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Raman and infrared (IR) spectra provide rich information about materials. In this
study, we employ first-principles calculations to predict the temperature-dependent
linewidths of zone-center phonon modes, along with the IR dielectric function in bulk
hexagonal boron nitride. We include the contributions of three-phonon, four-phonon
scattering, and phonon renormalization, and our predictions show good agreement
with our own experimental results as well as those in the literature. Our findings
show that the temperature dependency of phonon linewidth would be strengthened
by considering four-phonon scattering while weakened by further including phonon
renormalization. After considering all these effects, four-phonon scattering shows a
significant or even leading contribution to the linewidth over three-phonon scattering,

especially at elevated temperatures.
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As a van der Waals crystal, hexagonal boron nitride (h-BN) has a layered structure
similar to graphite and features a strong crystalline anisotropy. Consequently, the dielec-
tric permittivity of h-BN shows opposite signs along orthogonal axes, making it a low-loss

natural hyperbolic material’ 3. This feature is key to optoelectronic, nanophotonic and
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phonon-polariton applications>* ", including quantum emitter®®, single-photon sources?,
super-resolution imaging!®, nanolithography!!, and radiative cooling!?.

Several experimental measurements have been conducted to characterize the dielectric
function, Raman spectra, and infrared (IR) spectra of h-BN at room temperature®!316,
However, the measurement of optical linewidth and dielectric function at high tempera-
tures is hindered by issues such as thermal oxidation and self-radiation!”, and few mea-
surements have been reported. A comprehensive understanding of temperature-dependent
optical properties is needed, especially for high-temperature applications such as thermal-
photonic devices'®, thermalphotovoltaics!® and radiative energy converters®’,

Raman and IR spectra are fundamentally connected with phonon anharmonicity of zone-
center optical phonon modes. The anharmonicity is a key parameter in the complex dielec-
tric function of polar dielectrics in the IR range, where the phonon linewidth is used in the
Lorentz oscillator model?' 23, As a result, the broadening of the spectral lines, i.e., the full
width at half maximum (FWHM), is directly related to the phonon scattering rates?t. First-
principles calculation based on density functional theory (DFT) and perturbation theory is
a powerful tool for understanding phonon dynamics. Without experimental fitting parame-
ters, the zone-center optical phonon linewidth can be obtained from the phonon scattering
rate. It was believed that three-phonon (3ph) scattering was adequate for predicting the
phonon linewidth. However, the predicted linewidths can fall considerably below experi-
mental data?>2?%. To include the higher-order scattering effect, several attempts have been
made by using semi-empirical models for h-BN27:28, The higher-order anharmonic potential
coefficients of perturbation theory were estimated from fits to the linewidth temperature
dependence®*.

Recently, Feng and Ruan developed the general theory and computational method of

2930 which was subsequently confirmed by independent ther-

four-phonon (4ph) scattering
mal conductivity measurements on boron arsenide®' 33, For optical properties, it has been
demonstrated that 4ph scattering plays an important role in Raman and IR spectra, espe-

cially at high-temperatures®343°. Furthermore, at finite temperatures, the interatomic force



constants (IFCs) deviate from their values at 0 K due to thermal expansion and phonon
scattering, leading to the phonon renormalization effect that plays an important role in var-

36742 A first-principles prediction of temperature-dependent Raman and IR

ious materials
linewidths requires a comprehensive understanding of all these physical phenomena.

In this work, we employ the first-principles method to predict the zone-center phonon
linewidths of bulk h-BN across the temperature range of 200-600 K. Our prediction considers
both 3ph and 4ph scattering mechanisms and includes phonon renormalization with the
temperature-dependent effective potential (TDEP) method®. Our results demonstrate a
significant contribution of 4ph scattering and show that considering the effect of phonon
renormalization is essential for the accurate prediction of zone-center phonon linewidth as it
significantly weakens phonon scattering. Neglecting the phonon renormalization mechanism
would lead to a considerable overestimation of the phonon linewidth and its temperature
dependency. The anisotropic dielectric functions are subsequently calculated using Lorentz
model. The predicted optical properties agree with both previous experiments and our own
measurements.

The complex dielectric function of h-BN in the mid-IR range is obtained from the four-

parameter semi-quantum Lorentz oscillator model?! 2343745
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where €., is the dielectric constant at the high-frequency limit, w is the photon frequency,
wro,m and yro ., are the frequency and linewidth of the m-th IR-active TO phonon, respec-
tively. wrom and yro., are the frequency and linewidth of the paired m-th LO phonon,
respectively. m goes over all the IR-active TO phonon modes. This model is considered to
be more accurate than the three-parameter model®4344,

In this work, the first-principles calculations are carried out using Vienna Ab initio Simu-
lation Package (VASP) package®®. The lattice structure is shown in Fig. 1. A full structural
relaxation leads to the lattice constants of a = 2.49 and ¢ = 6.48 A. The harmonic calcula-
tion at 0 K is performed using density functional perturbation theory (DFPT). Phonopy?*”
is used to extract the second-order IFCs. The anharmonic IFC calculations are carried out

with the finite displacement method using Thirdorder*® and Fourthorder®® packages.

To account for the phonon renormalization effect, we employ the TDEP method3¢. This



FIG. 1. Lattice structure of bulk h-BN. Lattice structure of h-BN, with one primitive cell

shown in the black wireframe.

involves simulating a set of thermal displacements of atoms at finite temperatures based on
the Bose-Einstein distribution and subsequently calculating the corresponding forces using
first-principles calculations. The temperature-dependent effective IFCs are then derived by
fitting the force-displacement pairs. A detailed description of this method can be found in
previous works?36-°0:51,

The phonon linewidth is calculated based on single-mode relaxation time approximation

(SMRTA), which has been demonstrated to be valid for predicting phonon linewidth and

dielectric function?>3>5%53, The 3ph and 4ph scattering rates are given by:
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where N is the total grid number of g-mesh and I' terms are scattering rates which can
be obtained from Fermi’s golden rule?*3%4°  In 3ph scattering, FS\,) v and PE\;\2A'/ represents
the combination (A + X — \’) and splitting processes (A — X + )\”), while in 4ph scat-
tering, F(;;,Jf\),,/\,,, , T E\J;,_/\),,/\,,, and FE\;,_/\),,X,, represents the combination (A + X + A" — X" ),
redistribution (A + X — A’ + X" ) and splitting (A — X + X"+ X" ) processes, respectively.

The total phonon scattering rate is a summation of 3ph, 4ph and isotope scattering rates

based on Matthiessen’s rule®: 7,1 = (77"")~" 4 (7,"")~! + (7°)~'. The phonon linewidth
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expressed in cm™! is then proportional to the zone-center optical phonon scattering rate as

2meyN = Ty L

All the phonon scattering calculations are performed with the ShengBTE*® package in-
tegrated with the FourPhonon module®. To reduce the computational cost, we adopted a
sampling-accelerated approach®°¢ to calculate 4ph scattering rates. This method estimates
the phonon scattering rates based on a subset of all phonon scattering processes and works
well for situations where the SMRTA is valid. More simulation details can be found in
Supplementary Materials.

The experimental measurement of the Eyg ;g mode linewidth is conducted between 200 K
and 600 K with intervals of 100 K. The h-BN flakes are exfoliated onto a silicon wafer and
characterized via AFM, indicating bulk thickness. Raman spectroscopy is conducted on
the chosen flakes using a low-power laser within a high-temperature cryostation, of which
Lorentzian lineshapes are fitted to the data yielding the Raman peak positions, intensities,
and linewidths (see Fig. S1). More experimental details can be found in Supplementary
Materials.

Symmetry analysis reveals that the irreducible representations of h-BN are 2A,, + 2B,
+ 2E5, + 2Ey,, among which 2FE,, are two Raman-active modes. For phonon mode £y, and
Ay, the transverse optical (TO) modes (Azy 10, E1uro) are IR-active, while the paired lon-
gitudinal optical (LO) modes (A2ur0, E1uro) would also have influence on the IR spectra.
The location of these phonon modes on the phonon dispersion is shown in Fig. S2. Given
that most experiments are conducted at room temperature, we first compare our results
with experimental measurements and other simulations at this temperature, as summarized
in Table I. Overall, our predicted phonon frequency and linewidth closely align with our
own measurement and other experimental work. The minor deviations in phonon frequency
may stem from the choice of pseudopotential and simulation software, which is discussed by
Cigarini et al.’”. Regarding Raman linewidth, it is worth noting that the prediction from
Giles et al.! significantly underestimates the experimental results. This discrepancy can be
attributed to their exclusion of 4ph scattering, which we have found to be responsible for
around 30% of the linewidth. Additionally, it is challenging to observe the low-frequency
Raman-active mode FEsg 1oy in Raman spectra due to its low intensity, small frequency, and
extremely narrow linewidth. Consequently, the linewidth of Ey, 0 has not been reported

in past Raman measurements that have been focused on the high-frequency Raman-active



TABLE 1. Phonon frequencies w (cm™) and linewidths v (cm™) of zone-center phonon modes at

300 K, compared to the values from other experiments and theory.

Summary Theory (This work) Theory (Literature) Experiments
WEyg pigh 1376 1354-1384°7%9  1364-13761316:27.60 1368 (This work)
Raman-active wg,, 42 37-5057 5127, 5260
modes Yy, g 7.54 4.141 7.727, 8.5, 7.740.1 (This work)
VEog 10w 0.31 - -
WEL Lo 1614 1573-16291%:57:59 1605-1623%13:15,16,28,59
WEy o 1364 1354-138415:57,59 1365-1370%13,15,16,28,59,61-66
IR-active  wa,, o 825 810%9, 8181 820-828%13,15,59
TO modes  wa,, 10 760 741-75615:57:59 760-810%13,15,59,61-66
and paired  vg,, 10 4.07 - 3.8%8
LO modes  vg,, 1o 5.49 - 6.4-7.11,28:58
VAsuro 1.34 - =
YAguro 2.03 - 258 22!

mode Fog high- Turning to the IR-active TO modes and the paired LO modes, Ref.?® ob-
tained both v.,0 and y7o by fitting the experimental result to Eq. 1, while Ref.*® only

obtained yro since they fit the experimental results to the three-parameter classical Lorentz

2 )

model, given by: e(w) = e (1 +> =z sfno_”:}ﬁ;‘;’;’tmw). Our predicted linewidths are in
good agreement with the experiments. Besides, most theoretical studies focus on the zone-
center optical phonon frequency, while the phonon linewidth is not addressed adequately in
theoretical works. Our study addresses this knowledge gap by focusing on phonon linewidth

calculations.

We now discuss the temperature dependency of Raman linewidth and the impact of
4ph scattering and phonon renormalization. As shown in Fig. 2a, the predicted vg,, .
using only 3ph scattering without phonon renormalization shows a linear relationship with
temperature and notably underestimates the experimental results. After incorporating 4ph
scattering, the predicted linewidth increases considerably, indicating a strong 4ph scattering
effect. However, the predicted total linewidth is much higher than the experimental results

and shows a much stronger temperature dependence. After we further include the phonon
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FIG. 2. Temperature-dependent phonon linewidth of Raman-active modes. a, vg,, .-
b, Comparison of contribution of 3ph and 4ph scattering to Vg, - €5 VEay 10, - Experimental

values are from Ref.1'27 and our measurement.

renormalization effect, we observe a reduction in the linewidth of Eog pien and a weakening
of the temperature dependency, agreeing much better with our experimental results which
contain appreciable uncertainties because of the relatively weak Raman signal from h-BN
far from resonant conditions!®, as compared to typical signals from graphene and TMDs
observed near resonance. We also see that the contribution of 4ph scattering exceeds 3ph
scattering at high temperatures (Fig. 2b). This observation reveals the important roles
played by both 4ph scattering and phonon renormalization in influencing the Raman phonon
linewidth, particularly at elevated temperatures. On the other hand, the Foq 0w phonon
mode shows a minor influence from 4ph scattering, and the predicted linewidth is further
reduced after incorporating the phonon renormalization effect, as shown in Fig. 2c. Note
that the linewidth of Esg 10y phonon mode is much lower than that of the Ey, pisn mode and
is less affected by 4ph scattering. This can be attributed to its lower phonon frequency
compared to the FEy, phign mode, which reduces the available decay channels and limits its

scattering rate. Generally, the scattering rate follows (Ti’ph)_l ~ w? for 3ph scattering and

(7'5\)’1’}1)_1 ~ w* for 4ph scattering. We also compared the frequency shift of Eog 10w against

the experimental results from the literature®”, as illustrated in Fig. S3.

Figure 3 shows the temperature-dependent linewidths for the IR-active TO modes and
the paired LO modes. Similar to our observations of Raman-active modes, the inclusion of
the 4ph scattering effect significantly increases the linewidths for these modes and enhances
their temperature dependency. Subsequently, when we account for the phonon renormaliza-

tion effect, the linewidths are reduced. Specifically, the predicted vg,,,, agrees well with
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FIG. 3. Temperature-dependent phonon linewidth of the IR-active TO modes and
the paired LO modes. a, 7g,, ;6. b; 78, 10- €, Comparison of contribution of 3ph and
4ph scattering to Yg,, 1o+ dy YAsur0- © VAsuro- £y Comparison of contribution of 3ph and 4ph

scattering to y4,, 1. Experimental values are from Ref.12858,

the experimental results (Fig. 3a). As for yg,, ., our prediction is in good agreement with
the experimental results from Segura et al.?®, while slightly lower than the experimental
data from Salihoglu et al.?®, likely due to defects and impurities in experiments that result
in additional phonon scattering (Fig. 3b). However, the temperature dependence of our
prediction and the experimental results are close, while the result without phonon renor-
malization shows a stronger temperature dependency. In the case of the Ay, 1,0 and Asy 1o
modes, Figs. 3d and e illustrate our predicted linewidths. The prediction of va,, ;, has
a consistent trend with the experimental result. We also note that 4ph scattering shows
significant or even leading contributions to the linewidths, especially at high temperatures,

as shown in Figs. 3c and f.

After obtaining the linewidths of IR-active phonon modes, we can now predict the
anisotropic dielectric function of h-BN using Lorentz model. Since there are already ex-
tensive studies on the zone-center optical phonon frequency of h-BN and the simulation

value is known to vary with different pseudopotentials®’, we take the experimental value



a b 500
200} |
. g gg 400r & Giles et al. ;
L oo v Salihoglu et al. %
100} &
ﬁ / \ ﬁlg, 300} szv
"w-ﬂ"i&‘ 3 "’g'é?( [ déi
NS P , :
¢ | P 2000 ko
9 2 G e € A
100 i}:‘ Y /P/ v, = 0‘;‘;
I o Giles et al. E ) 100l <;>7 / \ S‘VC{;
o Caldwell et al. g, Jo Q&
- H A4 > y
200} v Salihoglu et al. Y T % 5000 --.,-'.;-z'-‘é} %
740 760 780 7 1300 1350 1400 1450 740 760 780 7 1300 1350 1400 1450
Wavenumber (cm™) Wavenumber (cm™")
c d 700
300+ 300 K:
€ 600 ¢ 3ph+iso
200¢ 500 3ph+4ph+iso
I Renorm. 3ph+4ph+iso
100+
400} 600 K:
‘w OF - 3ph+iso
300+ 3ph+4ph+iso
+4ph+i
~100| 2001 Renorm. 3ph+4ph+iso
=200} 100}
-300+ 0
1320 1340 1360 1380 1400 1320 1340 1360 1380 1400
Wavenumber (cm™) Wavenumber (cm'')
e 100 f 200
L€ | €
50 150
w Of w 100
-50 50
-100 . . . 0 . . .
740 750 760 770 780 740 750 760 770 780
Wavenumber (cm™) Wavenumber (cm™')

FIG. 4. Anisotropic dielectric function. a, b, The prediction of ¢ and £, at 300 K compared

with experiments!*58.

Figures a and b are for the real and imaginary parts of the dielectric
functions, respectively. c-f, The prediction of dielectric functions at 300 K (dash line) and 600 K
(solid line) considering only 3ph scattering, 3ph+4ph scattering and 3ph+4ph scattering with

phonon renormalization effect. Figures ¢ and d are for ¢ and figures e and f are for ¢, .

of the phonon frequencies from prior experiment?®®

combined with our predicted linewidths.
Figures 4a and b show the dielectric functions in parallel (E || c-axis) and perpendicular (E L

c-axis) direction at 300 K along with a comparison to experimental results. Our predictions
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align well with the experimental results. Furthermore, while the impact of 4ph scattering
and phonon renormalization is relatively weak at room temperature, it becomes significant at
higher temperatures, as depicted in Figs. 4c-f. We also calculate the temperature-dependent
dielectric function, which is shown in Fig. S4.

In summary, this study employs first-principles calculations to predict the temperature-
dependent linewidths of zone-center phonon modes and the dielectric function in bulk h-BN.
Notably, we incorporate the contributions of four-phonon scattering and phonon renormal-
ization that have not been accounted for in prior reports. The predicted phonon linewidth
and dielectric function agree with the experimental results. Furthermore, our investigation
reveals the competing effects of four-phonon scattering and phonon renormalization in the

Raman and IR linewidths of h-BN, particularly at elevated temperatures.

SUPPLEMENTARY MATERIAL

See Supplementary Material for simulation and experimental details, Raman spectra,
phonon dispersion, frequency shift of Raman mode, and temperature-dependent dielectric

function.
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