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Abstract

A spline is an assignment of polynomials to the vertices of a graph whose edges are labeled by ideals, where the
difference of two polynomials labeling adjacent vertices must belong to the corresponding ideal. The set of splines
forms aring. We consider spline rings where the underlying graph is the Cayley graph of a symmetric group generated
by a collection of transpositions. These rings generalize the GKM construction for equivariant cohomology rings
of flag, regular semisimple Hessenberg and permutohedral varieties. These cohomology rings carry two actions
of the symmetric group S, whose graded characters are both of general interest in algebraic combinatorics. In
this paper, we generalize the graded S, -representations from the cohomologies of the above varieties to splines on
Cayley graphs of S, and then (1) give explicit module and ring generators for whenever the S,,-generating set is
minimal, (2) give a combinatorial characterization of when graded pieces of one S, -representation is trivial, and
(3) compute the first degree piece of both graded characters for all generating sets.
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2 N. R. T. Lesnevich

1. Introduction

Let G be a graph with edges labeled by ideals in C[t,] := C[t,...,t,]. A spline on G is an assignment
of polynomials to vertices such that the difference of two polynomials labeling adjacent vertices must
be in the corresponding ideal. The Cayley graph for a group G and generating set S C G has vertex set
G and edge set {(g,g5) | g € G,s € S}. When the group G is a symmetric group S,, and the generating
set S consists of inversions, there is a natural edge labeling for the corresponding Cayley graph. This
labeled Cayley graph, and thereby the splines on it, are entirely determined by the data of the inversion
graph I" = ([n], S). This paper determines algebraic structures of splines on Cayley graphs of symmetric
groups using the combinatorial data of the inversion graph I'.

To discuss the results below, we begin with some notation. Let I" be a connected simple graph with
vertex set [n] = {1,...,n}, and identify the edges in its edge set E(I") with transpositions in S,,. This
paper studies how properties of I" determine the algebraic structure of splines on the Cayley graph Gr
of S, with generating set E(I") and edge label (w,w(i, j)) > (tw (i) — tw(;)). Formally, the ring of
splines is defined as

Mr = {,5 € l_[ Clt.]

weS,

p(w) = p(w(i, ))) € (tw() — tw(j)) when (i, j) € E(F)},

with (graded) S,,-module structure w - 5(v) = wp(w~'v) and (graded) C[#,]-module structure given by
multiplication.

This definition of the ring of splines generalizes the case where Gr is the moment graph of a
geometric object called a regular semisimple Hessenberg variety and the ring of splines is isomorphic to
the equivariant cohomology of that variety [13, 16, 28]. We call this the geometric case, and in this case,
the corresponding graph I' is a Hessenberg graph, commonly characterized in algebraic combinatorics
as being the indifference graph of a 3 + 1- and 2 + 2-free poset. The more general setting considered in
this paper allows one to spot patterns in rich algebraic structure that would otherwise be restricted for
geometric reasons. For example, in the geometric case, M is always a free module over the polynomial
ring, whereas for general T, it is not.

The S,-module structure on M was first defined in the geometric case as the dot action on
equivariant cohomology by Tymoczko in [28]. There are two natural S,-equivariant quotients, Lr- and
Rr, of Mr that are in fact graded C-vector spaces. The graded S,-module structure of Mr induces
graded S, -representations on the quotients, admitting (via the Frobenius character map ch) two different
graded symmetric functions:

ch(Lp) = @ ch(Lr); and ch(Rr) = (] ch(Rr);.

13 L

These are manifestly Schur-positive symmetric function invariants of any simple graph.

The graded symmetric functions ch(Lr) and ch(Rr) are historically of interest to algebraic combina-
torists because of their connections to chromatic symmetric functions [8, 19, 25] and LLT polynomials
[3, 5, 19] in the geometric case. The two bases of symmetric functions we consider here are Schur func-
tions {s,} and homogeneous symmetric functions {h,}. In the geometric case, two major open problems
seek (1) a homogeneous basis expansion of ch(Lrp) ([1, 8, 12, 14, 18, 20, 25, 26], and many others),
and (2) a Schur basis expansion of ch(Rr) ([2, 7, 19, 21, 22, 23] and many others). Again, our object
of study is more general, and because of this, we can identify patterns otherwise masked by geomet-
ric structure. For example, the Stanley—Stembridge conjecture [27] claims that the homogeneous basis
expansion of ch(Lr) has only nonnegative integer coefficients (h-positivity) in the geometric case. We
observe below that this is not the case for general I', but s-positivity seems to occur whenever Mr is a
free module over C|[t,].

This paper begins with several fundamental properties of Mr. First, we establish the algebraic
structure of Mr as an invariant of the graph I.
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Lemma 1.1. An isomorphism of graphs I" = I"" induces a ring isomorphism of splines Mr = Mr and
equality of graded symmetric functions: ch(Lr) = ch(Lp) and ch(Rr) = ch(Rp).

In particular, Lemma 1.1 shows that the graded symmetric functions ch(Lr) and ch(Rr) are (Schur-
positive) invariants of unlabeled simple graphs. Lemma 1.1 is proved via Propositions 2.18 and 2.20
below.

Then when I is a tree, we determine explicit ring and module generators of Mt called coset splines
(Definition 3.4).

Theorem 1.2. If T is a tree, then the set of coset splines is a C[t.]-module generating set of Mr, and
the set of linear and constant coset splines is a ring generating set of Mr.

Since they generate, one can compute M explicitly with coset splines using a computer algebra
system. Theorem 1.2 is Theorem 3.7 and Corollary 3.8 below.

We use Theorem 1.2 to show that M is not always a free C[z,]-module, and ch(Lr) is not always
h-positive (see Appendix A). One example is if I' = ([4],{(1,4),(2,4),(3,4)}), then M is not a
free module and ch(Lr), is not A-positive. This also confirms that Mr is not always the equivariant
cohomology of an (equivariantly formal) algebraic variety as in [16], since in that case, Mr is a free
C[te]-module.

Our next main results, Theorems 1.3 and 1.4 below, explicitly compute certain graded pieces of the
symmetric functions ch(Lr) and ch(Rr). Specifically, we determine when graded pieces of ch(Lr) and
ch(Rr) are equal to ch(Lk,) and ch(Rg, ) where K, is the complete graph (I' = K, is a very special
geometric case), and we compute ch(Lr); and ch(Rr), for all connected graphs I'.

For a variety of reasons, for example by formulae in [25] or by some geometric observations, in the
geometric case, it is straightforward to tell from a Hessenberg graph H whether the symmetric function
ch(Lg ), corresponds to a trivial representation. We achieve an analogous result for arbitrary graphs.
The k-connectivity (Definition 2.2) of a graph is a combinatorial invariant that measures how many
vertices can be removed from a graph before it might become disconnected.

Theorem 1.3. Let I" be a connected simple graph. The following are equivalent:

1) The graph T is k-connected.

2) Forall d < k, the symmetric function ch(Lr), corresponds to a trivial representation.

3) Forall d < k, the d-th graded piece of Mr is isomorphic to the d-th graded piece of Mk, where
K,, is the complete graph on n vertices.

Geometrically, the d-th graded piece of Mk, is isomorphic to the 2d-th equivariant cohomology of
the full flag variety and is thus spanned by equivariant Schubert classes whose spline formula is given
in [6]. Theorem 1.3 is a consequence of Theorem 4.2 below.

When I is a Hessenberg graph, the first graded piece of ch(Lr) has been computed in a variety of
ways. The Schur expansion is computed by counting P-tableaux [25]. Expansions in the homogeneous
basis have been computed with P-tableaux [11], geometrically [10], as well as with splines [4]. Our
methods here most directly generalize those in [4].

Theorem 1.4. D Let " be any connected simple graph. The first-degree pieces of the graded symmetric
Sunctions ch(Lr) and ch(Rr) can be computed in both the Schur and homogeneous bases of symmetric
functions from the data of (1) cut edges of I' and (2) cut vertices of I' and the number of connected
components those vertices separate.

Formally, there exist a subset E1 of cut edges, a subset Ey of 2-connected subgraphs, a nonnegative
integer k € N, and a function e — A, from E to the set of partitions of n, such that

ch(Lr); = D Ay, + (B2 = 1)hpoy1 + khy

ecE,
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4 N. R. T. Lesnevich

and

Ch(RF)l = Z (h/le - sn) + |E2|Sn—l,l~

eck

Theorem 1.4 is Theorem 9.2 and Corollary 9.3 below. The subsets E; and E, are defined using a
combinatorial construction from the block-cut tree (Definition 6.2) of I" in Section 8.

The paper is structured as follows. Section 2 constructs M and proves some of the fundamental
algebraic properties, including the isomorphism of Lemma 1.1. Section 3 builds tools for computing
spline conditions from paths in I" and Gr. It also contains the construction of coset splines for trees and
the proof that coset splines generate M, Theorem 1.2 above. Section 4 leverages the tools in Section 3
to prove our result on k-connectedness, Theorem 1.3 above. Sections 5, 6, 7, 8 and 9 are all to compute
the representations in Theorem 1.4 above. Section 5 defines a set of linear splines on the graph Gr and
proves some linear relations within that set. Section 6 reduces the computation to a subclass of graphs I"
that will be used in all of the remaining sections. Section 7 proves that the set of splines from Section 5
is in fact a C-spanning set for linear splines, and Section 8 computes the C-dimension of this space.
Finally, Section 9 computes the first graded piece of ch(Lr) and ch(Rr), Theorem 1.4. Appendix A
contains a table of ch(Lr) and ch(Rr) for graphs with 3 or 4 vertices and a table of the rank-generating
functions for graphs of size 5 (which gives the graded dimension of the representations).

2. Background

There is a natural action of the symmetric group S,, on the polynomial ring C[#,] by

Wf(tl,...,tn)Hf(tw(l),...,tw(n)). 2.1

We use both one-line and cycle notation for elements of S,. We denote a permutation’s cycle notation
with parentheses and commas, and its one-line notation without, so that (1,2, 3) = 231.

2.1. Graphs: simple and Cayley

This subsection establishes the basic definitions, results and notation from graph theory needed below.
A graph is a tuple I' = (V, E) where V is the set of vertices and E C V X V is the set of edges. Graphs
here are understood to be undirected and simple (i.e., finite, loopless and without multiple edges). We
will always take I" to be connected and may remind the reader of this assumption where particularly
important. Write E (I") for the edge set of a graph I and V(I") for the vertex set. Inclusion v € I" means
v e V(I).

If the vertex set V has some natural linear order (in particular, when V = [n]), then an edge between
vertices i < j will always be written with the lower vertex first (i, j), unless explicitly stated otherwise.
Note that these edges are undirected, so an edge (i, j) is the same as an edge (j,i).

We denote graphs pictorially with circles as vertices and lines as edges between them; for example,

we would display a particular graph I" on 9 vertices as

G?@
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The induced subgraph of T with vertex set V\AisT'\A := (V\A,E’),where E' = EN(V\ AXV\ A).
We write I' — v for T" \ {v}. When collapsing a subgraph in drawing, we reference the subgraph in a
square to distinguish that there are multiple vertices being referenced, and double lines connecting to
acknowledge the possibility of multiple edges. For example, we may display I" above as

r\ {u}

if the structure within "\ {vy, v,} is not needed.

Definition 2.1. For a graph I, aset A ¢ V(I') is a cut set if "\ A is disconnected. Similarly, v € V(T")
is a cut vertex of I" (denoted v + I') if I" — v is disconnected.
Anedge e € E(I') is a cut edge if the graph (V(I"), E(T") \ {e}) is disconnected.

A path in T" from vertex v to vertex vy of length ¢ is a sequence of vertices (vg, vy, ..., v¢), Where
Vi, vis1) € E() for k =0, ...,£ — 1. Define the distance d(v,w) between v and w as the minimum
length over all paths from v to w, and let d(v, w) = oo if no such path exists.

Definition 2.2. A graph I' = (V,E) is k-connected if T" \ A is connected for all A C V such that
|A| < k-1.

In other words, a graph is k-connected if there exists no cut set A where |A| < k. The following is an
equivalent characterization used in §4.

Theorem 2.3 (Menger’s Theorem). A graph I is k-connected if and only if for every pair of vertices
i,j €T, there exist at least k vertex-disjoint paths from i to j.

An R-labeled graph is a tuple (V, E, L), where (V, E) is a graph and L is a function L: E — R for
some set R. A Cayley graph of a group G and a set of generators S is the graph (G, {(g, h) | g 'he S}H).
Cayley graphs are usually directed graphs, but all generators considered here will be involutions, and so
the Cayley graphs will be undirected simple graphs. Note that g~/ € S if and only if 4 = gs for s € S,
so edges in a Cayley graph correspond to right multiplication by generators.

This paper concerns graphs I on vertex set [r] and labeled Cayley graphs of the symmetric group
with generators being some set of transpositions. The edge labels are principle ideals in C|z,].

Definition 2.4. Let I" be a graph on [n]. Identify each edge (i,j) € E(I') with the transposition
(i, J) € S,. The labeled Cayley graph associated to T is Gr := (V, £, L), where

o V = Sl’l’

o &={(w,v) | wlveE()} and

o L(w,v) = <t,~ - tj>, where (i, j) = wy™l.
Note w™lv is conjugate to wv™!, so if w = v(i, j), then L(w,v) = (tw(i) = tw(j)) = {tviy — to(j))-
Note also that £ is defined whenever wyv~! is a transposition.

Example 2.5. Let I' = ([3],{(1,2),(2,3)}). Then Gr has vertex set S3, edges {(w,v) | w™lv €
{(1,2),(2,3)}, and labels of the form (t; — ¢;), where i, j € [3]. Below is Gr, with labeling ideals
denoted by generators.
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6 N. R. T. Lesnevich

Consider the edge (132,312). These permutations have their first and second positions swapped,
corresponding to right multiplication by (1,2) € E(I). The edge is labeled (f; — t3) because these
permutations have the entries 1 and 3 swapped, corresponding to left multiplication by (1, 3).

The I'-length of a permutation w € S, is
r(w) =min{€ | w=s;---5¢, {51,...,50} CE()}. (2.2)

This is also the value of d(e,w) in Gpr. When T is the path graph, I'-length is the traditional length
function on permutations.

2.2. Splines

This section introduces the ring of splines on a labeled Cayley graph. The lemmas in this subsection are
well known and straightforward, but we include proofs for completeness.

Definition 2.6. Let I" be a graph on [n]. A spline on Gr is a function p: S, — C[t.] such that
p(w) — p(v) € L(w,v) whenever (w,v) € E(Gr). The support of the spline p is the set supp(p) :=
{wlp(w) #0}.

To distinguish from polynomials, we always denote a spline with a bar.

Example 2.7. Again, consider I' = ([3], {(1,2), (2,3)}). Drawn below (omitting edge-labels) are three
examples of splines on Gr.

321 | 1 321 | 13
1 | 231 312 | & 2 | 231 312 | 13
o1 P2
| 213 132 | 1 213 132 | 1
| 321] 0 .
-1
231 3121 0
p3
213 1321 0
t—1

i3] o
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t—t ifw=213
So p1(w) =t forall w € S3, pa(w) = t,,(1y forall w € S3,and p3(w) = 13 — 12 if w =231
0 otherwise.

The set of splines is closed under addition, as well as multiplication.

Lemma 2.8. Let I be a graph on [n]. If p and & are splines on Gr, then so is 0 p, the spline constructed
via pointwise multiplication.

Proof. Let (w,v) € E(Gr). By assumption, p(w) — g(v) € L(w,v) and &(w) — & (v) € L(w,v). We
have

pW)T(w) = p(v)a(v) = p(w)a(w) —a(v)p(w) + T (v)p(w) — p(v)T(v)
=pw)(a(w) —a () +a()(p(w) - p(v)),

and the sum is clearly in L(w, v). )
Definition 2.9. The ring of splines on Gr is the subring

My = {,5 e ]—[ C[z.]

weS,

p(w) —p(v) € L(w,v) forall (w,v) € E(gr)}

of [,y es, Clte] with pointwise addition and multiplication.
Lemma 2.10. The ring Mr is graded by degree, so Mr = @izo ./\/l}

Proof. Let p be a spline in Mr and let g (w) be the k-th graded piece of the polynomial p(w). We
aim to show that py is a spline as well. For each (w,v) € E(Gr), the ideal £L(w, v) is a homogeneous
ideal. Thus, p(w) — p(v) € L(w, V), and it follows that o (w) — pr (v) € L(w, V), so Py is a spline. For
two homogeneous splines p and & of degrees p and ¢, respectively, the product oo is homogeneous of
degree p + ¢ on its support. O

We now construct two sets of splines and the identity spline, each are elements of M for all I'. Let

I =

0 S, > Clte] be I(w) =1 forall w € S,,,
it Sy > Clte] be f;(w) =1; forallw € S,,i € {1,...,n},and
1Sy = Clt] be Xi(w) =1, forallw € S,,,i € {1,...,n}.

=1

i

The ring M is an infinite-dimensional C-vector space in the natural way and can also be viewed as a
finitely generated graded C[7,]-module in two ways via the following module actions:

@, tn).p= [0, 1n)p (23)

and

f(t17'-~atn)'p-:f(x19"~7in)p-a (24)

where the right-hand side of both (2.3) and (2.4) work by substituting splines for variables in to the
polynomial f then multiplying as in the ring structure of Mr. For both actions, the constant f (0, ..., 0)
is naturally mapped to £(0, . ..,0)1. Since Mr is a C[t,]-submodule of [],, s,, C[ts] for either module
action, it is finitely generated. We call the module action (2.3) the left action and the module action (2.4)
the right action of C[t,] on Mr. Given any w € S, both actions may be twisted by sending f +— wf
first in the polynomial ring. Both the left and right actions are naturally compatible with the grading on
Mr.
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8 N. R. T. Lesnevich

Example 2.11. Let g € Mr and let f(t,) = 13 + 13 + 13. Let w = (1,2,3) € S,,. The left action of f on
p evaluated atany v € S, is

f(t).p(v) = [(7)° + (22)* +B)p| (v) = (17 + 15 +13)p(v),
the right action of f on p evaluated at any v € S, is

Ft).p(v) = [((F1) + (%2)* +%3)p | (v) = (l?,(l) + fi(z) +1,3)p(v),

the w-twisted left action of f on p evaluated at any v € §,, is

Ft).p(0) = [((Fwm)® + Tw@)? +1w3)p] (v) = (65 +15 +11)p(v),

and the w-twisted right action of f on p evaluated at any v € §,, is

F(t).p(v) = [((Fo1)? + (Fw@)? + Xw3)p] (v) = (fi(z) +f3(3) +1,(1)p(v).
The ring of splines has a S,,-module structure, originally defined for Hessenberg graphs in [28, 29].

Definition 2.12. Let p € Mr. The dot action of S,, on Mr is given by
w-p(v) = wp(w'v)

for w,v € S,. Any w € S, may twist the dot action by first sending v — wvw™' (conjugating by w).
Since conjugation is an inner automorphism of S,,, the standard and w-twisted S,,-module structures on
My are isomorphic.

Using our standard for visualizing splines, the dot action by w moves polynomials around Gr by
sending the polynomial at v to wv (for all v € S,) and then acts on every polynomial by w as in
Equation (2.1).

Example 2.13. The dot action of the transposition (1, 2) on the spline g3 from Example 2.7 is computed
below.

3211 0 3211 0
13 -1
231 312 0 0 | 231 312 O
(1,2) - =
213 132 0 0 |213 132
t— 1t 13 — 1
0 123
Hh—1

Computed below is the w = (1,2, 3)-twisted action of the transposition (1,2) on the spline p3 from
Example 2.7. Note this is the same as the untwisted action of (1,2,3)(1,2)(1,2,3)~! = (2,3).
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3211 0

13— 1

231 3121 0 h—13

(1’2) . =

213 1321 0 0 |213 132
-1 0

0 123

Remark 2.14. The dot action is well defined. We have for all (v{,v;) € E(Gr) that

wp(v1) = w-p(v2) =wp(w™'vi) —wp(wvy)
w(p(w™vi) = p(w'v2)

€ wﬁ(w_lv], w_lvz).

If vlvgl = (i, ), then w_lvlvglw = (w=l(@),w™1(j)). So

wLw v, wly) = <W(tw—l(i) - tW—l(j))> = <tl~ - tj> = L(vy,v2).
Thus, w - p(v1) —w - p(v2) € L(vi,v3),and w - p € M.

Finally, consider the quotients
= Mr,,_ -
Lr:= r/<t1,...,tn> 2.5)
and

Rr = MF/()h,. 2.6)

ey Xn)
Call Lr and Rr the left and right quotients of Mr, respectively. As C[¢,]-modules for the left and
right action, both quotients are MF/IMF’ where [ is the ‘irrelevant ideal’ (¢, ...,t,) of C[t1,...,t,].
Thus, L and Rr each inherit the structure of a finite-dimensional graded C-vector space from the left-
and right-module structure of Mr, respectively. Any homogeneous module-generating set over C[,]
projects to a spanning set over C in the quotient.

The ideals (71, ..., ,) and (X1, ..., X,) are homogeneous and S,-equivariant, and so the graded S, -
module structure on M projects to graded S, -representations on both L and Ry. Symmetric functions
are formal power series in {x, x2, ...} invariant under permuting the variables. The Frobenius character
map gives an isomorphism from the algebra of representations of symmetric groups to the algebra
of symmetric functions. The two bases of symmetric functions we consider are Schur functions {s,},
which correspond to irreducible representations, and homogeneous symmetric functions {h,}, which
correspond to induced representations of trivial representations on Young subgroups to symmetric
groups. Both Schur and homogeneous symmetric functions are indexed by integer partitions. Denote
the Frobenius character of these (g-graded) S,-representations as ch(Lr) and ch(Rr), respectively.
Since both ch(Lr) and ch(Rr) correspond to graded representations, and all representations are sums
of irreducible representations, both ch(Lr) and ch(Rr) are manifestly Schur-positive graded symmetric
functions.
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10 N. R. T. Lesnevich

Example 2.15. Again, consider I' = ([3], {(1,2), (2,3)}). Then
ch(Lr) = 53+ (52,1 +253)q + 53" = h3 + (ho,1 + h3)q + hag”
and
ch(Rr) = 53+ 252,19 + 53g°.

The following Lemma 2.16 is useful for computer calculations.

Lemma 2.16. Let I" and T’ be two graphs on [n], and T UT" := ([n], E(I') U E(I"")). Then
Mrur = Mr 0 Mp
Proof. This easily follows from the set-theoretic definition

My = {/3 e [ clnl

weS,

p(w) —p(v) € L(w,v) forall (w,v) € E(gr)}. O

2.3. Isomorphisms

It is natural to expect that if two graphs I" and T on [n] are isomorphic, that the resulting algebraic
structures on Mr and Mp should also have meaningful isomorphisms between them. This section
shows that an isomorphism I' — I"” induces a labeled-graph isomorphism Gr — G, aring isomorphism
Mr — My, a collection of different C[z,]-module isomorphisms M — M, and an S,-module
isomorphism Mp — M that leads to equalities ch(Lr) = ch(L) and ch(Rr) = ch(Rp).

Throughout this subsection, let I" and I’ be graphs on [n] and say that w: I' — T” is a graph
isomorphism. Then w is also naturally an element of S;,, viewed as a bijection from [#n] to itself. Let w
denote both the graph isomorphism and associated permutation.

Our first construction is an isomorphism between the corresponding labeled Cayley graphs. The
following Lemma 2.17 states that Gr and G~ are related as graphs by conjugation, and the associated
labels are related via the action on ideals induced by the action on polynomials in Equation (2.1).

Lemma 2.17. Let w: I' — T be a graph isomorphism. Then v — wvw™' is a graph isomorphism

Gr — Gp. Additionally, if L is the label on Gr, L' the label on Gy, and (vi,v2) € E(Gr), then
L' (wviw™ " wvw™) = wl(vy,v).

Proof. Conjugation is a group automorphism of S,,. Say (v, v,) € E(I') and in particular that v;lvz =
(i,j) € E(I'). Then
! 1 1 1
(wvlaf ) (wvzw’ ) =WV VW
= w(i, jw™!

= (w(i),w())) € E(I).

Thus, conjugation by w defines a graph isomorphism Gr — Gr. For the labels on Gr and G, the
computation above also shows that if viv;' = (p, q), then (i) (@) = (w(p). w(g)). It
follows that (wviw™, wvow™) € E(Gr) is labeled (t(p) = tw(q)) = @{tp —14). The claim follows.

O

Define Q: Mr — Mp by Q(p)(v) = wp(w 'vw). The following Proposition 2.18 proves Q is
a ring isomorphism and is actually a consequence of Lemma 2.17 and a more general Proposition of
Gilbert, Tymoczko and Viel [15, Prop 2.7]. We include the proof here for completeness.

Proposition 2.18. The map Q: Mr — My is a ring isomorphism.
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Proof. Let p € Mpr. First, we show that Q(p) € M. Let (v,v2) € E(Gr). By Lemma 2.17, there
is an edge (w™'viw, w 'vow) € E(Gr), and so p(w™'viw) — p(w vow) € L(w™ viw, w 'vow). Now
we have

QA (1) = QP (1) = wp(w™1w) - wp(w ™ v20)
= w(ﬁ(w‘lvlw) - p(w_lvzw))
€ wﬁ(w_lvlw,a)_lvzw) =L'(vi,v2).

Thus, Q(p) € Mp. It is easy to verify that this map is a ring homomorphism, and the inverse from
M to My is constructed in the same manner with the map w TV >T. m]

The following lemma gives three instances in which Q is also a module isomorphism between M
and Mp.

Lemma 2.19. The ring isomorphism Q is a module isomorphism from Mr to My with respect to the
following actions:

1. the left C[td]-action on Mr to the w-twisted left C[t.]-action on My,
2. the right C[t.]-action on Mr to the w-twisted right C[t.]-action on My, and
3. the dot action of S, on Mr to the w-twisted dot action of S,, on M.

Proof. Both C[t,]-module statements follow from two straightforward computations,

Q(#;)(v) = fwi(v) and Q(%;)(v) = Xop) (V).
Say for the left action, if f € C[t,] and p € Mr, then Q(f(t1,...,14).0) = f(Fw(1)s - s Lw(n)) (D),
precisely the twisted action. The same holds for the right C[f,]-action to the w-twisted right C[¢,]-
action. It is easy to show that ring isomorphism Q! is the inverse for Q as a C[t,]-module morphism

for both pairs of actions, and so Q is a C[z,]-module isomorphism as in (1) and (2).
Given the dot action on M, the induced action of u € S,, on p € M is

. p) = Qu-27'(5)).
To check that the action is compatible with multiplication of elements v, u € S,,, compute
v, (. p)) = (v.2(u- 7' (5))
- Q(V : Q‘IQ(u : Q‘l(f))))
ol (u-a')
= Q(vu Q7! (,5))
= (vu, p).
Now compute for u, v € §,, that
. = Qu-27 () (v)
= a)(u . Q_l(ﬁ))(w_lva))

= wu(Q‘l (ﬁ))(u_lw_lva))
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12 N. R. T. Lesnevich

1

= wuw_lﬁ(a)u_ w )

=wuw™ - pv).

This is precisely the w-twisted dot action of # on M. Again, by computing with Q! it follows that
Q is an S, -module isomorphism. O

Note that any generating set for the left or right C[z,]-module structures on M must necessarily be
generators for the w-twisted versions as well. As such, when searching for generators, we may choose
any graph isomorphic to I for explicit calculations.

Proposition 2.20. If T" and I’ are isomorphic, then ch(Lr) = ch(L) and ch(Rr) = ch(Rp).

Proof. Let w be an isomorphism from I" to I'”. The S,,-isomorphism € from Lemma 2.19 (3) preserves
the ideal (71, ...,f,) from M to M. Thus, we have a S,-module isomorphism from Ly to the w-
twisted L. Twisting by w is an inner automorphism of S,,, so the w-twisted L~ is in turn isomorphic to
the untwisted L~ as an S, -representation. The exact same argument holds for Rr and Ry. Isomorphic
representations have identical traces (i.e., equal characters), and the equalities follow. O

By Proposition 2.20, we may consider any graph isomorphic to I" when calculating ch(Lp) and
Ch(RF).

Corollary 2.21. The graded symmetric functions ch(Lr) and ch(Rr) are invariants of simple graphs.

3. Module structure of M

This section establishes some algebraic properties of M as a module over the polynomial ring C[z,]. It
begins with two results: one that establishes the size of a minimal homogeneous C|¢, |-module generating
set as an invariant of I" and a second that proves the module generated by constant and linear splines
is a free module over C|z,]. This section continues with subsection 3.1, which establishes an algebraic
relation that must be satisfied by elements of Mp. This section ends with subsection 3.2, which gives
an explicit and combinatorially meaningful generating set of M as a C[¢,]-module when I is a tree
(proving Theorem 1.2).

Before continuing, we will briefly describe what is already known in the geometric case. If T is a
Hessenberg graph, then

o Mr is a free C[t.]-module with a combinatorial formula for its rank-generating function [13], and
furthermore,

o M has explicit upper-triangular generators are achieved from a Biatynicki-Birula decomposition of
the corresponding variety [9, 13].

In the geometric case, the rank-generating function is equivalent (substituting g > g¢?) to the Poincaré
polynomial of the corresponding variety. If I" is not in the geometric case, then M is not always a free
module. We now prove that the number of generators in each degree of a homogeneous generating set
is still an invariant of I". We compute the minimal number of linear generators for Mt in Section 8.

A generating set F of a finitely generated C[z,]-module M is minimal if there exists a collection of
polynomials {cy | f € F} C C[ts] suchthat 3’ scpcy.f =0.Thency ¢ C\ {0} forall f € F (i,
no cy is a unit). In other words, no proper subset of F generates M. If M is graded, then a set F is
homogeneous if every element f € F is homogeneous.

The following lemma is known, essentially as a corollary to the graded Nakayama lemma, and holds
in greater generality (i.e., for other graded rings over a field). We include a proof for completeness.

Lemma 3.1. Let M be a finitely generated N-graded module over C[t,]. Then every minimal homoge-
neous generating set has the same number of elements of each degree.
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Proof. Let I = (t,) be the irrelevant ideal. As C[t']/l = C, the quotient M/IM is a graded C-
module. In particular, M/I M isa graded C-vector space of dimension (dy,...,d,), and we will
prove that any homogeneous minimal generating set for M projects to a graded basis in M/I M- Let
F = {f]i |0<i<N, ke[Ki], deg(f,i) = i} be a minimal homogeneous generating set of M with K;
elements of degree i. It is easy to reason that n = N since an element in M of degree greater than N is in
IF =IM (son < N), and ifle € IM, then F is not minimal (so n > N). In fact,if f € Fand f € IM,
then F is not minimal (f would be in the C[z.]-span of lower degree elements of F), and moreover,
since we are assuming that F is minimal, we know that the image of f € F in M/I M is nonzero. We
will show that K; = d; foralli=1,...,N.Letn: M — M/IM be the quotient map.

We know 7 (F) is a homogeneous spanning set for the graded vector space M/I M- Since M, TM s

a graded vector space, we may prove linear independence degree-by-degree. Say for cy,...,ck, € C
K,j ) Ki .
that 3 cxm(f) =0. We will show that ¢; = --- = ck, = 0. It follows that 77( > ckf]é) = 0, and
k=1 k=1
K; .
so . ckf; € IM. So there exists some finite set P that indexes two subsets {r, | p € P} C I and
k=1
K; . K .
{hp | P € P} € M suchthat ¥ crf, =2 ,ep7p-hp. Since 3 ci fi is homogeneous of degree i, it
k=1 k=1

suffices to consider only the i-th_graded piece of each element A p,.

Ky
Say i = 0. Since each r), € I has no degree 0 component, neither does 7, i, s0 kgl ckf,? = 0. Since

F is a minimal generating set for M, it follows that ¢y = - - - = ¢4, = 0.
Now say i > 0. Each h), is degree atmosti—1,50 3. ,ep 1p-hp € C[t.]{f({ |0<j<i, qge[K;]}. So

K;
QL kfi= D o = ) craltf.
k=1 peEP 0<j<i

1<g<K;

This is a relation in M of elements from F and thus cannot have any nonzero constant coefficients, so
c1 =+ =cg = 0. Thus, {n(f}) | k € [K;]} is a basis of the i-th graded piece of the vector space

M/I M- and so K; = d; is independent of the choice of F. ]
The proof of Lemma 3.1 also ensures that a minimal graded generating set of M with respect to
either the left or right module structure projects to a basis of Lt or Rr, respectively.

Lemma 3.2 below shows that the first graded piece of the C[f,]-module is free. Note Lemma 3.2 is
independent of the polynomial action chosen (e.g., left, right, and twisted alternatives).

Lemma 3.2. The C[t,]-submodule ./\/lﬁl generated by the constant and linear splines on Gr is a free

module.
Proof. Let (e, wy, w3, ..., wpy) be alinear order on S,,, where {1 (v) < {r(w) implies that v < w. Since
I" is connected, if w # e, there exists (i, j) € E(I') such that w(i, j) < w. . .

Let F = {]_l,fl, ..., fx} be a minimal generating set of Mﬁl, where each fi,..., fi is a linear

spline. Then {1, fi — fi(e)1,..., fu — fa(e)1} is a homogeneous generating set of the same size and
is therefore minimal by Lemma 3.1. This new generating set has the property that the 1 is the unique
spline whose minimal element is e, so assume that f(e) = 0 forall f € F\ {1}.

Let Fy, := {f € F | min(supp(f)) = v}. So F, = {1}. We iteratively construct a minimal generating
set such that |F,| € {0,1} for all v € S,,. Say that |F,| € {0,1} for all v < w, and |F,,| > 2. Let

F,, ={&1,...,8&r}. Since the linear order on §,, is an extension of I'-length, there exists (a, b) € E(T")
such that w(a, b) < w, and so g(w(a, b)) = 0 for all g € F,,. Thus, there exist cy,...,c, € C* such
that g;(w) = ¢;(tw(a) = Ww)). For j =2, ..., r, the spline g; — %g‘l is supported strictly above w. Let
’ J— Ca _ - Cr _
F'=(F\Fy)U {g1,gz - =&l 8 —rg1}
C1 C1
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14 N. R. T. Lesnevich

be still a minimal generating set, and |F;| € {0, 1} for all v < w. Iterate this process, letting F = F’.
Eventually, |F,| € {0, 1} for all v € S,,. In particular, this F is upper triangular with respect to our total
order (the minimal element in the support of each spline is unique to that spline), and so F' generates a
free C[t,]-module. O

We note that this submodule is precisely where this paper proves h-positivity in Theorem 9.2 and
Corollary 9.3.

3.1. Implied conditions on splines

This subsection gives algebraic conditions that an element p € M must satisfy that are not explicitly
in the definition. Specifically, given w, v € §,,, we want to infer conditions on p(w) — 5(v) when (w, v)
is not necessarily an edge in Gr. Let w,v € §,, and (w = vg,vy,...,Vv, = v) be a path from w to v
in Gr. Say for each edge (vi-1,vi) that vkv;f1 = (i, jx), so that L(vg_1,v) = <t,~k - [jk> for each
k=1,...,m. Then

pw) = p(v) = D (p(vi1) = p(ve)) € (tiy — 1), | k € [m]). 3.1)
k=1
Define
Iy = (twai) — tw(y | (i, j) € BC E(T)). (3.2)

Lemma 3.3 below is particularly useful when p € Mr satisfies p(v) = 0 for some v € S,,. Recall that
we identify B c E(I") with a subset of transpositions, and write w(B) for the left coset at w of the
reflection subgroup generated by the transpositions in B.

Lemma 3.3. Let T be a spanning tree of I'. Let v € w(B), where B C E(T). If p € Mr, then
pw) —p(v) € 1.
Proof. Let w™'v = by ---b,,, where by, ...,b,, € B.Let (w =vg,v{,...,V,, = V) be the path from w
tov, where v 'vi_y = by € Bforall k € [m]. Say that vy, = (i, ji), so that L(vi—1,vi) = tj, —1},.
By Equation (3.1),

pOw) = p(v) € (1, — 15 | k € [m]).

For each k € [m], since vivy!| = (ik, jk), we have that by = v;'vi_ = (vi' (i), v;' (ji)). Each edge
by € B, so the integers vi' (ix) = (wby - - bx) "' (i) and v ' (jk) = (why - - - b))~ (jx) must be in the
same connected component of ([n], B).

Since (wby ---br)~' = (b ---by)w™!, it follows that w=! (i) and w™!(j¢) are vertices in the same
connected component of ([n], B) for all k € [m].If (qo, ..., q¢) is a path in ([n], B) from go = w™' (iy)
to g¢ == w (jx), then 1y — 14, = 35, 14, — tg,, and thus, £, (i) — tw-1(j) € Ig- It follows that
tiy —tj, € Iy forall k € [m], and so p(w) — p(v) € I ;. O

A monomial ideal in C[¢,] is an ideal / generated by monomials. Monomial ideals are particularly
nice when computing intersections; if Iy = (my,...,my) and I = (ny,...,ne) are both monomial
ideals, then I1 N I = (lem(m;,n;) | i € [k], j € [£]).

Let T be a spanning tree of I', where E(T) = {(ai,b1),...,(ay-1,b,-1)}. Ideals of the form
(ta;, — tp; | (ai, b;) € B Cc E(T)) can be considered monomial ideals, via the graded automorphism

Clti,...otn] =2Clta, —tpys. - sta, | — b, stn]

ta, —tp, ifie[n—1]
th ifi=n
the ideals /)] from Equation 3.2 can also be considered as monomial ideals (taking care to fix 7" and

defined by #; . Since t; + t,,(;) is also a graded automorphism of C[t,],
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w € §y,). We will fix T and w and then treat ideals of the form /}; as monomial ideals to compute
intersections in the proofs of Theorem 3.7 and Lemma 4.1 in the following two sections.

3.2. Coset splines and trees

This subsection establishes a set of splines called coset splines (Definition 3.4) that generate Mr as a
module over the polynomial ring when I is a tree. This subsection also identifies a subset of those coset
splines that generate Mr as a ring when I' is a tree.

Definition 3.4. Let I" be a tree, E := E(I') and B C E. The coset spline at the identity f5: S, —
Clte] is

. I (tway —twip) we(B)
f.(w) = @.))EE\B
0 otherwise

The coset spline at w is f:ff :=w - f£B. We adopt the conventions that a product over the empty set @ is
1 (so £2 = 1) and that the subgroup generated by the empty set is the identity (so (@) = {e}).

Example 3.5. Again, consider I = ([3], {(1,2), (2,3)}). Drawn below are three examples of coset
splines on Gr-.

321 1
1 |231 312 1 13 —1
7{(1,2),(2.3)} 7{(2.3)}
123 312
1 {213 132 1 0 |213 1321 0
321 0
123] 1 0
0
231 312 0
(]
132
213 132| (11 —13)(t3 —12)
0

5 o

Lemma 3.6. When T" is a tree, coset splines are elements of M. Additionally, if w,v € S, are in the
same coset of (B), then fB = fB.

Proof. Tt suffices to show £ is a spline. Let w € (B) and v € S,,, where vw™' = (i, j) € E.
If (i,j) € E\ B, thenv ¢ (B), and so fB(v) = 0. Thus, fZ(w) - fB(v) =twi) — tw(j) € LW, V),
as desired.
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16 N. R. T. Lesnevich

If (i, j) € B, then

P -i2om=[] te-twen)= ] (wiines = teeie)

(r1,s1)€E\B (r2,52)€E\B
=w ]_[ (trl - tsl) - (17 .]) ]_[ (trg - tsz)
(r1,s1)€E\B (r2,52)€E\B
=wl D gpalt)il't - (i,j)( > grs(t.)ti’tj)
0<p.q 0<r,s
=w Z 8pq(ta) (17 t] =117 |.

0<p.q

As tl{’t;[ - z‘iqz‘j7 € (t; — t;), it follows that fB(w) — fB(v) € (tw() — tw(j)) = L(w,v). Thus, fB isa
spline.
Now we prove that coset splines are uniquely determined by the coset. For all u € (B), we have

- u I1 (tu—l N ) u='w € (B)
u- fE(w) = ((i,j)eE—B v W) )

0 otherwise
[T (twiy—twiy) we(B)
= { (i,j)€E-B
0 otherwise
= f2(w).
If w(B) = v(B), then w = vu, for some u € (B), and so
W=w- =) fE=v-u fy=v- 2=} o

Note that the following Theorem 3.7 is independent of the left or right module structure.

Theorem 3.7. Let T be a tree. The set of coset splines { fE | w € S,,, B C E(I')} is a C[t.]-generating
set of Mr.

Proof. Letp € My, wewill show that p € C|[t,.] {fg” | w e S,, B C E(I')} by induction on containment
of the support supp(p). If p = 0, this is clearly in the span of the coset splines, and the base case
supp(p) = 0 is done. Otherwise, supp(p) # 0, and we assume all splines kK where supp(k) < supp(p)
are in C[t.]{fé" | w e S,, B C E(')}. Replacing g by p — p(e)1 if necessary, we assume p(e) = 0.
This also handles the case where supp(p) = Sy.

Fix w € S, such that 5(w) # 0 and w is adjacent in Gr to some w’ € S, where p(w’) = 0. Define

B,, ={B| B c E(I'), 3v € w(B) such that p(v) = 0}.

Since p(w’) = 0, this set is nonempty. Each element in B,, is a generating set for a reflection subgroup
whose left coset at w contains an element not in supp(p). Note if B ¢ B’ and B € B,,, then B’ € B,,,.
By Lemma 3.3,

p(w) € ﬂ = ﬂ {twiy = twij) | () € BC E(T)) = T (3.3)
BeB,, BeB,,

Following the logic of Subsection 3.1 (i.e., treating {t,, (i) = tw(;) | (i, /) € E(I')} as variables), T} is a
monomial ideal generated by the monomials that are contained within every element of the intersection.
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A monomial m =[] (tw(i) = fw( j))a” is contained within the ideal I[‘)“’ if and only if for every
(i.j))eE
B € B, there is at least one (i,j) € B such that a;; > 0. For generators of 7, it suffices to
consider only those monomials such that @;; € {0, 1} for all (i, /) € E(I). Since a;; € {0,1}, the
monomials that generate Z)” are a subset of { fB(w) | B ¢ E(I)}. In particular, we have the equality
(FPw) | D S E(D), fP(w) e Ty) =T},
Consider the coset splines {f2 | fD(w) € 7y }. By definition, for any D c E(I'),

o= Tl two-two

(i,/)eEM\D

Now f,?(w) € Z) if and only if (E(T') \ D) N B # 0 for all B € B,,. Thus, f,?(w) € Z} if and only if
B ¢ D for all B € B,,. Since B,, is closed under supersets, f2(w) € 7y if and only if D ¢ B,,. Thus,

p(w) ey = (fv?(w) | forallv € w(D), p(v) # 0).

Let f € Clt.]{fP | forallv € w(D), p(v) # 0} such that 5(w) = f(w) (a different f may
be chosen for the left and right module structure, but either way, such a f exists since it is only
required to agree with p at w). Since supp(f) < supp(p) and f(w) = p(w) # 0, it follows that
supp(p) 2 supp(p — f). Thus, 5 — f € C[t]{f} | w € Sp, B C E(I)}. Since f is also a sum of coset
splines, p € C[t]{f} | w € Sy, B C E(I)}. O

The collection of all coset splines is not a minimal generating set. One might significantly decrease
the size of this set by fixing the linear order on S,, in the proof of Lemma 3.2, and only considering
the largest (by support) coset splines supported ‘above’ a permutation. There is no guarantee that these
generators are minimal for all degrees, but it is easy to reason that this collection is minimal for the
module M1§2 generated by the constant, linear and quadratic splines.

We also achieve a generating set for Mr as a ring in Corollary 3.8 below.

Corollary 3.8. Let I be a tree. The constant and linear coset splines along with either {t; | i € [n]} or
{x; | i € [n]} generate Mr as a ring.

Proof. It follows immediately from the definition that

T B ARl

seE(D)\B

So every coset spline except 1 is a product of linear coset splines, which generate Mr together with
either {f; | i € [n]} or {X; | i € [n]} by Theorem 3.7. O

We can leverage Theorem 3.7 to compute M- for all graphs I'. Any graph I can be expressed as the
union of spanning trees T' = T} U - - - U Ty.. Lemma 2.16 says that M = ﬂf-il M, and Theorem 3.7
gives explicit generators for each My, . This is most useful in computer calculations, where the task of
constructing modules from generators and intersecting them can be completed by a computer algebra
system.

4. Connectedness and M{i

This section proves an equivalence between the k-connectivity of I and which graded pieces of the
representation ch(Lr) are trivial.
Lemma 4.1 below infers new conditions on M from collections of vertex-disjoint paths in I".

Lemma 4.1. Say that there exist k vertex-disjoint paths fromitojinT. Let T = ([n], E(T) U{(i, j)}).
Then M{i_l = MF,‘I.
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18 N. R. T. Lesnevich

Proof. We will show both directions of containment. Clearly, ./\/ll’i_1 2 /\/llli,_l.
Say that p € MI’i_l, and let w,v € S, such that w™'v = (i, ). Let p, = (i,8,.1,... , S, J) for
r=1,...,k be the k vertex-disjoint paths from i toj in I". By Lemma 3.3,
PW) = (V) € (tw(i) = w (s Twlse) = bwlspa)s -+ s Bw(see) = Iw(i))
= (@) = tw (s Tw(@) = Pw(sp)s -+ o2 Tty = w(s,))

forallr = 1,..., k. Since the paths py, ..., pg are vertex independent, the set of edges

k
A= {(l,])} U U{(l’ Sr,l)v (Sr,hsr,Z)a ey (Sr,é’r—l,sr,fr)}
r=1

contains no cycles and thus forms a tree. In particular, we may consider {t, — t, | (a,b) € A} as
monomials in C[z,]. Let s, o := i when it is convenient for indexing. It remains to compute

k
p(w) € ﬂ(fwa) = L (s tw(spo) = w(sn)s - > Iw(srp 1) = Tw(sr0) )

r=1

tW (l) - tw (]) 4 1_[ tW(Sr,m;-fl) - tw(sr,mr)

r=1

0 < m, £€r>.

Each generator of this ideal is a homogeneous polynomial, one of degree 1 and all others of degree k.
Since p(w) — p(v) is degree k — 1, it follows that p(w) — p(v) € (tw (i) — tw(j))-

Since v, w were arbitrary such that w™'v = (i, /), we know that 5 € MF!. Since 5 was arbitrary,
Mllg—l C Mllg—l. O

Theorem 4.2. Let I" = ([n], E) be a connected graph on n vertices. The following are equivalent:

1. T is k-connected.
2. Mﬁ = M%n forall d < k, where K,, is the complete graph.
3. c¢h(Lr), is trivial for all d < k.

Proof. (1) = (2).If T is k-connected, by Menger’s theorem, every (i, j) € [n] X [n] has k vertex-disjoint
paths connecting them in I'. By Lemma 4.1, /\/lk I= ./\/lk L

(2) = (3). The ring M, corresponds to the equlvarlant cohomology of the full flag variety, where
the dot action is known to be trivial [28].

(3) = (1). Assume that I" is not k-connected. Let d be the integer such that I" is d-connected but not
(d + 1)-connected (so 0 < d < k). We will show that ch(Lr),, is not trivial. Then I" has a cut set of size
d, and so T is (isomorphic to) a sub-graph of the graph H = ([n],{(i,j) | 1 <i<j<{l+dorf<i<
Jj < n}) drawn below:

(the center K, is the cut set). The graph H is also d-connected. By (1) = (2), the graded pieces
./\/lp = ./\/lp = ./\/lp for all 0 < p < d. Since I' is an edge-subgraph of H, it follows directly from the
deﬁnltlons that Mr oM H-

If I = (t1,...,tn), then for any graded C[t,]-module M = &,>oM?, the following equality is by
definition

M, \'_Mm"P
(/IM) =" IM A mP-
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Since multiplication by elements in / must increase degree, the d-th degree component of /M and the
d-th degree component of /Mg are equal. In particular,

IMp 0 M = I(MET) 0 M = 1(ME) 0 M= EMy 0 M.

It follows that for the quotients

M d_Md _Md (M d
( r/IMr) = IMeaMES F/IMHmMg—( F/IMH) ’

we get containment in the vector spaces

o= (100 = (0,2 (00, =

In particular, the representation with character ch(Lg ), is a sub-representation of the representation
with character ch(Lr),. The graph H is in fact a Hessenberg graph, and it is easy to compute with
P-tableaux from [25] that the d-th graded piece of ch(Lpy) is non-trivial, so the d-th graded piece of
ch(Lr) contains a nontrivial sub-representation and is thus nontrivial. m]

Remark 4.3. The graph H in the proof of Theorem 4.2 is the Hessenberg graph associated to the vector

£ times
—_—

h=({+d,...,{+d,n,...,n).

The 3 + 1- and 2 + 2—free poset P on [n] for which H is the indifference graph has relations {i <p j |
ie[f], je{d+t+1,...,n}}.

The following corollary is a consequence of Theorem 4.2.

Corollary 4.4. If T is k-connected, then ¢h(Rr), is equal to ch(Rg,) o Which is the d-th degree piece
of the graded regular representation.

5. Generators for linear splines

The remaining sections are devoted to computing the first degree piece of the graded symmetric functions
ch(Lr) and ch(Rr) for all connected graphs I". We show that the first degree piece of M is computable
from the data of cut vertices and cut edges, in particular the block-cut tree of I (Definition 6.2).

This section defines a set Fr that we will eventually show is a C-spanning set for /\/llr Subsection 5.1
proves several C-linear relations within the set /- that will turn out to be sufficient for reducing to a basis.

First, we will introduce (in fact, reintroduce) a collection of linear splines that depend on cut edges
in . Let s = (i,j) be a cut edge of I', and let G5 be one of the two connected components of
([n], E(T) \ {s}). We are free to choose either component; see Remark 5.1 below. For each subset
A C [n] such that |A| = |G|, we define f3: S, — C[z,] by

s _JIwe) —tw(y) if W_I(A) =V(Gy)
Falw): {0 otherwise,

for all w € §,,. We associate to I" the collection
Cr = {f} | sisacutedge of ', A C [n], |A| =|G,l}.

Note that these splines £ "} are actually the linear coset splines from Definition 3.4. We make the change in
notation for several reasons, one being that the subset A uniquely determines the coset whose support is
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f "1 (as opposed to many elements w defining the same 1By, Since G is one of two connected components
in the graph ([n], E(T') \ {s}), it follows that v € w(E(T") \ {s}) if and only if w(V(G;)) = v(V(Gy)).
In particular, we have equality f5 = f5 precisely when B = E(I') \ {s} and w™'(A) = V(Gy).

Remark 5.1. When defining f* "> we chose G to be one of the two connected components in the graph
([n], E(T) \ {s}). This choice does not affect the set of splines in Cr. More precisely, if H is the other
connected component in ([n], E(T) \ {s}), then |H| = n — |G|, and we have that

tw(i) = tw()) if W_l(A) =V(Gy) _ tw(i) = tw()) ifw_l(AC) =V(H)
otherwise

~ B
fA(W) B {0 0 otherwise.

In particular, for a fixed cut edge s, the set of linear coset splines { f° "} associated to that cut edge is
unaffected by the choice of G.

Now we will introduce a (truly new) collection of linear splines that depend on cut vertices j and the
connected components of I — j, as well as an integer k. Let j + I" be a cut vertex, G be a connected
component of I' — j, and k € [n]. We define y‘é; - Sn — Clz.] by

i ke — tw(j) ifw_l(k)EG
Lo (w) = J
Y6k ) 0 otherwise
for all w € §,,. We associate to I the collection

Yr = {y’c k|j + I', G aconnected component of I' — j, k € [n]}.

Finally, recall the splines 7, := {#; | i € [n]} and &}, := {X; | i € [n]} from Subsection 2.2. Now we
define

Fr=T,UX,UCrVulr. 5.1

We will eventually show that Fr is a C-spanning set of /\/111_

Example 5.2. Let I" be the graph drawn below.

@ 4 8 10 12

s

Since I' has three cut edges (1,4), (8, 10), and (9, 10), we have that

Cr = {fjl"” | Ac[12], |A] = 1} U {ff’l‘” | A c[12]. |A]| =8} U {ff’w) | A [12], |A] = 1}.
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One such element £°:'%

© € Cr takes the form

-
70.10) .\ ._ Jtw©) ~twao) W ({6}) = {9}
f{é} (w) : {O otherwise,

and is supported on the coset {w € S,, | w(9) = 6}.
Since I has three cut vertices 4, 8, and 10, we have that

{1}, {1,..,,5},

Vr=1364V(G) € {23}, . ke[12] fUSTE V(G e {67}, . ke[l2]
5,...,12} {9,...,12}
{1,...,8},

USTaelV(G) e {9% . ke[12]
{11, 12}

One such element yﬁ; 5 € JYr takes the form

F () =BT wE wl(3) € {6.7}
{6,7}.3 "o otherwise

and is supported on the set {w € S,, | w(6) =3 or w(7) = 3}.
Now Lemma 5.3 below shows that Fr is in fact a subset of M%
Lemma 5.3. Let I be a graph on [n]. The four sets T,, X,, Cr and Yr are subsets of Mr.

Proof. We already know that #; and x; are elements of M for all i € [n], so 7T, and X}, are subsets.
Now we show that each element of Cr is a well-defined spline. Recall that these are coset splines,
and so are well defined for trees. If s is a cut edge of I', then every spanning tree 7 of ' must have s
as an edge. Fix A C [n], where |A| = |G|, and for all spanning trees 7, choose T to be the connected
component where V (T) = V(Gy). It follows that 3 € My for every spanning tree 7, and so f3 € M
by Lemma 2.16. )
Finally, we show that every element yé» « € Vr is alinear spline on Gr. We will verify this from the

definition, edge by edge. Let (w,v) € E(Gr), where w = v(p, ¢q). We prove that yé,k(w) - j/jG’k(v) €
L(w,v) = (ty(p) — tv(g)) in three cases, depending on the values of w™! (k) and v=' (k).

Case 1: w™!(k),v™'(k) ¢ G. Then by definition both yJG’k(w) = 0and yé’k (v) = 0, so the difference
is clearly in L(w, v). _

Case 2: w™l(k),v"'(k) € G. So y’G’k contains both w and v in its support. We compute from the
definition that

T W) =35, (V) =t =t () =t + 10 ()

= by = () = £(tv(p) ~tvig) J€1{p.q}
=t o = |
! 7o jé{p.q}.

In either case, this difference is in the ideal L(w, v). )

Case 3: w!(k) € G, v™'(k) ¢ G. In particular, w is in the support of y"c’k whereas v is not. Since
wl (k) = (p,q)v~'(k), we know that one of either p or ¢ is in G and the other is not. Without loss
of generality, say p € G and ¢ ¢ G. In particular, w™' (k) = p and v~!(k) = ¢. Since (p,q) € E(T')
and the only element in [n] \ V(G) that elements of G are connected to is the vertex j, it follows that
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v (k) =g =j.Sov(q) = kand w(j) = v(p,q)(j) = v(p). Compute that
6., W) =56, (0) =tk = tw () = tuig) = bo(pag) () = Tvig) ~ o(p) € LW, V).

Thus, y{;’ « is an element of M. O
The splines in Fr are defined from graph properties that are intrinsic to the isomorphism class of I".

Lemma 5.4 below makes this precise.

LemmaS5d4. Letw: I' — T be a graph isomorphism and Q be as in Subsection 2.3. Then Fr = Q(Fr).

Proof. 1t follows directly from the definitions that Q(X},) = &}, and Q(7,,) = Ty,.

The image of the coset spline ji(\i’j ) e M r can be computed to be the coset spline fv(vvfl((ik)w WD e m r,

where we consistently choose the connected component w(Gj). From this, it is straightforward from

the definitions to verify that Crr = Q(Cr)
Similarly, it is easy to verify that y7, , yngG)) w (k> and so Y = Q). o

By Lemma 5.4, it suffices to prove that Fr spans ./\/llL for any particular graph in isomorphism class
of I'.

5.1. Some relations

This set Jr is not a C-basis of ./\/llF Indeed, the following Lemmas 5.5, 5.6 and 5.7 give relations
between elements of Fr-.
The first set of relations in the Lemma 5.5 are relatively straightforward.

Lemma 5.5. Fort; € 7, X; € X, fz € Jr and )'sz « € VI, the following relations hold:
n _ n _

(l) Z Xr = Z ty,

r=1 r=1 o
() if (i, ]) is a cut edge and G ; j) is the component containing the vertex i, then Y, fX’J) =X —Xj,

A
where the sum is over all A C [n] such that |A| = |G(,~,J-) |,
n .

3) if j+ T, then ki—jl yg,k = (rngr) — |G|x; for any connected component G of I — j, and
@) if j+ T and k € [n] is fixed, %in,k =ty — X, where the sum is over all connected components G

of ' —j.
Proof. Relation (1) is easy, as is relation (2) once it is noted that the support of each ff(‘i’j ) for a fixed

(i, ) is disjoint. Fix w € S,,.
For relation (3), compute that

n
ZﬁJG,k(W)= Z k= tw(j) = Z i [ =Gl
k=1

ke[n] ke[n]
wl(k)eG wl(k)eG
= (Z twir) | = 1Gltw () = ((Z T | = 1G1xj [(w).
reG reG

For relation (4), note that either w™!' (k) = j or w™! (k) € G for one and only one connected component
G of ' — j. As such, if w™!(k) = j, in which case w is not in the support of any of the yé . and

likewise 7 (w) — %;(w) = 0. Otherwise, w™! (k) € G for some particular connected component G and
y’G (W) =t —t,,(j. This is precisely 7 (w) — X;(w), and we have (4). O
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Lemma 5.6 below shows that if j is a cut vertex and a connected component G of I — j is connected to
jbyacutedge (i, j), then the spline 7/ G.x can be written as a sum of other splines from Jr. In particular,
it will allow us to remove from Fr- the splines in V- that correspond to components connected by cut
edges.

Lemma 5.6. Let I be a graph, j a cut vertex and (i, j) a cut edge, choosing G ; j) to be the component
containing the vertex i. Let C be the connected component of the forest with vertex set V(G ;) U {J}
and edge set {s | s is a cut edge of G ; j} U {(i, j)} that contains the vertex j. Then for all k € [n],

Z Z ka+ Z Z fA ij(i,j)’k’

veC—j acE(C) A3k
vl GﬂC 0 |Al=]Gal

where G in the first double-sum is a connected component of I —v, where G , is the connected component
that is a subset of G (; jy, and where A in the second double-sum is a subset of [n].

Since Lemma 5.6 is rather technical, we will walk through an example before seeing the full proof.
Let I" be the graph on 13 vertices below:

(1) 8 — * /\ 13
where (11, 12) is cut edge and G (11,12) is the component that contains 11. The forest of cut edges with

vertex set V(G (11,12)) U {12} has edge set {(1,4), (8,11), (9, 11),(10,11), (12, 11)}. If we mark in I"
the component of this forest that contains the vertex 11 with double lines, we get the following graph:

In essence, Lemma 5.6 says that for all £ € [13], the spline )7 can be written as a sum of some

1,12) .k
splines in Cr associated to the cut edges (8, 11), (9, 11) and (10, 1 1) (since they are a part of that marked
tree) and some splines in Vr associated to cut vertex 8, since I' — 8 has components that ‘hang off of’
that marked tree.

For each of the cut edges a € {(8,11),(9,11),(10,11)}, we must choose G to be the component
contained within G (11,12, S0 V(G(g’ll)) ={L,..., 11}, V(G9,11)) = {9}, and V(G(lg’n)) = {10}.

More formally, Lemma 5.6 states that for all k € [13], the following equality holds (we will denote
the specific subgraph by their vertex set):

(8,11) (9,11) (10,11) FULI) _ 12
Tkt Vomat Dy Ja 0 2 I R DT Y.k

|A|=8 |A|=1 |Al=1 |Al=11
keA keA keA keA

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press



24 N. R. T. Lesnevich

The proof proceeds in cases by the value of w™! (k). For example, say we wished to evaluate both sides
of the above expression at a w € S;3 such that w™' (k) = 3. This makes it easier to determine which
splines in the sum above on the left are supported at w. In particular,

. 351, (%) = i = tw sy since 3 € [5],
2. y§6 7 k(w) = (0 since 3 ¢ {6,7},
Yiars Fao M (W) = t8) — tw(11) since the set A = w(V(Gs,11)) contains w(3) = &,

»

keA
4. Siaer £ (w) = 0and 3 a7 (w) = 0since k ¢ w({9}) and k ¢ w({10}), and finally,
keA

keA
(11,12 . .
5. A1t f/g )(w) =ty (11) — tw(12) since the set A = w(V (G (11,12)) contains w(3) = k.
keA
If we add these all up, the sum telescopes and the evaluation is
(tk = tw(s)) + (tw(s) — tw(iny) + (wn) = tw(12)) =tk = tw(12)

which is precisely y ﬁl] (w). The essence of the proof, which we will now provide, is that the splines in

the sum with support at a particular w € S,, can be determined from any simple path from w~! (k) to j
and that the sum always telescopes as it did in the example above.

Proof of Lemma 5.6. Letw € S,,. We will show that both sides of the claimed equality are equal when
evaluated at w. Let k € [n], and we will proceed in cases based off of the value w=! (k).

First, say w™! (k) ¢ V(G i,j))- All paths that begin in G; ;) and leave must contain the edge (i, j)
and thus visit the vertex j. In particular, for any v € C where ¢ + I, the connected component of I" — v
that contains w™! (k) also contains j € C. So w™' (k) ¢ G for any G in the first double-sum, and so

Z Z V6. w) =0.
G

veC—j
vl GNC=0

If a € E(C), then G, was chosen to be contained within G; jy, so wl(k) ¢ G, as well. In particular,
if k € A, then w™'(A) # G, and so

> Fiwm=o.

acE(C) A3k
|Al=1Gal

It is direct from the definition that yVG(l ok (w) = 0, and so the claim holds when w™' (k) ¢ G, j)-
LJj)>

Now assume that w™! (k) € G j). Let P = (po, ..., p¢, pe+1) be a simple path from po = w™! (k)
to pes1 = j. Note that p, must be the vertex i. This path P may start outside of C, but must eventually
enter the tree C. Say that m € {0, ..., £} is the lowest index such that p,, € C. Since i € C and p, = i,
this integer m does exist. Simple paths from vertex to vertex within trees are unique, so there is a unique
simple path from p,, toj in C. This path is P€ = (py, ..., pes1).

First, we will determine the value of f/‘j(w) for a € E(C). Say the edge a € C is not an edge
in the path PC. Then the vertices w™' (k) and j are in the same connected component of the graph
([n], E(T) — a). In particular, w™' (k) ¢ G, so if k € A, then w™'(A) # V(G,). It follows that for all
Asuchthatk € A, if a ¢ P€, then f{(w) = 0.

However, if a € P€, then we may let A := w(V(Gy)), and then k € A. So for each a € PC,
there exists a single spline fX in the sum that is supported at w. In particular, if a = (p, ¢q), then

FAW) =t (p) = twig)-
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At this point, we have that

Z Z VG (w) + Z Z = Z Z VG (W) + Z Tw(p) = tw(qg)-

veC—j acE(C) A3k (p.q)eP€
vl GﬂC 0 |Al=1Gal wl" GﬂC 0

Now we will have two cases: if w™! (k) € C and if w™' (k) ¢ C.
Case 1: w™!(k) € C.Som = 0. Then forall v € G i,j), if a connected component G of I" — v contains
wl (k), then so does G N C. In particular,

DD Feaw=0

veC—-j G
vl GNC=0

Now we compute

4
Z Lwv) =lw(r) = wam) ~Iw(pis)

(r,v)eP€ i=0

=tw(po) ~ tw(pest)
=1l — tw(j)-

This is precisely y{ (w), and so the equality holds if w™! (k) € C.

Case 2: w™!(k) ¢ C. Then m # 0, and consider the vertex p,,_;. Since p,, € C and I" - p,,, separates
w~l(k) from j, the vertex p,, is a cut vertex of I". If v/ € C is any vertex other than p,,, then p,,
and w™!(k) are in the same connected component of I" — v/ (connected via the path (po, ..., pm)). In
particular, any connected component of I' — v/ that contains w™! (k) intersects nontrivially with C. So
forv = p,, € C— j, there is precisely one component G of I — v that contains w™! (k). If this component
G intersected nontrivially with C, then (p,;—1, pn) would have to be an edge in C, but (p,,—1, pm) Was
explicitly assumed not to be a cut edge. In particular, w is supported on one and only one spline in the
first double-sum (the one where v = p,, and G > p,,—1)), and so

D0 2y i =tk =t

veC-j G
vl GNC=0
It follows that
¢
DU DL e+ DT e = et =k = (o) F D, i) = Iw(pran)
eC C r=m
vwr]GnC 0 (p.q)€P
=1k = tw(pp) T w(pm) = Iw(pesr)
=1 — tw(j)-
So in either case, the sum evaluates to )7{;(_ ok (w). )
1,])>

Now Lemma 5.6 two very important consequences. First, as mentioned, it will allow us to disregard
those splines ij X where G is connected to j via a cut edge. Second, observe we only required j to be

a cut vertex so that 7 G 18 defined. We may, however, remove this restriction and ‘force through’ the
argument as follows. If ( P, q) is a cut edge and ¢ is not a cut vertex, then g is aleaf in I". Let G, 4 be
the connected component containing p (and thereby all of [n] \ {¢}). We might abuse notation and let
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forallw € §,,

54 (w) = Ik —twig ifw (k)€ [n]\{q}
Gp.q)-k 0 otherwise

=1 (w) = Xg(w),
and get another relation from Lemma 5.6. A consequence of this is Lemma 5.7 below.

Lemma 5.7. Let (i, j) be a leaf edge in I" with j the leaf vertex, and G ; j) the connected component of
([n], E(T') \ {s}) that contains i. Then for all A C [n] such that |A| = |G(i,j)| =n — 1, we have that

;(‘i’j) € C{p‘ € .7-}‘;5 * flgi’j) forany B C [n] }

Proof. Let C be the connected component of the forest with vertex set V(G ; ;) U {j} = [n] and edge
set {s | s is a cut edge of I')} that contains the vertex j. By Lemma 5.6 and the discussion above, for all

k € [n],
SN s 3OY jiei-g
G

veC—j acE(C) A3k
v GNC=0 |A1=]Gal

where G in the first double-sum is a connected component of I — v, G is the connected component
of ([n], E(T') \ {(i,/)}) that is a subgraph of G; ;) (i.e., does not contain j), and A in the second
double-sum is a subset of [x]. In particular,

@0 _z = S 7

Z fA =1tk —Xpn — yVG’k_ fz

|Al=n—1 veC-j G acE(C) A3k
keA vl GNC=0 a%(i,j) 1AI=1Gal

Now the right-hand side is in C{ﬁ € ]-'r)ﬁ # f_lgi’j) for any B C [n] } Let &k := 2 |A|=n—1 ;(‘i’j), so the
keA

above relation says o € C{ﬁ € fr‘ﬁ # fgi’j) for any B C [n] } For each p € [n], we have that

i) |1 ~|_ -
Sivioy =| 577 Z Tk |~ p-
ke[n]
Thus, fT[(rii<){p} € (C{ﬁ € }}‘ﬁ # flgi’j) for any B C [n] }, and as all subsets of size |A| = n — 1 take the

form A = [n] \ {p}, the claim follows. O

Example 5.8. If " is the graph below where (12, 13) is a leaf,

@ 4 8 11 @ @
£ b

then Lemma 5.7 states that CFr is identical to C{ﬁ € .7-}’;3 # félz’m for any B C [n] }
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Since (1,4) is also a leaf, we have that CFr is equal to C{p‘ € fr)ﬁ # flgl’4) for any B C [n] } as

well. Note we cannot remove the coset splines for (1,4) and (12, 13) from JFr at the same time and
maintain the C-span; we have to pick a particular leaf to remove and stick with it.

6. Natural labels and cliqued graphs

In this section, we reduce the computation for arbitrary I" in two ways. First, we show that I' may be
replaced by a cliqued graph (defined below) without altering /\/llr Second, we replace I" with a particular
representative of the isomorphism class we call naturally labeled. Subsection 6.2 gives three technical
lemmas on splines that hold for these constructions.

First, if I' does not have a cut vertex, then it is 2-connected. Thus, ch(Lr), is trivial and ch(Rr),
is the first degree piece of the graded regular representation by Theorem 4.2 and Corollary 4.4. So we
may assume that " has a cut vertex; in particular, we may assume that I" has at least three vertices.

A clique is a subgraph isomorphic to a complete graph. Let I" by any (connected) graph on [#]. Call
I" cliqued if two vertices are connected by an edge in I" whenever there exists two vertex-disjoint paths
between them. Define

I'" = ([n], E(T) U{(i,j) | exists two vertex-disjoint paths from i to j in T'}).

Now I'” is cliqued, and we call I'’ the cliqued version of I'. By Lemma 4.1, the first degree pieces of
Mr and M are equal. Therefore, it suffices to consider cliqued graphs I" when proving results on the
structure of M.

Example 6.1. Below is an example of a graph I" and the cliqued graph I'” such that MIL = ./\/11{

r I’

A 2-connected component of a graph I is a subgraph of I that is 2-connected. A block is a maximal
2-connected component. In a cliqued graph, every block is a clique, and the process of cliquing a graph
simply converts every block to a clique.

Definition 6.2. Let I be a graph. The block-cut tree of T is the tree with vertex set
{v|vrT}U{B| BisablockinI'}

consisting of cut vertices and blocks in I" and edge set {(v, B) | v € B}.

Example 6.3. The graph on the left below is I' from Example 6.3 with the blocks and cut vertices
labeled. The graph on the right below is the associated the block-cut tree. Note that the block-cut tree
for the cliqued version I'’ of T" in Example 6.3 would be the same.
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where

o By is the induced subgraph on vertices o By is the induced subgraph on vertices {4, 5}

{9,10,11, 12} o Bs is the induced subgraph on vertices
o B, is the induced subgraph on vertices {4,9} {5,6,7,8}
o B3 is the induced subgraph on vertices

{1,2,3,4}

It is easy to reason that the block-cut tree is indeed a tree by arguing that it cannot contain cycles. In
a block-cut tree of a graph I', every leaf is a block in I" and not a cut vertex, and paths in the block-cut
tree alternate between cut-vertices and blocks. Since the block-cut tree ignores the internal structure of
a 2-connected component, the block-cut tree of a graph I' and the block-cut tree of its cliqued version
I'” are isomorphic as graphs.

‘We now use the block-cut tree to construct a particular representative of the isomorphism class of I".
We will construct a bijection ¢: [n] — [n] to relabel the vertices of .

Choose a cut vertex v + I" such that v is adjacent to at most 1 block that is not a leaf in the block-cut
tree of I'. One may obtain such a vertex v by (1) removing all leaves from the block-cut tree of I" (which
must be blocks) and then (2) choosing a leaf from the tree that remains (which must be cut vertices).
The vertices 5 and 9 satisfy this condition in Example 6.3.

Let B be the largest block that is also a leaf adjacent to v in the block-cut tree of I'. Since B is a leaf
in the block-cut tree, there exists only a single cut vertex in B — namely, v € B. The following is the
algorithm that produces ¢: [n] — [n].

1. Choose i € B so thati # v. Define ¢(i) := n. Note n is adjacent to at most one cut vertex of I" and is
not itself a cut vertex of T.

2. Define ¢ on the remaining vertices in B as follows. Define ¢ on B\ {i, v} so that d(j,i) < d(k,i)
implies ¢(j) > ¢(k) forall j,k € B\ {i,v}.Let ¢(v) :=n—|B|+1

3. Define ¢ on the remaining vertices of I as follows. Let ¢ be any bijection satisfying if j, k € T\V(B),
then d(j,1) < d(k,i) implies ¢(j) > (k).

Now that we have a bijection ¢: [n] — [n], define a new graph T = ([n], {(¢#(j), ¢(k)) | (j, k) €
E(T")}). This graph is clearly isomorphic to I". We call the graph I'”” constructed in this manner naturally
labeled.

Example 6.4. This example will construct a naturally labeled graph from the not-naturally labeled graph
with 12 vertices drawn below:
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This has block-cut tree

with blocks
o Byon{4,7} o Bson{l1,9,10} o Bgon{2,3}
o Byon{4,6,11} o Bson{l,2} o Byon{2,5,8}

o Byon{l,4,12}

To choose a vertex i such that ¢ (i) = 12, first we identify an appropriate cut vertex v. There are two
cut vertices adjacent to only one non-leaf vertex in the block-cut tree, 2 and 4. Let v = 2. The vertex 2
is adjacent to blocks Bg and B7 in the block-cut tree. Since B7 is bigger than Bg, we know that either of
i =5 ori =8 will work. We choose i = 8 so ¢(8) = 12, which concludes step (1).

ping

Now the block B7 has three vertices, which leaves no choice for defining ¢ on the remainder of B;. So
¢(5) = 11 and ¢(4) = 10. This concludes step (2).

s
W

Finally, we define the rest of ¢ based on distance from the vertex i = 8 and replace the old graph with
the naturally labeled one. One possible natural label is the following:

f

(-

~

@
®
©
6’

?2>@
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We note how many choices were made along the way. In particular, the isomorphism class of a graph
I' may have many different naturally labeled members.

We can use a natural label to more efficiently identify cut edges and connected components of a
graph. The following definitions formalize this.

Definition 6.5. Let I" be a naturally labeled graph. If j € T"is a cut vertex, then i < j is j-dominant if i
is the maximal value vertex in a connected component of I — j that does not contain the vertex n. We
call such an (i, j) a dominant pair. A dominant pair (i, j) is strongly dominant if (i, j) is a cut edge of
I, denoted (i, j) > TI'. Otherwise, (i, j) is weakly dominant, denoted (i, j) > T'.

There are four things to note about dominant pairs.

1. Evenif (n—1,n) is a cut edge, (n — 1, n) is never a strongly dominant pair since 7 is not a cut vertex
by the definition of a natural label. However, every other cut edge in a naturally labeled graph I" is a
strongly dominant pair, since the higher-labeled vertex in the cut edge must be a cut vertex.

2. If j + T, then all vertices larger than j must be concentrated in one connected component of I" — j.
If k is in a connected component of I" — j that does not contain the vertex n, then any path from & to
n must pass through j, and so d(k,n) > d(j,n), and thus, k < j by the definition of a natural label.
In particular, the only connected component of I' — j whose maximal vertex is greater than j is the
one that contains 7, so each connected component of I" — j that does not contain n contains precisely
one j-dominant vertex.

3. Since a natural label is constructed by distance from n, for each cut vertex j, the maximal-labeled
vertices in a connected component of I' — j that does not contain n must be adjacent to j. In particular,
dominant pairs are also edges.

4. The lower vertex in the dominant pair uniquely determines the pair. In particular, if for contradiction
we assume (7, j) and (i, k) are both dominant pairs, then i and k are in the same connected component
of I' - j,and i < k, and so (i, j) is not a dominant pair.

Definition 6.6. Let I be naturally labeled and fix j € I'. Let €r(j) == {i | (i,j) > Tor (i,j) > T'},
and cr(j) = |€p(j)|. If j is not a cut vertex, then €r(j) = 0 and ¢p(j) = 0. If j is a cut vertex of T,
then the cut decomposition of ' — j is

r-j=rju U r/,
ieCr(j)

where Fl.j the connected component of I — j such that i € Fl.j and l“é denotes the single connected
component of I' — j where n € I’}

Soif j + I'is a cut vertex of I" and k € [n] such that k > j, then k € I“g. When I is obvious from
context, we write €(;) and ¢(j) without the subscripts.

Remark 6.7. If (i, j) is a cut edge and j is a cut vertex, then Flf as in the cut decomposition of I — j is

one of the two connected components of ([n], E(I") \ {(, j)}). In particular, F'f is one of the two valid
choices for G when defining ;(\” ) at the beginning of Section 5. From now on, even if I is not naturally
labeled and even if the cut edge is (i, j) = (n — 1, n), we will choose G to be the connected component

of (V(I'), E(T") — (i, j)) that contains i < j, so that the notation always agrees with Definition 6.6.

Example 6.8. The following is the cliqued and naturally labeled graph I' from Example 6.4. We have
labeled the strongly dominant pairs in double lines and the weakly dominant pairs in dashed lines:
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The cut vertices are {4, 8, 10}, and ¢ (10) = ¢ (8) = ¢r(4) = 2. The graph I" — 8 is displayed below,

with the cut decomposition labeled:
1—*8 e FS a

5

o &b

8
Ij7

- OO ©

Lemma 6.9 below summarizes some properties of a cliqued and naturally labeled graph.
Lemma 6.9. If T is cliqued and naturally labeled, then

(A) ifi,j € N(n) are both adjacent to the vertex n in T, then (i, j) € E(I),

(B) ifn—1+ T isacutvertex of T, then at most one of the connected components F{"l fori e €r(n-1)
in the cut decomposition of I' = (n — 1) is not a single vertex,

©) Ifr,k € Fij N N(j) are vertices both adjacent to j v I" and in the same connected component of
' —j, then (r,k) € E(T).

Proof. Let By be the block in I' that contains #n.

(1)Ifi, j € N(n), then i, j € By. Since I is cliqued, By must be a clique and so (i, j) € E(T).

(2) The vertex n — 1 is a cut vertex of I if and only if n is a leaf, and By is size 2. Since I is naturally
labeled, n — 1 is adjacent to at most one block that is not a leaf in the block-cut tree of I', and By is of
maximal size among those leaves in the block-cut tree. Thus, the blocks adjacent to n — 1 in the block-
cut tree of I" are either not a leaf in the block-cut tree (of which there can only be one) or a leaf in the
block-cut tree and size no greater than 2. _

(3) There exists a path (7, j, k) in I, and another path from r to k in Fl.’ , which does not contain the
vertex j. Since I' is cliqued and we know there are two vertex-disjoint paths from r to k in I', it follows
that (r, k) € E(I). O

We use Lemma 6.9 to categorize cliqued and naturally labeled graphs in to three types, based on the
structure of I" near the vertex n.

Lemma 6.10. If T is cliqued and naturally labeled, then it falls in to one of the following three types:

(A) The edge (n— 1,n) is a cut edge of ', and at most one component of I' — (n — 1) is not an isolated
vertex.

(B) The vertex n — 2 is a cut vertex, and the vertices {n —2,n — 1,n} form a block in T

(C) None of the vertices {n,n — 1,n — 2} are cut vertices, and {n — 2,n — 1, n} form a clique in T.
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Proof. Categorize I' by the size of the neighborhood N(n). For every T', exactly one of the following is
true: [N(n)| = 1, [N(n)| = 2 or |[N(n)| > 2. Note that, since every block is a clique and n is not a cut
vertex, the block B containing n has vertices N(n) U {n}.

If IN(n)| = 1, then n — 1 is a cut vertex, and I is type A. The rest of the claim for type A is Lemma
6.9(2).

Suppose |[N(n)| = 2. Since I is naturally labeled, n—2 must be a cut vertex. We also have (n—2,n—1) €
E(T") by Lemma 6.9(1).

Finally, suppose |[N(n)| > 2. Since I is naturally labeled, none of {n — 2,n — 1,n} is a cut vertex.
Once again, (n —2,n— 1) € E(I") by Lemma 6.9(1). ]

Visually, Lemma 6.10 says that if I" is cliqued and naturally labeled, then I" can be represented
diagrammatically in one of the following three ways:

In the diagram for type A above, ¢r(n — 1) = k. We remark that in type B, the induced subgraph
'\ {n—2,n—2,n} may be disconnected (such as it would be for the graph in Example 6.8). However,
in type C, the vertex n — 3 must be in the same block as n, n — 1 and n — 2, so the induced subgraph
'\ {n —-2,n - 1,n} is actually connected.

Example 6.11. The graph I" from Example 6.8 is type B. The following is a naturally labeled type A
graph:

@ 4 8 1 @
020

A different natural label on the same graph, such as the one below, can have a different classification.
The following naturally labeled graph is in the same isomorphism class as the previous, but is type B:
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o f
(9)—(10 4 (1)

o d &

A natural labeling provides a more convenient indexing for the splines in Yr and Cr, using the cut
decomposition from Definition 6.6. In particular, we write

6.1. The spanning set revisited

-J 5]
Yik = Y g

i

so that
Ve ={5,]ir T e (U o} ke lnl},

Additionally, while the notation for individual splines f Ii € Cr does not change, we note that, as stated

in Remark 6.7, we choose G for s = (i < j) to be equal to FlJ
We collect the important naturally-labeled versions of Lemmas 5.6, 5.5 and 5.7 below in Proposi-
tion 6.12.

Proposition 6.12. Let I" be naturally labeled, and let

Br={iilie[nl}U{xi|ie [n]}U{fj

(i, )) > F,}

s=(,j)>T, ;
Y { k € [n]

Ar=[r| [

Then the following hold:

1. If (i, j) > T, then y{’k € CBr forall k € [n].
2. If j v T, then 3, € CBr forall k € [n].

3. If (n—1,n) is a cut edge of T, then fgn_l’") € CBr for all A C [n] where |A| =n — 1.

In particular, CBr = CFr.
Proof. The first relation (1) is exactly Lemma 5.6.

The second relation (2) follows from (1) together with Lemma 5.5(4).
The third relation (3) is Lemma 5.7, applied to the cut edge (n — 1, n). O

6.2. Technical lemmas

This subsection contains three lemmas that are used within the proof of Theorem 7.2.
Let St := {w € S, | w(i) = n} be a left coset of S,,_1 in S,,. The first Lemma 6.13 establishes what
values a linear spline p may take on S*~! if 5 is not supported on " = S,,_;.

Lemma 6.13. Let I" be naturally labeled, and p € ML, where p=0onS: Ifw,ve S,';‘l, then
PW) = ey (tn —twmy) and p(v) = ¢y (tn — ty(n)) for some ¢\, ¢, € C. Furthermore, if w(n) = v(n),
or T is type B/C, then c,, = c,,.
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Proof. First, since I is naturally labeled, it follows that (n — 1,n) € E(I"). We will show the first part
of the claim for w € Sﬁ‘l, and the same will hold for v € S;“l. Ifwe S;“l, then w(n — 1,n) € S%, and
L(w,w(n=1,n)) = (twn-1) = tw(n) ) = {tn = tw(w )- Since 5 is linear and 5(w(n — 1, n)) = 0, the first
part of the claim follows.

Now we prove the second part of the claim. First, we assume w(n) = v(n). Two permutations
w,v € S"~! have the property w(n) = v(n) if and only if v € wS, 5. The claim will follow if ¢,, = ¢,
for v = w(r, s) whenever (r,s) € S,—». Let {r, s} c [n —2]. As I is naturally labeled and so n is not a
cut vertex of I, there exists a simple path (rg, 71, ..., 7) in I from r = ry to s = r,, that does not contain
n, and by Lemma 3.3,

ﬁ(W) —ﬁ(w(r, S)) € <tw(r,-) —twr) | i€ [m]>

In particular,

(Cw - Cw(r,s))tn - (Cw - Cw(r,s))tw(n) € <tw(ri) - tw(r,-q) | i € [m]>

The monomial ¢, (,,) does not appear in {t,,(»,) = tw(~_,) | i € [m]}, and thus, ¢y, = ¢\ (r,5). Since the
transpositions (7, s) generate S,_», the claim follows.

Now we prove the claim if I' is type B/C. If T is type B or type C, then I — (n — 1) is connected.
It suffices to prove c¢,, = ¢y (r,5) forn —1 ¢ {r,s}. Since I' — (n — 1) is connected, there exists a path
(ro, ..., rm) from r = rg to s = rp, in I that does not visit the vertex n — 1. So

(Cw - Cw(r,s))tn - Cw[w(n) - Cw(r,s)tw(r,s)(n) € <tw(ri) - tw(ri,l) | i€ [m]>
NOW y, = tyy (n—1) Never appears in {t,(r,) = fw(r_y) | i € [m]}, and thus, ¢\, = cy. o

The second two lemmas assume that (i, j) is a dominant pair in I" and establish what values a linear
spline p may take on S’ if supp(p) N S;, = 0. Lemma 6.14 below assumes (i, j) is strongly dominant
and relates p(w) to 5(v) if w and v are in the same coset S’, and they are also in the same coset of the
reflection subgroup generated by the transpositions E(I') \ {(7, j)}.

Lemma 6.14. Let T be cliqued and naturally labeled, and say (i, j) > T. Let p € ML, where p = 0

on Sf;. If w,v € Sil, then p(w) = cw(tn —tw(j)) and p(v) = cv(tn —tv(j)) for some c,,,c, € C.
Furthermore, if v e w(E(I') \ (i, j)), then ¢y, = c,.

Proof. First, since I' is naturally labeled, it follows that (i, j) € E(I'). We will show the first part
of the claim for w € Si, and the same will hold for v € Si. If w € S, then w(i,j) € S, and
Lw,w(i,j)) = <tw(l-) - tw(j)> = (tn - tw(j)>. Since p is linear and p(w (i, j)) = 0, the first part of the
claim follows from the definition of a spline on Gr-.

The reflection subgroup (E(I') \ {(i, j)}) is also generated by the transpositions {(r,s) | {r,s} C
V(F'l.’)} U{(p,q) | {p.q} c [n]\ V(Fl.j)}, as this set contains E(T") \ {i, j}. We will show that, for
those generating transpositions, ¢y, = ¢y (r,5) and Cyy = Cyy(p,q)-

First, we show ¢,y = ¢y (5 for {r,s} ¢ V(I'/). Let (ro, ...,r,n) be a path in I/ from r = ry to
rm = . Then by Lemma 3.3,

p_(W) —ﬁ(w(r,s)) € <tw(rk) _tw(rk,l) | k e [m]>
In particular,
(cw = Cw(r,s))tn (T Cw(r,s))tw(j) € <tw(rk) = Ly (riz1) | k € [m]>

Since j is not in the path (ry, ..., 7,), the monomial ,, ;) does not appear in {t,, (-, ) —tw () | kK € [m]},
and thus, ¢\, = (1)
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Now let {p,q} C [n] \ V(Flj ). Since (i, j) is a cut edge, the induced subgraph of I with vertex set

[n] \ V(F{) is connected. Let (po, ..., pm) be a path from p = pg to ¢ = p,, in I that does not contain
i. By Lemma 3.3,

p(w)—pw(p,q)) € <tw(pk) ~ Ly (pr-1) | k e [m]>

In particular,

(cw = Cw(p.g)tn = Cwlw(j) + Cw(p.g)tw(p.g) () € {twipe) = tw(pen) | K € [m]).

Since i is not in the path (po, ..., pn), the monomial ¢, = 1,, ;) does not appear in {t,, (p,) = tw(pr_)) |
k € [m]}, and thus, ¢,y = Cy(p,q)-

Since the reflection subgroup (E(I")\ (i, j)) is generated by {(r, s) | {r, s} C l"l.j}U{(p, q9) | {p,q} €
[n] \ T/}, the claim follows. O

Lemma 6.15 below assumes that (i, j) is weakly dominant and then relates p(w) and p(v) if w and
v are in the same coset S%,.

Lemma 6.15. Let T" be cliqued and naturally labeled, and say (i, j) > T'. Let p € er, where p = 0
on Si. If w,v € Sﬁl, then p(w) = ¢y (tn —tw(j)) and p(v) = ¢y (tn —tv(j)) for some c,,,c, € C.
Furthermore, c,, = c,.

Proof. The proof of the first part of this claim is identical to the first part of the proof of Lemma 6.14.

Since (i, j) is not a cut edge and I' is naturally labeled, there exists (k, j) € E(I") with k <i < j
and k € /. By Lemma 6.9(3), (i,k) € E(I). If u € S¥, then p(u) = cy(tn — tu(;)) for the same
reason that p(w) and p(v) take this form. We will prove the slightly stronger claim that ¢,, = c,, for all
w,veSius ’,ﬁ We proceed for now assuming that the induced subgraph of G with vertex set S%, U S K
is connected, and we will verify that this assumption holds afterwards.

If St U SK is connected, it will suffice to check if ¢,, = ¢, for adjacent elements w, v € S, LI Sk. We
check edges in two cases: those within Si, (resp. SX), and the edges (w, w(i, k)) between Si and SX.

If (w, w(p,q)) is an edge in Gr between elements of S’ then i ¢ {p, q} and

pW) =p(wW(p,q)) = (cw = Cw(p.g)tn = Cwhw(j) + tw(p.g)() € (tw(q) = tw(p))-

Since n ¢ {w(p),w(q)}, it follows c,, = ¢y (p,q). The same logic holds for edges in Gr between two
elements of SX.
For edges (w, w(i, k)) in Gr between w € % and w(i, k) € S, compute

p(w) = pw(i, k) = cwin = Cw(idytwik) — (Cw = Cw (i) tw () € (tw(i) = tw(k) )-

Since w(j) € {w(i), w(k)}, it follows that c,, = ¢y (i k)

If St 1 SK is connected, and equality holds on every edge, it follows that c,, = ¢, for all w,v € S..

Now we will prove that the induced subgraph of G with vertex set Si, LI S¥ is connected. Since T" is
cliqued, (i, k) € E(I'). In particular, if w € Sﬁ,, then w is connected in Gr directly to w(i, k) in Sf,.

Let {r, s} c [n]\{i}. We prove in three cases that for all , s # i, the permutation w € S’ is connected
to w(r, s) € St within the induced subgraph of Gr with vertex set S, LI SX. Tt will follow by symmetry
(replace i with k) and that the induced subgraph of Gr with vertex set S% L1 S is connected. The three
cases are (i) there exists a simple path from 7 to s in I" that does not visit the vertex i, (ii) simple paths
from 7 to s in I" must visit 7, but need not visit &, and (iii) simple paths from r to s must visit the vertex i
and the vertex k.
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(i) If there exists a path (po, ..., p¢) in ' —i from r = py to s = pg, then w is connected to w(r, s) via
only elements in S;, since

w(r,s) = (po,p1) - (Pe-1,Pe) - (Po, P1)-

We will use this path computation implicitly in (ii) and (iii).
(ii) If there exists a path (r, ..., i, ..., s) from r to s in I" containing i but not &, then r, i and s are in the
same connected component in I" — k. Consider

w(r,s)=w(i, k)(i,r)(i,s)(i,r)(, k).

This sequence of transpositions gives a path in S% LIS from w to w(r, s). Below is a diagram that shows
how each right multiplication moves between S, and SX:

(i,r)(i,s)(i,r)

. m .
Sh— Sh—— Sh
(i, k) (i, k)

(iii) If both 7 and k must be in a simple path from r to s, it suffices to assume this path takes the form
(ry...si, k, ..., s). In particular, the first piece (r,...,) is a path in I" — k and the second piece (k, ..., s)
is a path in I' — i. Consider

w(r,s) =w(i, k)(r, ) (i, k) (j, k) (k, ) (j, k) (@, k) (r, /) (i, k).

This sequence of transpositions gives a path from w to w(r, s) in %, LI S¥. Below is a diagram detailing
how each right multiplication moves between S, and SX:

(r,J) (J, k) (k, $)(j, k) (r, J)
[ [ (D)
Sy — S : S : Sy —— s;
(i, k) (i, k) (i, k) (i, k)

So subgraph with vertices Si LI SX is connected; our earlier assumption is verified and we have the
claim. o

7. Proof of the linear spanning theorem

This section shows that the collection Fr from Equation 5.1 (below Lemma 5.3) is a C-spanning set
of /\/llF In other words, we prove CFr = ./\/l} First, we require a lemma on the compatibility of these
splines on §;, with splines on S;,_1.

Lemma 7.1. Let T on [n] be cliqued and naturally labeled. Let .7-'15") ={pls,., | p € Fr, p(w) €
Clt1,...,ty—1] forallw € S,_1}. Then
CF = CFren.

Proof. First, note that the Cayley graph Gr_, is equal to the induced subgraph of Gr with vertex set
Sy-1. In particular, each element of ]—"15") is in fact a spline in Mr_,

By Lemma 5.5(4), for each cut vertex j in I and G the connected component of I — j that contains
n, we may remove the splines { y]é, I, | k € [n]} from }“13") without changing the C-span. Similarly,
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by Lemma 5.5(4), for each cut vertex j # n— 1 of I' — n and connected component G of (I' —n) — j that
contains n — 1, we may remove the splines {y’G’ « | k € [n]} from Fr_p.

Let p € Fr such that pls, | is a nonzero element of ]-'F("). This means that p # 7, and p # X,.
Additionally, by the definitions, if o = f}, we musthave n ¢ A (otherwise, p = 0) and s # (n—1,n), and
ifp = y & then k # n. So we have a combinatorial description for the elements of F. " In particular,
as collectlons of functions from S,_; to C[¢,], we wish to show that the following two sets have the
same C-span:

s cut edge of T,

JrT,
n = A=G _7
F =Tt U % U s;|t(|n—|lsr|t) Ui n¢G.
ne A ke[n-1]
and
jrI—n
s cutedge of I' — n, i
frn—ﬂlUXrnU{fA |A|g G| }U Jon—1¢G, ¢,
ke[n-1]

where for the cut edges s = (i < j) of either I or I — n, the component G is the connected component
of the graph with edge s removed that contains i.

The equalities for 7; € 7,,-; and X; € X),_; are obvious, so we focus on the latter two subsets. The
remainder of the proof is in three cases: whether the cliqued and naturally labeled graph I' is type A,
B or C. Each argument amounts to matching the cut vertices and cut edges of I" to those in I" — n (and
vice versa). Each match gives pairs of splines in the third and fourth subsets above that are in fact equal
to each other. Then we ensure that wherever these graph objects do not align, the ‘unmatched’ splines
in each set are contained within the other’s C-span.

Type A: First, we compare the cut edges of I' and I" — n and ensure that each spline in the third
subsets of both ]-‘lﬁ’l) and Fr_, are contained within the span of the other set. If I' is type A, then every
cut edge of I' — n is also a cut edge of I'. Every cut edge of I" that is not (n — 1, n) is also a cut edge of
I' —n. Finally, if s = (i < j) # (n—1, n) is a cut edge, then the connected component of ([#]E(T") \ {s})
that contains i and the connected component of ([n — 1], E(T" — n) \ {s}) that contains i are equal, since
these are the components with lower-valued vertices and thus are unaffected by removing n. So the third
subsets in ]-'F(") and Fr_, above are actually equal.

Second, we compare the cut vertices and associated connected components of I' and I" — n and ensure
that each spline in the fourth subsets of both ]-"r(") and Jr_, are contained within the span of the other
set. There are two cases: ¢cr(n— 1) = L and ¢cp(n—1) > 1. If ¢cp(n — 1) > 1, every cut vertex in I' is
a cut vertex in I' — n, and vice versa. If j + I' — n where j # n — 1, if G is the component of I — j
that contains n then G — n is the component of (I" — n) — j that contains n — 1. If j = n — 1, then Fr_,

contains every y’(’; ]1< and .7-"#") contains every y"G—}( such that n ¢ G. Either way, these two collections of

splines are identical, so the fourth subsets in ]-'F(") and Jr_, are in fact equal.

Ifcr(n—1) = 1, then n—1is not a cut vertex of I'—n, so Fr—, does not contain the spline y'(‘; }{ ]-"15")
where V(G) = [n — 2]. However, in this case, for all w € S,,_;, we compute

W (ne Ik -2
Jeax(w )_{ Sy X—lik;i;[qn—l.]
= t_k(W) _in—l(w) € C-Fl"—rr

Every other cut vertex j + I' — n and connected component G of (I" —n) — j (that does not contain n — 1)
is also a cut vertex of I" and connected component of I" — j (that does not contain n), so each spline of the
form ij  in Fr—, has a direct counterpart in ]-"IS") . Thus C]-"IE") = CFr-p, and the claim holds in type A.
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Type B: First, we compare the cut vertices and associated connected components to match elements
in the fourth subsets. If I' is type B, then every cut vertex in I" — n is also a cut vertex of I', and for all
j + T, the connected component of I — j that contains n also contains n — 1, so the fourth subsets in
}-#") and Fr_, are equal.

Now compare the cut edges to match elements in the third subsets. Every cut edge in I is a cut edge
in I — n; however, the edge (n —2,n — 1) is a cut edge in ' — n but not in I". For this cut edge, we let

G (n-2,n-1) be the subgraph with vertex set [n — 2]. So Fr_, has a subset {f[(: 12\"k 1 | k € [n— 1]} of

splines that is not a subset of J1- () We will show that these splines are contained within the span (C]—'r(").
By Lemma 5.7 applied to the leaf (n—2, n—1) in T —n, each spline in {f(" 2D el ken- l]} C Fren
is a linear combination of the remaining splines in Fr_,. Since the fourth subsets are equal and every

other cut edge of I' — n is a cut edge of I, each of these remaining splines is also in ]-'F("). So the one

subset { f[(" 12]\"k Dikeln- 1]} of unmatched splines in Fy—, is contained within the span CF",

and so CF\" = CFr_,.

Type C: If I is type C, then every cut vertex or edge in I" — n is also a cut vertex or edge in I', and
vice versa. Additionally, for any j + I', the connected component of I" — j containing n also contains
n — 1. So all indexing data is the same, and so ]-'IS") = Fr—pn. Thus, the claim holds in Type C. O

The proof of Theorem 7.2 below assumes a natural label, so we will use the indexing conventions
for Fr described in Subsection 6.1. In particular, we will heavily use the weakly dominant (i, j) > I’
and strongly dominant (i, j) > T pairs in Definition 6.5. Now we are able to prove that CFr = Ml'_
and compute a recursive dimension formula.

Theorem 7.2. Let I' be a connected graph. The splines Fr from Equation (5.1) form a C-spanning set
of ./\/lll_ Furthermore, if T is cliqued and naturally labeled, then

-1
(n] ) if U is type A
1 if " is type B/C

- (| ”|__11) LG ) > TH.

(i,j)>T

dimc (M) = 1 +dime(M}_,) +

Proof. Tt suffices to assume for both parts of the claim that I" is cliqued and naturally labeled. Recall the
decomposition S, = S L -+ 18", where S == {w € S,, | w(i) = n}. Note " = S,,_1. Let p € MI]-
We will prove that p € CFr and proceed by induction on n. The base case is n = 3, where M = CFp
is easily verified by hand (there are only two connected graphs on three vertices) and either way follows
from [4].

In each of the three steps to the proof given below, we use elements of Jr to replace p with a spline
supported on a strictly smaller subset of S,,. To track dimc(/\/lll-), we will create a set B of linearly
independent elements of ./\/lll_

(Step 1: S7) This step applies the induction assumption to replace § with a spline supported on
Shu---us™ 1 Ifw,v e §" =8, withw™v = (i, j) € E(T—n), then p(w) —p(v) = c(twiy = tw(j))-
where ¢ € C. Since w(i) # n and w(j) # n, the coefficient [t,]p(w) of ¢, in p(w) must be equal
to [t,]p(v). Since I — n is connected, the induced subgraph of Gr with vertex set S7 is connected.
Moreover, the coefficient of 7, is the same for all p(u), where u € S)i. Let ¢,, == [t,,]p(u) for u € S}..
Then [t,](0 — cutn) () =0 forallu € S,_;.

So we replace p with p — cf,, and now p(u) € C[ty,...,t,-1] whenu € S%. Let B := {7,}. We will
add linearly independent elements to 3 throughout the proof and keep track of |5|.

By Lemma 7.1 and the induction hypothesis, Mlt_n = CFr-n = C}“IE”). So we may assume that
pls,_, = 0. Add to B the dimc(./\/l}fn)-many splines required. Note these splines are independent once
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restricted to S” = S,_1, so any nontrivial linear combination will have elements of S’ in its support. At
this point, |B| = dimc(./\/l}_n) +1,and p =0 on S%.

(Step 2: S”~1) Next, we use elements of F- to replace g with a spline that evaluates to 0 on S~ LI S™.
The process is slightly different for graphs of type A and types B/C.

Since I is cliqued and naturally labeled, (n — 1,n) € E(T"). Thus, for all w € Sﬁ’l, there is an edge
(w,w(n—1,n)) € E(Gr) where w(n — 1,n) € S}'. Each of these edges are labeled <tw(n_1) - tw(n)> =
(tn = tw(n))- Since p = 0 on S, we have that 5(w) = ¢y (tn — f1y(n)) for some c¢,, € Cforallw € Sp~!.

Type A: By Lemma 6.13, if w,v € $*~! and w(n) = v(n), then ¢,, = c,. Let ¢x = c¢,, when

w(n) = k. If w(n — 1) = nand w(n) = k < n, then by definition, f("\l{k"}) (W) =ty =ty (). However, if

w(n) = n, then f(" L1 (1) = 0 whenever k # n. It follows that

1\ {k}
(n=1,n) _
p= chf Mk} =

on 871 11S". Add the n— 1 coset splines f Fin \1{ k"}) used above to B, which are linearly independent from

the splines already in B since they are not supported on S and have disjoint support on S”~!. In type
-1
A, at this point, |B] = 1+ dim@(MIL_n) + (n : ), and B is linearly independent, even if we restrict the

splines in B to 7! L §™.
Type B/C: We proceed in the same format as type A. By Lemma 6.13, if w,v € $"7! then ¢,, = c,.
Write ¢ := c,, for w € §7~!. Then

p—c(ty—%x,)=0

on 77! 11 §”. Add the single linearly independent spline 7, — X, to 3. In type B/C at this point,
|B| = dimc(MlL_n) +2, and B is linearly independent, even if we restrict each spline to %! L §”.

(Step 3: S’,) Now given a spline 5 such that 5 = 0 on S5 L+ - - S”, we show how to replace it with a
spline that vanishes on Si, Li- - - S”. This step is repeated until 5 vanishes on all of S,,. Assume that 5 = 0
on S& Ly ... U 7. Additionally, we assume that the splines in 3 are linearly independent; moreover,
the set remains linearly independent once each spline is restricted to S&! Li - - - LI S™. In particular, any
nontrivial linear combination of splines in B is nonzero on Si Ly - U S” (and therefore S,,). The
remainder of the proof is type A/B/C-independent but still requires three cases.

First, a formulation of 5(w) for w € S!, will be used in each case. Since I is naturally labeled and
i # n, there exists j € [n] such thati < j and (i, j) € E(T), so (w,w(i,j)) € E(Gr). If w € S, then
w(i,j) € S,,, )

PW) = cyw(tywiy = tw())) = cw(tn — tw())

for some ¢,, € C.
Case 1: If i is not j-dominant for any j € [n], since I is naturally labeled, there exist (at least) two
vertices j, k where i < j < k and {(i, j), (i, k)} c E(T"). It follows that

W) = v (tn = tw(j)) = €3 (tn = tw(r))-

This is not possible for c,,, ¢, € C unless ¢,, = ¢/, =0, and so p(w) = 0. In short, 5 = 0 on S, and
we do not need any splines from Fr to achieve this.

Case 2: If there exists j € [n] where (i, j) > T, then i is the maximal vertex in its connected
component of I — j. Thus, the vertex j is the only element in the neighborhood N (i) of the vertex i that
is greater than i (so i is not k-dominant for any k£ # j), and (i, ) is a cut edge of I'. By Lemma 6.14, if
vew(E(M)\(i,))), thenc, =c,,.
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Recall that v € w(E(T) \ (i, )} if and only if w(V(I})) = v(V(I'/)). Let
A= {A c [n]‘|A| - )F{‘, ne A},

and write ¢4 = ¢, if w(V(F{)) = A. If w(i) = n, then w‘l(V(F{)) = A € A, and we compute
ff(\”j)(w) = fn — Iy(j)- Also, since I is naturally labeled, if kK > i, then k ¢ I'/. In particular, if k > i
and w(k) = n, then w™' (V(I)) ¢ A, and so £\ (w) = 0 for all w € S5 s+ - L 57 Tt follows that

P Y eafih =0

AcA

on S! L --- 1 S" We replace ¢ with this spline. The coset splines f;ﬁi’j ) for A € A have disjoint

support among themselves and are only supported on S’ for r < i, so { ff(‘i’j ) | A € A} U B is linearly
independent, even when each spline is restricted to S; Ll --- LS. Each time we use Case 2 (i.e., for

n-1
each (i, j) > TI'), we add |A| = (|Fj 1) -many splines to B.
/|-

Case 3: If there exists j € [n] where (i, j) > T, the vertex j is the only element in the neighborhood
N (i) of the vertex i that is greater than i (so i is not k-dominant for any k # j), but (i, j) is not a cut
edge. By Lemma 6.15, if w,v € Sﬁl, then ¢, = ¢, =: c. Finally, we confirm that

p-cyl,=0

on S U--- I S". We replace p with this spline. The single spline j)lj.;n is supported on S}, for r <7, and
SO {y{.,n} U B is linearly independent, even when restricted to Si, U - - - U S”. Each time Case 3 is used
(i.e., for each (i, j) > I'), we add 1 spline to B.

When i = 1 is reached, we have used JFr to replace p with a spline o = 0 on all of §,. Thus,
p € CB, and the set B C Fr is linearly independent (the restriction is now to the whole symmetric
group S Li--- 118" =S,), and |B| = dimc(./\/llr) is as claimed. O

8. The linear dimension formula

This section constructs a combinatorial invariant of simple graphs that is also the C-dimension of the
associated linear splines.

Let I" be a connected graph on at least three vertices. First, if j + I is a cut vertex, let cp(j) + 1 be
the number of connected components in I" — j. This is a straightforward expansion of the definition we
gave for ¢ () from naturally labeled graphs to all graphs. When I is fixed, we may drop the subscript
and write ¢(j).

Definition 8.1. Recall the construction of a block-cut tree in Definition 6.2. In this tree, every leaf is
a block of I'. Let LBt be the set of blocks in I" that are leaves in the block-cut tree. We call elements
of LBr leaf blocks of T'. Let IBr be the set of blocks in I" that are not leaves in the block-cut tree. We
call elements of IBr internal blocks of T'. Note when I' is 2-connected, LBy = @ and IBr = {I'}; in
particular, when the block-cut tree of I' is a single vertex (i.e., when I" is 2-connected), we consider I
to be an internal block.

If a block B in I' is size |B| = 2, that block must consist of two vertices in I" connected by an
edge. Since blocks are maximal 2-connected subgraphs, this edge must be a cut edge. In particular,
blocks B in IBr of size |B| = 2 are in bijection with cut edges of I' that are not leaf edges. Let
ICr := {(i,j) € E(I') | V(B) = {i, j} for some B € IBr}. The elements of ICr are internal cut edges
of I
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Example 8.2. Consider the graph
with block-cut tree

33/1\@6\@
@@@ %)

This is the construction from the beginning of Example 6.4. The leaf blocks are

LBr = {Bi, B2, B4, Be, B7}.
The internal blocks are
IBr = {B3, Bs}.
Within those internal blocks, |Bs| = 2 and Bs corresponds to the cut edge (1,2). So
ICr = {(1,2)},

and (1, 2) is the only cut edge in I" that is not a leaf edge.

For a connected graph I" on n vertices, we define

Dr:=2n—1- " e(j) +n(LBr|+|{B € Br | B > 2} - 1)+ > (IGn I)’

Jjrr selCr

41

(8.1)

where G is defined as in Section 5 (i.e., G is one of the two connected components of the graph
([n], E(T)\{s})). This formula is unaffected by a choice of component, as the sizes of the two connected

. noy\_ n
components in ([r], E(T") \ {s}) sum to n and (le|) = (n _ |Gs|)'

Remark 8.3. The invariant D might be more concisely written as

Dr=n—1- c(j)+n(LBr|+|{B € 1Br | B> 2}) + ) (|Gn |)’

Jrr s€elCr

but the format in Equation 8.1 is more conducive to the proofs that follow.
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Example 8.4. Consider the graph I" from Example 8.2 above. The three cut vertices are 4, 1 and 2.
Each of those cut vertices separate I" in to three connected components, so ¢r(4) = ¢ (1) = ¢p(2) = 2.
The block Bj is the only block in IBr with more than two vertices, so [{B € IBr | |B| > 2}| = 1.
The only internal cut edge is (1,2), and this cut edge separates I" in to a component of size 8 and a
component of size 4. We choose the component with vertex set {1,4,6,7,9, 10, 11, 12}, but note that

12— 12—12\7\’ mpute that
g | =1 _g| = |4 | Wecompute tha

12
Dr:2~12—l—(2+2+2)+12(5+1—1)+(8):572.

Since Dr is defined using only the block-cut tree, cut edges and cut vertices of I', it is an invariant
of the isomorphism class of I". We note that if I" is 2-connected, it follows that D = 2n — 1.

Lemma 8.5 below gives a formulation of Dt specific to naturally labeled graphs. Its proof constructs
important bijections that will be used later in the proofs of Proposition 8.9 and Corollary 9.3.

Lemma 8.5. Let " be a naturally labeled graph. Then
n
Dr=2n-1+ Z n+ Z (‘FJ|) —Zcr(j).
i)>C  @H>r Vi j T
Proof. We compare the right-hand side of the formula above with (8.1). The clear cancellation between

the two sides of the claimed equality is 2n — 1 — Y, ¢ (j). Thus, the claim will follow if
jT

n(|LBr|+{B € IBr | |B] > 2} - 1)+ > (ICZI): IR (|F”]) *)

selCr (i,j)>T (i,j)>T

Since T" is naturally labeled, the block containing 7 is a leaf in the block-cut tree. So |LBr| — 1 can be
interpreted as the number of leaf blocks that do not contain n.

In the remainder of the proof, we pair blocks in LBr and IBr that contribute on the left side of
the claimed equality (*) with dominant pairs (i, j) that contribute to the right side, in order to identify
cancellations. The pairings that we will prove and use are as follows:

1. Leaf blocks B € LBr with |B| =2 and n ¢ B contribute n to the left side of (*) and are in bijection
with strongly dominant pairs (i, j) where ‘Flj ’ = 1, which contribute (’11) = n to the right side.
2. The set of internal cut edges ICr is equal to the set of strongly dominant pairs (Z, j) such that ‘F{ | > 1,
n n
and they both contribute = 1]
g (|Gs|) (|F5 ])
3. Leaf blocks and internal blocks of size at least three (i.e., all blocks of size at least 3) that do not

contain the vertex n contribute n to the left side of the claimed equality and are in bijection with
weakly dominant pairs (i, j), each of which contributes 7 to the right side.

This list also serves as an outline of the proof that follows.

(1) Let B be a leaf block of size 2 with vertex set V(B) = {i, j} where i < j. Then the single edge
(i, j) within B is a cut edge of I', and since B is a leaf block, that cut edge (i, j) must separate a single
vertex. If this block does not contain n (so j # n), then since I' is naturally labeled, the cut edge must

be a dominant pair and that separated vertex must be i. So (i, j) > I and V(F{) = {i}, and ‘Flf| = 1.

However, if (i, j) > T and ‘Fl]’ = 1, then { must be a leaf, and the subgraph ({7, j}, {(i, j)}) is a block
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in I" that does not contain n. In particular, we have shown
{BelBr||B|=2,n¢B}={BeLBr|V(B)={ij}, (i,j)>T}.
So the leaf blocks B in I' of size 2 are in natural bijection with the dominant pairs (Z, j) > T where
)r{( — 1. Formally, |{B € LBr | |B| =2, n ¢ B}| = H(i,j) ST )r{( - 1}) Thus,
[LBr|+|{B €IBr | |B| > 2}| —=1=|{B € LBr | |B| =2}| + [{B € LBr | |B| > 2}
+|{B€lIBr||B|>2} -1
- |{(i,j) ST (r{| - 1}| +|{B LBy ||B| >2, n¢ B}
+ |{B € IBr | |B| > 2}|
=[{@.n =T =1
+|{B| BablockinT, |B| > 2, n ¢ B}|.
We cancel nH(i,j) >T | ‘Flj| = IH from the left side and ), (n) from the right side of (*), and it

(i,j)>T
‘Fl’ =1

remains to prove that

n|{B| BablockinT, |B| >2, n¢ B}|+ Z (|(;1 |) = Z n+ Z (‘:J|) (%)

selCr (i,j)>T (i,j)>T i
rf]>1

(2) Now if s = (i, j) € ICr, then s is a cut edge, and since I' is naturally labeled, n ¢ {i, j}. So if
(i,j) € ICr, then (i, j) > I and |Flj| > 1; otherwise, i is a leaf and the block B where V(B) = {i, j} is
not an internal block. However, if (7, j) > I'and |Flf | > 1, then i cannot be a leaf, (7, j) must be a cut edge

and the block B where V(B) = {i, j} is not a leaf in the block-cut tree. So ICp = {(i,j) > T ‘F{| > 1}.

2 (|Gns|)= 2. ((nf|)‘

selCr (i,j)>T i
[rf]>1

After cancelling this value from both sides of (**), it remains to show that
n|{B|BablockinT, |B|>2, n¢ B}| = Z n. (rHE)
(i.))>T
(3) We argue that
{B | BablockinT, |B| >2, n¢ B} ={(i,j) > T}

The bijection is as follows. If B is a block in I" that does not contain #n, then there is a unique path from
B to the block By that contains # in the block-cut tree of I'. The first edge in that path is from B to a cut
vertex of I" that is contained within B. Let j be this cut vertex, and let i be the maximal vertex in B that
is not equal to j. Note that B is not connected ton in I — j.

Since I is naturally labeled, (i, j) is an edge and i must also be the maximal vertex in its connected
component of I' — j (every path from n to that component first passes through j, and i is the largest
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vertex in that component that is adjacent to j). Since |B| > 2, there is at least one other element of B in
the neighborhood of j, so (i, j) is not a cut edge. In particular, (i, j) > T

However, if (i, j) > T, let B be the block containing i. This block cannot contain n by the definition
of a natural label and must be of size at least 2 since (i, j) is not a cut edge.

So we have a bijection, proving as a consequence (***), and the claim follows. O

The bijection between certain dominant pairs and blocks that we constructed in the proof of Lemma
8.5 above will be used again to compute a recursive formula for Dr and provide a label-independent
formula for ch(Lr); and ch(Rr); in Corollary 9.3 below. Visually, when I' is naturally labeled, we have
the following correspondences between blocks in I" and dominant pairs.

B > 2 B e LBr B e IBr
Blocks B :nw IB|=2, n¢B 1B =2

I I I

Dominant o (i,j)>T (i,j)>T
pairs(i,j) | (&) >1) { r{’=1 } { r{'(>1 }

Example 8.6. Consider the naturally labeled graph I drawn below:

Q ﬂ@
éé 020
with block-cut tree

Bs (8)
@6@

The blocks of size at least 2 that do not contain n correspond to weakly dominant pairs in the following
manner:

T

B

® ©
>
®©

Blocks Pairs
Byon{2,3,4} | (3,4) >T
Bson {4,5,8} | (5,8) >T
Bson{6,7,8} | (7,8) >T"
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The leaf blocks of size 2 that do not contain n correspond to strongly dominant pairs (i, j) where )Flj ‘ =1
in the following manner:
Blocks ‘ Pairs
Byon{l,4} (1,4) >T
Bgon {9,10} | (9,10) > T

Finally, the internal block Bs on {8, 9} (so of size 2) corresponds to the dominant pair (8,9) > T.

Example 8.7. When I is naturally labeled, each sum appearing in the formula in Lemma 8.5 has the
following combinatorial interpretation:

o n: Every vertex of I" contributes 1 to the sum,

on—1-=3 c¢r(j) : Every vertex that is not the lower vertex in a dominant pair or the vertex n
Jjrr
contributes an additional 1 to the sum (recall that the lower vertices in a dominant pair determine the
pair uniquely).
o » > n:Every weakly dominant pair contributes 7 to the sum.
JHU (i, j)>T

JFT (i,j)>T Fij

n n
o Y X (| ]}) : Every strongly dominant pair (i, j) contributes (| ’) to the sum.
i

Below, we have drawn I from Example 6.11, with the associated values for Dr in blue. In this picture,
dashed lines indicate weak dominance and double lines indicate strong dominance.

Remark 8.8. It is not obvious that the formula in Lemma 8.5 is the same for different naturally labeled
graphs in the isomorphism class. However, it is clear from the definition in (8.1) that Dr is an invariant,
so they must be equal.

The following Proposition 8.9 gives an inductive formula for Dr when I' is cliqued and naturally
labeled that matches the inductive formula for dimc(Mll_) from Theorem 7.2.

Proposition 8.9. If T is a cliqued and naturally labeled graph on at least 4 vertices, then Dr can be
computed recursively as follows:

n—1

if T is type A
D[‘=1+Dr,n+ ( 1 ) lf 15 ope
1 if T is type B/C

- (|F”_,|__11)+|{(z',j>>r}|.

(i,j)>T
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Before proving Proposition 8.9, we prove several computational lemmas and construct a finer cate-
gorization of type A graphs. The key idea is to concretely describe the block-cut tree of I" — n in terms
of the block-cut tree of I'.

If Bis a block in I" that does not contain n, then B is still 2-connected in I" — n. Additionally, if i and
k where n ¢ {i, k} are vertices in I" such that i and k are in different connected components of I" — j,
then i and k are also in different connected components of (I" — n) — j. In particular, If B is a block in T’
that does not contain n, then B is a block in I" — n.

Lemma 8.10 below describes the simplest case, when I' is either type B or type C

Lemma 8.10. Let I be a cliqued and naturally labeled graph on at least 4 vertices. If T is of type B or
C, then the following equalities hold:

o |LBr| = [LBrl,
o IB]" = IBF_n, and
o ICr =ICr_,.

Proof. Let By be the block in I" that contains n. Since I is type B or C, | Bg| > 2. Since I' is cliqued, the
subgraph By — n has at least 2 vertices and is also a clique, and in particular, By — n is a block in I" — n.
Every other block or cut vertex in I is a block or cut vertex in I — n. Thus, the block-cut tree of I is
isomorphic to the block-cut tree of I" — n.

Since the block-cut trees are isomorphic they have the same number of leaves, and so |[LBr| = |[LBr_,|.
Since the only block that changes is By and all non-leaf blocks in I'" are non-leaf blocks in I' — n, it
follows that IBr = IBr_,,. This equality implies ICr = ICr_,, by definition. O

We now assume that I is type A. We will give a similar computation for type-A graphs, but there are
several cases to consider. Since (n — 1, n) is a cut edge, it corresponds to a block By containing n in I"
that has no natural counterpart in the block-cut tree of I" — n. Not only that, but » — 1 may not be a cut
vertex in I" — n.

Addressing this requires further decomposition of type A graphs, which we denote Al, A2, A3, A4
and A5. We will define them carefully below, but the consequences in each case in terms of moving from
the block-cut tree of I to that of I — n are essentially as follows (recall By is the block in I" containing n):

(A1) The block-cut tree of I" — n is simply that of I" with the block B removed.

(A2) The block-cut tree of I — n is the block-cut tree of I" with the block By and the cut vertex n — 1
removed, and an internal block B’ of size 2 for I" becomes a leaf block for I" — n.

(A3) The block-cut tree of I' — n is the block-cut tree of I" with the block By and the cut vertex n — 1
removed, but every other internal (resp. leaf) block of I" remains an internal (resp. leaf) block of
I'-n.

(A4) The block-cut tree of I — n is the block-cut tree of I" with the block By and the cut vertex n — 1
removed, and an internal block B’ of size greater than 2 for I becomes a leaf block for I' — n.

(AS) The graph I' — n is 2-connected.

First, a type A graph I' is type Al if cp(n — 1) > 1. Graphically, I" looks like

Fn—l

Al: @ U c(n—1)

Note that in type A1, I' — n has the same cut vertices as I, so the block-cut tree of I" — n is the block-cut
tree of I" with By removed.
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If T" is type A but not type A1, then n — 1 is a cut vertex of I', but it is not a cut vertex of I — n. So
the block-cut tree of I' — n is the block-cut tree of I with both the block By and the cut vertex n — 1
removed. In particular, n — 1 is contained within precisely two blocks in I': one that contains n (so Bp)
and one that contains n — 2. Let B’ be the block in I" that contains n — 1 and n — 2.

We say I is type A2 if |B’| =2 (i.e., V(B’) = {n — 2,n — 1}). Graphically, I" and its block-cut tree
look like

2
o

A2: @ @ n—2 : T

tree of I

@ m @ — . o Block-cut

Note that the B’ where V(B’) = {n — 2,n — 1} is associated to an internal cut edge in I" and is a leaf
block inI" — n.

The graph I' is type A3 if |B’| > 2 and B’ contains more than 2 cut vertices of I'. So B’ is adjacent
to more than two vertices in the block-cut tree of I'. Graphically, the block-cut tree of I" looks like

“ B—)—@

where k > 1. Note that B’ is an internal block in both " and I" — n.

The graph T is type A4 if |B’| > 2, and B’ contains precisely 2 cut vertices of I', n — 1 and some
other cut vertex v of I'. In particular, B’ is adjacent to precisely two vertices in the block-cut tree of I".
Graphically, the block-cut tree of I" looks like

Note that B’ is an internal block of size at least 3 in I" and a leaf block in I" — .
Finally, the graph I" is type A5 if n — 1 is the only cut vertex in B’. In particular, By and B’ are the
only two blocks in I', so the block-cut tree of T" is
()

The computations for type A5 are generally easy, as I’ — n is 2-connected.

Lemmas 8.11, 8.12 and 8.13 below use this finer categorization of type A graphs to explicitly compute
the relationship between sums in the formulas of Dr and Dr_,,. For the proofs of Lemmas 8.12, 8.13
and 8.11 below, By is the block in I' that contains n and (if I" type A2-A5) B’ is the block in I' that
contains n — 1 but not n (so B’ is still a block in I" — n).

O

Lemma 8.11. Let I be a cliqued and naturally labeled graph on at least 4 vertices. Then the number of
leaf blocks inT" — n is
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|LBr| if I is type A2 or A4
ILBr—n| = 4|LBr| =1 ifT istype Al or A3
ILBr| —2 ifT is type AS.

Proof. If T is type A2 or A4, then B’ € LBr_, is a leaf block of I" — n, but B’ € IBr is an internal
block of T'. So LBr_,, = (LBr \ {Bo}) U {B’}. Less formally, we lose a block By and gain a block B’,
maintaining the same size.

If I"is type Al or A3, every leaf block in I' — n is a leaf block in I', but we still lose By. So the size
decrements by 1.

If T is type AS, then I' has two leaf blocks (B and B’), whereas I' — n is a clique, with zero leaf
blocks. We directly compute |LBr| = 2 and |LBr_,| = 0. O

Lemma 8.12. Let I be a cliqued and naturally labeled graph on at least 4 vertices. Then

[{B € IBr | |B| > 2}| if U is type Al, A2, or A3
{B €IBr_, | |B| >2}|=4|{B€IBr | |B| >2} -1 ifT is type A4
[{Be€IBr | |B|>2}+1 if[ istype AS.

Proof. If T is type Al, then every internal block of I' is an internal block of I and vice versa. If " is
type A2, then B’ where V(B’) = {n — 2,n — 1} is an internal block for I" but a leaf block for I" — n.
However, B’ is not counted above since |B’| = 2. Every other internal block of I" is an internal block of
I' — n and vice versa. If " is type A3, then B’ is still an internal block in I — n because it is adjacent to
more than 2 cut vertices in the block-cut tree of I' — n. Every other internal block is also the same, and
so the equality follows.

If ' is type A4, then B’ is an internal block of I" but a leaf block in I — n. Every other internal block
in " — nis an internal block in I', so [{B € IBr_, | |B| > 2}| = |{B € IBr | |B| > 2}| - 1.

If T is type A5, then IBr = (0. However, IBr_,, = {B’}. Since I has at least 4 vertices, we know that
|B’| > 2, and the claim follows. O

Lemma 8.13. Let T” be a cliqued and naturally labeled graph on at least 4 vertices. Then the internal
cut edges in " — n are

Cr = ICr if U is type Al, A3, A4, or AS
= ICr\{(n=2,n-3)} ifTistypeA2.

Proof. The set ICr is the set of internal cut edges in I". The two types where B’ is an internal block in
I" but a leaf block in I" — n are types A2, A3 and A4. In types A3 and A4, the block B’ is assumed to
have size |B| > 2 and so does not correspond to an element of ICr. If T is type A2, B’ contributes to
ICr but not ICr_,,, and that contribution is precisely the cut edge (n —2,n — 1). O

Now we are ready to prove the recursive formula for Dr.

Proof of Proposition 8.9. Consider the sum Y, ¢r—,(j). If I is type B or C, then every cut vertex of
jFl—n

I" is a cut vertex of I' — n and vice versa. For]each such cut vertex j + I" (and j + I" — n), since I is type
B/C, no connected component of I — j consists of only the vertex n, so ¢r(j) = ¢r—p (f)-

If T is type A1, then every cut vertex of I is a cut vertex of ' —nbut cp(n— 1) = ¢cp—y(n— 1) + 1.
If T is type A2, A3, A4 or AS, then n — 1 is not a cut vertex of I' — n but ¢p(n — 1) = 1. So we set
cr_n(n — 1) := 0, and the same relationship as in type Al applies. Now for every other j # n — 1, the
vertex j + I'if and only if j + T" — n, and then ¢p(j) = ¢r—, (j). So we compute

1 if I type A
tr-n(j) = Cr(j)—{ .
j;n ; 0 ifI" type B/C.
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Next, we compare the contributions to Dr and Dr_, by leaf blocks and internal blocks of size greater
than 2. By Lemmas 8.10, 8.12 and 8.13, it follows that

1 if T type A but not A2,

LBr_,| +|{B € IBr- B| >2} =|LBr|+|{B €1B B| > 2} -
|LBr-| + { r-n | Bl > 2} = |LBr|+{ r| Bl > 2} {0 £ T type B. C, or A2,

Since I' is naturally labeled, if s € ICr_, (so s # (n,n — 1)), then the connected component of
([n = 1], E(I" = n) \ s) that does not contain the vertex n — 1 is equal to the connected component of
([n], E(T') \ {s}) that does not contain the vertex n. It is important for proving the recursion that for
each internal cut edge s € ICr_,, c ICr, we always pick the component G to be equal inI"and ' — n
(i.e., always choose n ¢ G5 C I'), so we adopt this convention. If I" is type A2 (i.e., ICr # ICr_,), we
remove the ‘over-counting’ from the internal cut edge (n — 2,n — 1) € ICr below and get that

-1
3 n—1 y n—1 (" ) [ is type A2
G | = |G | — n— 2
s€lCr_y, Gy s€lCr s 0 otherwise.

Now we compute

Drp=2n=3= " crn(j)+(n=1)(ILBr—u| +[{B € Br- | B > 2}| - 1)

jrI'=n
n—1
+ 2 (ol
selCr—_, |GS|
1 ifT't A
=2n—3—Zcr(j)+ 1 ype
o 0 if I" type B/C.

n—1 if I type A but not A2

+(n-1)(|LBr|+|{B€1Br||B|>2}-1) -
(n = 1)(ILBr|+ { r 1Bl >2} 1) {() if I' type B, C, or A2.

n-1
n—1 ( ) I' is type A2
- -2
P> (|Gs|) !

selCr 0 otherwise.
n—1 ifI type A
=2”_2_Zcr(j)_{1 it T . B/C
T it I type .
n-1
+(n—1)(|LBr|+|{B€IBr||B|>2}-1)+ Z (|G |)

s€elCr

Now we have Dr_, in a form that closely resembles that of Dr. Recall Pascal’s identity (Z) =

-1 -1
(n ) + (n ) For each s € ICr, we have that

(|Gns|) ) (TG_;) ) (|Gns|_—1 1)‘
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In particular,

2. (|c::|)_ ) (TG_T) = 2, (|c’;1s|_—1 1)'

N EICF N EICF S EIC]"

So we compute that the difference Dr — Dr—,, is equal to

1+ (ILBr| + [{B € IBr | |B] > 2} - )+

selCr

n—1 n—1 ifI" type A
|Gs| -1 1 if T type B/C.

The remainder of the proof is essentially the same as the proof for Lemma 8.5. In particular,

1. Leaf blocks of size 2 that do not contain the vertex n are in bijection with strongly dominant pairs
(i, j) where |Flj) =1,

2. The set of internal cut edges ICr is equal to the set of strongly dominant pairs (i, j), where ‘FIJ | > 1,
and

3. Leaf blocks and internal blocks of size at least three (i.e., all blocks of size at least 3) that do not
contain the vertex n are in bijection with weakly dominant pairs (i, j).

n—1

We note that ( ) 1) = 1 and get that

selCr

- -1
(ILBr|+|{B € IBr | |B| > 2}[ - 1)+ > (|G”|_11)= > (17_,-|_1)+|{<f,j>>r}|.

Thus, Dy — Dr_, has the claimed form. ]

Corollary 8.14. Let I" be a connected graph on [n] where n > 3, and Dr as defined in Equation (8.1).
Then dimc(./\/llr) = Dr. Moreover, dim¢(Lr); = dime(Rr); = Dr — n.

Proof. 1t suffices to assume that I" is cliqued and naturally labeled. In this case, by Theorem 7.2 and
Proposition 8.9, both dim@(/\/llr) and Dr follow the same recursion. Thus, it suffices to show equality
on all connected graphs on 3 vertices. Quick computation confirms that

dimc(My,) =5 = D, and dimg(M},) =7 = Dp,,

and so the two statistics must be equal. The ‘moreover’ part follows from the fact that C{f}, ..., 7}
and C{xy,...,X,} are the (n-dimensional) linear subspace of er quotiented to obtain Ly and Rr,
respectively. O

We now have a closed combinatorial formula for the C-dimension of the first graded piece of M} In
particular, we have the dimension of the representations corresponding to ch(Lr), and ch(Rr);. We are
also quite close to constructing C-bases of M., as the formulae for Dr in Lemma 8.5 and the natural
one for |Br| are very similar.

9. The left and right linear representations

This subsection computes ch(Lr),; and ch(Rr), for all connected I', proving Theorem 1.4 from the
introduction. We prove this assuming that I is naturally labeled and get the label-independent formula
as a corollary. The computation is direct and achieved by computing the dot action on two subsets LS
and RSt of Br that project to bases of (Lr); and (Rr);, respectively.
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Say I is a naturally labeled connected graph. By Proposition 6.12 and Theorem 7.2, if

s=(,j)>T, i
=[] " i

then ./\/llF = CBr. For the first graded piece of L and Rr, we will remove elements from Br using the
relations in Lemma 5.5, prove that the image of what remains is a basis by dimension, and then compute
the representations on (Lr); and (Rr); using Lemma 9.1 below.

(i, ]) >F,}

Br:={f,~|ie[n]}U{xme[n]}u{fg e

Lemma 9.1. Let w € S,,. Then

L

-J _ =]
w(A) andw -y, , = Yrow k)

The proof of Lemma 9.1 is direct from the definitions.

Now we will define two subsets of Br — one for (Lr); and one for (Rr); — that project to C-bases in
these quotients.

For the linear piece of the left quotient (Lr);, we first remove from B the splines {71, ..., 7, }. We
may also discard

(1) The single spline &,, by Lemma 5.5(1),
(2) The splines {x; | (i, j) > '} by Lemma 5.5(2), and
(3) The splines {x; | (i, j) > '} by Lemma 5.5(3).

Note the set of splines in (2) and (3) is size |{X; | (i,j) > T}U{x; | (i,j) > T} = X ¢(j). So the
jrr

image of
LSr = {% € X,y | ris not s-dominant Vs € [n]} U {5 | s > I'} U {yi,k|(r,j) ST, ke l[n] }

in (Lr); is a spanning set. Note that the size of {X, € &;,_; | r is not s-dominant Vs € [n]}isn—1 -
> c(j),thesizeof{f; | s > F} is X ( nj ),andthesizeof{yi ) >T, ke [n] } is Y n
Jrr (i,j)>T i ’ (i,j)>T
Thus, the size of LS is precisely the dimension Dr — n of (Lr);, as computed in Lemma 8.5. So LSt
projects to a basis of (Lr);. In fact, LSt is a permutation basis for the dot action representation, from
which it is easy to compute the dot action representation (we will state and prove this in Theorem 9.2).
For the linear piece of the right quotient (Rr);, we first remove from By the splines {Xy, ..., %, }. Let

mij = )Flf‘, and let {Ap | pe [( " )” be an enumeration of the ( "
mi; mi;
a strongly dominant pair (i, j) > I'. By Lemma 5.5, the following three relations hold in Rp:

if, ~0, > fiV ~0and Zn:y{’k ~0.
r=1 k=1

Ac[n]

)—many subsets A associated to

The natural subset of Br whose image spans (Rr); is therefore

n
_ _ —(i 7 —(i 7 c -1 s i g
RSF = {tr —Ir41 | re [” - 1]} U XI:J) - X[:il) P [(mij) ] U {yi,k _yi,k+1
(i,j)>T

(r.j)>T,
keln-1][
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n
The first subset is size n — 1. The second subset is size D, ( ~ ) — 11, and the third subset is size
(i,j)>T ‘ i |

>, (n—1). The number of (strong or weak) dominant pairs is
(i,7)>
|6, /) € E(T) | (/) > Tor (i, j) > TH = ) ¢()),
Jrr
SO

)+ Z n—Zc(j).

(i,j)>T" Jrr

S\ 2= 2

(i,j)>T @,j)>T @)= i

So the image of RSy is a basis for (Rr);.
Theorem 9.2. Let I be a naturally labeled graph. If (i,j) > T, define the partition A;; =
(n - )Fi]"’ ’Fl’)) (reordered if necessary). Then

ch(Lr) = ), hay+ ), hn_1,1+(n—1—2c(j>)hn,

(i,j)>T (i,j)>T Jjrr

and

h(Rr)y = su-11+ . (hay =sn)+ D suoi.

(i,j)>T (i,j)>T

Proof. Since CLSr and CRSy are S,,-invariant vector spaces, the dot action on each is a representation.
Since the projection of these spaces to (Lr); and (Rr); are in fact isomorphisms, the symmetric
functions ch(Lr); and ch(Rr), are the characters of the dot action representation on CLSt and CRSr,
respectively. Each of the identified subsets in bases LSt and RSt span S,,-invariant subspaces of CLSr
and CRSr, respectively.

First, we will compute each part of ch(Lr);. The dot action fixes each X;, and so the character of the
dot action representation on C{x, € Xj,_; | r is not s-dominant Vs € [n]} is (n -1-=2 ¢ j))hn. By

jrr
Lemma 9.1, the character of the dot action representation restricted to C{f} | s > '} is Y hy,.
(i,j)>T

By Lemma 9.1 as well, the character of the dot action representation on C{ yi () >T, k€ [n] }
is D, hy-1.1-

Now we will compute each part of ch(Rr);. Each of the following computations use the same principle
argument. If K is an integer, and the set {¢; | i € [K]} is a permutation basis of some permutation
K

representation of S,, with character h,, then the vector }, e; is invariant under that representation.
i=1
Furthermore, the character of the representation on the orthogonal subspace spanned by {e;;] —¢; | i €
[K—=1]}is hy — s,.
The character of the dot action representation on C{t; | i € [n]} is ;-1 », and so the dot action repre-
sentationon C{#,—74; | r € [n—1]}is hp—1 n—5n = $p—1,1. The character of the dot action representation

onC{ ;(‘l;j)

n
p € [( )] , (i,j) > T is X hy,,,andso the character of the dot action representation
mi (i,j)>r

F.0) _ 7))
on C{ A, ~Tag|P €

[( " ) - 1}, (i, ]) > F} is 2 h,ll.j — 5,. The character of the dot action
mi (i,j)>T

(r,j)>T, ke [n]} is >, hu—1,1, and so the character of the dot action
(i,/)>T

() >Tokeln=1}is T (hoi-s)= % siin. O
(E,/)>r (&,/)>T

representation on C{ yi X

representation on C{ Vo=V
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The Schur-expansion of h,,; is easy to compute since 4;; is only a two-part partition. In particular,
n-K-1
, then h/l,-j —Sn= X SK+mn-K-m-
m=0
The following corollary gives the label-independent description, from the statistics on block-cut trees

described in Section 8.

if K is the larger of ‘F[J| and n — |Flj

Corollary 9.3. Let I be a connected simple graph, and let LBr, IBr and ICr be the leaf blocks, internal
blocks and internal cut edges of I as defined in the beginning of Section 8. For (i, j) € ICr, let A;; be
the partition (n — |G(i, j)|, |G(i’ j)|) (reordered if necessary), where G ; j) is a connected component of
the graph ([n], E(T') \ {(i, j)}). Then

ch(Lr); = . ha, +(ILBr|+[{B € IBr | [B| > 2} = Dhp 11 + (n -1y c(j))hn,
(i,j)€elCr jrr

and
ch(Rr); = 3 (hay, = su) + (LBr|+ [{B € Br | 1Bl > 2})sn-1,1.
(i,j)€ICr

Proof. This follows directly from Theorem 9.2 and the bijections/equalities described in the proof of
Lemma 8.5 (and also the proof of Proposition 8.9). O

We note that in the statement of Theorem 1.4 in the introduction, the sets are £y = ICpr and

E; =LBrU{B €IBr | |B| > 2},and the integer k =n — 1 — 3 ¢(j).
Jjrr

Example 9.4. Let I" be the graph from Example 8.6. We may compute the representations with either
Theorem 9.2 or Corollary 9.3. Then

Ch(Lr)l = 6h12 +4h11’1 + hg’4
and
ch(Rr); =4s11,1+hg 4 —s12 =4s11,1 + (58,4 + 593+ S102 + S11,1)-

We note that, by this formula, the symmetric function ch(Lr), is A-positive for all graphs I'. So
Theorem 9.2 and Corollary 9.3 prove an extension of the linear part of the graded Stanley—Stembridge
conjecture from Hessenberg graphs to all connected graphs.

A. Tables of polynomials

Without geometric methods, it is quite difficult to compute these representations. One can, however,
compute the dimension more easily using [ 17, 24]. For example, despite our current inability to compute
the representation, we do know that dim(L¢,); = 9 = dim(Rc, );. We also note that Mé‘:’ is not a free

module, but M éf is free (and ch(L,) is, in degree < 2, h-positive).
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Table 1. The polynomials 3, ch(Lr),q" in the homogeneous basis and Y, ¢ch(Rr);q" in the Schur basis for all
i>0 i=0

graphs on 3 and 4 vertices, excluding ¢h(Lc, ), and ch(Rc,);.

) Ch(LI‘)iqi
i>0

2 ch(Rr),-qi
i>0

hy + (hs + ho 1) q + (h3) ¢°

53+ (25‘2’1)(] + (Sl,l,l)q2

h(1+2q +2¢*% +q°)

$3 + (Sz,l)q + (Sz,l)qz + (51,1,1)43

hy + (hz‘z + h3,1 + h4)q +
(ho + h31 + ha)g” + (ha)g?

2

Sq4 + (Sz’z + 3S3,1)q + (352’],1 + sz,z)q +

(Sl,l,l,l)q3

h4 + (l’l4 +2h3,1)q +
(ha +2h31 —hop + ha11)g? + (ha)g?

sS4+ (3.93’1)q + (3S2,2 + 3;?2,1’1)q2 + (S1’1,1’1>q3

h4 + (h3‘1 + 2h4)q + (2]’13’] + 2h4)q2 +
(h3,1+2h4)q” + (ha)q*

Sq4 + (2S3,|)q + (S2’1,1 +252,2 + S3,1)q2 +
(2s2,1.1)q* + (s1.1.1.1)q*

h4 + (3/’14)(] + (I’lz’z + h3,1 + 3h4)q2 +
ch(Lr)sq* + (ha)g*

S4 + (53,1)q + (252’2 + 353,1)q2 + Ch(R]")3q3 +
(sr11a)q’

hy + (3hy)g + (h3,| +4h4)q2 +
(h3.1 +4hs)q® + Bha)g* + (ha)g®

sa+(s31)q + (s22+2531)q° +

(252,11 +922)q° + (s2,1,1)g* + (s1,1,1,1)4°

U AN AN 1515

hya(143q +5¢% + 64> +5¢* +3q° + ¢°)

s4+(53,1)g+ (522 +53,1)q% + (52,11 +53,1)g° +
6

(52,11 +522)¢* + (s2,11)@” + (s1,1,1,1)q
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Table 2. The rank-generating functions and total rank for all isomorphism classes of graphs on 5 vertices. Geometric cases are marked

with .

E(T) Y dim(Ly);g’ = ¥ dim(Rr); ¢° Total

(1,5),(2,5), (3,5), (4,5) 1 +16q + 66g% + 564> + g* 140

(1,4), (1,5), (2,5), (3,5) 1+21g+714% +31¢°> + ¢* 125

(1,4), (1,5), (2,5), (3,5), (4,5) 1+12g +42g% +52¢° + 224* + ¢° 130

(1,4), (1,5), (2,4), (2,5), (3,5) 1+8g +38¢> +68¢° + 13¢* + ¢° 129

(1,4), (1,5), (2,4), (3,5), (4,5)7 1+ 12g"+474° +474° + 12¢* + ¢° 120

(1,4), (1,5), (2,4), (2,5), (3,5), (4,5) 1+8q +24q% +49¢° + 34" + 8¢° + ¢° 125

(1,4), (1,5), (2,4), (2,5), (3,4), (3,5) 1+4qg + 174> +47¢° + 62¢" + 6¢° + ¢° 138

(1,4), (1,5), (2,4), (2,5), (3,4), 1+4q +17g%> +33q° +43¢% +27¢° +4q° + 4 130
(3,5), (4,5)

(1,3), (1,5), (2,4), (2,57 1+26g" + 6647 +264° + 14* 120

(1,3), (1,5),(2,4), (2,5), (3,97 1+17q" +42¢° +82¢° + 174* + 1g° 120

(1,3), (1,5), (2,4), (2,5), (3,5), (4,57 1+8g" +29¢% + 44q° + 294" + 8¢° + 14° 120

(1,3), (1,4), (2,4), (2,5), (3,3) 1+4q +49¢% + 69> + 14¢* + ¢° 138

(1,3), (1,4), (1,5), (2,4), (2,5), (3,5) 1+4q +26q> +51q° +36g* +5¢° + ¢° 124

(1,3), (1,4), (1,5), (2,4), (2,5), 1+4q"+17¢% +38¢° +38¢" + 17q° +4q° + q' 120
(3,5), (4,5)F

(1,3), (1,4), (1,5), (2,5), (3,4), (3,57 1+8qT +29g% + 444> +29¢% + 8¢° + ¢° 120

(1,3), (1,4), (1,5), (2,5), (3,4), 1+8g" +20g% +31g> +31¢* +20q° +8¢° + ¢’ 120
(3,5), (4,5F

(1,3),(1,4), (1,5), (2,4), (2,5), 1+4q" +13¢% +264° + 324" +26¢° + 120
(3,4), (3,9), (4,5)F 13¢° +4q" + ¢8

(1,3), (1,4),(1,5), (2,3), (2,4), 1+4q +13g° +35q° +45¢* +24q° +5¢° + ¢ 128
(2,5),(3,5)

(1,3), (1,4), (1,5), (2,3), (2,4), 1+4q +9g% +23q° +39¢* +33¢° + 124
(2,5),(3,5), (4,5 IOq6 +4q7 +q8

(1,3), (1,4), (1,5), (2,3), (2,4), 1+4¢"+9¢% +19¢° +27¢* +27¢° + 120
(2,5),(3,4),(3,5), (4,57 19¢° +9q7 +44® + ¢°

(1,2), (1,3),(1,4), (1,5), (2,3), 1+4q" +9g% + 15¢° +20¢" + 22¢° + 120
(2,4), (2,5), (3,4), (3,5), (4,57 20¢° + 1597 +9¢°% +44° + ¢'°
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