return map exists. The full derivation of this formula is given in Appendix A.2.
Remark 2.3. We report the computation of the full derivation of the apex return map in Appendix A.2 to avoid confusion with respect to the apex
return map formula in Geyer et al. (2005), page 345. The authors in Geyer et al. (2005), in their derivation of the apex return map described on
page 345, do not explicitly say that their formula (26) is valid also for the exact, non-approximated dynamics. The approximation enters crucially
later on in that section, when actual computations using the approximation formula for A¢ are reported. Formula (26) in Geyer et al. (2005) and
our formula (7) depend on the stance dynamics only through 4¢. Therefore, the apex return map, as a function of A¢, is identical independently
of what explicit formula would be then substituted in 4¢. The approximation helps computing this 4¢ as a function of the other parameters but
not to compute the apex return map as a function of A¢ in both our work and Geyer et al. (2005). However, our work is largely distinct from Geyer
et al. (2005) in the way A¢ is computed, as we use a simpler approximation (e.g. linear angular dynamics during stance) with respect to the one
used in Geyer et al. (2005) and we do not restrict the analysis to the case Fr = 1. These two differences led to (1) showing that, for human subjects

running on a treadmill, the CoM is well described by a linear angular dynamics (see Section 3.2 below) and (2) the appearance of a bifurcation
phenomenon with Fr as a bifurcation parameter (see Section 4.3 below).

By rescaling Y; :=y;/l, and F(Y;) := f(y;)/1y, we get

Y. = F(Y) = [cos(4p — 2a0)\/Y; — sinag + sin(A¢p — 2ap)\/ EFr — Y,] ’ + sin(ay — Ag). )
Note that EFr = E/(mgly) is independent of w?. For Eq. (8) to be valid, we need to have the restriction
EFr> Y; > sinay.
Note that
2FE — 1 -2sinay/Fr>0,
since
@ (E —1-2sinay/Fr) = ¢ — o’ = 2gsinag)/ly =v =73 /12> 0.
Manipulating the expression EFr > Y; > sin a,, we get
EFr> % + sina > sinq
and so the condition EFr > Y; > sin«, is not void.

Remark 2.4. In Appendix A.5, we show that the error in the apex return map that we make is small for small compression.

2.2.2. Explicit formula of the apex height
The solution to the approximate SLIP dynamics admits an explicit representation of the apex height for each stance i as a function of the
parameters of the model. Using the formula for the angular velocity at touch-down in polar coordinates (equation (24) in Geyer et al. (2005)), we

get:
[2 -
o= l_g (cosaO\/Yi — sina —sinam/EFr—Y,-) R
0

which, since we are considering only forward motion and so w < 0, reduces to

- % = cos ¢y/Y; — sinay — sinay\/ EFr ;.

After some manipulations (see Appendix A.3), we can solve for ¥; and obtain

2
Y, = sina0+% <\/Frcosao isinao\/{—Fr+2EFr—25ina0}> .

With similar computations, we get

2
Y; = EFr- % <\/Frsina0icosao\/{—Fr+2EFr—25ina0}> .

By plugging these solutions into the condition

—\/% = cos ay/Y; — sinay —sinay\/ EFr -,
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we get that the only possible solutions are

2
Y, = sina0+% <\/Frc0sa0 —sinao\/{—Fr+2EFr—Zsinao}>

2
=EFr— % <\/Frsinao +cosa0\/{—Fr+2EFr—Zsina0}> .

See Appendix A.3 for more details about this computation. As a by-product, this formula gives us the formula for the minimal energy E™" needed
for a fixed point of the apex return map F to exist. In fact, since we need to satisfy Y; > sin a,, E™" must satisfy

2
% (\/Ecosao —sinao\/{—Fr+2EFr—Zsina0}> =0

and so
fmin _ 1 sin ay '
2 sin’ a Fr
This generalizes to every Fr > 0, the energy lower bound found in Geyer et al. (2005) for Fr = 1.

2.2.3. Asymptotic stability of periodic gaits
Expanding F(Y;) from Eq. (8), we get

F(Y)) = cos®(A¢ — 2ay) |Y; — sin ap| + sin?(A¢ — 2a) [EFr — Y] + sin(2[A¢p — 2a9])/Y; — sinag/ EFr — Y; + sin(ay — 4¢).
For the stability of the apex return map, we need
9F
Yy,

i+1=Y;

<1

Given that at the symmetric fixed point Y, =Y;, we have A¢ = 2a, — 7, we obtain

— oF — < o I _
voer, = a7 ‘A¢=2HO_¢ =1+ [cos(ao) +24/Y, —sinag\/ EFr Y,-] 9y, Ad.

Therefore, the stability of the apex return map depends on the variation of the angle swept during stance with respect to the apex height y; or the

normalized apex height Y; at stride i
2}

* ._ 0
e dy, )Ad)=2a0—d>

oF
oy,

In normalized coordinates, this is given by

\/57( (1 —sinag/Fr)
———— Jarccos X

VFr(k +3p2 V(= sinag/Fr? + (& +3)2E — 1~ 2sinaq/Frl

0, A

COS ay + sin a

1 1
VY —sinag \/EFr-Y;
V2 [2(k +3) = 3(1 —sinay/Fr)]Vk +34/2E — 1 = 2sinay/Fr
X

) VErG 4302 (1 = sinay/Fr)? + (k + 3)[2E — | — 2sinay/Fr]

cos a, + sinay (C)]

1 1
VY, —sina /EFr—Yi

See Appendix A.4 for the detailed deduction of this formula.
3. Results

Section 3.1 outlines the main features of the dataset analyzed; the verification of the validity of the hypothesis of approximate linearity of
the angular dynamics during stance and numerics that confirm the accuracy of our approximation of both the radial and angular dynamics are
discussed in Section 3.2; some examples of parameters which allow a symmetric stance phase are given in Section 3.3.

3.1. Human running data

For this paper, we used the publicly available dataset from Fukuchi et al. (2017). The dataset includes the time series of the three-dimensional
coordinates of markers collected from sensors placed on the bodies of participants of an experiment which involved individuals running on a
treadmill at three different velocities (2.5 m/s, 3.5 m/s, and 4.5 m/s). The data was collected with a motion-capture system and includes kinematics,
kinetics, and biometrics, such as age and mass of the individual, of 28 human subjects. For our analysis, we considered only sagittal plane data.
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Angular Linear Fit
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Fig. 2. Angular linear fit - Subject 1 - Stride 1. The x-axis represents the time t. The y-axis represents the angle ¢ during stance. Left Plot: At velocity v = 2.5 m/s, we have
@& = —2.23 and adjusted R = 0.9993. Central Plot: At velocity v = 3.5 m/s, we have & = —3.33 and adjusted R?> = 0.9996. Right Plot: At velocity v = 4.5 m/s, we have & = —4.45 and
adjusted R? =0.9997. All p-values are < 0.001.

Before starting the analysis, we pre-processed the data in the same way as we did in Selvitella and Foster (2023). In particular: we divided the
strides and extracted the stance phases, where our approximation is non-trivial (See Section 2.1); we paired kinematic and kinetic data so as to
have the values of those measurements with the same frequency, and we calculated the CoM sagittal coordinates by averaging the left and right
markers that were closest to the estimated position of the CoM, namely the sagittal coordinates of the anterior superior Iliac spine, the posterior Iliac
spine, and the Iliac crest. Given that the coordinate system of the time series in Fukuchi et al. (2017) was centered at an origin static with respect
to the treadmill, we performed a Galilean transformation to recenter the data: x' = x + vt,y) = y+ vt with (x, y) the coordinates with respect to the
treadmill origin, ¢ the time, and v the velocity of the treadmill in that trial. Three different velocities were considered: v = 2.5 m/s, v = 3.5 m/s,
and v = 4.5 m/s. For more information, please refer to Fukuchi et al. (2017) and Selvitella and Foster (2023).

3.2. Validity of the hypothesis of our approximation

3.2.1. Constant angular velocity

Our approximation of the SLIP dynamics assumes that ¢ = @ < 0. Here, we demonstrate empirically, using the data from Fukuchi et al. (2017),
that this assumption is reasonable. To do so, we fitted a linear model of the form: ¢ = ¢+ ¢yt +e, with € an error term. Using ordinary least squares,
we obtain 430 = . We used this as an estimate for »: & = . We tested this model for Stride 1 of Subject 1 in Fukuchi et al. (2017). We fitted a
separate model for each of the three velocities v = 2.5 m/s, v = 3.5 m/s, and v = 4.5 m/s. We tested for normality of the angular variable ¢ in the
three conditions using the Shapiro-Wilk Normality Test. The test was performed at level a = 0.05. The test failed to reject the null hypothesis H, of
normality in all three conditions The p-values were p = 0.06064, p = 0.3435, p = 0.8788 for the three conditions v = 2.5 m/s, v =3.5m/s, v =4.5m/s,
respectively. Furthermore, we fitted a linear regression model and tested for Hy : ¢, =0 vs. H, : ¢, # 0 with a two sided #-test. The model fit is
visualized in Fig. 2. All models demonstrated a good fit (p—value < 0.001 and adjusted R?> > 99.9% for all the models).

As a consequence, the prediction of the angle swept during stance is also accurate using our approximation. We checked this by multiplying
the observed stance duration time AT with @& and by checking the accuracy of 4¢ := AT * & as a predictor of the correct Ap. Again, we tested
for normality of the angle swept during stance A¢ in the three conditions using the Shapiro-Wilk Normality Test. The test was performed at level
a = 0.05. The test failed to reject the null hypothesis H,, of normality in all three conditions. The p-values were p = 0.8488, p = 0.4481, p = 0.05871
for the three conditions v = 2.5 m/s, v = 3.5 m/s, v = 4.5 m/s, respectively. We report that for the condition v = 4.5 m/s, excluding only the
first stride provides a significant difference from normality with the same test. We used all consecutive strides of Subject 1 in the three conditions
v=25m/s, v=3.5m/s, v =45 m/s, excluding the first two strides of the sequence (typically considered outliers and subject to noise). We fitted
linear regression models of the form A¢ vs. A¢ and tested for significance with a two sided r-test. All models demonstrated a good fit (p—value
< 0.001 and adjusted R? > 99.9% for all the models). This model fit is visualized in Fig. 3. For more details, we refer to Appendix A.6.

3.2.2. Radial and angular approximation vs. numerical integration
In this subsection, we check how well the radial variable of our model r, approximates that of the full SLIP, solved numerically, r, and how
well the angular variable of our model ¢, approximates the numerical one ¢,. The numerical approximation of the SLIP model is performed using
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Angle swept during stance prediction
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Fig. 3. Angle swept during stance - Subject 1. The x-axis represents Ag. The y-axis represents A¢. Left Plot: At velocity v = 2.5 m/s, we have adjusted R?> = 0.9946. Central Plot:
At velocity v =3.5 m/s, we have adjusted R? = 0.9972. Right Plot: At velocity v =4.5 m/s, we have adjusted R?> = 0.9988. All p-values are < 0.001.
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Fig. 4. Radial motion approximation accuracy. Froude number: Fr € [0.5,0.995]; Angle of attack «, € [70 deg, 89 deg]. These plots show the relative error (e,,) of the radial distance
of the CoM for our approximation r, vs. the numerical solution r,. Higher errors are colored darker as depicted in the color bar. In these experiments, m = 80 kg, /[, = 1 m,
k =16000 N/m, and E = 1200 J.

the function ode, with integrator Isoda, from the R software package deSolve. We measure the distance between r, and r, in terms of the relative

error e,,; of the L* norm:

lra@® = 1Ol Lopi7pirol

Crel +=

5

1w Lo 127 p 701

10
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Angular Motion Approximation Accuracy
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Fig. 5. Angular motion approximation accuracy. Froude number: Fr € [0.5,0.995]; Angle of attack a, € [70 deg,89 deg]. These plots show the relative error (e,,) of the angular
distance of the CoM for our approximation ¢, vs. the numerical solution ¢,. Higher errors are colored darker as depicted in the color bar. In these experiments, m = 80 kg,
Iy=1m, k=16000 N/m, and E = 1200 J.

where || f (|l Leorap) = SUPrefapy |f @], as in Selvitella and Foster (2022b). Analogously, we measure the distance between ¢, (our approximation)
and ¢, (numerical integration) of the angular variable:

620 = uOll L5017 p o]
NbuOll Loty pirol

Crel =

In all these experiments, we use the parameters m = 80 kg, /[, = 1 m, k = 16000 N/m, and E = 1200 J. In Fig. 4, we show the values of ¢, for the
radial variable for parameters Fr € [ 0.5, 0.995] and «, € [70 deg, 89 deg]. As shown in Fig. 4, the errors e,,; are all between 0.14 % (Fr = 0.95,
ay = 85 deg) and 1.65 % (Fr = 0.5, ay = 70 deg). In Fig. 5, we show the values of e,,; for the same sets of parameters but for the angular variable.
As shown in Fig. 5, the errors e,,, are all between 0.68 % (Fr = 0.995, ay = 70 deg) and 2.06 % (Fr = 0.5, a, = 89 deg). Some analytical deductions
on the effect of our approximation to the error made in the potential energy are also possible. If, for the purpose of this computation, we denote
the exact potential energy by E,, and the approximate one by Epm, we have

|E o = Epor| = mgr| sin(eh) — sin(ag)| = mgr| sin(ay) + (¢ — ay) cos(ay) + o(d — ag)| < mglylep — ag| + o( — ap)
and so the error made in the potential energy is of first order in the assumption of small angle swept during stance. Therefore, if we measure the

relative error made by E,, in approximating E,,, by

. ”Epot - Epat”L‘”[tTD,tTO]
Crel.pot += mgl,

we obtain that
< Clgp — ap| < CAg.

€rel ,pot

This implies that the error made in the potential energy is small under our assumption of small angle swept during stance and it can be directly
bounded by our approximation, following the analysis in Appendix A.5.

3.3. Existence of solutions with symmetric stance phase

For symmetric contacts, we have A¢ = 2, — = and so Eq. (3) implies

: arecos 1 —sinay/Fr . 10)
Vk+3 V(= sinag/Fr? + (& +3)QE — 1~ 2sinaq/Fr)

200 — 7w = —

Given that this equation is highly nonlinear, it is legitimate to wonder if there are combinations of the parameters («y, E, k, and Fr) or, equivalently,
of their normalized versions, which allow for the existence of solutions. Below are some explicit examples.

Example A. Consider ¢y = 85 deg and E = 251,/ = 1 m, m = 80 kg, and 0> = 0.5 % g/l, (Fr = 0.5), then k = 255817 and so
k = kmew? = 24.09064 % 80 % 9.8 = 18906.33.

11



A.M. Selvitella and K.L. Foster Journal of Theoretical Biology 595 (2024) 111934

Example B. Consider ¢y = 87.5 degand E = 18,1, = 1.2 m, m = 85 kg, and 0> = 09 * g/l, (Fr = 0.9), then k = 33.67553 and so
k = kmew? = 33.67553 % 85 % 9.8/1.2 = 23400.28.

Example C. Consider k = 20000 and E =2.51, I; = 1 m, m = 80 kg, and »* = 0.995g /I, (Fr = 0.995), then k = 25.51 and so a; = 86.84229 deg.

Example D. Consider k = 16000 and E = 2.2, I, = 1.1 m, m = 85 kg, and w? = 0.95g/l, (Fr = 0.995), then k = 21.10691 and so a, = 86.24524 deg.

Example E. Consider ; = 90 deg, k = 24 and Fr = 0.5. Then E = 2.49 and so 2E — 1 — 2sina,/Fr < 0, which is not in the admissible range since
v>0.

These examples do not exhaust the set of parameters under which solutions to Eq. (10) exist or do not exist. As mentioned, we cannot expect
explicit formulas in terms of elementary functions and we believe that the implicit formula (10), although complex, is the most concise and useful
to illustrate the relationship among those parameters «, E, k, and Fr that give rise to a symmetrical stance phase. As emerges from Examples A
to E, even small differences in the parameter ranges can give rise to different types of solutions. Parameters which belong to the inadmissible set
(no symmetric stance phase possible) are parameters for which our approximation predicts that the contact phase cannot be exactly symmetric,
while the set of admissible parameters (those that provide a solution to Eq. (10)) support the possibility of symmetric stance phases for the SLIP
dynamics. The parameters in the examples have been chosen to try to cover several possible behaviors. Examples A to D, those with admissible
parameters, have a Froude number increasing (while going from Examples A to D) towards 1, which is the case covered in Geyer et al. (2005)
and relates to the typical trotting speed of horses and jogging speed of human (Alexander, 1989). Example E covers the extreme case of vertical
touch-down angle and, as expected, does not permit an admissible combination of parameters. The threshold for admissibility is a complicated
codimension one manifold.

4. Discussion
4.1. Main features of our approximation

One of the novelties of our result is the derivation of a condition for the asymptotic stability of periodic orbits of the SLIP model (1) that is valid
without restrictions on the range of parameters. In Geyer et al. (2005), the authors assumed that a = 0, or equivalently w = —4/g/l, or Fr = 1, while
our condition for stability is valid for all Fr > 0. On the other side, we use a lower order approximation of the angular dynamics. In Geyer et al.
(2005), authors approximated the SLIP angular dynamics ¢ = o(1 + p?)~' ~ @ * (1 + 2|p|), which is theoretically more accurate than ours: ¢ ~ w.
The gain obtained using a 1-st order instead of a 0-th order approximation is small, as the accuracy only increases of a factor p < 1. Moreover,
the lower order approximation that we performed did not have too much of an effect on the accuracy of the fit for the data that we analyzed, as
demonstrated in Section 3.2. We have traded a little bit of accuracy by cutting out an oscillating component from the angle swept during stance,
to gain extra interpretability (a 1d linear model is probably the most interpretable among the non-constant models) and a lot of information about
the stability structure of periodic orbits of the SLIP model. Note that ours are the simplest biologically meaningful assumptions for the angular
dynamics. Indeed, simplifying to ¢ = 7/2 would imply that the dynamics reduces to the 1d dynamics of hopping on the spot (instead of the 2d
dynamics of running), while assuming ¢ = ¢ # z/2 would make the model biologically unreasonable. Again, the simplest non-constant motion is
that with constant velocity ¢ ~ . For what concerns the radial dynamics, Blickhan and Full (1993) showed that the relative leg compression is
of order p ~ 107! for almost all animals, humans included, and so the assumption p < 1 might not look quite right. To compensate for this, at
least in part, we keep higher order terms in p in the expansion of the angular momentum: (1 + p)~% ~ 1 — 2p + 3p?. For further comments about the
favorable/compensating behavior of the approximate SLIP dynamics, we refer to Geyer et al. (2005).

Even if our approximation is simpler than that in Geyer et al. (2005), it shows a very high adjusted R? (> 0.993), and so adding further terms
can improve the fit of no more than 1%, as measured by the adjusted R?. The very good fit of our approximation is reflected also in the accuracy
of the approximation of the angle swept during stance. This is extremely important, as this quantity is the only quantity that depends on the SLIP
stance dynamics that appears explicitly in the apex return map. Note that the stability condition is satisfied in an open set of parameters and so
parameters close to parameters which give rise to stable solutions give rise to stable solutions as well. Our approximate solution compares well
with the numerical solutions, as depicted in Figs. 4 and 5, and produces an accurate approximate apex return map (See Appendix A.5); therefore,
our approximation predicts a set of parameters for which the true solution is stable with minimal loss in accuracy.

Although we have a closed form representation of the approximate angular and radial dynamics which includes the effect of gravity g, and
we derive an explicit condition for the asymptotic stability of periodic running gaits, the condition for stability is quite involved and tedious to
derive (See Appendix). In fact, the condition for stability still depends on a relatively high-dimensional set of parameters (k, ay, E, Fr). Note that,
although we did not investigate the dependency structure among the parameters, we expect that such a dependency structure is indeed present
and that, exploiting it in full, might simplify the stability analysis. The Christmas Candy Cane-shaped curve that bounds the stability region of the
apex return map is quite narrow (see Fig. 7), and so it is not easy to guess which parameters produce asymptotically stable orbits and which do
not simply by looking at the stability condition. Speculatively, this might be interpreted as a deficiency of spring-mass models which cannot fully
capture, in such a reductionist form, the capacity of animals to run in a stable manner under many different perturbations.

The dataset that we analyzed has been kindly made publicly available by the authors of Fukuchi et al. (2017). We want to emphasize the
importance that publicly available data and open access can have for encouraging both the possibility of interactions between labs and the
development of cutting edge methodology aimed to combine data collected in different sites or under different conditions (Delp, 2023; Foster
and Selvitella, 2022b,a, 2020).

4.2. A bifurcation phenomenon driven by the Froude number

The appearance of the extra parameter Fr in our approximation gives rise to an interesting bifurcation phenomenon. To illustrate this, we
consider the same critical point of the apex return map considered in Geyer et al. (2005), namely that with height Y* = 0.8715324. We also obtain
that, for Fr = 1 (the only regime considered in Geyer et al. (2005)), the corresponding periodic trajectory is asymptotically stable. In addition, our
analysis numerically determined that asymptotic stability persists for Fr € [0.85, 1], while it is lost outside this range. The situation is described
in Fig. 6, where the dependency on the normalized energy E of the stability of Y* is also considered. Note that the range of values of Fr and E

(e.g. E =1.77 corresponds to E = 1180 J) considered here for the stability of the running gait are reasonable for human running.

12
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Fig. 6. Bifurcation diagram. The y-axis represents F'(Y x) := % ly—y- F(Y) with Y* = 0.871532. The two horizontal lines are at values —1,+1, the stability boundary. Left Plot: The
x-axis represents the Froude number Fr. Y* is stable only for Fr € [0.85,1]. Right Plot: The x-axis represents the dimensionless energy E. Y* is stable only for E € [1.61,1.77].

4.3. Asymmetric stance phase?

The analysis of stability reported in this paper assumes symmetric stance phases (4¢ = 2¢; — 7). One of the advantages of assuming this type
of symmetry, is that such a condition simplifies the study of fixed points of the apex return map. In particular, the assumption A¢ = 2a, — 7 is
convenient because, given the chain of maps

Y|k, Fr,aq, E) (A, Y|k, Fr,ay, E) +— F(Y|k, Fr,ay, E)

in which we can decompose the apex return map Y; = F(Y;|k, Fr,a,, E), the assumption A¢ = 2e;, — = makes the second of the two maps in the
chain equal to the identity map.

As noted in Geyer et al. (2005), for asymmetric contact phases, the energy conservation is violated, since AE,, = mg(yro — yrp) # 0. Although
confidence in the necessity of symmetry of the contact phase emerged in Geyer et al. (2005), we were not able to find in the literature the
rigorous proof that such a midstance symmetry is a necessary condition for stable gaits in the SLIP model. Given that, in fact, running does not
have exactly symmetric stance phases in the sagittal plane, a model extension is probably needed if we want to study asymmetric gaits in more
detail. In fact, a series of papers, including (Yu et al., 2012; Kilic and Braun, 2023; Shahbazi et al., 2016), concerning novel, but more complex,
approximations to the SLIP model that are particularly relevant to the case of asymmetric stance phases, have appeared in the literature with the
intent of understanding the strengths and weaknesses of the SLIP dynamics without the assumption of symmetry around mid-stance. We commented
on this in the introduction, where we compared these models with our approximation.

Recall that it is well known that certain animals, such as horses, prefer asymmetric gaits, such as galloping, when they increase their velocity
during forward locomotion (Alexander, 2003b,a, 1984). The asymmetry of galloping at high Froude number is more evident in the horizontal plane
and is different from the asymmetry of the CoM trajectory with respect to midstance that we are discussing here. Still, it is interesting to see the
emergence of asymmetry in different versions for high-speed forward locomotion gaits.

The apex return map depends explicitly on the stance dynamics only through 4¢ (See Eq. (9)). If we forget for an instant that we are considering
a specific differential equation during stance and if we assign carefully chosen values to A¢, we have a plethora of possible different behaviors for
the fixed points of the apex return map. In Fig. 7, we show two examples (and corresponding versions zoomed in around the fixed point of the
apex return map) of parameters which lead to stable dynamics. Instead, in Fig. 8, we show an example of a fixed point with unstable dynamics
(left) and another example with stable, but biologically unreasonable, dynamics (very large stiffness/non-compliant leg). Again, in these examples,
we do not deduce 4¢ from the SLIP model, but we fix it as a parameter.

13
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Apex Return Map - Christmas Candy Cane Plots: Cases of Stability
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Fig. 7. Apex return map - Stability. The x-axis represents Y,. The y-axis represents Y;,,. The vertical and horizontal lines represent the boundary of validity of formula (8)
(EFr>Y, >sina,). The plots in the full parameter range are accompanied by zoomed in versions around the fixed point of the apex return map. The plots show the characteristic
Christmas Candy Cane shape. We assumed m = 80 kg and /; = 1 m. Left Plots (Plot A and Plot A - Zoomed In): Fr = 1, E =161, ay = 89.9 deg, 4¢ = —0.05 rad, and so
ay — A = 93 deg # 7 — ay. Right Plots (Plot B and Plot B - Zoomed In): Fr= 1.1, E = 1.81, a; = 89.9 deg, Ap = —0.04 rad, and so ay — Ap ~ 92 deg # 7 — a,. In these plots, the light
blue curves represent the line Y;,, =Y;, while the dark blue curves represent the apex return map Y, , = F(Y)).

4.4. Further considerations

We have shown that the regime of constant angular velocity during stance leads to explicit formulas in the full range of parameters of the
SLIP model. We have successfully tested this hypothesis on publicly available data from experiments of humans running on a treadmill at different
velocities (Fukuchi et al., 2017). However, given the novelty and potential importance of our findings, it would be interesting to test our hypotheses
in more general settings and verify to what extent our model has biological applicability. It is actually hard to have complete information on the
biological relevance of the hypotheses of a mathematical model of locomotion. Note that, in Geyer et al. (2005), authors do not fully analyze
human data to test their model, but evaluate the accuracy of the predictions of their approximations using parameters relevant to humans (page
323 of Geyer et al. (2005)) and scrutinize the applicability of their assumptions.

We do not know how well our approximations perform in the case of running on the ground. It has been reported that these two conditions
(ground vs treadmill) are comparable, but there might be sagittal plane kinematic differences at footstrike (Hooren et al., 2020). It would also
be good to test our approximations with experiments of humans running on uneven or rough terrains. We do not have full information about the
applicability of our assumptions outside the range of velocities considered (lower than v = 2.5 m/s or higher than v = 4.5 m/s). We can expect
that our hypotheses are challenged in the case of sprinting or other cases in which the angle of attack is particularly low and the angle swept
during stance is large. Testing the hypotheses of constant angular velocity during stance in these cases would be interesting. In our experiments,
we showed that the dynamics in the regime of constant angular velocity during stance approximates both radial and angular SLIP motions well for
angles of attack as low as 70 deg, which is beyond what can be reasonably considered a small deflection from the vertical position. Still, caution
needs to be taken in using the constant angular velocity approximation (and our other hypotheses) for angles of attack departing substantially from
90 deg.

As mentioned in the introduction, research has shown that the SLIP model captures the sagittal dynamics of animals, such as cockroaches, dogs,
kangaroos, and birds (Full and Koditschek, 1999) and that spring-mass models accurately predict energetics in many locomotor gaits (Blickhan
and Full, 1993; Dickinson et al., 2000). The performance of our approximation in species other than humans is an interesting question that we are
not addressing in this paper.

5. Conclusions

In this paper, we developed an approximation of the SLIP model for running with the simplest possible non-trivial angular dynamics, namely
that with constant angular velocity. In the case of small compression and of small angle swept during stance, we proved, using publicly available
human running data, the validity of the assumptions of constant angular velocity and we demonstrated the accuracy of our approximation of the

SLIP radial and angular dynamics. Furthermore, we provided explicit conditions for the asymptotic stability of periodic running gaits in the full
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Apex Return Map - Christmas Candy Cane Plots: Instability & Stiff Cases
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Fig. 8. Apex return map - Instability & Biologically unmeaningful cases. The x-axis represents Y;. The y-axis represents Y,,,. The vertical and horizontal lines represent the boundary
of validity of formula (8) (EFr > Y, > sina,). The plots in the full parameter range are accompanied by zoomed in versions around the fixed point of the apex return map. The
plots show the characteristic Christmas Candy Cane shape. We assumed /, = 1.1 m. Left Plots (Plot C and Plot C - Zoomed In): m = 70 kg, Fr = 1.1, E = 1.7, a, = 87.5 deg,
Ap = —0.6 rad, and so ay — Ap ~ 58 deg # 7 — . (k = 17825 N/m). Right Plots (Plot D and Plot D - Zoomed In): m = 80 kg, Fr = 0.69, E =3.6157, ay = — 1.6 rad, A¢p = —0.1 rad,
and so ay — Ap ~ 94 deg # 7 — a, (k > 500,000 N/m). In this plot, the light blue curves represent the line Y,,, = Y;, while the dark blue curves represent the apex return map
Y = FQX).

i

range of parameters and illustrated the emergence of bifurcation phenomena when we vary the Froude number: stable gaits can become unstable
when the Froude number parameter is outside a certain range. Furthermore, our analysis highlights the need for a deeper understanding of models
which admit periodic gaits that are asymmetric with respect to midstance as well as a complete mathematical explanation of the transitions from
symmetric to asymmetric gaits at high speeds and of the bifurcation phenomenon that we discussed in this paper.
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Appendix

In this appendix, we will go through some technical details that lead to the main formulas derived from our approximation. Appendix A.1
includes the mathematical deductions needed to find the formula for the angle swept during stance, while Appendix A.2 derives the apex return
map. In Appendix A.3, we derive the explicit formula for the fixed point of the apex return map as a function of «,, Fr, and E. Appendix A.4 is
devoted to the proof of the stability condition for periodic gaits under the assumption of our approximation of the SLIP dynamics. Appendix A.5
deduces rigorous error bounds for the approximate apex return map and includes heat maps for the accuracy of our approximation for a large
set of values of the angle of attack and the Froude number. Appendix A.6 is dedicated to some extra data analysis. Appendix A.7 is devoted to a
point-by-point comparison of our model with that of Geyer et al. (2005).
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A.1. Proof of the formula for the angle swept during stance

In this subsection, we prove formula (3). By imposing the boundary conditions r(t;p) = r(tro) = Iy and inverting formula (2), we find that the
times ¢ and t;, are

ITD:C?%(){(ZYH—%)”_ [%+arcsin(—§)]}, tTO=d%O{(2n+%)lt+ [%+arcsin(—%)]},

with n € Z. By integrating ¢ from 7, to t;, we find

'ro 'To ® a
A¢=/ ¢dt=/ a)dt:a)(tTO—tTD)=T{n+2arcsin(——)}.
ITp ITp @o b

Simplifying further, by using the trigonometric formula z + 2 arcsin —x = 2 arccos x, we obtain

Ap = 2%0 {arccos (%)}

By rescaling to the normalized variables
k=kmo?, of=keo® @ =(k+3)0’, g/ly=a0’/Fr, E=Emlie’

and given that ¢ = w < 0 (negative, as we are concerned with forward locomotion only), we get

1 —sinay/Fr

Ap(k, ag, E) = - arccos

k+3 \/(1 —sinag/Fr? + (k + 3)QE — 1 - 2sinay/Fr)

A.2. Derivation of the apex return map

In this subsection, we derive the apex return map in Eq. (7). For the definitions of the maps in this derivation, please refer to Section 2.2.1. By
conservation of energy at apex i + 1 and take off 70, we have:

m .o .2 m. .o 22
5 (xi+1 + V) +mgyi = 3 (370 + V7o) +meyro-

The motion from take off to the apex i + 1 takes place only during the flight phase, during which, no horizontal force is present and so x;,; = %7,.
Given that y,,; is the apex during stance i + 1, then y,; = 0 (this is one of the reasons for choosing the apex return map as Poincaré map). Using
this information, we obtain

m

mgyiy1 = P

Y;O + mgyro
and so
_ s L2
Yi+1 = Y10 2¢ Yro-
This gives f,. Using the change of variables T~ x(t) = r(t) cos(¢p(1)); ¥(t) = r(t) sin(¢ (1)), we obtain that during stance:
¥ = K1) cos(p(t)) + r(t)(t) sin(¢(r))
and so, at take off, we have
Y10 = Fro Sin(éro) + rrodro cos(dro).

Using f, which is simply a consequence of our assumptions (e.g. take off and touch down happen with a straight leg; the definitions of take off
and touch down; we are considering only forward motion), we obtain

Yro = —Frp sin(grp + Ad) + lydrp cos(prp + Ap).
Using the polar coordinates change of variables T to transform back to Euclidean coordinates, we obtain
Yro = —(Xyp cos grp + Yrp sin gy p) sin(prp + Ap) + (Yrp cos(@rp) — X p cos ¢prp) cos(prp + Ap).
Using formulas for summation of angles, we simplify to
Yro = —X7pp sinerp + AP) + yrp cosQLprp + AP).

By conservation of energy at apex of i, we have:
m
2
which gives

. . 2
Xrp =X; =4/ ;(E —mgy;).

This is true because the motion from apex i and the next touch down takes place only during the flight phase, during which, no horizontal force
is present and so x;, = x;. Note also that at y;, the apex during stance i, we have y; = 0. At touch down, we also have

(xlz +5’?) +mgy; = E,

yrp = lysin(¢7p) = Iy sin(z — ay) = I sin(ay).
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By conservation of energy at apex i and touch-down T D, we have:
m

5 (%7 +37) +mey; = 5 (¥p +37p) + meyrop.

2

which, with similar arguments to those used above, leads to y;p = —\/2g(y,- - Yrp) = —\/2g(y,- — Iy sinay). This gives f_. Note that we used the
positive root for the formula for %; because we are concerned only with forward motion and we used the negative root for y;, because, in order
to touch down, the mass needs to move downward. By assumption, the angle of attack (touch down) is ¢, = 7 — a,. Using f_, we obtain that

. /2 . -

Yro=— ;(E — mgy;) sin(A¢ — 2a) — /2g(y; — Iy sin ) cos(4¢p — 2a)).
Plugging this inside

1 5

Vi1 =Yro + EJ’TO,

and collecting a factor of \/E, we obtain
1 - . 2 .

Yier =S = m_g [cos(Aqb —2ap)\/mg(y; — Iy sinay) + sin(4¢ — 2a)\/ E — mgy,-] + 1 sin(ay — A¢).
This completes the derivation of the formula for the apex return map (7).
A.3. Calculation of the fixed point of the apex return map

As shown in Geyer et al. (2005), the apex return map for the SLIP model takes the form:
Vi = fO) = mig [cos(Ad) — 2ag)\/mg(y; — I sin ap) + sin(Agp — 2a0)m]2 + 1y sin(ag — Ad)
with the condition
Yiz1 = 1o sin(ag).
By rescaling Y; :=y;/l, and F(Y;) := f(y,)/1,, we get

2
Y =FX)= [cos(Aqﬁ —2a9)\/Y; — sina + sin(4¢ — 2ag)\/ EFr — Y,-] + sin(ay — Ag).

From equation (24) in Geyer et al. (2005) and under the assumptions of constant angular velocity and forward motion ¢ = » < 0, we get

[2 -
= l_g (cosaO\/Yi —sina —sinaO\/EFr—Y,-) s
0

and so

- % =cosay\/Y; —sinqy — sinay\/ EFr —Y;.

By taking the square, we deduce that

2
% = (cosaO\/Yi —sinay — sinagy\/ EFr — Y,-) ,

and so

% = cos? [K - sinaO] + sin” & [EFr—Y,»] —ZCosaOSinaO\/meFr—Y[.
We get

2cos agsinag/Y; — sinag\/ EFr —Y; = cos® aq [Y; — sinag| +sin® ag [EFr — Y] — %
and so

2cos agsinay/Y; —sinag\/ EFr—Y; =Y, [0052 ay — sin’ ao] + sin’ ayEFr — cos? aq sin a — %
Taking the square again, we get
-2 . = 2 -2 L2 = 2 Fr?
sin” 2a [Y, - smaO] [EFr— YJ = {Y, [cos ay — sin aO] + sin” ay EFr — cos” o sin ay — 7} .
Therefore

—Yi2 sin? 2a + sin® 2aq [EFr + sin ‘7‘0] Y; — sin® 2ag sinay EFr =

2
Yi2 cos? 2a + 2Y; cos 2a; [sin2 agEFr — cos? ay sin ag — %] + [sin2 agEFr — cos? ay sin ag — %] .
This implies

Y2 +Y; [2cos 2aq sin® ag EFr — 2 cos 2aq cos? a sin ag — Frcos 2ay — sin” 2y £ Fr — sin” 2a; sin g
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+ |sin? agEFr— cos? a sina — %]2 + sin? 2ay sinag EFr = 0.
Using basic trigonometry, we can simplify the expression

2 cos 2ay sin’ agEFr—2cos2a cos? ag sinay — Frcos2ag — sin’ 2a0EFr — sin’ 2aq sin ay
into the expression

—2sin’ agEFr —2cos® agsinay — Fr (0052 ay — sin’ ao) .
This gives

Yi2 +Y; [—2 sin ay EFr — 2 cos” ay sinay — Fr (0052 ag — sin’ ao)]

.2 =~ 2 . Fr 2 .3 2 7
+ [sm ayEFr — cos” ay siney — 7] +4sin” ay cos” g EFr = 0.

This is a second order polynomial equation in Y;. The discriminant of this equation is given by

A=b —dac =

. = . Fr? = . . = .
4 {sm4 ocOEfFr2 + cos* aq sin” a + - cos?(2a) + 2 EFrsin’ a; cos? ay + sin® ay E Fr? cos(2aq) + cos” ay sin « cos(2a0)Fr}

. = . Fr? & . . = . - .
—4 {sm4 onESZFr2 + cos? a sin’ ) + - 2EFrsin® a cos? ay — sin? o:OEFr2 + cos? agsinagFr o — 16 EFr sin’ ) cos? .

Simplifying, we get

A = Fr?cos2ay + 4E Fr? sin ag cos(2ap) + 4 cos® ag sin ag cos(2ag) Fr — Fr? — 4Frcos” g sin ag + 4 sin® ag E Fr?

—Fr? (1 - cos?(2ay)) + 4sin? ay EFr? [1 + cos(2ay)] + 4 cos? a; sin g cos(2ay) Fr — 4Fr cos? a; sin a

Fr?sin®(2ay) + 4 sin® ag EFr? # 2 cos? ay + 4 cos® ag sinag Fr [—1 + cos(ZaO)]

Fr? sinZ(ZaO) + 8sin’ onEFr2 cos? ay — 4 cos? ay sinag Fr 2 sin’ ay = Fr sin2(2ao) {—Fr +2EFr—2sin ao} R
which implies that
A = Frsin(2ap) {—Fr +2EFr—2sin a()} .

Therefore, the apex height solution is given by

Y, = % { [25in2 agEFr+2cos? aysinay + Fr (cos2 ay — sin? (xo)] + \/Frsin2(2a0) {—Fr+2EFr— ZSiHaO}} ,

which, since 0 < a < %, becomes

= [sin2 agEFr + cos? ay sin g + % (0032 ay — sin? ao)] + V Frsinag cos ao\/{—Fr+2EFr—23inao}.

This formula can be then simplified to:

2
Y, = sina0+% <\/ Frcosa 1sinao\/{—Fr+2EFr—25ina0}> .

With similar computations, we obtain

2
Y, = EFr— % <\/Frsina0icosao\/{—Fr+2EFr—23ina0}> .

By plugging these solutions, inside

—ﬂ% = cos 4y/Y; — sinay — sinay\/ EFr -,

we get that the only possible solutions are

2
Y, = sinay + % <\/Frcosa0—sinao\/{—Fr+2EFr—25ina0}>

2
EFr- % <\/Frsina0 +cosa0\/{—Fr+ 2EFr - 2sina0}> .
A.4. Proof of the stability properties of the apex return map

This section is dedicating to the deduction of formula (9). Expanding F(Y;), we get

F(Y;) = cos*(4¢ — 2ay) |Y; — sinag| + sin*(4¢ — 2ay) [EFr — Y;| + sin2[A¢ — 2a¢])V/Y; — sinag\/ EFr — Y; + sin(a — A¢).
For the stability of the fixed points of the apex return map, we need to satisfy the following condition on the map F:
oF
aY;

1

<1
Yi1=Y;
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Given that at the symmetric fixed point Y;,| = Y;, we have A¢ = 2a, — 7, we obtain

IF _ cos(4¢ — 2ag) sin(A¢ — 2aq) [¥; — sin ag] oy, A + cos?(A¢p — 2a)

9Y;
+2 cos(4¢ — 2ap) sin(A¢p — 2ag) [E — Y| oy A — sin?(A¢ — 2ap)

+2c0s(2[A¢p — 2a9])dy, Ap\/ Y, — sinag\/ EFr —Y; +sin(2[A¢ — 2(10])% [\/Y,- —sinayy\/ EFr— Y,-] — cos(ag — Ap)y, A¢p.

9F|  _9F
()Yi Yip1=Y; OY,'

Therefore
‘Ad) ) =1+ [cos(a0)+2\/Y,-—sinaO\/EFr—Y,-] dy Ag.
=200—7 !

Recall that

9 _%o 19
dy; dy; 9Y; Iy dY;
and so that
ay* _ 10lY*] _ oy~
vy oY, oY

Therefore
oY* - ~
cos(ag) +2VY; —sinag\/ EFr —Y;| oy A¢.

9t
v, "
Remember that from the expression for the apex to touch-down map (formula (24) in Geyer et al. (2005)), we have

[2 -
o= l—g <cos ag\Y; —sinay —sinay\/ EFr — Y,>
0
and therefore

o _ £ |cosa L + sin & !
\/ 3 0 0 :
2l VY; —sinag [EFr—Y,
1

oy,
The stability of the apex return map depends then on the variation of the angle swept during stance with respect to the apex height or, equivalently,

with respect to the normalized apex height:

7}
0,A¢* = — A
iAb aYi Ap=2ay—¢ ¢

We have
0;Ap = 20; Aﬂ {arccos (g)} =20, Aﬂ {arccos (2>} + ngi [{arccos (2) }] .
@ b @ b @ b
Note that, by the chain rule, we have:
\/30? + ? - —222 5 5
0 @ 0w 0 24/30?+0}) _ 3w2+w0—3w26w_ ;) o
- 21 2 - 2232 T 2L 232
3w + GBw” + wo) QCBw” + wo)

|e|_%wd |o|_, 9
N 9Y; ow | & " ow 30 + o?
0

By the definition of the derivative of arccos and by the chain rule, this becomes:
? — (gsinay)/I

a Jw J .
(Z)H =9, 0 |
i (@ - (gsinay)/1p)> + Bw? + W} /12

Jdw 0 [ {
arccos

[{erecos (5) 1] = 3530

Q&

i

__ow 1 9 o — (gsinay)/I,
ooy, 2 dow ; )
] P —gsinaic \/ (@ - (gsinag)/Ip)? + Bw? + w2)i2 /12
\/ (@2—(gsinag)/Io)*+Be+aR)i3 /12
_ 1 do 9 w® — (gsinay)/l,
9, dw \/(w2 — (gsinay)/1p)* + Ba? + 2)i2 /12

(Bw? +w[2))f5 /15
(@—(gsinag)/lgP+Bw? +ad)i2 /13
®? - (gsinay)/l,

\/(aﬂ — (gsinag)/Ip)? + G + i2/12 5 - o
oo V(@ = (gsina)/1p)? + Ge? + @) /12

/ 282 /12
Bw? + wR)is /15
19




A.M. Selvitella and K.L. Foster Journal of Theoretical Biology 595 (2024) 111934

By expanding the partial derivative with respect to % and, again, by the chain rule, we have:

\/(a)2 (g sinag)/I + (3? + )2 /12 oo

> ov,
\/(Bw? + wo)ro/lo i

Zm\/(wz ~ (gsinag)/Ip? + Bw? + @2)i2 /12 -

(02 =(g sinag)/lp)* { 2(w?—(g sin ag), /10)*2w+6wr'5 /13 }
2 \/ (@2~(gsinag)/l 2 +Ba?+wR)i2 /12

(@ = (gsinag)/19)> + Bw? + D)2 /12

X

Simplifying even further, we get:
1 6w
o ((@* - (g sin ao)/lo)2 +GBw? + @i [15) = (@ = (gsinag)/ly) # {2(w* - (gsinag)/lg)w + 3wig /17) }
(@ = (gsinag) /1y + Bw? + @))ig /15
20(3w* + m(z))i'é /1(2) - 3w(w? — (g sin ap) /lo)r‘g /1(2) dw

[(@? = (gsinag)/1o)* + Ba? + @)i3 [12] /B + w2)i2 /12 %

Putting all of these computations together, we get:

0; Ap =20; [(%0] {arccos (%) } + 2@2001- [{arccos <%) }]
- % 7 {arccos (a ) } 2 @ 26w + @) = 3(@? — (gsinag)/ o)l /15 ow
=20 _
(Bw? + 600)3/2 0Y; [(aﬂ (gsinag)/lp)? + Bew? + wz)r2/12] /(3a)2 N wz)rz/lz 0Y
= 2 o2 darceos @ — (gsinag)/ly (20 — 3(@? — (g sinay)/lo)|w*doig /15 )
- ~31% -
“ V@ = sinag)/10? + a3/ || [@? = sinag)/1? + @3 /12] 72 /12 o
Hence
0 Ap=-=2 | L L2 ? — (gsinag)/ly [20% - 3(? — (g sin @)/ 1))’y /fg/,(z)
i = ) - COO arccos _ : —
| @ V 2 \/(w2 — (gsinag)/Ip)> + @22 /12 (@ — (gsinay)/1o)? + d%r3 /12
1 . 1
X | cos aq + sina ’
VY —sing, /E~Fr—Yi
with

2
Y, = singg + % (\/Frcosao—sinao\/{—Fr+ZEFr—2sina0}>

2
= EFr— % (\/ Frsina +cosa0\/{—Fr+ 2EFr+ Zsina0}> .
We have
V2k @*(1 —sinay/Fr)
0, = ——" {Jarccos
VFr(k+3)3/2 \/(w2(1 —sinay/Fr)? + (k + 3)w2w? | Fr2EFr — Fr—2sinay]
1 . 1
X | cos o - + sin @
VY, —sinag JEFr—v,

V2 2[w?(k + 3)] — 30?(1 — sinay/ Fr)]o*|w| VE + 3\/w2/Fr[2EFr — Fr—2sinqq]
B VFro?(k +3)3/2 (@*(1 = sinay/Fr))? + (k + 3)w?w? / Frl2EFr — Fr — 2sin ]
X [cos a + sin oy

1 1
VY; —sing, /EFr—Y,-

Simplifying further, we get:

\/57( (I —sina/yFr)

0; Ap = ————— Jarccos
VEFr(k +3)3/2 \/(1 = sinag/Frp + (k +3)/ Fr2EFr — Fr—2sina,]
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X | cos a

+ sin oy

1 1
VY; —sinag /EFr—Y,-

V2 [2(k +3) — 3(1 — sinay/ Fr)]Vk + 3\/1/Fr[ZEFr — Fr—2sinqq]

VFr(k +3)3/2 (1 =sinay/Fr)? + (k + 3)1 /Fr2EFr — Fr — 2sin o]
1 . 1
X | cosay - + sin a
VY, —sina /EFr—Y,-
and so
2k 1 —sinay/F
0; Ap = L arccos (1 = sinao/Fr)
VFr(k+35/? \/(1 — sinag/Fr? + (k + 3)2E — 1 - 2sinay/ Fr]
1 . 1
X | cos a - + sina
\/Y,-—smao /EFF—Yi
V2 [2(k +3) — 3(1 = sinay/Fr)]Vk +34/2E — 1 = 2sinay/Fr
| VR 432 (1 —sina/Fr)? + (k + 3)[2E — 1 — 2sinay/Fr]
X | cos ay + sin oy

1 1
VY, —sing, /EFr—Yl-
Inserting this last formula in

oY, -
a;)jlh”l:y[:y* =1+ [cos(ao) +2/Y, —sinag\/ EFr — Y,-] oy, A,
i

we obtain an explicit expression for d;’;l ly,,,=v,=y+ for A¢ = 2ay — = and so an explicit expression to verify the stability condition
JF
— <1
7,

Yip1=Y;

A.5. Error analysis

In this subsection, we perform an error analysis of our approximation to the apex return map. An interesting consequence of this is the
quantification of the link between the hypotheses of small compression, small angle swept during stance, and error produced by our approximation
of the apex return map. We also include heat maps describing the accuracy of our approximation.

A.5.1. Rigorous bounds
Consider again the normalized apex return map:

F(Y)) = cos®(A¢ — 2aq) |Y; — sin ap| + sin?(A¢ — 2a) [EFr — Y| + sin(2[A¢ — 2a9])/Y; — sinag/ EFr — Y; + sin(aq — 4¢).

We use a distinct notation for the apex return map, that for this paragraph we call F;, computed using our approximation and define Ay := A¢+56,
with 6 the error made in the angle swept during stance with our approximation. We have

Fs(Y)) = cos?(Ay — 2a) [Y, —sin “0] + sinz(Ay/ - 2a) [EFr - Y,] + sin2[Ay — 2ap])\/Y; — sinagy/ EFr-Y, + sin(ag — Ay).
We decompose Fy(Y;) — F(Y;) := I + II, with

I := cosz(Ay/ - 2ap) [Y, - sinao] + sinz(Ay/ - 2a) [EFr - Y,] + sinQ2[Ay — 2a4])\/Y; — sinagy/ EFr— Y;
- {cos2(A¢ —2ay) [¥; — sinap] + sin®(4¢ — 2ay) [EFr — ;] + sin(2[A¢ — 2ay)/Y; — sinayy/ EFr — Y,}

and

Il :=sin(ay — Ay) — sin(ay — A¢).
We start from /. Expanding around «; — A¢, we get

11 = sin(ay — Ag) cos(—6) — cos(ay — Ag) sin(—6) — sin(ay — A¢p) = sin(ay — Ap)(cos(6) — 1) — cos(ay — A¢) sin(=5).
Therefore, we obtain

2
|I11] < |1 —=cos(6)|| sin(ay — Ad)| + | sin(8)|| cos(ay — 4¢)| < % + 6,
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which implies
Il - < C8.
We continue with I. We decompose this term further as I := A + B + C, with

A= {cosz(Ay/ - 2ap) — cos?(Ap — 2(10)} [K —sin “0] ,

B := {sin’(dy — 2ay) — sin®(4¢ — 2a9)} [EFr - Y],
and
C := {sin2[4y - 2ay]) — sin[4p — 2a9])} \/Y; — sinag\/ EFr - ;.
Expanding A around 4y — 2a,, we get
A= {[cos(A¢ — 2ap) cos(6) + sin(4¢ — 2ap) sin((S)]2 - cosz(Aqﬁ - ZaO)} [Y,- — sin ao] s
while expanding the squares, we get
A = {[cos?(A¢ — 2ap)(cos?(8) — 1) + sin*(A¢p — 2ay) sin*(6) + 2 sin(A¢ — 2ap) cos(4 — 2axy) sin(8) cos(8)]} [¥; — sinag] -
Bounding A again in L® norm, we have:
lAll o < 6%+ 6% +6 < C6.
Similar computations can be developed for term B:

B := {[sin(A¢ — 2ay) cos(8) + cos(A¢p — 2aty) sin(8)]* — sin* (A — 2a) } [EFr — ;] =

{Isin®(dy — 2a)(cos*(8) — 1) + cos*(Ay — 2aq) sin*(8) + 2 sin(dy — 2a,) cos(8) cos(Ay — 2aq) sin(8)]} [EFr - Y;] .
Bounding B in L*® norm, we have:
I1Bll o < |EFr—Y;| (8% + 6% +8) < C(Fr, E)8* + 6% + 6) < C(Fr, E)s.

Analogously for term C, we obtain

C := {sin(2[4¢ — 2ay] + 26) — sin(2[A¢p — 229D } V/Y; — sinag\/ EFr - Y; =
{sin(2[A¢ — 2a]) cos(268) + cos(2[Ap — 2a,]) sin(26) — sin(2[Ap — 2a])} /Y, — sinay\/ EFr - Y; =
{sin(2[A¢ — 2a])(c08(28) — 1) + cos(2[A¢ — 2aq]) sin(26) } \/Y; — sinag\/ EFr - Y.

Bounding C as well in L® norm, we have:

\/ EFr-%,

Put all these estimates together, we obtain

ICH L <

| V¥ =Sinag| (& +8) < C(Fr, EXG® ++6) < C(Fr, Es.

1 F5(Y;) = FO¥ll oo < C(Fr, E)8.

This series of deductions gives an explicit bound on the error we make in the apex return map in terms of the error we make in the angle swept
during stance. This bound can be rephrased as a bound with respect to small compression, arguing in the following way. In normalized variables
and denoting with ¢ the exact angular velocity and by ¢, our approximation, the error in the angular velocity with our assumption of constant
angular velocity is given by

bo-b=w-o

1
= 2pw + o(p).
T1 2 p (p)
Using similar computations to those developed in Appendix A.1 and by integrating ¢, — ¢ from t; to ty, we find
ITo | i
¢, — Ppdt

'Tp

[6] = |4¢ — Ag,| =

To . To 10} a
s/ o — & dts/ 2pwdt < 2ea(try — trp) < de- {arccos(;)},
tr trp (2}

TD
in the time interval of the stance phase deduced from the approximate solution and with the compression small, bounded by p < e. This implies
that

6] < Ce.
In conclusion,
IE5(Y) = FOll o0 < C(Fr, E)S < C(Fr, E)e.

This gives an explicit quantitative bound on the error we make in the apex return map under our assumptions; in particular the error made is first
order with respect to the size of the compression that we assume to be small.
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Radial Motion Approximation Accuracy - Heat Map
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Fig. 9. Radial motion approximation accuracy. Heat map. Rows: Angle of Attack «, from 70 deg to 89 deg with increments of 0.1 deg. Columns: Froude Number Fr from 0.5 to
0.995 with increments of 0.01. These plots show the relative error (e,,,) of the radial distance of the CoM for our approximation r, vs. the numerical solution r,. Here: m = 80 kg,
lp=1m, k=16000 N/m, and E = 1200 J. See Section 3.2.2 for the definition of e,,.

Angular Motion Approximation Accuracy - Heat Map
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Fig. 10. Angular motion approximation accuracy. Heat map. Rows: Angle of Attack «, from 70 deg to 89 deg with increments of 0.1 deg. Columns: Froude Number Fr from 0.5
to 0.995 with increments of 0.01. These plots show the relative error (e,,) of the angular distance of the CoM for our approximation ¢, vs. the numerical solution ¢,. Here:
m =80 kg, [y =1 m, k=16000 N/m, and E = 1200 J. See Section 3.2.2 for the definition of e,,.

A.5.2. Heat maps

In this appendix, we also include two heat maps describing the error made by our approximation in both the radial (Fig. 9) and angular (Fig. 10)
components for an extended range of parameters with an angle of attack «, ranging from 70 deg to 89 deg with increments of 1 deg and Froude
number Fr ranging from 0.5 to 0.995 with increments of 0.05. Note that both radial and angular motions are best approximated by our model at
high Froude numbers. This is a reflection of the fact that ours is a model of running and running is more difficult at low Froude numbers, where
walking is preferred (Usherwood, 2005).

A.6. Further data analysis results

In this subsection, we include the full results of the (1) Shapiro-Wilk Normality Test for ¢ and (2) Linear Regression of ¢ vs. t. Both of these
results are illustrated for Stride 1 of Subject 1 and for all the three conditions v = 2.5 m/s, v = 3.5 m/s, and v = 4.5 m/s. Furthermore, we include
the full results of the (3) Shapiro-Wilk Normality Test for A4¢ and (4) Linear Regression of A¢ vs. 4. Both of these results are illustrated for Subject
1 and for all the three conditions v = 2.5 m/s, v = 3.5 m/s, and v = 4.5 m/s. The calculations have been performed with the first two strides of each
trial excluded. This is not a limitation as, in treadmill experiments, it is very likely that the first strides, especially those at high speed, which have
a sharp transition from static to moving surface, are needed for the subject to accustom themselves to the experiment. The analysis removing only
the first stride from all the three conditions, resulted in a similar outcome, apart from the condition v = 4.5 m/s, which gave a p-value < 0.05 with
the same tests. In all Shapiro-Wilk Tests, the test is always H,: “Normal” vs. H,: “not Normal”. In the angular linear fit and angle swept during
stance tests, the test performed is a two-sided #-test. In all Shapiro-Wilk Tests, we indicate the test statistic with W. We summarize the results of
this section in Tables 2 to 9 and in the Normal QQ plots (Figs. 11 and 12).

23



A.M. Selvitella and K.L. Foster

Empirical Distribution

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Journal of Theoretical Biology 595 (2024) 111934

Normal QQ Plots — Constant Angular Velocity During Stance — Subject 1 - Stride 1

Normal QQ Plot | v=2.5 m/s Normal QQ Plot | v=3.5 m/s Normal QQ Plot | v=4.5 m/s
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Fig. 11. Normal QQ plots - Constant angular velocity during stance - Subject 1 - Stride 1. The x-axis represents quantiles of the Standard Normal Distribution. The y-axis represents
the empirical quantiles of ¢. Left Plot: At velocity v =2.5 m/s, we have W = 0.99052 and p-value p = 0.8488. Central Plot: At velocity v = 3.5 m/s, we have W = 0.985 and p-value
p = 0.4481. Right Plot: At velocity v =4.5 m/s, we have W =0.97285 and p-value p = 0.05871. The tests performed here are Shapiro-Wilk.

Table 2
The linear time component has a significant effect on ¢ at v =2.5 m/s.

@ and v =2.5 m/s - Angular linear fit

Covariate Estimate Std. Error t-value p-value

(Intercept) 1.816717 0.001483 1224.9 <0.0001

Time —2.230877 0.009014 —247.5 <0.0001
Table 3

The linear time component has a significant effect on ¢ at v =3.5 m/s.

@ and v =3.5 m/s - Angular linear fit

Covariate Estimate Std. Error t-value p-value

(Intercept) 1.679230 0.001297 1294.9 <0.0001

Time —3.331498 0.014187 -234.8 <0.0001
Table 4

The linear time component has a significant effect on ¢ at v =4.5 m/s.

@ and v =4.5 m/s - Angular linear fit

Covariate Estimate Std. Error t-value p-value

(Intercept) 1.599137 0.001002 1596.4 <0.0001

Time —4.499545 0.024215 -185.8 <0.0001
Table 5

The null hypothesis of normality of ¢ cannot be rejected at level a = 0.05 in any of the three conditions
v=25m/s, v=23.5m/s, and v =4.5 m/s.

Shapiro-Wilk normality test — Angle

v=25m/s v=35m/s v=45m/s
W statistic 0.94924 0.95339 0.96872
p-value 0.06064 0.3435 0.8788
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Normal QQ Plots — Angle Swept During Stance — Subject 1

Normal QQ Plot | v=2.5 m/s Normal QQ Plot | v=3.5 m/s Normal QQ Plot | v=4.5 m/s
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Fig. 12. Normal QQ plots - Angle swept during stance - Subject 1. The x-axis represents quantiles of the Standard Normal Distribution. The y-axis represents the empirical quantiles
of A¢. Left Plot: At velocity v =2.5 m/s, we have W = 0.94924 and p-value p = 0.06064. Central Plot: At velocity v = 3.5 m/s, we have W = 0.95339 and p-value p = 0.3435. Right
Plot: At velocity v =4.5 m/s, we have W = 0.96872 and p-value p = 0.8788. The tests performed here are Shapiro-Wilk.

Table 6
The predicted angle swept during stance Ad has a significant effect on 4¢ at v = 2.5 m/s. The calculations
have been performed with the first two strides of the trial excluded.

A vs. A and v=2.5 m/s - Angle swept during stance

Covariate Estimate Std. Error t-value p-value

(Intercept) 0.016615 0.005009 3.317 0.00141

A/ES 0.932189 0.007912 117.823 <0.0001
Table 7

The predicted angle swept during stance Ad has a significant effect on 4¢ at v =3.5 m/s. The calculations
have been performed with the first two strides of the trial excluded.

A vs. Ap and v =35 m/s - Angle swept during stance

Covariate Estimate Std. Error t-value p-value

(Intercept) 0.023612 0.003987 5.922 <0.0001

A/&B 0.920102 0.005371 171.307 <0.0001
Table 8

The predicted angle swept during stance Ad has a significant effect on 4¢ at v = 4.5 m/s. The calculations
have been performed with the first two strides of the trial excluded.

A vs. Ap and v =4.5 m/s - Angle swept during stance

Covariate Estimate Std. Error t-value p-value
(Intercept) -0.012217 0.002943 —-4.151 <0.0001
A/&B 0.961381 0.003557 270.256 <0.0001

A.7. Point by point comparison of our approximation and that in Geyer et al. (2005)

In this subsection, we include Table 10 that gives a point by point comparison between the main features of our model and those of Geyer et al.
(2005). Both papers consider the regime of small compression and small angle swept during stance. Among the main differences, our analysis is
valid for every Froude number Fr > 0, while Geyer et al. (2005) considers a higher order approximation of the angular velocity ¢.
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Table 9
The null hypothesis of normality of A¢ cannot be rejected at level a = 0.05 in any of the three conditions
v=25m/s, v=35m/s, and v =4.5 m/s.

Shapiro-Wilk normality test — Angle swept during stance

v=25m/s v=35m/s v=45m/s
W statistic 0.99052 0.985 0.97285
p-value 0.8488 0.4481 0.05871

Table 10
This table compares the main components of our approximation to their counterparts in Geyer et al. (2005).

Comparison with the approximation in Geyer et al. (2005)

Quantity Our approximation The approximation of Geyer et al. (2005)
Froude number Fr>0 Fr=1
Angular velocity d=w ¢ =l -2p)
Radial position H0) =1y (1+a+bsindyt) H0) =1y (1+ a+ bsindyt)
a @ —(gsinag)/ly =g/l
wp+3w? o +30?
b \/(ml—(g sin ay) /D2 +(@}+302 ) (e-w? ~2(g sinag) /ly) V(@ =g /P +@}+30? ) e-? ~2g/1y)
oy +e? o’
@ @ =/} +30? @y 1= ]} +30?
o k/m k/m
Potential energy mgrsin(ag) mgr
Kinetic energy 2 (P +r70?) 2 (P +r0?)
. k 2 k 2
Elastic energy 3 (lo=r) 3 (lo=r)
Normalization °d g/l
Small compression pi=0r—1p/lh <0, p<1 pi=(r—1y)/ly <0,px1
Small angle ¢~ % ¢~ %
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