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Abstract

A spline is an assignment of polynomials to the vertices of a graph whose edges are labeled by ideals, where the

difference of two polynomials labeling adjacent vertices must belong to the corresponding ideal. The set of splines

forms a ring. We consider spline rings where the underlying graph is the Cayley graph of a symmetric group generated

by a collection of transpositions. These rings generalize the GKM construction for equivariant cohomology rings

of flag, regular semisimple Hessenberg and permutohedral varieties. These cohomology rings carry two actions

of the symmetric group ÿÿ whose graded characters are both of general interest in algebraic combinatorics. In

this paper, we generalize the graded ÿÿ-representations from the cohomologies of the above varieties to splines on

Cayley graphs of ÿÿ and then (1) give explicit module and ring generators for whenever the ÿÿ-generating set is

minimal, (2) give a combinatorial characterization of when graded pieces of one ÿÿ-representation is trivial, and

(3) compute the first degree piece of both graded characters for all generating sets.
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2 N. R. T. Lesnevich

1. Introduction

Let G be a graph with edges labeled by ideals in C[ý•] � C[ý1, . . . , ýÿ]. A spline on G is an assignment

of polynomials to vertices such that the difference of two polynomials labeling adjacent vertices must

be in the corresponding ideal. The Cayley graph for a group G and generating set ÿ ⊆ ÿ has vertex set

G and edge set {(ý, ýý) | ý ∈ ÿ, ý ∈ ÿ}. When the group G is a symmetric group ÿÿ and the generating

set S consists of inversions, there is a natural edge labeling for the corresponding Cayley graph. This

labeled Cayley graph, and thereby the splines on it, are entirely determined by the data of the inversion

graph Γ = ([ÿ], ÿ). This paper determines algebraic structures of splines on Cayley graphs of symmetric

groups using the combinatorial data of the inversion graph Γ.

To discuss the results below, we begin with some notation. Let Γ be a connected simple graph with

vertex set [ÿ] � {1, . . . , ÿ}, and identify the edges in its edge set ý (Γ) with transpositions in ÿÿ. This

paper studies how properties of Γ determine the algebraic structure of splines on the Cayley graph GΓ

of ÿÿ with generating set ý (Γ) and edge label (ý, ý(ÿ, ÿ)) ↦→
〈
ýý (ÿ) − ýý ( ÿ)

〉
. Formally, the ring of

splines is defined as

MΓ �

{
ÿ̄ ∈

∏
ý ∈ÿÿ

C[ý•]

����� ÿ̄(ý) − ÿ̄(ý(ÿ, ÿ)) ∈
〈
ýý (ÿ) − ýý ( ÿ)

〉
when (ÿ, ÿ) ∈ ý (Γ)

}
,

with (graded) ÿÿ-module structure ý · ÿ̄(ÿ) = ýÿ̄(ý−1ÿ) and (graded) C[ý•]-module structure given by

multiplication.

This definition of the ring of splines generalizes the case where GΓ is the moment graph of a

geometric object called a regular semisimple Hessenberg variety and the ring of splines is isomorphic to

the equivariant cohomology of that variety [13, 16, 28]. We call this the geometric case, and in this case,

the corresponding graph Γ is a Hessenberg graph, commonly characterized in algebraic combinatorics

as being the indifference graph of a 3 + 1- and 2 + 2-free poset. The more general setting considered in

this paper allows one to spot patterns in rich algebraic structure that would otherwise be restricted for

geometric reasons. For example, in the geometric case, MΓ is always a free module over the polynomial

ring, whereas for general Γ, it is not.

The ÿÿ-module structure on MΓ was first defined in the geometric case as the dot action on

equivariant cohomology by Tymoczko in [28]. There are two natural ÿÿ-equivariant quotients, LΓ and

RΓ, of MΓ that are in fact graded C-vector spaces. The graded ÿÿ-module structure of MΓ induces

graded ÿÿ-representations on the quotients, admitting (via the Frobenius character map ch) two different

graded symmetric functions:

ch(LΓ) �
⊕
ÿ

ch(LΓ)ÿ and ch(RΓ) �
⊕
ÿ

ch(RΓ)ÿ .

These are manifestly Schur-positive symmetric function invariants of any simple graph.

The graded symmetric functions ch(LΓ) and ch(RΓ) are historically of interest to algebraic combina-

torists because of their connections to chromatic symmetric functions [8, 19, 25] and LLT polynomials

[3, 5, 19] in the geometric case. The two bases of symmetric functions we consider here are Schur func-

tions {ýÿ} and homogeneous symmetric functions {ℎÿ}. In the geometric case, two major open problems

seek (1) a homogeneous basis expansion of ch(LΓ) ([1, 8, 12, 14, 18, 20, 25, 26], and many others),

and (2) a Schur basis expansion of ch(RΓ) ([2, 7, 19, 21, 22, 23] and many others). Again, our object

of study is more general, and because of this, we can identify patterns otherwise masked by geomet-

ric structure. For example, the Stanley–Stembridge conjecture [27] claims that the homogeneous basis

expansion of ch(LΓ) has only nonnegative integer coefficients (h-positivity) in the geometric case. We

observe below that this is not the case for general Γ, but h-positivity seems to occur whenever MΓ is a

free module over C[ý•].

This paper begins with several fundamental properties of MΓ. First, we establish the algebraic

structure of MΓ as an invariant of the graph Γ.

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press



Forum of Mathematics, Sigma 3

Lemma 1.1. An isomorphism of graphs Γ � Γ′ induces a ring isomorphism of splines MΓ �MΓ′ and

equality of graded symmetric functions: ch(LΓ) = ch(LΓ′) and ch(RΓ) = ch(RΓ′).

In particular, Lemma 1.1 shows that the graded symmetric functions ch(LΓ) and ch(RΓ) are (Schur-

positive) invariants of unlabeled simple graphs. Lemma 1.1 is proved via Propositions 2.18 and 2.20

below.

Then when Γ is a tree, we determine explicit ring and module generators of MΓ called coset splines

(Definition 3.4).

Theorem 1.2. If Γ is a tree, then the set of coset splines is a C[ý•]-module generating set of MΓ, and

the set of linear and constant coset splines is a ring generating set of MΓ.

Since they generate, one can compute MΓ explicitly with coset splines using a computer algebra

system. Theorem 1.2 is Theorem 3.7 and Corollary 3.8 below.

We use Theorem 1.2 to show that MΓ is not always a free C[ý•]-module, and ch(LΓ) is not always

h-positive (see Appendix A). One example is if Γ = ([4], {(1, 4), (2, 4), (3, 4)}), then MΓ is not a

free module and ch(LΓ)2 is not h-positive. This also confirms that MΓ is not always the equivariant

cohomology of an (equivariantly formal) algebraic variety as in [16], since in that case, MΓ is a free

C[ý•]-module.

Our next main results, Theorems 1.3 and 1.4 below, explicitly compute certain graded pieces of the

symmetric functions ch(LΓ) and ch(RΓ). Specifically, we determine when graded pieces of ch(LΓ) and

ch(RΓ) are equal to ch
(
Lÿÿ

)
and ch

(
Rÿÿ

)
where ÿÿ is the complete graph (Γ = ÿÿ is a very special

geometric case), and we compute ch(LΓ)1 and ch(RΓ)1 for all connected graphs Γ.

For a variety of reasons, for example by formulae in [25] or by some geometric observations, in the

geometric case, it is straightforward to tell from a Hessenberg graph H whether the symmetric function

ch(Lÿ )ý corresponds to a trivial representation. We achieve an analogous result for arbitrary graphs.

The k-connectivity (Definition 2.2) of a graph is a combinatorial invariant that measures how many

vertices can be removed from a graph before it might become disconnected.

Theorem 1.3. Let Γ be a connected simple graph. The following are equivalent:

1) The graph Γ is k-connected.

2) For all ý < ý , the symmetric function ch(LΓ)ý corresponds to a trivial representation.

3) For all ý < ý , the d-th graded piece of MΓ is isomorphic to the d-th graded piece of Mÿÿ
, where

ÿÿ is the complete graph on n vertices.

Geometrically, the d-th graded piece of Mÿÿ
is isomorphic to the 2ý-th equivariant cohomology of

the full flag variety and is thus spanned by equivariant Schubert classes whose spline formula is given

in [6]. Theorem 1.3 is a consequence of Theorem 4.2 below.

When Γ is a Hessenberg graph, the first graded piece of ch(LΓ) has been computed in a variety of

ways. The Schur expansion is computed by counting P-tableaux [25]. Expansions in the homogeneous

basis have been computed with P-tableaux [11], geometrically [10], as well as with splines [4]. Our

methods here most directly generalize those in [4].

Theorem 1.4. D Let Γ be any connected simple graph. The first-degree pieces of the graded symmetric

functions ch(LΓ) and ch(RΓ) can be computed in both the Schur and homogeneous bases of symmetric

functions from the data of (1) cut edges of Γ and (2) cut vertices of Γ and the number of connected

components those vertices separate.

Formally, there exist a subset ý1 of cut edges, a subset ý2 of 2-connected subgraphs, a nonnegative

integer ý ∈ N, and a function ÿ ↦→ ÿÿ from ý1 to the set of partitions of n, such that

ch(LΓ)1 =

∑
ÿ∈ý1

ℎÿÿ + (|ý2 | − 1)ℎÿ−1,1 + ýℎÿ
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4 N. R. T. Lesnevich

and

ch(RΓ)1 =

∑
ÿ∈ý1

(
ℎÿÿ − ýÿ

)
+ |ý2 |ýÿ−1,1.

Theorem 1.4 is Theorem 9.2 and Corollary 9.3 below. The subsets ý1 and ý2 are defined using a

combinatorial construction from the block-cut tree (Definition 6.2) of Γ in Section 8.

The paper is structured as follows. Section 2 constructs MΓ and proves some of the fundamental

algebraic properties, including the isomorphism of Lemma 1.1. Section 3 builds tools for computing

spline conditions from paths in Γ and GΓ. It also contains the construction of coset splines for trees and

the proof that coset splines generate MΓ, Theorem 1.2 above. Section 4 leverages the tools in Section 3

to prove our result on k-connectedness, Theorem 1.3 above. Sections 5, 6, 7, 8 and 9 are all to compute

the representations in Theorem 1.4 above. Section 5 defines a set of linear splines on the graph GΓ and

proves some linear relations within that set. Section 6 reduces the computation to a subclass of graphs Γ

that will be used in all of the remaining sections. Section 7 proves that the set of splines from Section 5

is in fact a C-spanning set for linear splines, and Section 8 computes the C-dimension of this space.

Finally, Section 9 computes the first graded piece of ch(LΓ) and ch(RΓ), Theorem 1.4. Appendix A

contains a table of ch(LΓ) and ch(RΓ) for graphs with 3 or 4 vertices and a table of the rank-generating

functions for graphs of size 5 (which gives the graded dimension of the representations).

2. Background

There is a natural action of the symmetric group ÿÿ on the polynomial ring C[ý•] by

ý ÿ (ý1, . . . , ýÿ) ↦→ ÿ
(
ýý (1) , . . . , ýý (ÿ)

)
. (2.1)

We use both one-line and cycle notation for elements of ÿÿ. We denote a permutation’s cycle notation

with parentheses and commas, and its one-line notation without, so that (1, 2, 3) = 231.

2.1. Graphs: simple and Cayley

This subsection establishes the basic definitions, results and notation from graph theory needed below.

A graph is a tuple Γ = (ý, ý) where V is the set of vertices and ý ⊂ ý × ý is the set of edges. Graphs

here are understood to be undirected and simple (i.e., finite, loopless and without multiple edges). We

will always take Γ to be connected and may remind the reader of this assumption where particularly

important. Write ý (Γ) for the edge set of a graph Γ and ý (Γ) for the vertex set. Inclusion ÿ ∈ Γ means

ÿ ∈ ý (Γ).

If the vertex set V has some natural linear order (in particular, when ý = [ÿ]), then an edge between

vertices ÿ < ÿ will always be written with the lower vertex first (ÿ, ÿ), unless explicitly stated otherwise.

Note that these edges are undirected, so an edge (ÿ, ÿ) is the same as an edge ( ÿ , ÿ).

We denote graphs pictorially with circles as vertices and lines as edges between them; for example,

we would display a particular graph Γ on 9 vertices as

ÿ1

ÿ2

ÿ3

ÿ4

ÿ5

ÿ6 ÿ7

ÿ8

ÿ9
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The induced subgraph of Γ with vertex setý \ý is Γ\ý � (ý \ý, ý ′), where ý ′ = ý∩(ý \ ý ×ý \ ý).

We write Γ − ÿ for Γ \ {ÿ}. When collapsing a subgraph in drawing, we reference the subgraph in a

square to distinguish that there are multiple vertices being referenced, and double lines connecting to

acknowledge the possibility of multiple edges. For example, we may display Γ above as

ÿ1

ÿ2

Γ \
{
ÿ1
ÿ2

}

if the structure within Γ \ {ÿ1, ÿ2} is not needed.

Definition 2.1. For a graph Γ, a set ý ⊂ ý (Γ) is a cut set if Γ \ ý is disconnected. Similarly, ÿ ∈ ý (Γ)

is a cut vertex of Γ (denoted ÿ 	 Γ) if Γ − ÿ is disconnected.

An edge ÿ ∈ ý (Γ) is a cut edge if the graph (ý (Γ), ý (Γ) \ {ÿ}) is disconnected.

A path in Γ from vertex ÿ0 to vertex ÿℓ of length ℓ is a sequence of vertices (ÿ0, ÿ1, ..., ÿℓ), where

(ÿý , ÿý+1) ∈ ý (Γ) for ý = 0, ..., ℓ − 1. Define the distance ý (ÿ, ý) between v and w as the minimum

length over all paths from v to w, and let ý (ÿ, ý) � ∞ if no such path exists.

Definition 2.2. A graph Γ = (ý, ý) is k-connected if Γ \ ý is connected for all ý ⊂ ý such that

|ý| ≤ ý − 1.

In other words, a graph is k-connected if there exists no cut set A where |ý| < ý . The following is an

equivalent characterization used in §4.

Theorem 2.3 (Menger’s Theorem). A graph Γ is k-connected if and only if for every pair of vertices

ÿ, ÿ ∈ Γ, there exist at least k vertex-disjoint paths from i to j.

An R-labeled graph is a tuple (ý, ý, ÿ), where (ý, ý) is a graph and L is a function ÿ : ý → ý for

some set R. A Cayley graph of a group G and a set of generators S is the graph
(
ÿ, {(ý, ℎ) | ý−1ℎ ∈ ÿ}

)
.

Cayley graphs are usually directed graphs, but all generators considered here will be involutions, and so

the Cayley graphs will be undirected simple graphs. Note that ý−1ℎ ∈ ÿ if and only if ℎ = ýý for ý ∈ ÿ,

so edges in a Cayley graph correspond to right multiplication by generators.

This paper concerns graphs Γ on vertex set [ÿ] and labeled Cayley graphs of the symmetric group

with generators being some set of transpositions. The edge labels are principle ideals in C[ý•].

Definition 2.4. Let Γ be a graph on [ÿ]. Identify each edge (ÿ, ÿ) ∈ ý (Γ) with the transposition

(ÿ, ÿ) ∈ ÿÿ. The labeled Cayley graph associated to Γ is GΓ := (V , E ,L), where

◦ V = ÿÿ,

◦ E = {(ý, ÿ) | ý−1ÿ ∈ ý (Γ)}, and

◦ L(ý, ÿ) =
〈
ýÿ − ý ÿ

〉
, where (ÿ, ÿ) = ýÿ−1.

Note ý−1ÿ is conjugate to ýÿ−1, so if ý = ÿ(ÿ, ÿ), then L(ý, ÿ) = 〈ýý (ÿ) − ýý ( ÿ) 〉 = 〈ýÿ (ÿ) − ýÿ ( ÿ)〉.

Note also that L is defined whenever ýÿ−1 is a transposition.

Example 2.5. Let Γ = ([3], {(1, 2), (2, 3)}). Then GΓ has vertex set ÿ3, edges {(ý, ÿ) | ý−1ÿ ∈

{(1, 2), (2, 3)}, and labels of the form 〈ýÿ − ý ÿ〉, where ÿ, ÿ ∈ [3]. Below is GΓ, with labeling ideals

denoted by generators.
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6 N. R. T. Lesnevich

Consider the edge (132, 312). These permutations have their first and second positions swapped,

corresponding to right multiplication by (1, 2) ∈ ý (Γ). The edge is labeled 〈ý1 − ý3〉 because these

permutations have the entries 1 and 3 swapped, corresponding to left multiplication by (1, 3).

The Γ-length of a permutation ý ∈ ÿÿ is

ℓΓ (ý) � min{ℓ | ý = ý1 · · · ýℓ , {ý1, . . . , ýℓ } ⊆ ý (Γ)}. (2.2)

This is also the value of ý (ÿ, ý) in GΓ. When Γ is the path graph, Γ-length is the traditional length

function on permutations.

2.2. Splines

This section introduces the ring of splines on a labeled Cayley graph. The lemmas in this subsection are

well known and straightforward, but we include proofs for completeness.

Definition 2.6. Let Γ be a graph on [ÿ]. A spline on GΓ is a function ÿ̄ : ÿÿ → C[ý•] such that

ÿ̄(ý) − ÿ̄(ÿ) ∈ L(ý, ÿ) whenever (ý, ÿ) ∈ ý (GΓ). The support of the spline ÿ̄ is the set supp( ÿ̄) �

{ý | ÿ̄(ý) ≠ 0}.

To distinguish from polynomials, we always denote a spline with a bar.

Example 2.7. Again, consider Γ = ([3], {(1, 2), (2, 3)}). Drawn below (omitting edge-labels) are three

examples of splines on GΓ.
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So ÿ̄1 (ý) = ý1 for all ý ∈ ÿ3, ÿ̄2(ý) = ýý (1) for all ý ∈ ÿ3, and ÿ̄3 (ý) =

⎧⎪⎪⎪«
⎪⎪⎪¬
ý1 − ý2 if ý = 213

ý3 − ý2 if ý = 231

0 otherwise.

The set of splines is closed under addition, as well as multiplication.

Lemma 2.8. Let Γ be a graph on [ÿ]. If ÿ̄ and ÿ̄ are splines on GΓ, then so is ÿ̄ ÿ̄, the spline constructed

via pointwise multiplication.

Proof. Let (ý, ÿ) ∈ ý (GΓ). By assumption, ÿ̄(ý) − ÿ̄(ÿ) ∈ L(ý, ÿ) and ÿ̄(ý) − ÿ̄(ÿ) ∈ L(ý, ÿ). We

have

ÿ̄(ý)ÿ̄(ý) − ÿ̄(ÿ)ÿ̄(ÿ) = ÿ̄(ý)ÿ̄(ý) − ÿ̄(ÿ) ÿ̄(ý) + ÿ̄(ÿ) ÿ̄(ý) − ÿ̄(ÿ)ÿ̄(ÿ)

= ÿ̄(ý) (ÿ̄(ý) − ÿ̄(ÿ)) + ÿ̄(ÿ) ( ÿ̄(ý) − ÿ̄(ÿ)),

and the sum is clearly in L(ý, ÿ). �

Definition 2.9. The ring of splines on GΓ is the subring

MΓ �

{
ÿ̄ ∈

∏
ý ∈ÿÿ

C[ý•]

����� ÿ̄(ý) − ÿ̄(ÿ) ∈ L(ý, ÿ) for all (ý, ÿ) ∈ ý (GΓ)

}

of
∏

ý ∈ÿÿ C[ý•] with pointwise addition and multiplication.

Lemma 2.10. The ring MΓ is graded by degree, so MΓ =
⊕

ÿ≥0 M
ÿ
Γ
.

Proof. Let ÿ̄ be a spline in MΓ and let ÿ̄ý (ý) be the k-th graded piece of the polynomial ÿ̄(ý). We

aim to show that ÿ̄ý is a spline as well. For each (ý, ÿ) ∈ ý (GΓ), the ideal L(ý, ÿ) is a homogeneous

ideal. Thus, ÿ̄(ý) − ÿ̄(ÿ) ∈ L(ý, ÿ), and it follows that ÿ̄ý (ý) − ÿ̄ý (ÿ) ∈ L(ý, ÿ), so ÿ̄ý is a spline. For

two homogeneous splines ÿ̄ and ÿ̄ of degrees p and q, respectively, the product ÿ̄ÿ̄ is homogeneous of

degree ý + ÿ on its support. �

We now construct two sets of splines and the identity spline, each are elements of MΓ for all Γ. Let

1̄ : ÿÿ → C[ý•] be 1̄(ý) � 1 for all ý ∈ ÿÿ,

ý̄ÿ : ÿÿ → C[ý•] be ý̄ÿ (ý) � ýÿ for all ý ∈ ÿÿ, ÿ ∈ {1, . . . , ÿ}, ÿÿý

ý̄ÿ : ÿÿ → C[ý•] be ý̄ÿ (ý) � ýý (ÿ) for all ý ∈ ÿÿ, ÿ ∈ {1, . . . , ÿ}.

The ring MΓ is an infinite-dimensional C-vector space in the natural way and can also be viewed as a

finitely generated graded C[ý•]-module in two ways via the following module actions:

ÿ (ý1, . . . , ýÿ).ÿ̄ = ÿ (ý̄1, . . . , ý̄ÿ) ÿ̄ (2.3)

and

ÿ (ý1, . . . , ýÿ).ÿ̄ = ÿ (ý̄1, . . . , ý̄ÿ) ÿ̄, (2.4)

where the right-hand side of both (2.3) and (2.4) work by substituting splines for variables in to the

polynomial f then multiplying as in the ring structure of MΓ. For both actions, the constant ÿ (0, . . . , 0)

is naturally mapped to ÿ (0, . . . , 0)1̄. Since MΓ is a C[ý•]-submodule of
∏

ý ∈ÿÿ C[ý•] for either module

action, it is finitely generated. We call the module action (2.3) the left action and the module action (2.4)

the right action of C[ý•] on MΓ. Given any ÿ ∈ ÿÿ, both actions may be twisted by sending ÿ ↦→ ÿ ÿ

first in the polynomial ring. Both the left and right actions are naturally compatible with the grading on

MΓ.
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8 N. R. T. Lesnevich

Example 2.11. Let ÿ̄ ∈ MΓ and let ÿ (ý•) = ý3
1
+ ý2

2
+ ý3. Let ÿ = (1, 2, 3) ∈ ÿÿ. The left action of f on

ÿ̄ evaluated at any ÿ ∈ ÿÿ is

ÿ (ý•).ÿ̄(ÿ) =
[
((ý̄1)

3 + (ý̄2)
2 + ý̄3) ÿ̄

]
(ÿ) = (ý31 + ý22 + ý3) ÿ̄(ÿ),

the right action of f on ÿ̄ evaluated at any ÿ ∈ ÿÿ is

ÿ (ý•).ÿ̄(ÿ) =
[
((ý̄1)

3 + (ý̄2)
2 + ý̄3) ÿ̄

]
(ÿ) = (ý3

ÿ (1)
+ ý2

ÿ (2) + ýÿ (3) ) ÿ̄(ÿ),

the ÿ-twisted left action of f on ÿ̄ evaluated at any ÿ ∈ ÿÿ is

ÿ (ý•).ÿ̄(ÿ) =
[
((ý̄ÿ (1) )

3 + (ý̄ÿ (2) )
2 + ý̄ÿ (3) ) ÿ̄

]
(ÿ) = (ý32 + ý23 + ý1) ÿ̄(ÿ),

and the ÿ-twisted right action of f on ÿ̄ evaluated at any ÿ ∈ ÿÿ is

ÿ (ý•).ÿ̄(ÿ) =
[
((ý̄ÿ (1) )

3 + (ý̄ÿ (2) )
2 + ý̄ÿ (3) ) ÿ̄

]
(ÿ) = (ý3

ÿ (2)
+ ý2

ÿ (3) + ýÿ (1) ) ÿ̄(ÿ).

The ring of splines has a ÿÿ-module structure, originally defined for Hessenberg graphs in [28, 29].

Definition 2.12. Let ÿ̄ ∈ MΓ. The dot action of ÿÿ on MΓ is given by

ý · ÿ̄(ÿ) � ýÿ̄(ý−1ÿ)

for ý, ÿ ∈ ÿÿ. Any ÿ ∈ ÿÿ may twist the dot action by first sending ÿ → ÿÿÿ−1 (conjugating by ÿ).

Since conjugation is an inner automorphism of ÿÿ, the standard and ÿ-twisted ÿÿ-module structures on

MΓ are isomorphic.

Using our standard for visualizing splines, the dot action by w moves polynomials around GΓ by

sending the polynomial at v to ýÿ (for all ÿ ∈ ÿÿ) and then acts on every polynomial by w as in

Equation (2.1).

Example 2.13. The dot action of the transposition (1, 2) on the spline ÿ̄3 from Example 2.7 is computed

below.

Computed below is the ÿ = (1, 2, 3)-twisted action of the transposition (1, 2) on the spline ÿ̄3 from

Example 2.7. Note this is the same as the untwisted action of (1, 2, 3) (1, 2) (1, 2, 3)−1 = (2, 3).
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Remark 2.14. The dot action is well defined. We have for all (ÿ1, ÿ2) ∈ ý (GΓ) that

ý · ÿ̄(ÿ1) − ý · ÿ̄(ÿ2) = ýÿ̄(ý−1ÿ1) − ýÿ̄(ý−1ÿ2)

= ý( ÿ̄(ý−1ÿ1) − ÿ̄(ý−1ÿ2))

∈ ýL(ý−1ÿ1, ý
−1ÿ2).

If ÿ1ÿ
−1
2

= (ÿ, ÿ), then ý−1ÿ1ÿ
−1
2

ý = (ý−1 (ÿ), ý−1 ( ÿ)). So

ýL(ý−1ÿ1, ý
−1ÿ2) =

〈
ý(ýý−1 (ÿ) − ýý−1 ( ÿ) )

〉
=

〈
ýÿ − ý ÿ

〉
= L(ÿ1, ÿ2).

Thus, ý · ÿ̄(ÿ1) − ý · ÿ̄(ÿ2) ∈ L(ÿ1, ÿ2), and ý · ÿ̄ ∈ MΓ.

Finally, consider the quotients

LΓ �
MΓ�〈ý̄1, . . . , ý̄ÿ〉

(2.5)

and

RΓ �
MΓ�〈ý̄1, . . . , ý̄ÿ〉

. (2.6)

Call LΓ and RΓ the left and right quotients of MΓ, respectively. As C[ý•]-modules for the left and

right action, both quotients are MΓ�ýMΓ
, where I is the ‘irrelevant ideal’ 〈ý1, ..., ýÿ〉 of C[ý1, . . . , ýÿ].

Thus, LΓ and RΓ each inherit the structure of a finite-dimensional graded C-vector space from the left-

and right-module structure of MΓ, respectively. Any homogeneous module-generating set over C[ý•]

projects to a spanning set over C in the quotient.

The ideals 〈ý̄1, . . . , ý̄ÿ〉 and 〈ý̄1, . . . , ý̄ÿ〉 are homogeneous and ÿÿ-equivariant, and so the graded ÿÿ-

module structure on MΓ projects to graded ÿÿ-representations on both LΓ and RΓ. Symmetric functions

are formal power series in {ý1, ý2, ...} invariant under permuting the variables. The Frobenius character

map gives an isomorphism from the algebra of representations of symmetric groups to the algebra

of symmetric functions. The two bases of symmetric functions we consider are Schur functions {ýÿ},

which correspond to irreducible representations, and homogeneous symmetric functions {ℎÿ}, which

correspond to induced representations of trivial representations on Young subgroups to symmetric

groups. Both Schur and homogeneous symmetric functions are indexed by integer partitions. Denote

the Frobenius character of these (q-graded) ÿÿ-representations as ch(LΓ) and ch(RΓ), respectively.

Since both ch(LΓ) and ch(RΓ) correspond to graded representations, and all representations are sums

of irreducible representations, both ch(LΓ) and ch(RΓ) are manifestly Schur-positive graded symmetric

functions.
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Example 2.15. Again, consider Γ = ([3], {(1, 2), (2, 3)}). Then

ch(LΓ) = ý3 + (ý2,1 + 2ý3)ÿ + ý3ÿ
2
= ℎ3 + (ℎ2,1 + ℎ3)ÿ + ℎ3ÿ

2

and

ch(RΓ) = ý3 + 2ý2,1ÿ + ý3ÿ
2.

The following Lemma 2.16 is useful for computer calculations.

Lemma 2.16. Let Γ and Γ′ be two graphs on [ÿ], and Γ ∪ Γ′
� ([ÿ], ý (Γ) ∪ ý (Γ′)). Then

MΓ∪Γ′ = MΓ ∩MΓ′

Proof. This easily follows from the set-theoretic definition

MΓ =

{
ÿ̄ ∈

∏
ý ∈ÿÿ

C[ý•]

����� ÿ̄(ý) − ÿ̄(ÿ) ∈ L(ý, ÿ) for all (ý, ÿ) ∈ ý (GΓ)

}
. �

2.3. Isomorphisms

It is natural to expect that if two graphs Γ and Γ′ on [ÿ] are isomorphic, that the resulting algebraic

structures on MΓ and MΓ′ should also have meaningful isomorphisms between them. This section

shows that an isomorphismΓ → Γ′ induces a labeled-graph isomorphismGΓ → GΓ′ , a ring isomorphism

MΓ → MΓ′ , a collection of different C[ý•]-module isomorphisms MΓ → MΓ, and an ÿÿ-module

isomorphism MΓ → MΓ that leads to equalities ch(LΓ) = ch(LΓ′) and ch(RΓ) = ch(RΓ′).

Throughout this subsection, let Γ and Γ′ be graphs on [ÿ] and say that ÿ : Γ → Γ′ is a graph

isomorphism. Then ÿ is also naturally an element of ÿÿ, viewed as a bijection from [ÿ] to itself. Let ÿ

denote both the graph isomorphism and associated permutation.

Our first construction is an isomorphism between the corresponding labeled Cayley graphs. The

following Lemma 2.17 states that GΓ and GΓ′ are related as graphs by conjugation, and the associated

labels are related via the action on ideals induced by the action on polynomials in Equation (2.1).

Lemma 2.17. Let ÿ : Γ → Γ′ be a graph isomorphism. Then ÿ ↦→ ÿÿÿ−1 is a graph isomorphism

GΓ → GΓ′ . Additionally, if L is the label on GΓ, L′ the label on GΓ′ , and (ÿ1, ÿ2) ∈ ý (GΓ), then

L′(ÿÿ1ÿ
−1, ÿÿ2ÿ

−1) = ÿL(ÿ1, ÿ2).

Proof. Conjugation is a group automorphism of ÿÿ. Say (ÿ1, ÿ2) ∈ ý (Γ) and in particular that ÿ−1
1

ÿ2 =

(ÿ, ÿ) ∈ ý (Γ). Then

(
ÿÿ1ÿ

−1
)−1 (

ÿÿ2ÿ
−1
)
= ÿÿ−1

1 ÿ2ÿ
−1

= ÿ(ÿ, ÿ)ÿ−1

= (ÿ(ÿ), ÿ( ÿ)) ∈ ý (Γ′).

Thus, conjugation by ÿ defines a graph isomorphism GΓ → GΓ′ . For the labels on GΓ and GΓ′ , the

computation above also shows that if ÿ1ÿ
−1
2

= (ý, ÿ), then
(
ÿÿ1ÿ

−1
) (

ÿÿ2ÿ
−1
)−1

= (ÿ(ý), ÿ(ÿ)). It

follows that
(
ÿÿ1ÿ

−1, ÿÿ2ÿ
−1
)
∈ ý (GΓ′) is labeled

〈
ýÿ (ý) − ýÿ (ÿ)

〉
= ÿ

〈
ýý − ýÿ

〉
. The claim follows.

�

Define Ω : MΓ → MΓ′ by Ω( ÿ̄) (ÿ) � ÿÿ̄
(
ÿ−1ÿÿ

)
. The following Proposition 2.18 proves Ω is

a ring isomorphism and is actually a consequence of Lemma 2.17 and a more general Proposition of

Gilbert, Tymoczko and Viel [15, Prop 2.7]. We include the proof here for completeness.

Proposition 2.18. The map Ω : MΓ → MΓ′ is a ring isomorphism.
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Proof. Let ÿ̄ ∈ MΓ. First, we show that Ω( ÿ̄) ∈ MΓ′ . Let (ÿ1, ÿ2) ∈ ý (GΓ′). By Lemma 2.17, there

is an edge (ÿ−1ÿ1ÿ, ÿ−1ÿ2ÿ) ∈ ý (GΓ), and so ÿ̄(ÿ−1ÿ1ÿ) − ÿ̄(ÿ−1ÿ2ÿ) ∈ L(ÿ−1ÿ1ÿ, ÿ−1ÿ2ÿ). Now

we have

Ω( ÿ̄) (ÿ1) −Ω( ÿ̄) (ÿ2) = ÿÿ̄
(
ÿ−1ÿ1ÿ

)
− ÿÿ̄

(
ÿ−1ÿ2ÿ

)
= ÿ

(
ÿ̄
(
ÿ−1ÿ1ÿ

)
− ÿ̄

(
ÿ−1ÿ2ÿ

))
∈ ÿL

(
ÿ−1ÿ1ÿ, ÿ−1ÿ2ÿ

)
= L′(ÿ1, ÿ2).

Thus, Ω( ÿ̄) ∈ MΓ′ . It is easy to verify that this map is a ring homomorphism, and the inverse from

MΓ′ to MΓ is constructed in the same manner with the map ÿ−1 : Γ′ → Γ. �

The following lemma gives three instances in which Ω is also a module isomorphism between MΓ

and MΓ′ .

Lemma 2.19. The ring isomorphism Ω is a module isomorphism from MΓ to MΓ′ with respect to the

following actions:

1. the left C[ý•]-action on MΓ to the ÿ-twisted left C[ý•]-action on MΓ′ ,

2. the right C[ý•]-action on MΓ to the ÿ-twisted right C[ý•]-action on MΓ′ , and

3. the dot action of ÿÿ on MΓ to the ÿ-twisted dot action of ÿÿ on MΓ′ .

Proof. Both C[ý•]-module statements follow from two straightforward computations,

Ω(ý̄ÿ) (ÿ) = ý̄ÿ (ÿ) (ÿ) and Ω(ý̄ÿ) (ÿ) = ý̄ÿ (ÿ) (ÿ).

Say for the left action, if ÿ ∈ C[ý•] and ÿ̄ ∈ MΓ, then Ω( ÿ (ý1, . . . , ýÿ).ÿ̄) = ÿ (ý̄ÿ (1) , . . . , ý̄ÿ (ÿ) )Ω( ÿ̄),

precisely the twisted action. The same holds for the right C[ý•]-action to the ÿ-twisted right C[ý•]-

action. It is easy to show that ring isomorphism Ω−1 is the inverse for Ω as a C[ý•]-module morphism

for both pairs of actions, and so Ω is a C[ý•]-module isomorphism as in (1) and (2).

Given the dot action on MΓ, the induced action of ÿ ∈ ÿÿ on ÿ̄ ∈ MΓ′ is

(ÿ, ÿ̄) � Ω

(
ÿ · Ω−1( ÿ̄)

)
.

To check that the action is compatible with multiplication of elements ÿ, ÿ ∈ ÿÿ, compute

(ÿ, (ÿ, ÿ̄)) =
(
ÿ,Ω

(
ÿ · Ω−1( ÿ̄)

))
= Ω

(
ÿ · Ω−1

Ω

(
ÿ · Ω−1( ÿ̄)

))
= Ω

(
ÿ ·

(
ÿ · Ω−1( ÿ̄)

))
= Ω

(
ÿÿ · Ω−1( ÿ̄)

)
= (ÿÿ, ÿ̄).

Now compute for ÿ, ÿ ∈ ÿÿ that

(ÿ, ÿ̄) (ÿ) = Ω

(
ÿ · Ω−1( ÿ̄)

)
(ÿ)

= ÿ
(
ÿ · Ω−1( ÿ̄)

)
(ÿ−1ÿÿ)

= ÿÿ
(
Ω

−1( ÿ̄)
)
(ÿ−1ÿ−1ÿÿ)
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= ÿÿÿ−1 ÿ̄(ÿÿ−1ÿ−1ÿ)

= ÿÿÿ−1 · ÿ̄(ÿ).

This is precisely the ÿ-twisted dot action of u on MΓ′ . Again, by computing with Ω−1, it follows that

Ω is an ÿÿ-module isomorphism. �

Note that any generating set for the left or right C[ý•]-module structures on MΓ must necessarily be

generators for the ÿ-twisted versions as well. As such, when searching for generators, we may choose

any graph isomorphic to Γ for explicit calculations.

Proposition 2.20. If Γ and Γ′ are isomorphic, then ch(LΓ) = ch(LΓ′) and ch(RΓ) = ch(RΓ′).

Proof. Let ÿ be an isomorphism from Γ to Γ′. The ÿÿ-isomorphism Ω from Lemma 2.19 (3) preserves

the ideal 〈ý̄1, . . . , ý̄ÿ〉 from MΓ to MΓ′ . Thus, we have a ÿÿ-module isomorphism from LΓ to the ÿ-

twisted LΓ′ . Twisting by ÿ is an inner automorphism of ÿÿ, so the ÿ-twisted LΓ′ is in turn isomorphic to

the untwisted LΓ′ as an ÿÿ-representation. The exact same argument holds for RΓ and RΓ′ . Isomorphic

representations have identical traces (i.e., equal characters), and the equalities follow. �

By Proposition 2.20, we may consider any graph isomorphic to Γ when calculating ch(LΓ) and

ch(RΓ).

Corollary 2.21. The graded symmetric functions ch(LΓ) and ch(RΓ) are invariants of simple graphs.

3. Module structure of MΓ

This section establishes some algebraic properties of MΓ as a module over the polynomial ring C[ý•]. It

begins with two results: one that establishes the size of a minimal homogeneousC[ý•]-module generating

set as an invariant of Γ and a second that proves the module generated by constant and linear splines

is a free module over C[ý•]. This section continues with subsection 3.1, which establishes an algebraic

relation that must be satisfied by elements of MΓ. This section ends with subsection 3.2, which gives

an explicit and combinatorially meaningful generating set of MΓ as a C[ý•]-module when Γ is a tree

(proving Theorem 1.2).

Before continuing, we will briefly describe what is already known in the geometric case. If Γ is a

Hessenberg graph, then

◦ MΓ is a free C[ý•]-module with a combinatorial formula for its rank-generating function [13], and

furthermore,

◦ MΓ has explicit upper-triangular generators are achieved from a Białynicki-Birula decomposition of

the corresponding variety [9, 13].

In the geometric case, the rank-generating function is equivalent (substituting ÿ ↦→ ÿ2) to the Poincaré

polynomial of the corresponding variety. If Γ is not in the geometric case, then MΓ is not always a free

module. We now prove that the number of generators in each degree of a homogeneous generating set

is still an invariant of Γ. We compute the minimal number of linear generators for MΓ in Section 8.

A generating set F of a finitely generated C[ý•]-module M is minimal if there exists a collection of

polynomials {ý ÿ | ÿ ∈ ý} ⊂ C[ý•] such that
∑
ÿ ∈ý ý ÿ . ÿ = 0. Then ý ÿ ∉ C \ {0} for all ÿ ∈ ý (i.e.,

no ý ÿ is a unit). In other words, no proper subset of F generates M. If M is graded, then a set F is

homogeneous if every element ÿ ∈ ý is homogeneous.

The following lemma is known, essentially as a corollary to the graded Nakayama lemma, and holds

in greater generality (i.e., for other graded rings over a field). We include a proof for completeness.

Lemma 3.1. Let M be a finitely generated N-graded module over C[ý•]. Then every minimal homoge-

neous generating set has the same number of elements of each degree.
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Proof. Let ý = 〈ý•〉 be the irrelevant ideal. As C[ý•]�ý � C, the quotient ý�ýý is a graded C-

module. In particular, ý�ýý is a graded C-vector space of dimension (ý0, . . . , ýÿ), and we will

prove that any homogeneous minimal generating set for M projects to a graded basis in ý�ýý . Let

ý �
{
ÿ ÿ
ý
| 0 ≤ ÿ ≤ ý, ý ∈ [ÿÿ], deg( ÿ ÿ

ý
) = ÿ

}
be a minimal homogeneous generating set of M with ÿÿ

elements of degree i. It is easy to reason that ÿ = ý since an element in M of degree greater than N is in

ýý = ýý (so ÿ ≤ ý), and if ÿ ý
1

∈ ýý , then F is not minimal (so ÿ ≥ ý). In fact, if ÿ ∈ ý and ÿ ∈ ýý ,

then F is not minimal (f would be in the C[ý•]-span of lower degree elements of F), and moreover,

since we are assuming that F is minimal, we know that the image of ÿ ∈ ý in ý�ýý is nonzero. We

will show that ÿÿ = ýÿ for all ÿ = 1, ..., ý . Let ÿ : ý → ý�ýý be the quotient map.

We know ÿ(ý) is a homogeneous spanning set for the graded vector space ý�ýý . Since ý�ýý is

a graded vector space, we may prove linear independence degree-by-degree. Say for ý1, . . . , ýÿÿ
∈ C

that
ÿÿ∑
ý=1

ýýÿ( ÿ ÿ
ý
) = 0. We will show that ý1 = · · · = ýÿÿ

= 0. It follows that ÿ

(
ÿÿ∑
ý=1

ýý ÿ ÿ
ý

)
= 0, and

so
ÿÿ∑
ý=1

ýý ÿ ÿ
ý
∈ ýý . So there exists some finite set P that indexes two subsets {ÿý | ý ∈ ÿ} ⊂ ý and

{ℎý | ÿ ∈ ÿ} ⊂ ý such that
ÿÿ∑
ý=1

ýý ÿ ÿ
ý
=
∑
ý∈ÿ ÿý .ℎý . Since

ÿÿ∑
ý=1

ýý ÿ ÿ
ý

is homogeneous of degree i, it

suffices to consider only the i-th graded piece of each element ÿýℎý .

Say ÿ = 0. Since each ÿý ∈ ý has no degree 0 component, neither does ÿýℎý , so
ÿ0∑
ý=1

ýý ÿ 0
ý
= 0. Since

F is a minimal generating set for M, it follows that ý1 = · · · = ýý0
= 0.

Now say ÿ > 0. Each ℎý is degree at most ÿ−1, so
∑
ý∈ÿ ÿý .ℎý ∈ C[ý•]{ ÿ

ÿ
ÿ | 0 ≤ ÿ < ÿ, ÿ ∈ [ÿ ÿ ]}. So

ÿÿ∑
ý=1

ýý ÿ ÿý =
∑
ý∈ÿ

ÿýℎý =

∑
0≤ ÿ<ÿ

1≤ÿ≤ÿ ÿ

ý ÿ ,ÿ (ý•) ÿ
ÿ
ÿ .

This is a relation in M of elements from F and thus cannot have any nonzero constant coefficients, so

ý1 = · · · = ýýÿ = 0. Thus, {ÿ( ÿ ÿ
ý
) | ý ∈ [ÿÿ]} is a basis of the i-th graded piece of the vector space

ý�ýý , and so ÿÿ = ýÿ is independent of the choice of F. �

The proof of Lemma 3.1 also ensures that a minimal graded generating set of MΓ with respect to

either the left or right module structure projects to a basis of LΓ or RΓ, respectively.

Lemma 3.2 below shows that the first graded piece of the C[ý•]-module is free. Note Lemma 3.2 is

independent of the polynomial action chosen (e.g., left, right, and twisted alternatives).

Lemma 3.2. The C[ý•]-submodule M≤1
Γ

generated by the constant and linear splines on GΓ is a free

module.

Proof. Let (ÿ, ý2, ý3, . . . , ýÿ!) be a linear order on ÿÿ, where ℓΓ (ÿ) < ℓΓ (ý) implies that ÿ < ý. Since

Γ is connected, if ý ≠ ÿ, there exists (ÿ, ÿ) ∈ ý (Γ) such that ý(ÿ, ÿ) < ý.

Let ý � {1̄, ÿ̄1, . . . , ÿ̄ý } be a minimal generating set of M≤1
Γ

, where each ÿ̄1, . . . , ÿ̄ý is a linear

spline. Then {1̄, ÿ̄1 − ÿ̄1 (ÿ)1̄, . . . , ÿ̄ÿ − ÿ̄ÿ (ÿ)1̄} is a homogeneous generating set of the same size and

is therefore minimal by Lemma 3.1. This new generating set has the property that the 1̄ is the unique

spline whose minimal element is e, so assume that ÿ̄ (ÿ) = 0 for all ÿ ∈ ý \ {1̄}.

Let ýÿ � { ÿ ∈ ý | min(supp( ÿ )) = ÿ}. So ýÿ = {1̄}. We iteratively construct a minimal generating

set such that |ýÿ | ∈ {0, 1} for all ÿ ∈ ÿÿ. Say that |ýÿ | ∈ {0, 1} for all ÿ < ý, and |ýý | ≥ 2. Let

ýý = {ý̄1, . . . , ý̄ÿ }. Since the linear order on ÿÿ is an extension of Γ-length, there exists (ÿ, ÿ) ∈ ý (Γ)

such that ý(ÿ, ÿ) < ý, and so ý̄(ý(ÿ, ÿ)) = 0 for all ý̄ ∈ ýý . Thus, there exist ý1, . . . , ýÿ ∈ C∗ such

that ý̄ÿ (ý) = ýÿ (ýý (ÿ) − ýý (ÿ) ). For ÿ = 2, ..., ÿ , the spline ý̄ ÿ −
ý ÿ
ý1

ý̄1 is supported strictly above w. Let

ý ′
= (ý \ ýý ) ∪

{
ý̄1, ý̄2 −

ý2

ý1

ý̄1, . . . , ý̄ÿ −
ýÿ

ý1

ý̄1

}
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be still a minimal generating set, and
��ý ′
ÿ

�� ∈ {0, 1} for all ÿ ≤ ý. Iterate this process, letting ý = ý ′.

Eventually, |ýÿ | ∈ {0, 1} for all ÿ ∈ ÿÿ. In particular, this F is upper triangular with respect to our total

order (the minimal element in the support of each spline is unique to that spline), and so F generates a

free C[ý•]-module. �

We note that this submodule is precisely where this paper proves h-positivity in Theorem 9.2 and

Corollary 9.3.

3.1. Implied conditions on splines

This subsection gives algebraic conditions that an element ÿ̄ ∈ MΓ must satisfy that are not explicitly

in the definition. Specifically, given ý, ÿ ∈ ÿÿ, we want to infer conditions on ÿ̄(ý) − ÿ̄(ÿ) when (ý, ÿ)

is not necessarily an edge in GΓ. Let ý, ÿ ∈ ÿÿ and (ý = ÿ0, ÿ1, . . . , ÿÿ = ÿ) be a path from w to v

in GΓ. Say for each edge (ÿý−1, ÿý ) that ÿýÿ
−1
ý−1

= (ÿý , ÿý ), so that L(ÿý−1, ÿý ) =
〈
ýÿý − ý ÿý

〉
for each

ý = 1, . . . , ÿ. Then

ÿ̄(ý) − ÿ̄(ÿ) =

ÿ∑
ý=1

( ÿ̄(ÿý−1) − ÿ̄(ÿý )) ∈
〈
ýÿý − ý ÿý | ý ∈ [ÿ]

〉
. (3.1)

Define

ýýý :=
〈
ýý (ÿ) − ýý ( ÿ) | (ÿ, ÿ) ∈ ý ⊆ ý (ÿ)

〉
. (3.2)

Lemma 3.3 below is particularly useful when ÿ̄ ∈ MΓ satisfies ÿ̄(ÿ) = 0 for some ÿ ∈ ÿÿ. Recall that

we identify ý ⊂ ý (Γ) with a subset of transpositions, and write ý〈ý〉 for the left coset at w of the

reflection subgroup generated by the transpositions in B.

Lemma 3.3. Let T be a spanning tree of Γ. Let ÿ ∈ ý〈ý〉, where ý ⊆ ý (ÿ). If ÿ̄ ∈ MΓ, then

ÿ̄(ý) − ÿ̄(ÿ) ∈ ýý
ý

.

Proof. Let ý−1ÿ = ÿ1 · · · ÿÿ, where ÿ1, . . . , ÿÿ ∈ ý. Let (ý = ÿ0, ÿ1, . . . , ÿÿ = ÿ) be the path from w

to v, where ÿ−1
ý

ÿý−1 = ÿý ∈ ý for all ý ∈ [ÿ]. Say that ÿýÿ
−1
ý−1

= (ÿý , ÿý ), so that L(ÿý−1, ÿý ) = ýÿý − ý ÿý .

By Equation (3.1),

ÿ̄(ý) − ÿ̄(ÿ) ∈
〈
ýÿý − ý ÿý | ý ∈ [ÿ]

〉
.

For each ý ∈ [ÿ], since ÿýÿ
−1
ý−1

= (ÿý , ÿý ), we have that ÿý = ÿ−1
ý

ÿý−1 =
(
ÿ−1
ý
(ÿý ), ÿ

−1
ý
( ÿý )

)
. Each edge

ÿý ∈ ý, so the integers ÿ−1
ý
(ÿý ) = (ýÿ1 · · · ÿý )

−1(ÿý ) and ÿ−1
ý
( ÿý ) = (ýÿ1 · · · ÿý )

−1( ÿý ) must be in the

same connected component of ([ÿ], ý).

Since (ýÿ1 · · · ÿý )
−1 = (ÿý · · · ÿ1)ý

−1, it follows that ý−1 (ÿý ) and ý−1 ( ÿý ) are vertices in the same

connected component of ([ÿ], ý) for all ý ∈ [ÿ]. If (ÿ0, ..., ÿℓ) is a path in ([ÿ], ý) from ÿ0 = ý−1 (ÿý )

to ÿℓ == ý−1 ( ÿý ), then ýÿ0
− ýÿℓ =

∑ℓ
ÿ=1 ýÿÿ−1

− ýÿÿ , and thus, ýý−1 (ÿý )
− ýý−1 ( ÿý )

∈ ýÿ
ý

. It follows that

ýÿý − ý ÿý ∈ ýý
ý

for all ý ∈ [ÿ], and so ÿ̄(ý) − ÿ̄(ÿ) ∈ ýý
ý

. �

A monomial ideal in C[ý•] is an ideal I generated by monomials. Monomial ideals are particularly

nice when computing intersections; if ý1 = 〈ÿ1, . . . , ÿý〉 and ý2 = 〈ÿ1, . . . , ÿℓ〉 are both monomial

ideals, then ý1 ∩ ý2 = 〈lcm(ÿÿ , ÿ ÿ ) | ÿ ∈ [ý], ÿ ∈ [ℓ]〉.

Let T be a spanning tree of Γ, where ý (ÿ) = {(ÿ1, ÿ1), . . . , (ÿÿ−1, ÿÿ−1)}. Ideals of the form

〈ýÿÿ − ýÿÿ | (ÿÿ , ÿÿ) ∈ ý ⊂ ý (ÿ)〉 can be considered monomial ideals, via the graded automorphism

C[ý1, . . . , ýÿ] � C[ýÿ1
− ýÿ1

, . . . , ýÿÿ−1
− ýÿÿ−1

, ýÿ]

defined by ýÿ ↦→

{
ýÿÿ − ýÿÿ if ÿ ∈ [ÿ − 1]

ýÿ if ÿ = ÿ
. Since ýÿ ↦→ ýý (ÿ) is also a graded automorphism of C[ý•],

the ideals ýý
ý

from Equation 3.2 can also be considered as monomial ideals (taking care to fix T and
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ý ∈ ÿÿ). We will fix T and w and then treat ideals of the form ýý
ý

as monomial ideals to compute

intersections in the proofs of Theorem 3.7 and Lemma 4.1 in the following two sections.

3.2. Coset splines and trees

This subsection establishes a set of splines called coset splines (Definition 3.4) that generate MΓ as a

module over the polynomial ring when Γ is a tree. This subsection also identifies a subset of those coset

splines that generate MΓ as a ring when Γ is a tree.

Definition 3.4. Let Γ be a tree, ý � ý (Γ) and ý ⊆ ý . The coset spline at the identity ÿ̄ ýÿ : ÿÿ →

C[ý•] is

ÿ̄ ýÿ (ý) :=

⎧⎪⎪«
⎪⎪¬

∏
(ÿ, ÿ) ∈ý\ý

(
ýý (ÿ) − ýý ( ÿ)

)
ý ∈ 〈ý〉

0 otherwise

The coset spline at w is ¯ÿ ýý := ý · ÿ̄ ýÿ . We adopt the conventions that a product over the empty set ∅ is

1 (so ÿ ∅ý = 1̄) and that the subgroup generated by the empty set is the identity (so 〈∅〉 = {ÿ}).

Example 3.5. Again, consider Γ = ([3], {(1, 2), (2, 3)}). Drawn below are three examples of coset

splines on GΓ.

Lemma 3.6. When Γ is a tree, coset splines are elements of MΓ. Additionally, if ý, ÿ ∈ ÿÿ are in the

same coset of 〈ý〉, then ÿ̄ ýý = ÿ̄ ýÿ .

Proof. It suffices to show ÿ̄ ýÿ is a spline. Let ý ∈ 〈ý〉 and ÿ ∈ ÿÿ, where ÿý−1 = (ÿ, ÿ) ∈ ý .

If (ÿ, ÿ) ∈ ý \ ý, then ÿ ∉ 〈ý〉, and so ÿ̄ ýÿ (ÿ) = 0. Thus, ÿ̄ ýÿ (ý) − ÿ̄ ýý (ÿ) = ýý (ÿ) − ýý ( ÿ) ∈ L(ý, ÿ),

as desired.
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If (ÿ, ÿ) ∈ ý, then

ÿ̄ ýÿ (ý) − ÿ̄ ýÿ (ÿ) =
∏

(ÿ1 ,ý1) ∈ý\ý

(
ýý (ÿ1) − ýý (ý1)

)
−

∏
(ÿ2 ,ý2) ∈ý\ý

(
ýý (ÿ, ÿ) (ÿ2) − ýý (ÿ, ÿ) (ý2)

)

= ý
���

∏
(ÿ1 ,ý1) ∈ý\ý

(
ýÿ1 − ýý1

)
− (ÿ, ÿ)

���
∏

(ÿ2 ,ý2) ∈ý\ý

(
ýÿ2 − ýý2

) !"
 !"

= ý
���
∑

0≤ý,ÿ

ýýÿ (ý•)ý
ý

ÿ
ý
ÿ

ÿ
− (ÿ, ÿ)

( ∑
0≤ÿ ,ý

ýÿý (ý•)ý
ÿ
ÿ ý
ý
ÿ

) !"
= ý

���
∑

0≤ý,ÿ

ýýÿ (ý•) (ý
ý

ÿ
ý
ÿ

ÿ
− ý

ÿ

ÿ
ý
ý

ÿ
)
 !"
.

As ý
ý

ÿ
ý
ÿ

ÿ
− ý

ÿ

ÿ
ý
ý

ÿ
∈

〈
ýÿ − ý ÿ

〉
, it follows that ÿ̄ ýÿ (ý) − ÿ̄ ýÿ (ÿ) ∈

〈
ýý (ÿ) − ýý ( ÿ)

〉
= L(ý, ÿ). Thus, ÿ̄ ýÿ is a

spline.

Now we prove that coset splines are uniquely determined by the coset. For all ÿ ∈ 〈ý〉, we have

ÿ · ÿ̄ ýÿ (ý) =

⎧⎪⎪⎪«
⎪⎪⎪¬
ÿ

( ∏
(ÿ, ÿ) ∈ý−ý

(
ýÿ−1ý (ÿ) − ýÿ−1ý ( ÿ)

))
ÿ−1ý ∈ 〈ý〉

0 otherwise

=

⎧⎪⎪«
⎪⎪¬

∏
(ÿ, ÿ) ∈ý−ý

(
ýý (ÿ) − ýý ( ÿ)

)
ý ∈ 〈ý〉

0 otherwise

= ÿ̄ ýÿ (ý).

If ý〈ý〉 = ÿ〈ý〉, then ý = ÿÿ, for some ÿ ∈ 〈ý〉, and so

ÿ̄ ýý = ý · ÿ̄ ýÿ = (ÿÿ) · ÿ̄ ýÿ = ÿ · (ÿ · ÿ̄ ýÿ ) = ÿ · ÿ̄ ýÿ = ÿ̄ ýÿ . �

Note that the following Theorem 3.7 is independent of the left or right module structure.

Theorem 3.7. Let Γ be a tree. The set of coset splines { ÿ̄ ýý | ý ∈ ÿÿ, ý ⊆ ý (Γ)} is a C[ý•]-generating

set of MΓ.

Proof. Let ÿ̄ ∈ MΓ, we will show that ÿ̄ ∈ C[ý•]{ ÿ̄ ý
ý

| ý ∈ ÿÿ, ý ⊆ ý (Γ)} by induction on containment

of the support supp( ÿ̄). If ÿ̄ ≡ 0, this is clearly in the span of the coset splines, and the base case

supp( ÿ̄) = ∅ is done. Otherwise, supp( ÿ̄) ≠ ∅, and we assume all splines ÿ̄ where supp( ÿ̄) � supp( ÿ̄)

are in C[ý•]{ ÿ̄ ý
ý

| ý ∈ ÿÿ, ý ⊆ ý (Γ)}. Replacing ÿ̄ by ÿ̄ − ÿ̄(ÿ)1̄ if necessary, we assume ÿ̄(ÿ) = 0.

This also handles the case where supp( ÿ̄) = ÿÿ.

Fix ý ∈ ÿÿ such that ÿ̄(ý) ≠ 0 and w is adjacent in GΓ to some ý′ ∈ ÿÿ where ÿ̄(ý′) = 0. Define

Bý � {ý | ý ⊂ ý (Γ), ∃ÿ ∈ ý〈ý〉 such that ÿ̄(ÿ) = 0}.

Since ÿ̄(ý′) = 0, this set is nonempty. Each element in Bý is a generating set for a reflection subgroup

whose left coset at w contains an element not in supp( ÿ̄). Note if ý ⊂ ý′ and ý ∈ Bý , then ý′ ∈ Bý .

By Lemma 3.3,

ÿ̄(ý) ∈
⋂
ý∈Bý

ýýý =

⋂
ý∈Bý

〈
ýý (ÿ) − ýý ( ÿ) | (ÿ, ÿ) ∈ ý ⊂ ý (Γ)

〉
� Iýÿ . (3.3)

Following the logic of Subsection 3.1 (i.e., treating {ýý (ÿ) − ýý ( ÿ) | (ÿ, ÿ) ∈ ý (Γ)} as variables), Iýÿ is a

monomial ideal generated by the monomials that are contained within every element of the intersection.
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A monomial ÿ =
∏

(ÿ, ÿ) ∈ý

(
ýý (ÿ) − ýý ( ÿ)

)ÿÿ ÿ is contained within the ideal Iýÿ if and only if for every

ý ∈ Bý , there is at least one (ÿ, ÿ) ∈ ý such that ÿÿ ÿ > 0. For generators of Iýÿ , it suffices to

consider only those monomials such that ÿÿ ÿ ∈ {0, 1} for all (ÿ, ÿ) ∈ ý (Γ). Since ÿÿ ÿ ∈ {0, 1}, the

monomials that generate Iýÿ are a subset of { ÿ̄ ýý (ý) | ý ⊆ ý (Γ)}. In particular, we have the equality〈
ÿ̄ ÿý (ý) | ÿ ⊆ ý (Γ), ÿ̄ ÿý (ý) ∈ Iýÿ

〉
= Iýÿ .

Consider the coset splines { ÿ̄ ÿý | ÿ̄ ÿý (ý) ∈ Iýÿ }. By definition, for any ÿ ⊂ ý (Γ),

ÿ̄ ÿý (ý) =
∏

(ÿ, ÿ) ∈ý (Γ)\ÿ

ýý (ÿ) − ýý ( ÿ) .

Now ÿ̄ ÿý (ý) ∈ Iýÿ if and only if (ý (Γ) \ ÿ) ∩ ý ≠ ∅ for all ý ∈ Bý . Thus, ÿ̄ ÿý (ý) ∈ Iýÿ if and only if

ý ⊄ ÿ for all ý ∈ Bý . Since Bý is closed under supersets, ÿ̄ ÿý (ý) ∈ Iýÿ if and only if ÿ ∉ Bý . Thus,

ÿ̄(ý) ∈ Iýÿ =
〈
ÿ̄ ÿý (ý) | for all ÿ ∈ ý〈ÿ〉, ÿ̄(ÿ) ≠ 0

〉
.

Let ÿ̄ ∈ C[ý•]{ ÿ̄ ÿý | for all ÿ ∈ ý〈ÿ〉, ÿ̄(ÿ) ≠ 0} such that ÿ̄(ý) = ÿ̄ (ý) (a different ÿ̄ may

be chosen for the left and right module structure, but either way, such a ÿ̄ exists since it is only

required to agree with ÿ̄ at w). Since supp( ÿ̄ ) ⊆ supp( ÿ̄) and ÿ̄ (ý) = ÿ̄(ý) ≠ 0, it follows that

supp( ÿ̄) � supp( ÿ̄ − ÿ̄ ). Thus, ÿ̄ − ÿ̄ ∈ C[ý•]{ ÿ̄ ý
ý

| ý ∈ ÿÿ, ý ⊆ ý (Γ)}. Since ÿ̄ is also a sum of coset

splines, ÿ̄ ∈ C[ý•]{ ÿ̄ ý
ý

| ý ∈ ÿÿ, ý ⊆ ý (Γ)}. �

The collection of all coset splines is not a minimal generating set. One might significantly decrease

the size of this set by fixing the linear order on ÿÿ in the proof of Lemma 3.2, and only considering

the largest (by support) coset splines supported ‘above’ a permutation. There is no guarantee that these

generators are minimal for all degrees, but it is easy to reason that this collection is minimal for the

module M≤2
Γ

generated by the constant, linear and quadratic splines.

We also achieve a generating set for MΓ as a ring in Corollary 3.8 below.

Corollary 3.8. Let Γ be a tree. The constant and linear coset splines along with either {ý̄ÿ | ÿ ∈ [ÿ]} or

{ý̄ÿ | ÿ ∈ [ÿ]} generate MΓ as a ring.

Proof. It follows immediately from the definition that

ÿ ýý =

∏
ý∈ý (Γ)\ý

ÿ
ý (Γ)\{ý}
ý .

So every coset spline except 1̄ is a product of linear coset splines, which generate MΓ together with

either {ý̄ÿ | ÿ ∈ [ÿ]} or {ý̄ÿ | ÿ ∈ [ÿ]} by Theorem 3.7. �

We can leverage Theorem 3.7 to compute MΓ for all graphs Γ. Any graph Γ can be expressed as the

union of spanning trees Γ = ÿ1 ∪ · · · ∪ ÿý . Lemma 2.16 says that MΓ =
⋂ý
ÿ=1 Mÿÿ , and Theorem 3.7

gives explicit generators for each Mÿÿ . This is most useful in computer calculations, where the task of

constructing modules from generators and intersecting them can be completed by a computer algebra

system.

4. Connectedness and Mý
Γ

This section proves an equivalence between the k-connectivity of Γ and which graded pieces of the

representation ch(LΓ) are trivial.

Lemma 4.1 below infers new conditions on MΓ from collections of vertex-disjoint paths in Γ.

Lemma 4.1. Say that there exist k vertex-disjoint paths from i to j in Γ. Let Γ′ = ([ÿ], ý (Γ) ∪ {(ÿ, ÿ)}).

Then Mý−1
Γ

= Mý−1
Γ′

.
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Proof. We will show both directions of containment. Clearly, Mý−1
Γ

⊇ Mý−1
Γ′

.

Say that ÿ̄ ∈ Mý−1
Γ

, and let ý, ÿ ∈ ÿÿ such that ý−1ÿ = (ÿ, ÿ). Let ýÿ = (ÿ, ýÿ ,1, . . . , ýÿ ,ℓÿ , ÿ) for

ÿ = 1, . . . , ý be the k vertex-disjoint paths from i to j in Γ. By Lemma 3.3,

ÿ̄(ý) − ÿ̄(ÿ) ∈
〈
ýý (ÿ) − ýý (ýÿ,1) , ýý (ýÿ,1) − ýý (ýÿ,2) , . . . , ýý (ýÿ,ℓÿ )

− ýý ( ÿ)

〉
=

〈
ýý (ÿ) − ýý ( ÿ) , ýý (ÿ) − ýý (ýÿ,1) , . . . , ýý (ýÿ,ℓÿ−1) − ýý (ýÿ,ℓÿ )

〉
for all ÿ = 1, . . . , ý . Since the paths ý1, . . . , ýý are vertex independent, the set of edges

ý = {(ÿ, ÿ)} ∪

ý⋃
ÿ=1

{(ÿ, ýÿ ,1), (ýÿ ,1, ýÿ ,2), . . . , (ýÿ ,ℓÿ−1, ýÿ ,ℓÿ )}

contains no cycles and thus forms a tree. In particular, we may consider {ýÿ − ýÿ | (ÿ, ÿ) ∈ ý} as

monomials in C[ý•]. Let ýÿ ,0 := ÿ when it is convenient for indexing. It remains to compute

ÿ̄(ý) ∈

ý⋂
ÿ=1

〈
ýý (ÿ) − ýý ( ÿ) , ýý (ýÿ,0) − ýý (ýÿ,1) , . . . , ýý (ýÿ,ℓÿ−1) − ýý (ýÿ,ℓÿ )

〉

=

〈
ýý (ÿ) − ýý ( ÿ) ,

ý∏
ÿ=1

ýý (ýÿ,ÿÿ−1) − ýý (ýÿ,ÿÿ )

�����0 < ÿÿ ≤ ℓÿ

〉
.

Each generator of this ideal is a homogeneous polynomial, one of degree 1 and all others of degree k.

Since ÿ̄(ý) − ÿ̄(ÿ) is degree ý − 1, it follows that ÿ̄(ý) − ÿ̄(ÿ) ∈ 〈ýý (ÿ) − ýý ( ÿ) 〉.

Since ÿ, ý were arbitrary such that ý−1ÿ = (ÿ, ÿ), we know that ÿ̄ ∈ Mý−1
Γ′

. Since ÿ̄ was arbitrary,

Mý−1
Γ

⊆ Mý−1
Γ′

. �

Theorem 4.2. Let Γ = ([ÿ], ý) be a connected graph on n vertices. The following are equivalent:

1. Γ is k-connected.

2. Mý
Γ
= Mý

ÿÿ
for all ý < ý , where ÿÿ is the complete graph.

3. ch(LΓ)ý is trivial for all ý < ý .

Proof. (1)⇒ (2). If Γ is k-connected, by Menger’s theorem, every (ÿ, ÿ) ∈ [ÿ] × [ÿ] has k vertex-disjoint

paths connecting them in Γ. By Lemma 4.1, Mý−1
Γ

= Mý−1
ÿÿ

.

(2) ⇒ (3). The ring Mÿÿ
corresponds to the equivariant cohomology of the full flag variety, where

the dot action is known to be trivial [28].

(3) ⇒ (1). Assume that Γ is not k-connected. Let d be the integer such that Γ is d-connected but not

(ý + 1)-connected (so 0 < ý < ý). We will show that ch(LΓ)ý is not trivial. Then Γ has a cut set of size

d, and so Γ is (isomorphic to) a sub-graph of the graph ÿ = ([ÿ], {(ÿ, ÿ) | 1 ≤ ÿ < ÿ < ℓ + ý or ℓ < ÿ <

ÿ ≤ ÿ}) drawn below:

ÿℓ ÿý ÿÿ−ℓ−ý

(the center ÿý is the cut set). The graph H is also d-connected. By (1) ⇒ (2), the graded pieces

M
ý

Γ
= M

ý

ÿ
= M

ý

ÿÿ
for all 0 ≤ ý < ý. Since Γ is an edge-subgraph of H, it follows directly from the

definitions that MΓ ⊇ Mÿ .

If ý = 〈ý1, ..., ýÿ〉, then for any graded C[ý•]-module ý � ⊕ý≥0ý
ý , the following equality is by

definition (
ý�ýý

) ý
= ý ý

�ýý ∩ ý ý .
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Since multiplication by elements in I must increase degree, the d-th degree component of ýMΓ and the

d-th degree component of ýMÿ are equal. In particular,

ýMΓ ∩Mý
Γ
= ý

(
M≤ý−1

Γ

)
∩Mý

Γ
= ý

(
M≤ý−1

ÿ

)
∩Mý

Γ
= ýMÿ ∩Mý

Γ
.

It follows that for the quotients

(
MΓ�ýMΓ

)ý
=
Mý

Γ�
ýMΓ ∩Mý

Γ

=
Mý

Γ�
ýMÿ ∩Mý

Γ

=

(
MΓ�ýMÿ

)ý
,

we get containment in the vector spaces

(LΓ)ý =

(
MΓ�ýMΓ

)ý
=

(
MΓ�ýMÿ

)ý
⊇

(
Mÿ�ýMÿ

)ý
= (Lÿ )ý .

In particular, the representation with character ch(Lÿ )ý is a sub-representation of the representation

with character ch(LΓ)ý . The graph H is in fact a Hessenberg graph, and it is easy to compute with

P-tableaux from [25] that the d-th graded piece of ch(Lÿ ) is non-trivial, so the d-th graded piece of

ch(LΓ) contains a nontrivial sub-representation and is thus nontrivial. �

Remark 4.3. The graph H in the proof of Theorem 4.2 is the Hessenberg graph associated to the vector

ℎ = (

ℓ times︷�������������︸︸�������������︷
ℓ + ý, . . . , ℓ + ý, ÿ, . . . , ÿ).

The 3 + 1– and 2 + 2–free poset P on [ÿ] for which H is the indifference graph has relations {ÿ <ÿ ÿ |

ÿ ∈ [ℓ], ÿ ∈ {ý + ℓ + 1, . . . , ÿ}}.

The following corollary is a consequence of Theorem 4.2.

Corollary 4.4. If Γ is k-connected, then ch(RΓ)ý is equal to ch
(
Rÿÿ

)
ý
, which is the d-th degree piece

of the graded regular representation.

5. Generators for linear splines

The remaining sections are devoted to computing the first degree piece of the graded symmetric functions

ch(LΓ) and ch(RΓ) for all connected graphs Γ. We show that the first degree piece of MΓ is computable

from the data of cut vertices and cut edges, in particular the block-cut tree of Γ (Definition 6.2).

This section defines a set FΓ that we will eventually show is a C-spanning set for M1
Γ
. Subsection 5.1

proves severalC-linear relations within the setFΓ that will turn out to be sufficient for reducing to a basis.

First, we will introduce (in fact, reintroduce) a collection of linear splines that depend on cut edges

in Γ. Let ý = (ÿ, ÿ) be a cut edge of Γ, and let ÿý be one of the two connected components of

([ÿ], ý (Γ) \ {ý}). We are free to choose either component; see Remark 5.1 below. For each subset

ý ⊂ [ÿ] such that |ý| = |ÿý |, we define ÿ̄ ý
ý

: ÿÿ → C[ý•] by

ÿ̄ ýý(ý) �

{
ýý (ÿ) − ýý ( ÿ) if ý−1 (ý) = ý (ÿý)

0 otherwise,

for all ý ∈ ÿÿ. We associate to Γ the collection

CΓ �
{
ÿ̄ ýý | ý is a cut edge of Γ, ý ⊂ [ÿ], |ý| = |ÿý |

}
.

Note that these splines ÿ̄ ý
ý

are actually the linear coset splines from Definition 3.4. We make the change in

notation for several reasons, one being that the subset A uniquely determines the coset whose support is
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ÿ̄ ý
ý

(as opposed to many elements w defining the same ÿ̄ ýý ). Since ÿý is one of two connected components

in the graph ([ÿ], ý (Γ) \ {ý}), it follows that ÿ ∈ ý〈ý (Γ) \ {ý}〉 if and only if ý(ý (ÿý)) = ÿ(ý (ÿý)).

In particular, we have equality ÿ̄ ý
ý
= ÿ̄ ýý precisely when ý = ý (Γ) \ {ý} and ý−1 (ý) = ý (ÿý).

Remark 5.1. When defining ÿ̄ ý
ý
, we chose ÿý to be one of the two connected components in the graph

([ÿ], ý (Γ) \ {ý}). This choice does not affect the set of splines in CΓ. More precisely, if H is the other

connected component in ([ÿ], ý (Γ) \ {ý}), then |ÿ | = ÿ − |ÿý |, and we have that

ÿ̄ ýý(ý) =

{
ýý (ÿ) − ýý ( ÿ) if ý−1 (ý) = ý (ÿý)

0 otherwise
=

{
ýý (ÿ) − ýý ( ÿ) if ý−1 (ýý) = ý (ÿ)

0 otherwise.

In particular, for a fixed cut edge s, the set of linear coset splines { ÿ̄ ý
ý
} associated to that cut edge is

unaffected by the choice of ÿý .

Now we will introduce a (truly new) collection of linear splines that depend on cut vertices j and the

connected components of Γ − ÿ , as well as an integer k. Let ÿ 	 Γ be a cut vertex, G be a connected

component of Γ − ÿ , and ý ∈ [ÿ]. We define ÿ̄
ÿ

ÿ,ý
: ÿÿ → C[ý•] by

ÿ̄
ÿ

ÿ,ý
(ý) �

{
ýý − ýý ( ÿ) if ý−1 (ý) ∈ ÿ

0 otherwise

for all ý ∈ ÿÿ. We associate to Γ the collection

YΓ �

{
ÿ̄
ÿ

ÿ,ý

��� ÿ 	 Γ, ÿ a connected component of Γ − ÿ , ý ∈ [ÿ]
}
.

Finally, recall the splines Tÿ � {ý̄ÿ | ÿ ∈ [ÿ]} and Xÿ � {ý̄ÿ | ÿ ∈ [ÿ]} from Subsection 2.2. Now we

define

FΓ � Tÿ ∪ Xÿ ∪ CΓ ∪ YΓ . (5.1)

We will eventually show that FΓ is a C-spanning set of M1
Γ
.

Example 5.2. Let Γ be the graph drawn below.

1

2 3

4

5

6 7

8 10

9

11

12

Since Γ has three cut edges (1, 4), (8, 10), and (9, 10), we have that

CΓ =

{
ÿ̄
(1,4)

ý
| ý ⊂ [12], |ý| = 1

}
∪

{
ÿ̄
(8,10)

ý
| ý ⊂ [12], |ý| = 8

}
∪

{
ÿ̄
(9,10)

ý
| ý ⊂ [12], |ý| = 1

}
.
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One such element ÿ̄
(9,10)

{6}
∈ CΓ takes the form

ÿ̄
(9,10)

{6}
(ý) �

{
ýý (9) − ýý (10) ý−1 ({6}) = {9}

0 otherwise,

and is supported on the coset {ý ∈ ÿÿ | ý(9) = 6}.

Since Γ has three cut vertices 4, 8, and 10, we have that

YΓ =

⎧⎪⎪«
⎪⎪¬
ÿ̄4
ÿ,ý

������ý (ÿ) ∈

⎧⎪⎪«
⎪⎪¬

{1},

{2, 3},

{5, ..., 12}

«⎪⎪¬
⎪⎪­
, ý ∈ [12]

«⎪⎪¬
⎪⎪­
∪

⎧⎪⎪«
⎪⎪¬
ÿ̄8
ÿ,ý

������ý (ÿ) ∈

⎧⎪⎪«
⎪⎪¬
{1, .., , 5},

{6, 7},

{9, ..., 12}

«⎪⎪¬
⎪⎪­
, ý ∈ [12]

«⎪⎪¬
⎪⎪­

∪

⎧⎪⎪«
⎪⎪¬
ÿ̄10
ÿ,ý

������ý (ÿ) ∈

⎧⎪⎪«
⎪⎪¬
{1, ..., 8},

{9},

{11, 12}

«⎪⎪¬
⎪⎪­
, ý ∈ [12]

«⎪⎪¬
⎪⎪­
.

One such element ÿ̄8
ÿ,3

∈ YΓ takes the form

ÿ̄8
{6,7},3

(ý) �

{
ý3 − ýý (8) ý−1 (3) ∈ {6, 7}

0 otherwise

and is supported on the set {ý ∈ ÿÿ | ý(6) = 3 or ý(7) = 3}.

Now Lemma 5.3 below shows that FΓ is in fact a subset of M1
Γ
.

Lemma 5.3. Let Γ be a graph on [ÿ]. The four sets Tÿ, Xÿ, CΓ and YΓ are subsets of MΓ.

Proof. We already know that ý̄ÿ and ý̄ÿ are elements of MΓ for all ÿ ∈ [ÿ], so Tÿ and Xÿ are subsets.

Now we show that each element of CΓ is a well-defined spline. Recall that these are coset splines,

and so are well defined for trees. If s is a cut edge of Γ, then every spanning tree T of Γ must have s

as an edge. Fix ý ⊂ [ÿ], where |ý| = |ÿý |, and for all spanning trees T, choose ÿý to be the connected

component where ý (ÿý) = ý (ÿý). It follows that ÿ̄ ý
ý
∈ Mÿ for every spanning tree T, and so ÿ̄ ý

ý
∈ MΓ

by Lemma 2.16.

Finally, we show that every element ÿ̄
ÿ

ÿ,ý
∈ YΓ is a linear spline on GΓ. We will verify this from the

definition, edge by edge. Let (ý, ÿ) ∈ ý (GΓ), where ý = ÿ(ý, ÿ). We prove that ÿ̄
ÿ

ÿ,ý
(ý) − ÿ̄

ÿ

ÿ,ý
(ÿ) ∈

L(ý, ÿ) =
〈
ýÿ (ý) − ýÿ (ÿ)

〉
in three cases, depending on the values of ý−1 (ý) and ÿ−1 (ý).

Case 1: ý−1 (ý), ÿ−1 (ý) ∉ ÿ. Then by definition both ÿ̄
ÿ

ÿ,ý
(ý) = 0 and ÿ̄

ÿ

ÿ,ý
(ÿ) = 0, so the difference

is clearly in L(ý, ÿ).

Case 2: ý−1 (ý), ÿ−1(ý) ∈ ÿ. So ÿ̄
ÿ

ÿ,ý
contains both w and v in its support. We compute from the

definition that

ÿ̄
ÿ

ÿ,ý
(ý) − ÿ̄

ÿ

ÿ,ý
(ÿ) = ýý − ýý ( ÿ) − ýý + ýÿ ( ÿ)

= ýÿ ( ÿ) − ýý ( ÿ) =

{
±(ýÿ (ý) − ýÿ (ÿ) ) ÿ ∈ {ý, ÿ}

0 ÿ ∉ {ý, ÿ}.

In either case, this difference is in the ideal L(ý, ÿ).

Case 3: ý−1 (ý) ∈ ÿ, ÿ−1 (ý) ∉ ÿ. In particular, w is in the support of ÿ̄
ÿ

ÿ,ý
whereas v is not. Since

ý−1 (ý) = (ý, ÿ)ÿ−1(ý), we know that one of either p or q is in G and the other is not. Without loss

of generality, say ý ∈ ÿ and ÿ ∉ ÿ. In particular, ý−1 (ý) = ý and ÿ−1(ý) = ÿ. Since (ý, ÿ) ∈ ý (Γ)

and the only element in [ÿ] \ ý (ÿ) that elements of G are connected to is the vertex j, it follows that
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ÿ−1 (ý) = ÿ = ÿ . So ÿ(ÿ) = ý and ý( ÿ) = ÿ(ý, ÿ) ( ÿ) = ÿ(ý). Compute that

ÿ̄
ÿ

ÿ,ý
(ý) − ÿ̄

ÿ

ÿ,ý
(ÿ) = ýý − ýý ( ÿ) = ýÿ (ÿ) − ýÿ (ý,ÿ) ( ÿ) = ýÿ (ÿ) − ýÿ (ý) ∈ L(ý, ÿ).

Thus, ÿ̄
ÿ

ÿ,ý
is an element of MΓ. �

The splines in FΓ are defined from graph properties that are intrinsic to the isomorphism class of Γ.

Lemma 5.4 below makes this precise.

Lemma 5.4. Let ÿ : Γ → Γ′ be a graph isomorphism andΩ be as in Subsection 2.3. ThenFΓ′ = Ω(FΓ).

Proof. It follows directly from the definitions that Ω(Xÿ) = Xÿ and Ω(Tÿ) = Tÿ.

The image of the coset spline ÿ̄
(ÿ, ÿ)

ý
∈ MΓ can be computed to be the coset spline ÿ̄

(ý (ÿ) ,ý ( ÿ))

ý−1 (ý)
∈ MΓ′ ,

where we consistently choose the connected component ÿ(ÿý). From this, it is straightforward from

the definitions to verify that CΓ′ = Ω(CΓ)

Similarly, it is easy to verify that ÿ̄
ÿ

ÿ,ý
↦→ ÿ̄

ý ( ÿ)

ý (ÿ) ,ý (ý)
, and so YΓ′ = Ω(YΓ). �

By Lemma 5.4, it suffices to prove that FΓ spans M1
Γ

for any particular graph in isomorphism class

of Γ.

5.1. Some relations

This set FΓ is not a C-basis of M1
Γ
. Indeed, the following Lemmas 5.5, 5.6 and 5.7 give relations

between elements of FΓ.

The first set of relations in the Lemma 5.5 are relatively straightforward.

Lemma 5.5. For ý̄ÿ ∈ Tÿ, ý̄ÿ ∈ Xÿ, ÿ̄ ý
ý
∈ FΓ and ÿ̄

ÿ

ÿ,ý
∈ YΓ, the following relations hold:

(1)
ÿ∑
ÿ=1

ý̄ÿ =
ÿ∑
ÿ=1

ý̄ÿ ,

(2) if (ÿ, ÿ) is a cut edge and ÿ (ÿ, ÿ) is the component containing the vertex i, then
∑
ý

ÿ̄
(ÿ, ÿ)

ý
= ý̄ÿ − ý̄ ÿ ,

where the sum is over all ý ⊂ [ÿ] such that |ý| =
��ÿ (ÿ, ÿ)

��,
(3) if ÿ 	 Γ, then

ÿ∑
ý=1

ÿ̄
ÿ

ÿ,ý
=

( ∑
ÿ ∈ÿ

ý̄ÿ

)
− |ÿ |ý̄ ÿ for any connected component G of Γ − ÿ , and

(4) if ÿ 	 Γ and ý ∈ [ÿ] is fixed,
∑
ÿ

ÿ̄ÿ
ÿ,ý

= ý̄ý − ý̄ ÿ , where the sum is over all connected components G

of Γ − ÿ .

Proof. Relation (1) is easy, as is relation (2) once it is noted that the support of each ÿ̄
(ÿ, ÿ)

ý
for a fixed

(ÿ, ÿ) is disjoint. Fix ý ∈ ÿÿ.

For relation (3), compute that

ÿ∑
ý=1

ÿ̄
ÿ

ÿ,ý
(ý) =

∑
ý∈[ÿ]

ý−1 (ý) ∈ÿ

ýý − ýý ( ÿ) =

������
∑
ý∈[ÿ]

ý−1 (ý) ∈ÿ

ýý

 !!!!"
− |ÿ |ýý ( ÿ)

=

(∑
ÿ ∈ÿ

ýý (ÿ )

)
− |ÿ |ýý ( ÿ) =

((∑
ÿ ∈ÿ

ý̄ÿ

)
− |ÿ |ý̄ ÿ

)
(ý).

For relation (4), note that either ý−1 (ý) = ÿ or ý−1 (ý) ∈ ÿ for one and only one connected component

G of Γ − ÿ . As such, if ý−1 (ý) = ÿ , in which case w is not in the support of any of the ÿ̄
ÿ

ÿ,ý
and

likewise ý̄ý (ý) − ý̄ ÿ (ý) = 0. Otherwise, ý−1 (ý) ∈ ÿ for some particular connected component G and

ÿ̄
ÿ

ÿ,ý
(ý) = ýý − ýý ( ÿ) . This is precisely ý̄ý (ý) − ý̄ ÿ (ý), and we have (4). �
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Lemma 5.6 below shows that if j is a cut vertex and a connected component G of Γ− ÿ is connected to

j by a cut edge (ÿ, ÿ), then the spline ÿ̄
ÿ

ÿ,ý
can be written as a sum of other splines from FΓ. In particular,

it will allow us to remove from FΓ the splines in YΓ that correspond to components connected by cut

edges.

Lemma 5.6. Let Γ be a graph, j a cut vertex and (ÿ, ÿ) a cut edge, choosing ÿ (ÿ, ÿ) to be the component

containing the vertex i. Let C be the connected component of the forest with vertex set ý (ÿ (ÿ, ÿ) ) ∪ { ÿ}

and edge set {ý | ý is a cut edge of ÿ (ÿ, ÿ) } ∪ {(ÿ, ÿ)} that contains the vertex j. Then for all ý ∈ [ÿ],∑
ÿ ∈ÿ− ÿ
ÿ	Γ

∑
ÿ

ÿ∩ÿ=∅

ÿ̄ÿÿ,ý +
∑

ÿ∈ý (ÿ)

∑
ý�ý

|ý |= |ÿÿ |

ÿ̄ ÿý = ÿ̄
ÿ

ÿ(ÿ, ÿ) ,ý
,

where G in the first double-sum is a connected component of Γ−ÿ, where ÿÿ is the connected component

that is a subset of ÿ (ÿ, ÿ) , and where A in the second double-sum is a subset of [ÿ].

Since Lemma 5.6 is rather technical, we will walk through an example before seeing the full proof.

Let Γ be the graph on 13 vertices below:

1

2 3

4

5

6 7

8 11

9

10

12 13

where (11, 12) is cut edge and ÿ (11,12) is the component that contains 11. The forest of cut edges with

vertex set ý (ÿ (11,12) ) ∪ {12} has edge set {(1, 4), (8, 11), (9, 11), (10, 11), (12, 11)}. If we mark in Γ

the component of this forest that contains the vertex 11 with double lines, we get the following graph:

1

2 3

4

5

6 7

8 11

9

10

12 13

In essence, Lemma 5.6 says that for all ý ∈ [13], the spline ÿ̄12
ÿ(11,12) ,ý

can be written as a sum of some

splines in CΓ associated to the cut edges (8, 11), (9, 11) and (10, 11) (since they are a part of that marked

tree) and some splines in YΓ associated to cut vertex 8, since Γ − 8 has components that ‘hang off of’

that marked tree.

For each of the cut edges ÿ ∈ {(8, 11), (9, 11), (10, 11)}, we must choose ÿÿ to be the component

contained within ÿ (11,12) , so ý (ÿ (9,11) ) = {1, ..., 11}, ý (ÿ (9,11) ) = {9}, and ý (ÿ (10,11) ) = {10}.

More formally, Lemma 5.6 states that for all ý ∈ [13], the following equality holds (we will denote

the specific subgraph by their vertex set):

ÿ̄8
[5],ý

+ ÿ̄8
{6,7},ý

+
∑
|ý |=8
ý∈ý

ÿ̄
(8,11)

ý
+

∑
|ý |=1
ý∈ý

ÿ̄
(9,11)

ý
+

∑
|ý |=1
ý∈ý

ÿ̄
(10,11)

ý
+

∑
|ý |=11
ý∈ý

ÿ̄
(11,12)

ý
= ÿ̄12

[11],ý .
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The proof proceeds in cases by the value of ý−1 (ý). For example, say we wished to evaluate both sides

of the above expression at a ý ∈ ÿ13 such that ý−1 (ý) = 3. This makes it easier to determine which

splines in the sum above on the left are supported at w. In particular,

1. ÿ̄8
[5],ý

(ý) = ýý − ýý (8) since 3 ∈ [5],

2. ÿ̄8
{6,7},ý

(ý) = 0 since 3 ∉ {6, 7},

3.
∑

|ý |=8
ý∈ý

ÿ̄
(8,11)

ý
(ý) = ýý (8) − ýý (11) since the set ý = ý(ý (ÿ (8,11) ) contains ý(3) = ý ,

4.
∑

|ý |=1
ý∈ý

ÿ̄
(9,11)

ý
(ý) = 0 and

∑
|ý |=1
ý∈ý

ÿ̄
(10,11)

ý
(ý) = 0 since ý ∉ ý({9}) and ý ∉ ý({10}), and finally,

5.
∑

|ý |=11
ý∈ý

ÿ̄
(11,12)

ý
(ý) = ýý (11) − ýý (12) since the set ý = ý(ý (ÿ (11,12) ) contains ý(3) = ý .

If we add these all up, the sum telescopes and the evaluation is

(ýý − ýý (8) ) + (ýý (8) − ýý (11)) + (ýý (11) − ýý (12) ) = ýý − ýý (12) ,

which is precisely ÿ̄12
[11]

(ý). The essence of the proof, which we will now provide, is that the splines in

the sum with support at a particular ý ∈ ÿÿ can be determined from any simple path from ý−1 (ý) to j

and that the sum always telescopes as it did in the example above.

Proof of Lemma 5.6. Let ý ∈ ÿÿ. We will show that both sides of the claimed equality are equal when

evaluated at w. Let ý ∈ [ÿ], and we will proceed in cases based off of the value ý−1 (ý).

First, say ý−1 (ý) ∉ ý (ÿ (ÿ, ÿ) ). All paths that begin in ÿ (ÿ, ÿ) and leave must contain the edge (ÿ, ÿ)

and thus visit the vertex j. In particular, for any ÿ ∈ ÿ where ý 	 Γ, the connected component of Γ − ÿ

that contains ý−1 (ý) also contains ÿ ∈ ÿ. So ý−1 (ý) ∉ ÿ for any G in the first double-sum, and so

∑
ÿ ∈ÿ− ÿ
ÿ	Γ

∑
ÿ

ÿ∩ÿ=∅

ÿ̄ÿÿ,ý (ý) = 0.

If ÿ ∈ ý (ÿ), then ÿÿ was chosen to be contained within ÿ (ÿ, ÿ) , so ý−1 (ý) ∉ ÿÿ as well. In particular,

if ý ∈ ý, then ý−1 (ý) ≠ ÿÿ, and so

∑
ÿ∈ý (ÿ)

∑
ý�ý

|ý |= |ÿÿ |

ÿ̄ ÿý (ý) = 0.

It is direct from the definition that ÿ̄ÿ
ÿ(ÿ, ÿ) ,ý

(ý) = 0, and so the claim holds when ý−1 (ý) ∉ ÿ (ÿ, ÿ) .

Now assume that ý−1 (ý) ∈ ÿ (ÿ, ÿ) . Let ÿ = (ý0, . . . , ýℓ , ýℓ+1) be a simple path from ý0 � ý−1 (ý)

to ýℓ+1 � ÿ . Note that ýℓ must be the vertex i. This path P may start outside of C, but must eventually

enter the tree C. Say that ÿ ∈ {0, ..., ℓ} is the lowest index such that ýÿ ∈ ÿ. Since ÿ ∈ ÿ and ýℓ = ÿ,

this integer m does exist. Simple paths from vertex to vertex within trees are unique, so there is a unique

simple path from ýÿ to j in C. This path is ÿÿ � (ýÿ, ..., ýℓ+1).

First, we will determine the value of ÿ̄ ÿ
ý
(ý) for ÿ ∈ ý (ÿ). Say the edge ÿ ∈ ÿ is not an edge

in the path ÿÿ . Then the vertices ý−1 (ý) and j are in the same connected component of the graph

([ÿ], ý (Γ) − ÿ). In particular, ý−1 (ý) ∉ ÿÿ, so if ý ∈ ý, then ý−1 (ý) ≠ ý (ÿÿ). It follows that for all

A such that ý ∈ ý, if ÿ ∉ ÿÿ , then ÿ̄ ÿ
ý
(ý) = 0.

However, if ÿ ∈ ÿÿ , then we may let ý � ý(ý (ÿÿ)), and then ý ∈ ý. So for each ÿ ∈ ÿÿ ,

there exists a single spline ÿ̄ ÿ
ý

in the sum that is supported at w. In particular, if ÿ = (ý, ÿ), then

ÿ̄
ÿ

ý
(ý) = ýý (ý) − ýý (ÿ) .
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At this point, we have that

∑
ÿ ∈ÿ− ÿ
ÿ	Γ

∑
ÿ

ÿ∩ÿ=∅

ÿ̄ÿÿ,ý (ý) +
∑

ÿ∈ý (ÿ)

∑
ý�ý

|ý |= |ÿÿ |

ÿ̄ ÿý =

∑
ÿ ∈ÿ− ÿ
ÿ	Γ

∑
ÿ

ÿ∩ÿ=∅

ÿ̄ÿÿ,ý (ý) +
∑

(ý,ÿ) ∈ÿÿ

ýý (ý) − ýý (ÿ) .

Now we will have two cases: if ý−1 (ý) ∈ ÿ and if ý−1 (ý) ∉ ÿ.

Case 1: ý−1 (ý) ∈ ÿ. So ÿ = 0. Then for all ÿ ∈ ÿ (ÿ, ÿ) , if a connected component G of Γ− ÿ contains

ý−1 (ý), then so does ÿ ∩ ÿ. In particular,

∑
ÿ ∈ÿ− ÿ
ÿ	Γ

∑
ÿ

ÿ∩ÿ=∅

ÿ̄ÿÿ,ý (ý) = 0.

Now we compute

∑
(ÿ ,ÿ) ∈ÿÿ

ýý (ÿ) − ýý (ÿ ) =

ℓ∑
ÿ=0

ýý (ýÿ) − ýý (ýÿ+1)

= ýý (ý0) − ýý (ýℓ+1)

= ýý − ýý ( ÿ) .

This is precisely ÿ̄
ÿ

ÿ
(ý), and so the equality holds if ý−1 (ý) ∈ ÿ.

Case 2: ý−1 (ý) ∉ ÿ. Then ÿ ≠ 0, and consider the vertex ýÿ−1. Since ýÿ ∈ ÿ and Γ− ýÿ separates

ý−1 (ý) from j, the vertex ýÿ is a cut vertex of Γ. If ÿ′ ∈ ÿ is any vertex other than ýÿ, then ýÿ
and ý−1 (ý) are in the same connected component of Γ − ÿ′ (connected via the path (ý0, ..., ýÿ)). In

particular, any connected component of Γ − ÿ′ that contains ý−1 (ý) intersects nontrivially with C. So

for ÿ = ýÿ ∈ ÿ− ÿ , there is precisely one component G of Γ− ÿ that contains ý−1 (ý). If this component

G intersected nontrivially with C, then (ýÿ−1, ýÿ) would have to be an edge in C, but (ýÿ−1, ýÿ) was

explicitly assumed not to be a cut edge. In particular, w is supported on one and only one spline in the

first double-sum (the one where ÿ = ýÿ and ÿ � ýÿ−1)), and so

∑
ÿ ∈ÿ− ÿ
ÿ	Γ

∑
ÿ

ÿ∩ÿ=∅

ÿ̄ÿÿ,ý (ý) = ýý − ýý (ýÿ) .

It follows that

∑
ÿ ∈ÿ− ÿ
ÿ	Γ

∑
ÿ

ÿ∩ÿ=∅

ÿ̄ÿÿ,ý (ý) +
∑

(ý,ÿ) ∈ÿÿ

ýý (ý) − ýý (ÿ) = ýý − ýý (ýÿ) +

ℓ∑
ÿ=ÿ

ýý (ýÿ ) − ýý (ýÿ+1)

= ýý − ýý (ýÿ) + ýý (ýÿ) − ýý (ýℓ+1)

= ýý − ýý ( ÿ) .

So in either case, the sum evaluates to ÿ̄
ÿ

ÿ(ÿ, ÿ) ,ý
(ý). �

Now Lemma 5.6 two very important consequences. First, as mentioned, it will allow us to disregard

those splines ÿ̄
ÿ

ÿ,ý
where G is connected to j via a cut edge. Second, observe we only required j to be

a cut vertex so that ÿ̄
ÿ

ÿ,ý
is defined. We may, however, remove this restriction and ‘force through’ the

argument as follows. If (ý, ÿ) is a cut edge and q is not a cut vertex, then q is a leaf in Γ. Let ÿ (ý,ÿ) be

the connected component containing p (and thereby all of [ÿ] \ {ÿ}). We might abuse notation and let

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press



26 N. R. T. Lesnevich

for all ý ∈ ÿÿ,

ÿ̄
ÿ

ÿ(ý,ÿ) ,ý
(ý) =

{
ýý − ýý (ÿ) if ý−1 (ý) ∈ [ÿ] \ {ÿ}

0 otherwise

= ý̄ý (ý) − ý̄ÿ (ý),

and get another relation from Lemma 5.6. A consequence of this is Lemma 5.7 below.

Lemma 5.7. Let (ÿ, ÿ) be a leaf edge in Γ with j the leaf vertex, and ÿ (ÿ, ÿ) the connected component of

([ÿ], ý (Γ) \ {ý}) that contains i. Then for all ý ⊂ [ÿ] such that |ý| =
��ÿ (ÿ, ÿ)

�� = ÿ − 1, we have that

ÿ̄
(ÿ, ÿ)

ý
∈ C

{
ÿ̄ ∈ FΓ

���ÿ̄ ≠ ÿ̄
(ÿ, ÿ)

ý
for any ý ⊂ [ÿ]

}
.

Proof. Let C be the connected component of the forest with vertex set ý (ÿ (ÿ, ÿ) ) ∪ { ÿ} = [ÿ] and edge

set {ý | ý is a cut edge of Γ)} that contains the vertex j. By Lemma 5.6 and the discussion above, for all

ý ∈ [ÿ], ∑
ÿ ∈ÿ− ÿ
ÿ	Γ

∑
ÿ

ÿ∩ÿ=∅

ÿ̄ÿÿ,ý +
∑

ÿ∈ý (ÿ)

∑
ý�ý

|ý |= |ÿÿ |

ÿ̄ ÿý = ý̄ý − ý̄ ÿ ,

where G in the first double-sum is a connected component of Γ − ÿ, ÿÿ is the connected component

of ([ÿ], ý (Γ) \ {(ÿ, ÿ)}) that is a subgraph of ÿ (ÿ, ÿ) (i.e., does not contain j), and A in the second

double-sum is a subset of [ÿ]. In particular,∑
|ý |=ÿ−1
ý∈ý

ÿ̄
(ÿ, ÿ)

ý
= ý̄ý − ý̄ÿ −

∑
ÿ ∈ÿ− ÿ
ÿ	Γ

∑
ÿ

ÿ∩ÿ=∅

ÿ̄ÿÿ,ý −
∑

ÿ∈ý (ÿ)
ÿ≠(ÿ, ÿ)

∑
ý�ý

|ý |= |ÿÿ |

ÿ̄ ÿý .

Now the right-hand side is in C
{
ÿ̄ ∈ FΓ

���ÿ̄ ≠ ÿ̄
(ÿ, ÿ)

ý
for any ý ⊂ [ÿ]

}
. Let ÿ̄ý :=

∑
|ý |=ÿ−1
ý∈ý

ÿ̄
(ÿ, ÿ)

ý
, so the

above relation says ÿ̄ý ∈ ÿ
{
ÿ̄ ∈ FΓ

���ÿ̄ ≠ ÿ̄
(ÿ, ÿ)

ý
for any ý ⊂ [ÿ]

}
. For each ý ∈ [ÿ], we have that

ÿ̄
(ÿ, ÿ)

[ÿ]\{ý}
=
���

1

ÿ − 1

∑
ý∈[ÿ]

ÿ̄ý
 !"
− ÿ̄ý .

Thus, ÿ̄
(ÿ, ÿ)

[ÿ]\{ý}
∈ C

{
ÿ̄ ∈ FΓ

���ÿ̄ ≠ ÿ̄
(ÿ, ÿ)

ý
for any ý ⊂ [ÿ]

}
, and as all subsets of size |ý| = ÿ − 1 take the

form ý = [ÿ] \ {ý}, the claim follows. �

Example 5.8. If Γ is the graph below where (12, 13) is a leaf,

1

2 3

4

5

6 7

8 11

9

10

12 13

then Lemma 5.7 states that CFΓ is identical to C
{
ÿ̄ ∈ FΓ

���ÿ̄ ≠ ÿ̄
(12,13)

ý
for any ý ⊂ [ÿ]

}
.

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press



Forum of Mathematics, Sigma 27

Since (1, 4) is also a leaf, we have that CFΓ is equal to C
{
ÿ̄ ∈ FΓ

���ÿ̄ ≠ ÿ̄
(1,4)

ý
for any ý ⊂ [ÿ]

}
as

well. Note we cannot remove the coset splines for (1, 4) and (12, 13) from FΓ at the same time and

maintain the C-span; we have to pick a particular leaf to remove and stick with it.

6. Natural labels and cliqued graphs

In this section, we reduce the computation for arbitrary Γ in two ways. First, we show that Γ may be

replaced by a cliqued graph (defined below) without alteringM1
Γ
. Second, we replace Γ with a particular

representative of the isomorphism class we call naturally labeled. Subsection 6.2 gives three technical

lemmas on splines that hold for these constructions.

First, if Γ does not have a cut vertex, then it is 2-connected. Thus, ch(LΓ)1 is trivial and ch(RΓ)1

is the first degree piece of the graded regular representation by Theorem 4.2 and Corollary 4.4. So we

may assume that Γ has a cut vertex; in particular, we may assume that Γ has at least three vertices.

A clique is a subgraph isomorphic to a complete graph. Let Γ by any (connected) graph on [ÿ]. Call

Γ cliqued if two vertices are connected by an edge in Γ whenever there exists two vertex-disjoint paths

between them. Define

Γ
′
= ( [ÿ], ý (Γ) ∪ {(ÿ, ÿ) | exists two vertex-disjoint paths from ÿ to ÿ in Γ}).

Now Γ′ is cliqued, and we call Γ′ the cliqued version of Γ. By Lemma 4.1, the first degree pieces of

MΓ and MΓ′ are equal. Therefore, it suffices to consider cliqued graphs Γ when proving results on the

structure of M1
Γ
.

Example 6.1. Below is an example of a graph Γ and the cliqued graph Γ′ such that M1
Γ
= M1

Γ′
:

Γ Γ′

A 2-connected component of a graph Γ is a subgraph of Γ that is 2-connected. A block is a maximal

2-connected component. In a cliqued graph, every block is a clique, and the process of cliquing a graph

simply converts every block to a clique.

Definition 6.2. Let Γ be a graph. The block-cut tree of Γ is the tree with vertex set

{ÿ | ÿ 	 Γ} ∪ {ý | ý is a block in Γ}

consisting of cut vertices and blocks in Γ and edge set {(ÿ, ý) | ÿ ∈ ý}.

Example 6.3. The graph on the left below is Γ from Example 6.3 with the blocks and cut vertices

labeled. The graph on the right below is the associated the block-cut tree. Note that the block-cut tree

for the cliqued version Γ′ of Γ in Example 6.3 would be the same.
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1

2

3

4

5

6 7

8

9 10

1112

ý3 4

ý2 9 ý1

ý4 5 ý5

where

◦ ý1 is the induced subgraph on vertices

{9, 10, 11, 12}

◦ ý2 is the induced subgraph on vertices {4, 9}

◦ ý3 is the induced subgraph on vertices

{1, 2, 3, 4}

◦ ý4 is the induced subgraph on vertices {4, 5}

◦ ý5 is the induced subgraph on vertices

{5, 6, 7, 8}

It is easy to reason that the block-cut tree is indeed a tree by arguing that it cannot contain cycles. In

a block-cut tree of a graph Γ, every leaf is a block in Γ and not a cut vertex, and paths in the block-cut

tree alternate between cut-vertices and blocks. Since the block-cut tree ignores the internal structure of

a 2-connected component, the block-cut tree of a graph Γ and the block-cut tree of its cliqued version

Γ′ are isomorphic as graphs.

We now use the block-cut tree to construct a particular representative of the isomorphism class of Γ.

We will construct a bijection ÿ : [ÿ] → [ÿ] to relabel the vertices of Γ.

Choose a cut vertex ÿ 	 Γ such that v is adjacent to at most 1 block that is not a leaf in the block-cut

tree of Γ. One may obtain such a vertex v by (1) removing all leaves from the block-cut tree of Γ (which

must be blocks) and then (2) choosing a leaf from the tree that remains (which must be cut vertices).

The vertices 5 and 9 satisfy this condition in Example 6.3.

Let B be the largest block that is also a leaf adjacent to v in the block-cut tree of Γ. Since B is a leaf

in the block-cut tree, there exists only a single cut vertex in B – namely, ÿ ∈ ý. The following is the

algorithm that produces ÿ : [ÿ] → [ÿ].

1. Choose ÿ ∈ ý so that ÿ ≠ ÿ. Define ÿ(ÿ) � ÿ. Note n is adjacent to at most one cut vertex of Γ and is

not itself a cut vertex of Γ.

2. Define ÿ on the remaining vertices in B as follows. Define ÿ on ý \ {ÿ, ÿ} so that ý ( ÿ , ÿ) < ý (ý, ÿ)

implies ÿ( ÿ) > ÿ(ý) for all ÿ , ý ∈ ý \ {ÿ, ÿ}. Let ÿ(ÿ) � ÿ − |ý | + 1

3. Define ÿ on the remaining vertices of Γ as follows. Let ÿ be any bijection satisfying if ÿ , ý ∈ Γ\ý (ý),

then ý ( ÿ , ÿ) < ý (ý, ÿ) implies ÿ( ÿ) > ÿ(ý).

Now that we have a bijection ÿ : [ÿ] → [ÿ], define a new graph Γ′′
� ([ÿ], {(ÿ( ÿ), ÿ(ý)) | ( ÿ , ý) ∈

ý (Γ)}). This graph is clearly isomorphic to Γ. We call the graph Γ′′ constructed in this manner naturally

labeled.

Example 6.4. This example will construct a naturally labeled graph from the not-naturally labeled graph

with 12 vertices drawn below:

7

6 11

4

12

9 10

1 2

3

5

8

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press



Forum of Mathematics, Sigma 29

This has block-cut tree

ý1 4 ý2

ý3 1

ý4

ý5 2

ý6

ý7

with blocks

◦ ý1 on {4, 7}

◦ ý2 on {4, 6, 11}

◦ ý3 on {1, 4, 12}

◦ ý4 on {1, 9, 10}

◦ ý5 on {1, 2}

◦ ý6 on {2, 3}

◦ ý7 on {2, 5, 8}

To choose a vertex i such that ÿ(ÿ) = 12, first we identify an appropriate cut vertex v. There are two

cut vertices adjacent to only one non-leaf vertex in the block-cut tree, 2 and 4. Let ÿ = 2. The vertex 2

is adjacent to blocks ý6 and ý7 in the block-cut tree. Since ý7 is bigger than ý6, we know that either of

ÿ = 5 or ÿ = 8 will work. We choose ÿ = 8 so ÿ(8) = 12, which concludes step (1).

Now the block ý7 has three vertices, which leaves no choice for defining ÿ on the remainder of ý7. So

ÿ(5) = 11 and ÿ(4) = 10. This concludes step (2).

Finally, we define the rest of ÿ based on distance from the vertex ÿ = 8 and replace the old graph with

the naturally labeled one. One possible natural label is the following:

1

2 3

4

5

6 7

8 10

9

11

12

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press



30 N. R. T. Lesnevich

We note how many choices were made along the way. In particular, the isomorphism class of a graph

Γ may have many different naturally labeled members.

We can use a natural label to more efficiently identify cut edges and connected components of a

graph. The following definitions formalize this.

Definition 6.5. Let Γ be a naturally labeled graph. If ÿ ∈ Γ is a cut vertex, then ÿ < ÿ is j-dominant if i

is the maximal value vertex in a connected component of Γ − ÿ that does not contain the vertex n. We

call such an (ÿ, ÿ) a dominant pair. A dominant pair (ÿ, ÿ) is strongly dominant if (ÿ, ÿ) is a cut edge of

Γ, denoted (ÿ, ÿ) � Γ. Otherwise, (ÿ, ÿ) is weakly dominant, denoted (ÿ, ÿ) > Γ.

There are four things to note about dominant pairs.

1. Even if (ÿ − 1, ÿ) is a cut edge, (ÿ − 1, ÿ) is never a strongly dominant pair since n is not a cut vertex

by the definition of a natural label. However, every other cut edge in a naturally labeled graph Γ is a

strongly dominant pair, since the higher-labeled vertex in the cut edge must be a cut vertex.

2. If ÿ 	 Γ, then all vertices larger than j must be concentrated in one connected component of Γ − ÿ .

If k is in a connected component of Γ − ÿ that does not contain the vertex n, then any path from k to

n must pass through j, and so ý (ý, ÿ) > ý ( ÿ , ÿ), and thus, ý < ÿ by the definition of a natural label.

In particular, the only connected component of Γ − ÿ whose maximal vertex is greater than j is the

one that contains n, so each connected component of Γ− ÿ that does not contain n contains precisely

one j-dominant vertex.

3. Since a natural label is constructed by distance from n, for each cut vertex j, the maximal-labeled

vertices in a connected component of Γ− ÿ that does not contain n must be adjacent to j. In particular,

dominant pairs are also edges.

4. The lower vertex in the dominant pair uniquely determines the pair. In particular, if for contradiction

we assume (ÿ, ÿ) and (ÿ, ý) are both dominant pairs, then i and k are in the same connected component

of Γ − ÿ , and ÿ < ý , and so (ÿ, ÿ) is not a dominant pair.

Definition 6.6. Let Γ be naturally labeled and fix ÿ ∈ Γ. Let ℭΓ ( ÿ) � {ÿ | (ÿ, ÿ) > Γ or (ÿ, ÿ) � Γ},

and ýΓ ( ÿ) � |ℭΓ ( ÿ) |. If j is not a cut vertex, then ℭΓ ( ÿ) = ∅ and ýΓ ( ÿ) = 0. If j is a cut vertex of Γ,

then the cut decomposition of Γ − ÿ is

Γ − ÿ � Γ
ÿ

0
∪

⋃
ÿ∈ℭΓ ( ÿ)

Γ
ÿ

ÿ
,

where Γ
ÿ

ÿ
the connected component of Γ − ÿ such that ÿ ∈ Γ

ÿ

ÿ
and Γ

ÿ

0
denotes the single connected

component of Γ − ÿ where ÿ ∈ Γ
ÿ

0
.

So if ÿ 	 Γ is a cut vertex of Γ and ý ∈ [ÿ] such that ý > ÿ , then ý ∈ Γ
ÿ

0
. When Γ is obvious from

context, we write ℭ( ÿ) and ý( ÿ) without the subscripts.

Remark 6.7. If (ÿ, ÿ) is a cut edge and j is a cut vertex, then Γ
ÿ

ÿ
as in the cut decomposition of Γ − ÿ is

one of the two connected components of ([ÿ], ý (Γ) \ {(ÿ, ÿ)}). In particular, Γ
ÿ

ÿ
is one of the two valid

choices for ÿý when defining ÿ̄
(ÿ, ÿ)

ý
at the beginning of Section 5. From now on, even if Γ is not naturally

labeled and even if the cut edge is (ÿ, ÿ) = (ÿ − 1, ÿ), we will choose ÿý to be the connected component

of (ý (Γ), ý (Γ) − (ÿ, ÿ)) that contains ÿ < ÿ , so that the notation always agrees with Definition 6.6.

Example 6.8. The following is the cliqued and naturally labeled graph Γ from Example 6.4. We have

labeled the strongly dominant pairs in double lines and the weakly dominant pairs in dashed lines:
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1

2 3

4

5

6 7

8 10

9

11

12

The cut vertices are {4, 8, 10}, and ýΓ (10) = ýΓ (8) = ýΓ (4) = 2. The graph Γ − 8 is displayed below,

with the cut decomposition labeled:

1

2 3

4

5

6 7

10

9

11

12

Γ8
5

Γ8
7

Γ8
0

Lemma 6.9 below summarizes some properties of a cliqued and naturally labeled graph.

Lemma 6.9. If Γ is cliqued and naturally labeled, then

(A) if ÿ, ÿ ∈ N(ÿ) are both adjacent to the vertex n in Γ, then (ÿ, ÿ) ∈ ý (Γ),

(B) if ÿ−1 	 Γ is a cut vertex of Γ, then at most one of the connected components Γÿ−1
ÿ

for ÿ ∈ ℭΓ (ÿ−1)

in the cut decomposition of Γ − (ÿ − 1) is not a single vertex,

(C) If ÿ, ý ∈ Γ
ÿ

ÿ
∩ N( ÿ) are vertices both adjacent to ÿ 	 Γ and in the same connected component of

Γ − ÿ , then (ÿ, ý) ∈ ý (Γ).

Proof. Let ý0 be the block in Γ that contains n.

(1) If ÿ, ÿ ∈ N(ÿ), then ÿ, ÿ ∈ ý0. Since Γ is cliqued, ý0 must be a clique and so (ÿ, ÿ) ∈ ý (Γ).

(2) The vertex ÿ − 1 is a cut vertex of Γ if and only if n is a leaf, and ý0 is size 2. Since Γ is naturally

labeled, ÿ − 1 is adjacent to at most one block that is not a leaf in the block-cut tree of Γ, and ý0 is of

maximal size among those leaves in the block-cut tree. Thus, the blocks adjacent to ÿ − 1 in the block-

cut tree of Γ are either not a leaf in the block-cut tree (of which there can only be one) or a leaf in the

block-cut tree and size no greater than 2.

(3) There exists a path (ÿ, ÿ , ý) in Γ, and another path from r to k in Γ
ÿ

ÿ
, which does not contain the

vertex j. Since Γ is cliqued and we know there are two vertex-disjoint paths from r to k in Γ, it follows

that (ÿ, ý) ∈ ý (Γ). �

We use Lemma 6.9 to categorize cliqued and naturally labeled graphs in to three types, based on the

structure of Γ near the vertex n.

Lemma 6.10. If Γ is cliqued and naturally labeled, then it falls in to one of the following three types:

(A) The edge (ÿ − 1, ÿ) is a cut edge of Γ, and at most one component of Γ − (ÿ − 1) is not an isolated

vertex.

(B) The vertex ÿ − 2 is a cut vertex, and the vertices {ÿ − 2, ÿ − 1, ÿ} form a block in Γ.

(C) None of the vertices {ÿ, ÿ − 1, ÿ − 2} are cut vertices, and {ÿ − 2, ÿ − 1, ÿ} form a clique in Γ.

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press



32 N. R. T. Lesnevich

Proof. Categorize Γ by the size of the neighborhood N(ÿ). For every Γ, exactly one of the following is

true: |N(ÿ) | = 1, |N(ÿ) | = 2 or |N(ÿ) | > 2. Note that, since every block is a clique and n is not a cut

vertex, the block B containing n has vertices ý (ÿ) ∪ {ÿ}.

If |N(ÿ) | = 1, then ÿ − 1 is a cut vertex, and Γ is type A. The rest of the claim for type A is Lemma

6.9(2).

Suppose |N(ÿ) | = 2. Since Γ is naturally labeled, ÿ−2 must be a cut vertex. We also have (ÿ−2, ÿ−1) ∈

ý (Γ) by Lemma 6.9(1).

Finally, suppose |N(ÿ) | > 2. Since Γ is naturally labeled, none of {ÿ − 2, ÿ − 1, ÿ} is a cut vertex.

Once again, (ÿ − 2, ÿ − 1) ∈ ý (Γ) by Lemma 6.9(1). �

Visually, Lemma 6.10 says that if Γ is cliqued and naturally labeled, then Γ can be represented

diagrammatically in one of the following three ways:

ÿ ÿ − 1 Γÿ−1
ÿ−ý−1A:

ÿ − 2 · · · ÿ − ý

ÿ

ÿ − 1

ÿ − 2 Γ \
{ ÿ,
ÿ−1,
ÿ−2

}
B:

ÿ

ÿ − 1

ÿ − 2

Γ \
{ ÿ,
ÿ−1,
ÿ−2

}
C:

In the diagram for type A above, ýΓ (ÿ − 1) = ý . We remark that in type B, the induced subgraph

Γ \ {ÿ − 2, ÿ − 2, ÿ} may be disconnected (such as it would be for the graph in Example 6.8). However,

in type C, the vertex ÿ − 3 must be in the same block as n, ÿ − 1 and ÿ − 2, so the induced subgraph

Γ \ {ÿ − 2, ÿ − 1, ÿ} is actually connected.

Example 6.11. The graph Γ from Example 6.8 is type B. The following is a naturally labeled type A

graph:

1

2 3

4

5

6 7

8 11

9

10

12

A different natural label on the same graph, such as the one below, can have a different classification.

The following naturally labeled graph is in the same isomorphism class as the previous, but is type B:

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press



Forum of Mathematics, Sigma 33

9

12 11

10

8

6 5
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1

6.1. The spanning set revisited

A natural labeling provides a more convenient indexing for the splines in YΓ and CΓ, using the cut

decomposition from Definition 6.6. In particular, we write

ÿ̄
ÿ

ÿ,ý
� ÿ̄

ÿ

Γ
ÿ

ÿ
,ý

so that

YΓ =

{
ÿ̄
ÿ

ÿ,ý

��� ÿ 	 Γ, ÿ ∈ ℭΓ ( ÿ) ∪ {0}, ý ∈ [ÿ]
}
.

Additionally, while the notation for individual splines ÿ̄ ý
ý
∈ CΓ does not change, we note that, as stated

in Remark 6.7, we choose ÿý for ý = (ÿ < ÿ) to be equal to Γ
ÿ

ÿ
.

We collect the important naturally-labeled versions of Lemmas 5.6, 5.5 and 5.7 below in Proposi-

tion 6.12.

Proposition 6.12. Let Γ be naturally labeled, and let

BΓ � {ý̄ÿ | ÿ ∈ [ÿ]} ∪ {ý̄ÿ | ÿ ∈ [ÿ]} ∪

{
ÿ̄ ýý

�����
ý = (ÿ, ÿ) � Γ,

|ý| =

���Γ ÿÿ
���

}
∪

{
ÿ̄
ÿ

ÿ,ý

����(ÿ, ÿ) > Γ,

ý ∈ [ÿ]

}
.

Then the following hold:

1. If (ÿ, ÿ) � Γ, then ÿ̄
ÿ

ÿ,ý
∈ CBΓ for all ý ∈ [ÿ].

2. If ÿ 	 Γ, then ÿ̄
ÿ

0,ý
∈ CBΓ for all ý ∈ [ÿ].

3. If (ÿ − 1, ÿ) is a cut edge of Γ, then ÿ̄
(ÿ−1,ÿ)

ý
∈ CBΓ for all ý ⊂ [ÿ] where |ý| = ÿ − 1.

In particular, CBΓ = CFΓ.

Proof. The first relation (1) is exactly Lemma 5.6.

The second relation (2) follows from (1) together with Lemma 5.5(4).

The third relation (3) is Lemma 5.7, applied to the cut edge (ÿ − 1, ÿ). �

6.2. Technical lemmas

This subsection contains three lemmas that are used within the proof of Theorem 7.2.

Let ÿÿÿ ≔ {ý ∈ ÿÿ | ý(ÿ) = ÿ} be a left coset of ÿÿ−1 in ÿÿ. The first Lemma 6.13 establishes what

values a linear spline ÿ̄ may take on ÿÿ−1
ÿ if ÿ̄ is not supported on ÿÿÿ = ÿÿ−1.

Lemma 6.13. Let Γ be naturally labeled, and ÿ̄ ∈ M1
Γ
, where ÿ̄ ≡ 0 on ÿÿÿ. If ý, ÿ ∈ ÿÿ−1

ÿ , then

ÿ̄(ý) = ýý
(
ýÿ − ýý (ÿ)

)
and ÿ̄(ÿ) = ýÿ

(
ýÿ − ýÿ (ÿ)

)
for some ýý , ýÿ ∈ C. Furthermore, if ý(ÿ) = ÿ(ÿ),

or Γ is type ý/ÿ, then ýý = ýÿ .
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Proof. First, since Γ is naturally labeled, it follows that (ÿ − 1, ÿ) ∈ ý (Γ). We will show the first part

of the claim for ý ∈ ÿÿ−1
ÿ , and the same will hold for ÿ ∈ ÿÿ−1

ÿ . If ý ∈ ÿÿ−1
ÿ , then ý(ÿ − 1, ÿ) ∈ ÿÿÿ, and

L(ý, ý(ÿ− 1, ÿ)) =
〈
ýý (ÿ−1) − ýý (ÿ)

〉
=

〈
ýÿ − ýý (ÿ)

〉
. Since ÿ̄ is linear and ÿ̄(ý(ÿ− 1, ÿ)) = 0, the first

part of the claim follows.

Now we prove the second part of the claim. First, we assume ý(ÿ) = ÿ(ÿ). Two permutations

ý, ÿ ∈ ÿÿ−1
ÿ have the property ý(ÿ) = ÿ(ÿ) if and only if ÿ ∈ ýÿÿ−2. The claim will follow if ýý = ýÿ

for ÿ = ý(ÿ, ý) whenever (ÿ, ý) ∈ ÿÿ−2. Let {ÿ, ý} ⊂ [ÿ − 2]. As Γ is naturally labeled and so n is not a

cut vertex of Γ, there exists a simple path (ÿ0, ÿ1, ..., ÿÿ) in Γ from ÿ = ÿ0 to ý = ÿÿ that does not contain

n, and by Lemma 3.3,

ÿ̄(ý) − ÿ̄(ý(ÿ, ý)) ∈
〈
ýý (ÿÿ) − ýý (ÿÿ−1) | ÿ ∈ [ÿ]

〉
.

In particular,

(ýý − ýý (ÿ ,ý) )ýÿ − (ýý − ýý (ÿ ,ý) )ýý (ÿ) ∈
〈
ýý (ÿÿ) − ýý (ÿÿ−1) | ÿ ∈ [ÿ]

〉
.

The monomial ýý (ÿ) does not appear in {ýý (ÿÿ) − ýý (ÿÿ−1) | ÿ ∈ [ÿ]}, and thus, ýý = ýý (ÿ ,ý) . Since the

transpositions (ÿ, ý) generate ÿÿ−2, the claim follows.

Now we prove the claim if Γ is type ý/ÿ. If Γ is type B or type C, then Γ − (ÿ − 1) is connected.

It suffices to prove ýý = ýý (ÿ ,ý) for ÿ − 1 ∉ {ÿ, ý}. Since Γ − (ÿ − 1) is connected, there exists a path

(ÿ0, ..., ÿÿ) from ÿ = ÿ0 to ý = ÿÿ in Γ that does not visit the vertex ÿ − 1. So

(ýý − ýý (ÿ ,ý) )ýÿ − ýý ýý (ÿ) − ýý (ÿ ,ý) ýý (ÿ ,ý) (ÿ) ∈
〈
ýý (ÿÿ) − ýý (ÿÿ−1) | ÿ ∈ [ÿ]

〉
.

Now ýÿ = ýý (ÿ−1) never appears in
{
ýý (ÿÿ) − ýý (ÿÿ−1) | ÿ ∈ [ÿ]

}
, and thus, ýý = ýÿ . �

The second two lemmas assume that (ÿ, ÿ) is a dominant pair in Γ and establish what values a linear

spline ÿ̄ may take on ÿÿÿ if supp( ÿ̄) ∩ ÿ
ÿ
ÿ = ∅. Lemma 6.14 below assumes (ÿ, ÿ) is strongly dominant

and relates ÿ̄(ý) to ÿ̄(ÿ) if w and v are in the same coset ÿÿÿ and they are also in the same coset of the

reflection subgroup generated by the transpositions ý (Γ) \ {(ÿ, ÿ)}.

Lemma 6.14. Let Γ be cliqued and naturally labeled, and say (ÿ, ÿ) � Γ. Let ÿ̄ ∈ M1
Γ
, where ÿ̄ ≡ 0

on ÿ
ÿ
ÿ. If ý, ÿ ∈ ÿÿÿ, then ÿ̄(ý) = ýý

(
ýÿ − ýý ( ÿ)

)
and ÿ̄(ÿ) = ýÿ

(
ýÿ − ýÿ ( ÿ)

)
for some ýý , ýÿ ∈ C.

Furthermore, if ÿ ∈ ý〈ý (Γ) \ (ÿ, ÿ)〉, then ýý = ýÿ .

Proof. First, since Γ is naturally labeled, it follows that (ÿ, ÿ) ∈ ý (Γ). We will show the first part

of the claim for ý ∈ ÿÿÿ, and the same will hold for ÿ ∈ ÿÿÿ. If ý ∈ ÿÿÿ, then ý(ÿ, ÿ) ∈ ÿ
ÿ
ÿ, and

L(ý, ý(ÿ, ÿ)) =
〈
ýý (ÿ) − ýý ( ÿ)

〉
=

〈
ýÿ − ýý ( ÿ)

〉
. Since ÿ̄ is linear and ÿ̄(ý(ÿ, ÿ)) = 0, the first part of the

claim follows from the definition of a spline on GΓ.

The reflection subgroup 〈ý (Γ) \ {(ÿ, ÿ)}〉 is also generated by the transpositions {(ÿ, ý) | {ÿ, ý} ⊂

ý (Γ
ÿ

ÿ
)} ∪ {(ý, ÿ) | {ý, ÿ} ⊂ [ÿ] \ ý (Γ

ÿ

ÿ
)}, as this set contains ý (Γ) \ {ÿ, ÿ}. We will show that, for

those generating transpositions, ýý = ýý (ÿ ,ý) and ýý = ýý (ý,ÿ) .

First, we show ýý = ýý (ÿ ,ý) for {ÿ, ý} ⊂ ý (Γ
ÿ

ÿ
). Let (ÿ0, ..., ÿÿ) be a path in Γ

ÿ

ÿ
from ÿ = ÿ0 to

ÿÿ = ý. Then by Lemma 3.3,

ÿ̄(ý) − ÿ̄(ý(ÿ, ý)) ∈
〈
ýý (ÿý ) − ýý (ÿý−1) | ý ∈ [ÿ]

〉
.

In particular,

(ýý − ýý (ÿ ,ý) )ýÿ − (ýý − ýý (ÿ ,ý) )ýý ( ÿ) ∈
〈
ýý (ÿý ) − ýý (ÿý−1) | ý ∈ [ÿ]

〉
.

Since j is not in the path (ÿ0, ..., ÿÿ), the monomial ýý ( ÿ) does not appear in {ýý (ÿý )−ýý (ÿý−1) | ý ∈ [ÿ]},

and thus, ýý = ýý (ÿ ,ý) .
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Now let {ý, ÿ} ⊂ [ÿ] \ ý (Γ
ÿ

ÿ
). Since (ÿ, ÿ) is a cut edge, the induced subgraph of Γ with vertex set

[ÿ] \ ý (Γ
ÿ

ÿ
) is connected. Let (ý0, ..., ýÿ) be a path from ý = ý0 to ÿ = ýÿ in Γ that does not contain

i. By Lemma 3.3,

ÿ̄(ý) − ÿ̄(ý(ý, ÿ)) ∈
〈
ýý (ýý ) − ýý (ýý−1) | ý ∈ [ÿ]

〉
.

In particular,

(ýý − ýý (ý,ÿ) )ýÿ − ýý ýý ( ÿ) + ýý (ý,ÿ) ýý (ý,ÿ) ( ÿ) ∈
〈
ýý (ýý ) − ýý (ýý−1) | ý ∈ [ÿ]

〉
.

Since i is not in the path (ý0, ..., ýÿ), the monomial ýÿ = ýý (ÿ) does not appear in {ýý (ýý ) − ýý (ýý−1) |

ý ∈ [ÿ]}, and thus, ýý = ýý (ý,ÿ) .

Since the reflection subgroup 〈ý (Γ)\ (ÿ, ÿ)〉 is generated by {(ÿ, ý) | {ÿ, ý} ⊂ Γ
ÿ

ÿ
}∪{(ý, ÿ) | {ý, ÿ} ∈

[ÿ] \ Γ
ÿ

ÿ
}, the claim follows. �

Lemma 6.15 below assumes that (ÿ, ÿ) is weakly dominant and then relates ÿ̄(ý) and ÿ̄(ÿ) if w and

v are in the same coset ÿÿÿ.

Lemma 6.15. Let Γ be cliqued and naturally labeled, and say (ÿ, ÿ) > Γ. Let ÿ̄ ∈ M1
Γ
, where ÿ̄ ≡ 0

on ÿ
ÿ
ÿ. If ý, ÿ ∈ ÿÿÿ, then ÿ̄(ý) = ýý

(
ýÿ − ýý ( ÿ)

)
and ÿ̄(ÿ) = ýÿ

(
ýÿ − ýÿ ( ÿ)

)
for some ýý , ýÿ ∈ C.

Furthermore, ýý = ýÿ .

Proof. The proof of the first part of this claim is identical to the first part of the proof of Lemma 6.14.

Since (ÿ, ÿ) is not a cut edge and Γ is naturally labeled, there exists (ý, ÿ) ∈ ý (Γ) with ý < ÿ < ÿ

and ý ∈ Γ
ÿ

ÿ
. By Lemma 6.9(3), (ÿ, ý) ∈ ý (Γ). If ÿ ∈ ÿýÿ , then ÿ̄(ÿ) = ýÿ

(
ýÿ − ýÿ ( ÿ)

)
for the same

reason that ÿ̄(ý) and ÿ̄(ÿ) take this form. We will prove the slightly stronger claim that ýý = ýÿ for all

ý, ÿ ∈ ÿÿÿ � ÿýÿ . We proceed for now assuming that the induced subgraph of GΓ with vertex set ÿÿÿ � ÿýÿ
is connected, and we will verify that this assumption holds afterwards.

If ÿÿÿ � ÿýÿ is connected, it will suffice to check if ýý = ýÿ for adjacent elements ý, ÿ ∈ ÿÿÿ � ÿýÿ . We

check edges in two cases: those within ÿÿÿ (resp. ÿýÿ), and the edges (ý, ý(ÿ, ý)) between ÿÿÿ and ÿýÿ .

If (ý, ý(ý, ÿ)) is an edge in GΓ between elements of ÿÿÿ, then ÿ ∉ {ý, ÿ} and

ÿ̄(ý) − ÿ̄(ý(ý, ÿ)) = (ýý − ýý (ý,ÿ) )ýÿ − ýý ýý ( ÿ) + ýý (ý,ÿ) ( ÿ) ∈
〈
ýý (ÿ) − ýý (ý)

〉
.

Since ÿ ∉ {ý(ý), ý(ÿ)}, it follows ýý = ýý (ý,ÿ) . The same logic holds for edges in GΓ between two

elements of ÿýÿ .

For edges (ý, ý(ÿ, ý)) in GΓ between ý ∈ ÿÿÿ and ý(ÿ, ý) ∈ ÿýÿ , compute

ÿ̄(ý) − ÿ̄(ý(ÿ, ý)) = ýý ýÿ − ýý (ÿ,ý) ýý (ý) − (ýý − ýý (ÿ,ý) )ýý ( ÿ) ∈
〈
ýý (ÿ) − ýý (ý)

〉
.

Since ý( ÿ) ∉ {ý(ÿ), ý(ý)}, it follows that ýý = ýý (ÿ,ý) .

If ÿÿÿ � ÿýÿ is connected, and equality holds on every edge, it follows that ýý = ýÿ for all ý, ÿ ∈ ÿÿÿ.

Now we will prove that the induced subgraph of GΓ with vertex set ÿÿÿ � ÿýÿ is connected. Since Γ is

cliqued, (ÿ, ý) ∈ ý (Γ). In particular, if ý ∈ ÿÿÿ, then w is connected in GΓ directly to ý(ÿ, ý) in ÿýÿ .

Let {ÿ, ý} ⊂ [ÿ] \{ÿ}. We prove in three cases that for all ÿ, ý ≠ ÿ, the permutation ý ∈ ÿÿÿ is connected

to ý(ÿ, ý) ∈ ÿÿÿ within the induced subgraph of GΓ with vertex set ÿÿÿ � ÿýÿ . It will follow by symmetry

(replace i with k) and that the induced subgraph of GΓ with vertex set ÿÿÿ � ÿýÿ is connected. The three

cases are (i) there exists a simple path from r to s in Γ that does not visit the vertex i, (ii) simple paths

from r to s in Γ must visit i, but need not visit k, and (iii) simple paths from r to s must visit the vertex i

and the vertex k.
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(i) If there exists a path (ý0, ..., ýℓ) in Γ − ÿ from ÿ = ý0 to ý = ýℓ , then w is connected to ý(ÿ, ý) via

only elements in ÿÿÿ since

ý(ÿ, ý) = (ý0, ý1) · · · (ýℓ−1, ýℓ) · · · (ý0, ý1).

We will use this path computation implicitly in (ii) and (iii).

(ii) If there exists a path (ÿ, ..., ÿ, ..., ý) from r to s in Γ containing i but not k, then r, i and s are in the

same connected component in Γ − ý . Consider

ý(ÿ, ý) = ý(ÿ, ý) (ÿ, ÿ) (ÿ, ý) (ÿ, ÿ) (ÿ, ý).

This sequence of transpositions gives a path in ÿÿÿ�ÿýÿ from w to ý(ÿ, ý). Below is a diagram that shows

how each right multiplication moves between ÿÿÿ and ÿýÿ:

ÿÿÿ ÿýÿ ÿÿÿ
(ÿ, ý)

(ÿ, ÿ) (ÿ, ý) (ÿ, ÿ)

(ÿ, ý)

(iii) If both i and k must be in a simple path from r to s, it suffices to assume this path takes the form

(ÿ, ..., ÿ, ý, ..., ý). In particular, the first piece (ÿ, ..., ÿ) is a path in Γ − ý and the second piece (ý, ..., ý)

is a path in Γ − ÿ. Consider

ý(ÿ, ý) = ý(ÿ, ý) (ÿ, ÿ) (ÿ, ý) ( ÿ , ý) (ý, ý) ( ÿ , ý) (ÿ, ý) (ÿ, ÿ) (ÿ, ý).

This sequence of transpositions gives a path from w to ý(ÿ, ý) in ÿÿÿ � ÿýÿ . Below is a diagram detailing

how each right multiplication moves between ÿÿÿ and ÿýÿ:

ÿÿÿ ÿýÿ ÿÿÿ ÿýÿ ÿÿÿ
(ÿ, ý)

(ÿ, ÿ)

(ÿ, ý)

( ÿ , ý) (ý, ý) ( ÿ , ý)

(ÿ, ý)

(ÿ, ÿ)

(ÿ, ý)

So subgraph with vertices ÿÿÿ � ÿýÿ is connected; our earlier assumption is verified and we have the

claim. �

7. Proof of the linear spanning theorem

This section shows that the collection FΓ from Equation 5.1 (below Lemma 5.3) is a C-spanning set

of M1
Γ
. In other words, we prove CFΓ = M1

Γ
. First, we require a lemma on the compatibility of these

splines on ÿÿ with splines on ÿÿ−1.

Lemma 7.1. Let Γ on [ÿ] be cliqued and naturally labeled. Let F
(ÿ)

Γ
� { ÿ̄ |ÿÿ−1

| ÿ̄ ∈ FΓ, ÿ̄(ý) ∈

C[ý1, . . . , ýÿ−1] for all ý ∈ ÿÿ−1}. Then

CF
(ÿ)

Γ
= CFΓ−ÿ.

Proof. First, note that the Cayley graph GΓ−ÿ is equal to the induced subgraph of GΓ with vertex set

ÿÿ−1. In particular, each element of F
(ÿ)

Γ
is in fact a spline in MΓ−ÿ

By Lemma 5.5(4), for each cut vertex j in Γ and G the connected component of Γ − ÿ that contains

n, we may remove the splines {ÿ̄
ÿ

ÿ,ý
|ÿÿ−1

| ý ∈ [ÿ]} from F
(ÿ)

Γ
without changing the C-span. Similarly,
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by Lemma 5.5(4), for each cut vertex ÿ ≠ ÿ− 1 of Γ− ÿ and connected component G of (Γ− ÿ) − ÿ that

contains ÿ − 1, we may remove the splines {ÿ̄
ÿ

ÿ,ý
| ý ∈ [ÿ]} from FΓ−ÿ.

Let ÿ̄ ∈ FΓ such that ÿ̄ |ÿÿ−1
is a nonzero element of F

(ÿ)

Γ
. This means that ÿ̄ ≠ ý̄ÿ and ÿ̄ ≠ ý̄ÿ.

Additionally, by the definitions, if ÿ̄ = ÿ̄ ý
ý
, we must have ÿ ∉ ý (otherwise, ÿ̄ ≡ 0) and ý ≠ (ÿ−1, ÿ), and

if ÿ̄ = ÿ̄
ÿ

ÿ,ý
, then ý ≠ ÿ. So we have a combinatorial description for the elements of F

(ÿ)

Γ
. In particular,

as collections of functions from ÿÿ−1 to C[ý•], we wish to show that the following two sets have the

same C-span:

F
(ÿ)

Γ
= Tÿ−1 ∪ Xÿ−1 ∪

⎧⎪⎪⎪⎪«
⎪⎪⎪⎪¬

ÿ̄ ýý

��������
ý cut edge of Γ,

|ý| = |ÿý |

ý ≠ (ÿ − 1, ÿ),

ÿ ∉ ý

«⎪⎪⎪⎪¬
⎪⎪⎪⎪­
∪

⎧⎪⎪«
⎪⎪¬
ÿ̄
ÿ

ÿ,ý

������
ÿ 	 Γ,

ÿ ∉ ÿ,

ý ∈ [ÿ − 1]

«⎪⎪¬
⎪⎪­

and

FΓ−ÿ = Tÿ−1 ∪ Xÿ−1 ∪

{
ÿ̄ ýý

����ý cut edge of Γ − ÿ,

|ý| = |ÿý |

}
∪

⎧⎪⎪«
⎪⎪¬
ÿ̄
ÿ

ÿ,ý

������
ÿ 	 Γ − ÿ,

ÿ − 1 ∉ ÿ,

ý ∈ [ÿ − 1]

«⎪⎪¬
⎪⎪­
,

where for the cut edges ý = (ÿ < ÿ) of either Γ or Γ − ÿ, the component ÿý is the connected component

of the graph with edge s removed that contains i.

The equalities for ý̄ÿ ∈ Tÿ−1 and ý̄ÿ ∈ Xÿ−1 are obvious, so we focus on the latter two subsets. The

remainder of the proof is in three cases: whether the cliqued and naturally labeled graph Γ is type A,

B or C. Each argument amounts to matching the cut vertices and cut edges of Γ to those in Γ − ÿ (and

vice versa). Each match gives pairs of splines in the third and fourth subsets above that are in fact equal

to each other. Then we ensure that wherever these graph objects do not align, the ‘unmatched’ splines

in each set are contained within the other’s C-span.

Type A: First, we compare the cut edges of Γ and Γ − ÿ and ensure that each spline in the third

subsets of both F
(ÿ)

Γ
and FΓ−ÿ are contained within the span of the other set. If Γ is type A, then every

cut edge of Γ − ÿ is also a cut edge of Γ. Every cut edge of Γ that is not (ÿ − 1, ÿ) is also a cut edge of

Γ−ÿ. Finally, if ý = (ÿ < ÿ) ≠ (ÿ−1, ÿ) is a cut edge, then the connected component of ([ÿ]ý (Γ) \ {ý})

that contains i and the connected component of ([ÿ− 1], ý (Γ − ÿ) \ {ý}) that contains i are equal, since

these are the components with lower-valued vertices and thus are unaffected by removing n. So the third

subsets in F
(ÿ)

Γ
and FΓ−ÿ above are actually equal.

Second, we compare the cut vertices and associated connected components of Γ and Γ−ÿ and ensure

that each spline in the fourth subsets of both F
(ÿ)

Γ
and FΓ−ÿ are contained within the span of the other

set. There are two cases: ýΓ (ÿ − 1) = 1 and ýΓ (ÿ − 1) > 1. If ýΓ (ÿ − 1) > 1, every cut vertex in Γ is

a cut vertex in Γ − ÿ, and vice versa. If ÿ 	 Γ − ÿ where ÿ ≠ ÿ − 1, if G is the component of Γ − ÿ

that contains n then ÿ − ÿ is the component of (Γ − ÿ) − ÿ that contains ÿ − 1. If ÿ = ÿ − 1, then FΓ−ÿ

contains every ÿ̄ÿ−1
ÿ,ý

and F
(ÿ)

Γ
contains every ÿ̄ÿ−1

ÿ,ý
such that ÿ ∉ ÿ. Either way, these two collections of

splines are identical, so the fourth subsets in F
(ÿ)

Γ
and FΓ−ÿ are in fact equal.

If ýΓ (ÿ−1) = 1, then ÿ−1 is not a cut vertex of Γ−ÿ, soFΓ−ÿ does not contain the spline ÿ̄ÿ−1
ÿ,ý

∈ F
(ÿ)

Γ

where ý (ÿ) = [ÿ − 2]. However, in this case, for all ý ∈ ÿÿ−1, we compute

ÿ̄ÿ−1
ÿ,ý (ý) =

{
ýý − ýý (ÿ−1) ý−1 (ý) ∈ [ÿ − 2]

0 ý−1 (ý) = ÿ − 1.

= ý̄ý (ý) − ý̄ÿ−1 (ý) ∈ CFΓ−ÿ.

Every other cut vertex ÿ 	 Γ− ÿ and connected component G of (Γ− ÿ) − ÿ (that does not contain ÿ−1)

is also a cut vertex of Γ and connected component of Γ− ÿ (that does not contain n), so each spline of the

form ÿ̄
ÿ

ÿ,ý
inFΓ−ÿ has a direct counterpart inF

(ÿ)

Γ
. ThusCF

(ÿ)

Γ
= CFΓ−ÿ, and the claim holds in type A.
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Type B: First, we compare the cut vertices and associated connected components to match elements

in the fourth subsets. If Γ is type B, then every cut vertex in Γ − ÿ is also a cut vertex of Γ, and for all

ÿ 	 Γ, the connected component of Γ − ÿ that contains n also contains ÿ − 1, so the fourth subsets in

F
(ÿ)

Γ
and FΓ−ÿ are equal.

Now compare the cut edges to match elements in the third subsets. Every cut edge in Γ is a cut edge

in Γ − ÿ; however, the edge (ÿ − 2, ÿ − 1) is a cut edge in Γ − ÿ but not in Γ. For this cut edge, we let

ÿ (ÿ−2,ÿ−1) be the subgraph with vertex set [ÿ − 2]. So FΓ−ÿ has a subset
{
ÿ̄
(ÿ−2,ÿ−1)

[ÿ−1]\ý
| ý ∈ [ÿ − 1]

}
of

splines that is not a subset of F
(ÿ)

Γ
. We will show that these splines are contained within the span CF

(ÿ)

Γ
.

By Lemma 5.7 applied to the leaf (ÿ−2, ÿ−1) in Γ−ÿ, each spline in
{
ÿ̄
(ÿ−2,ÿ−1)

[ÿ−1]\ý
∈| ý ∈ [ÿ − 1]

}
⊂ FΓ−ÿ

is a linear combination of the remaining splines in FΓ−ÿ. Since the fourth subsets are equal and every

other cut edge of Γ − ÿ is a cut edge of Γ, each of these remaining splines is also in F
(ÿ)

Γ
. So the one

subset
{
ÿ̄
(ÿ−2,ÿ−1)

[ÿ−1]\ý
| ý ∈ [ÿ − 1]

}
of unmatched splines in FΓ−ÿ is contained within the span CF

(ÿ)

Γ
,

and so CF
(ÿ)

Γ
= CFΓ−ÿ.

Type C: If Γ is type C, then every cut vertex or edge in Γ − ÿ is also a cut vertex or edge in Γ, and

vice versa. Additionally, for any ÿ 	 Γ, the connected component of Γ − ÿ containing n also contains

ÿ − 1. So all indexing data is the same, and so F
(ÿ)

Γ
= FΓ−ÿ. Thus, the claim holds in Type C. �

The proof of Theorem 7.2 below assumes a natural label, so we will use the indexing conventions

for FΓ described in Subsection 6.1. In particular, we will heavily use the weakly dominant (ÿ, ÿ) > Γ

and strongly dominant (ÿ, ÿ) � Γ pairs in Definition 6.5. Now we are able to prove that CFΓ = M1
Γ

and compute a recursive dimension formula.

Theorem 7.2. Let Γ be a connected graph. The splines FΓ from Equation (5.1) form a C-spanning set

of M1
Γ
. Furthermore, if Γ is cliqued and naturally labeled, then

dimC(M
1
Γ) = 1 + dimC (M

1
Γ−ÿ) +

⎧⎪⎪«
⎪⎪¬

(
ÿ − 1

1

)
if Γ is type A

1 if Γ is type B/C

+
∑

(ÿ, ÿ)�Γ

(
ÿ − 1���Γ ÿÿ
��� − 1

)
+ |{(ÿ, ÿ) > Γ}|.

Proof. It suffices to assume for both parts of the claim that Γ is cliqued and naturally labeled. Recall the

decomposition ÿÿ = ÿ1
ÿ � · · · � ÿÿÿ, where ÿÿÿ � {ý ∈ ÿÿ | ý(ÿ) = ÿ}. Note ÿÿÿ = ÿÿ−1. Let ÿ̄ ∈ M1

Γ
.

We will prove that ÿ̄ ∈ CFΓ and proceed by induction on n. The base case is ÿ = 3, where MΓ = CFΓ

is easily verified by hand (there are only two connected graphs on three vertices) and either way follows

from [4].

In each of the three steps to the proof given below, we use elements of FΓ to replace ÿ̄ with a spline

supported on a strictly smaller subset of ÿÿ. To track dimC(M
1
Γ
), we will create a set B of linearly

independent elements of M1
Γ
.(

Step 1: ÿÿÿ
)

This step applies the induction assumption to replace ÿ̄ with a spline supported on

ÿ1
ÿ�· · ·�ÿÿ−1

ÿ . If ý, ÿ ∈ ÿÿÿ = ÿÿ−1 with ý−1ÿ = (ÿ, ÿ) ∈ ý (Γ−ÿ), then ÿ̄(ý) − ÿ̄(ÿ) = ý
(
ýý (ÿ) − ýý ( ÿ)

)
,

where ý ∈ C. Since ý(ÿ) ≠ ÿ and ý( ÿ) ≠ ÿ, the coefficient [ýÿ] ÿ̄(ý) of ýÿ in ÿ̄(ý) must be equal

to [ýÿ] ÿ̄(ÿ). Since Γ − ÿ is connected, the induced subgraph of GΓ with vertex set ÿÿÿ is connected.

Moreover, the coefficient of ýÿ is the same for all ÿ̄(ÿ), where ÿ ∈ ÿÿÿ. Let ýÿ � [ýÿ] ÿ̄(ÿ) for ÿ ∈ ÿÿÿ.

Then [ýÿ] ( ÿ̄ − ýÿ ý̄ÿ)(ÿ) = 0 for all ÿ ∈ ÿÿ−1.

So we replace ÿ̄ with ÿ̄ − ýÿ ý̄ÿ, and now ÿ̄(ÿ) ∈ C[ý1, . . . , ýÿ−1] when ÿ ∈ ÿÿÿ. Let B � {ý̄ÿ}. We will

add linearly independent elements to B throughout the proof and keep track of |B |.

By Lemma 7.1 and the induction hypothesis, M1
Γ−ÿ

= CFΓ−ÿ = CF
(ÿ)

Γ
. So we may assume that

ÿ̄ |ÿÿ−1
≡ 0. Add to B the dimC(M

1
Γ−ÿ

)-many splines required. Note these splines are independent once
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restricted to ÿÿÿ = ÿÿ−1, so any nontrivial linear combination will have elements of ÿÿÿ in its support. At

this point, |B | = dimC (M
1
Γ−ÿ

) + 1, and ÿ̄ ≡ 0 on ÿÿÿ.(
Step 2: ÿÿ−1

ÿ

)
Next, we use elements ofFΓ to replace ÿ̄ with a spline that evaluates to 0 on ÿÿ−1

ÿ �ÿÿÿ.

The process is slightly different for graphs of type A and types ý/ÿ.

Since Γ is cliqued and naturally labeled, (ÿ − 1, ÿ) ∈ ý (Γ). Thus, for all ý ∈ ÿÿ−1
ÿ , there is an edge

(ý, ý(ÿ − 1, ÿ)) ∈ ý (GΓ) where ý(ÿ − 1, ÿ) ∈ ÿÿÿ. Each of these edges are labeled
〈
ýý (ÿ−1) − ýý (ÿ)

〉
=〈

ýÿ − ýý (ÿ)

〉
. Since ÿ̄ ≡ 0 on ÿÿÿ, we have that ÿ̄(ý) = ýý

(
ýÿ − ýý (ÿ)

)
for some ýý ∈ C for all ý ∈ ÿÿ−1

ÿ .

Type A: By Lemma 6.13, if ý, ÿ ∈ ÿÿ−1
ÿ and ý(ÿ) = ÿ(ÿ), then ýý = ýÿ . Let ýý � ýý when

ý(ÿ) = ý . If ý(ÿ − 1) = ÿ and ý(ÿ) = ý < ÿ, then by definition, ÿ̄
(ÿ−1,ÿ)

[ÿ]\{ý }
(ý) = ýÿ − ýý (ÿ) . However, if

ý(ÿ) = ÿ, then ÿ̄
(ÿ−1,ÿ)

[ÿ]\{ý }
(ý) = 0 whenever ý ≠ ÿ. It follows that

ÿ̄ −

ÿ−1∑
ÿ=1

ýý ÿ̄
(ÿ−1,ÿ)

[ÿ]\{ý }
≡ 0

on ÿÿ−1
ÿ � ÿÿÿ. Add the ÿ− 1 coset splines ÿ̄

(ÿ−1,ÿ)

[ÿ]\{ý }
used above to B, which are linearly independent from

the splines already in B since they are not supported on ÿÿÿ and have disjoint support on ÿÿ−1
ÿ . In type

A, at this point, |B | = 1 + dimC(M
1
Γ−ÿ

) +

(
ÿ − 1

1

)
, and B is linearly independent, even if we restrict the

splines in B to ÿÿ−1
ÿ � ÿÿÿ.

Type B/C: We proceed in the same format as type A. By Lemma 6.13, if ý, ÿ ∈ ÿÿ−1
ÿ , then ýý = ýÿ .

Write ý � ýý for ý ∈ ÿÿ−1
ÿ . Then

ÿ̄ − ý(ý̄ÿ − ý̄ÿ) ≡ 0

on ÿÿ−1
ÿ � ÿÿÿ. Add the single linearly independent spline ý̄ÿ − ý̄ÿ to B. In type B/C at this point,

|B | = dimC(M
1
Γ−ÿ

) + 2, and B is linearly independent, even if we restrict each spline to ÿÿ−1
ÿ � ÿÿÿ.(

Step 3: ÿÿÿ
)

Now given a spline ÿ̄ such that ÿ̄ ≡ 0 on ÿÿ+1
ÿ � · · · ÿÿÿ, we show how to replace it with a

spline that vanishes on ÿÿÿ� · · · ÿÿÿ. This step is repeated until ÿ̄ vanishes on all of ÿÿ. Assume that ÿ̄ ≡ 0

on ÿÿ+1
ÿ � · · · � ÿÿÿ. Additionally, we assume that the splines in B are linearly independent; moreover,

the set remains linearly independent once each spline is restricted to ÿÿ+1
ÿ � · · · � ÿÿÿ. In particular, any

nontrivial linear combination of splines in B is nonzero on ÿÿ+1
ÿ � · · · � ÿÿÿ (and therefore ÿÿ). The

remainder of the proof is type A/B/C-independent but still requires three cases.

First, a formulation of ÿ̄(ý) for ý ∈ ÿÿÿ will be used in each case. Since Γ is naturally labeled and

ÿ ≠ ÿ, there exists ÿ ∈ [ÿ] such that ÿ < ÿ and (ÿ, ÿ) ∈ ý (Γ), so (ý, ý(ÿ, ÿ)) ∈ ý (GΓ). If ý ∈ ÿÿÿ, then

ý(ÿ, ÿ) ∈ ÿ
ÿ
ÿ, so

ÿ̄(ý) = ýý (ýý (ÿ) − ýý ( ÿ) ) = ýý (ýÿ − ýý ( ÿ) )

for some ýý ∈ C.

Case 1: If i is not j-dominant for any ÿ ∈ [ÿ], since Γ is naturally labeled, there exist (at least) two

vertices ÿ , ý where ÿ < ÿ < ý and {(ÿ, ÿ), (ÿ, ý)} ⊂ ý (Γ). It follows that

ÿ̄(ý) = ýý
(
ýÿ − ýý ( ÿ)

)
= ý′ý

(
ýÿ − ýý (ý)

)
.

This is not possible for ýý , ý′ý ∈ C unless ýý = ý′ý = 0, and so ÿ̄(ý) = 0. In short, ÿ̄ ≡ 0 on ÿÿÿ, and

we do not need any splines from FΓ to achieve this.

Case 2: If there exists ÿ ∈ [ÿ] where (ÿ, ÿ) � Γ, then i is the maximal vertex in its connected

component of Γ − ÿ . Thus, the vertex j is the only element in the neighborhood ý (ÿ) of the vertex i that

is greater than i (so i is not k-dominant for any ý ≠ ÿ), and (ÿ, ÿ) is a cut edge of Γ. By Lemma 6.14, if

ÿ ∈ ý〈ý (Γ) \ (ÿ, ÿ)〉, then ýÿ = ýý .
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Recall that ÿ ∈ ý〈ý (Γ) \ (ÿ, ÿ)〉 if and only if ý(ý (Γ
ÿ

ÿ
)) = ÿ(ý (Γ

ÿ

ÿ
)). Let

A �

{
ý ⊂ [ÿ]

���|ý| = ���Γ ÿÿ
���, ÿ ∈ ý

}
,

and write ýý � ýý if ý(ý (Γ
ÿ

ÿ
)) = ý. If ý(ÿ) = ÿ, then ý−1 (ý (Γ

ÿ

ÿ
)) = ý ∈ A, and we compute

ÿ̄
(ÿ, ÿ)

ý
(ý) = ýÿ − ýý ( ÿ) . Also, since Γ is naturally labeled, if ý > ÿ, then ý ∉ Γ

ÿ

ÿ
. In particular, if ý > ÿ

and ý(ý) = ÿ, then ý−1 (ý (Γ
ÿ

ÿ
)) ∉ A, and so ÿ̄

(ÿ, ÿ)

ý
(ý) = 0 for all ý ∈ ÿÿ+1

ÿ � · · · � ýÿÿ. It follows that

ÿ̄ −
∑
ý∈A

ýý ÿ̄
(ÿ, ÿ)

ý
≡ 0

on ÿÿÿ � · · · � ÿÿÿ. We replace ÿ̄ with this spline. The coset splines ÿ̄
(ÿ, ÿ)

ý
for ý ∈ A have disjoint

support among themselves and are only supported on ÿÿÿ for ÿ ≤ ÿ, so { ÿ̄
(ÿ, ÿ)

ý
| ý ∈ A} ∪ B is linearly

independent, even when each spline is restricted to ÿÿÿ � · · · � ÿÿÿ. Each time we use Case 2 (i.e., for

each (ÿ, ÿ) � Γ), we add |A| =

(
ÿ − 1���Γ ÿÿ
��� − 1

)
-many splines to B.

Case 3: If there exists ÿ ∈ [ÿ] where (ÿ, ÿ) > Γ, the vertex j is the only element in the neighborhood

ý (ÿ) of the vertex i that is greater than i (so i is not k-dominant for any ý ≠ ÿ), but (ÿ, ÿ) is not a cut

edge. By Lemma 6.15, if ý, ÿ ∈ ÿÿÿ, then ýý = ýÿ � ý. Finally, we confirm that

ÿ̄ − ý ÿ̄
ÿ

ÿ,ÿ
≡ 0

on ÿÿÿ � · · · � ÿÿÿ. We replace ÿ̄ with this spline. The single spline ÿ̄
ÿ

ÿ,ÿ
is supported on ÿÿÿ for ÿ ≤ ÿ, and

so {ÿ̄
ÿ

ÿ,ÿ
} ∪ B is linearly independent, even when restricted to ÿÿÿ � · · · � ÿÿÿ. Each time Case 3 is used

(i.e., for each (ÿ, ÿ) > Γ), we add 1 spline to B.

When ÿ = 1 is reached, we have used FΓ to replace ÿ̄ with a spline ÿ̄ ≡ 0 on all of ÿÿ. Thus,

ÿ̄ ∈ CB, and the set B ⊆ FΓ is linearly independent (the restriction is now to the whole symmetric

group ÿ1
ÿ � · · · � ÿÿÿ = ÿÿ), and |B | = dimC(M

1
Γ
) is as claimed. �

8. The linear dimension formula

This section constructs a combinatorial invariant of simple graphs that is also the C-dimension of the

associated linear splines.

Let Γ be a connected graph on at least three vertices. First, if ÿ 	 Γ is a cut vertex, let ýΓ ( ÿ) + 1 be

the number of connected components in Γ − ÿ . This is a straightforward expansion of the definition we

gave for ýΓ ( ÿ) from naturally labeled graphs to all graphs. When Γ is fixed, we may drop the subscript

and write ý( ÿ).

Definition 8.1. Recall the construction of a block-cut tree in Definition 6.2. In this tree, every leaf is

a block of Γ. Let LBΓ be the set of blocks in Γ that are leaves in the block-cut tree. We call elements

of LBΓ leaf blocks of Γ. Let IBΓ be the set of blocks in Γ that are not leaves in the block-cut tree. We

call elements of IBΓ internal blocks of Γ. Note when Γ is 2-connected, LBΓ = ∅ and IBΓ = {Γ}; in

particular, when the block-cut tree of Γ is a single vertex (i.e., when Γ is 2-connected), we consider Γ

to be an internal block.

If a block B in Γ is size |ý | = 2, that block must consist of two vertices in Γ connected by an

edge. Since blocks are maximal 2-connected subgraphs, this edge must be a cut edge. In particular,

blocks B in IBΓ of size |ý | = 2 are in bijection with cut edges of Γ that are not leaf edges. Let

ICΓ � {(ÿ, ÿ) ∈ ý (Γ) | ý (ý) = {ÿ, ÿ} for some ý ∈ IBΓ}. The elements of ICΓ are internal cut edges

of Γ.
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Example 8.2. Consider the graph

7

6 11

4

12

9 10

1 2

3

5

8

with block-cut tree

ý1 4 ý2

ý3 1

ý4

ý5 2

ý6

ý7

This is the construction from the beginning of Example 6.4. The leaf blocks are

LBΓ = {ý1, ý2, ý4, ý6, ý7}.

The internal blocks are

IBΓ = {ý3, ý5}.

Within those internal blocks, |ý5 | = 2 and ý5 corresponds to the cut edge (1, 2). So

ICΓ = {(1, 2)},

and (1, 2) is the only cut edge in Γ that is not a leaf edge.

For a connected graph Γ on n vertices, we define

ÿΓ � 2ÿ − 1 −
∑
ÿ	Γ

ýΓ ( ÿ) + ÿ(|LBΓ | + |{ý ∈ IBΓ | |ý | > 2}| − 1) +
∑
ý∈ICΓ

(
ÿ

|ÿý |

)
, (8.1)

where ÿý is defined as in Section 5 (i.e., ÿý is one of the two connected components of the graph

([ÿ], ý (Γ)\{ý})). This formula is unaffected by a choice of component, as the sizes of the two connected

components in ([ÿ], ý (Γ) \ {ý}) sum to n and

(
ÿ

|ÿý |

)
=

(
ÿ

ÿ − |ÿý |

)
.

Remark 8.3. The invariant ÿΓ might be more concisely written as

ÿΓ = ÿ − 1 −
∑
ÿ	Γ

ýΓ ( ÿ) + ÿ( |LBΓ | + |{ý ∈ IBΓ | |ý | > 2}|) +
∑
ý∈ICΓ

(
ÿ

|ÿý |

)
,

but the format in Equation 8.1 is more conducive to the proofs that follow.
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Example 8.4. Consider the graph Γ from Example 8.2 above. The three cut vertices are 4, 1 and 2.

Each of those cut vertices separate Γ in to three connected components, so ýΓ (4) = ýΓ (1) = ýΓ (2) = 2.

The block ý3 is the only block in IBΓ with more than two vertices, so |{ý ∈ IBΓ | |ý | > 2}| = 1.

The only internal cut edge is (1, 2), and this cut edge separates Γ in to a component of size 8 and a

component of size 4. We choose the component with vertex set {1, 4, 6, 7, 9, 10, 11, 12}, but note that(
12

8

)
=

(
12

12 − 8

)
=

(
12

4

)
. We compute that

ÿΓ = 2 · 12 − 1 − (2 + 2 + 2) + 12(5 + 1 − 1) +

(
12

8

)
= 572.

Since ÿΓ is defined using only the block-cut tree, cut edges and cut vertices of Γ, it is an invariant

of the isomorphism class of Γ. We note that if Γ is 2-connected, it follows that ÿΓ = 2ÿ − 1.

Lemma 8.5 below gives a formulation of ÿΓ specific to naturally labeled graphs. Its proof constructs

important bijections that will be used later in the proofs of Proposition 8.9 and Corollary 9.3.

Lemma 8.5. Let Γ be a naturally labeled graph. Then

ÿΓ = 2ÿ − 1 +
∑

(ÿ, ÿ)>Γ

ÿ +
∑

(ÿ, ÿ)�Γ

(
ÿ���Γ ÿÿ
���
)
−
∑
ÿ	Γ

ýΓ ( ÿ).

Proof. We compare the right-hand side of the formula above with (8.1). The clear cancellation between

the two sides of the claimed equality is 2ÿ − 1 −
∑
ÿ	Γ

ýΓ ( ÿ). Thus, the claim will follow if

ÿ( |LBΓ | + |{ý ∈ IBΓ | |ý | > 2}| − 1) +
∑
ý∈ICΓ

(
ÿ

|ÿý |

)
=

∑
(ÿ, ÿ)>Γ

ÿ +
∑

(ÿ, ÿ)�Γ

(
ÿ���Γ ÿÿ
���
)
. (*)

Since Γ is naturally labeled, the block containing n is a leaf in the block-cut tree. So |LBΓ | − 1 can be

interpreted as the number of leaf blocks that do not contain n.

In the remainder of the proof, we pair blocks in LBΓ and IBΓ that contribute on the left side of

the claimed equality (*) with dominant pairs (ÿ, ÿ) that contribute to the right side, in order to identify

cancellations. The pairings that we will prove and use are as follows:

1. Leaf blocks ý ∈ LBΓ with |ý | = 2 and ÿ ∉ ý contribute n to the left side of (*) and are in bijection

with strongly dominant pairs (ÿ, ÿ) where

���Γ ÿÿ
��� = 1, which contribute

(
ÿ

1

)
= ÿ to the right side.

2. The set of internal cut edges ICΓ is equal to the set of strongly dominant pairs (ÿ, ÿ) such that

���Γ ÿÿ
��� > 1,

and they both contribute

(
ÿ

|ÿý |

)
=

(
ÿ���Γ ÿÿ
���
)
.

3. Leaf blocks and internal blocks of size at least three (i.e., all blocks of size at least 3) that do not

contain the vertex n contribute n to the left side of the claimed equality and are in bijection with

weakly dominant pairs (ÿ, ÿ), each of which contributes n to the right side.

This list also serves as an outline of the proof that follows.

(1) Let B be a leaf block of size 2 with vertex set ý (ý) = {ÿ, ÿ} where ÿ < ÿ . Then the single edge

(ÿ, ÿ) within B is a cut edge of Γ, and since B is a leaf block, that cut edge (ÿ, ÿ) must separate a single

vertex. If this block does not contain n (so ÿ ≠ ÿ), then since Γ is naturally labeled, the cut edge must

be a dominant pair and that separated vertex must be i. So (ÿ, ÿ) � Γ and ý (Γ
ÿ

ÿ
) = {ÿ}, and

���Γ ÿÿ
��� = 1.

However, if (ÿ, ÿ) � Γ and

���Γ ÿÿ
��� = 1, then i must be a leaf, and the subgraph ({ÿ, ÿ}, {(ÿ, ÿ)}) is a block
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in Γ that does not contain n. In particular, we have shown

{ý ∈ LBΓ | |ý | = 2, ÿ ∉ ý} = {ý ∈ LBΓ | ý (ý) = {ÿ, ÿ}, (ÿ, ÿ) � Γ}.

So the leaf blocks B in Γ of size 2 are in natural bijection with the dominant pairs (ÿ, ÿ) � Γ where���Γ ÿÿ
��� = 1. Formally, |{ý ∈ LBΓ | |ý | = 2, ÿ ∉ ý}| =

���{(ÿ, ÿ) � Γ |

���Γ ÿÿ
��� = 1

}���. Thus,

|LBΓ | + |{ý ∈ IBΓ | |ý | > 2}| − 1 = |{ý ∈ LBΓ | |ý | = 2}| + |{ý ∈ LBΓ | |ý | > 2}|

+ |{ý ∈ IBΓ | |ý | > 2}| − 1

=

���{(ÿ, ÿ) � Γ |

���Γ ÿÿ
��� = 1

}��� + |{ý ∈ LBΓ | |ý | > 2, ÿ ∉ ý}|

+ |{ý ∈ IBΓ | |ý | > 2}|

=

���{(ÿ, ÿ) � Γ |

���Γ ÿÿ
��� = 1

}���
+ |{ý | ý a block in Γ, |ý | > 2, ÿ ∉ ý}|.

We cancel ÿ

���{(ÿ, ÿ) � Γ |

���Γ ÿÿ
��� = 1

}��� from the left side and
∑

(ÿ, ÿ)�Γ���Γ ÿ

ÿ

���=1

(
ÿ

1

)
from the right side of (*), and it

remains to prove that

ÿ|{ý | ý a block in Γ, |ý | > 2, ÿ ∉ ý}| +
∑
ý∈ICΓ

(
ÿ

|ÿý |

)
=

∑
(ÿ, ÿ)>Γ

ÿ +
∑

(ÿ, ÿ)�Γ���Γ ÿ

ÿ

���>1

(
ÿ���Γ ÿÿ
���
)
. (**)

(2) Now if ý = (ÿ, ÿ) ∈ ICΓ, then s is a cut edge, and since Γ is naturally labeled, ÿ ∉ {ÿ, ÿ}. So if

(ÿ, ÿ) ∈ ICΓ, then (ÿ, ÿ) � Γ and

���Γ ÿÿ
��� > 1; otherwise, i is a leaf and the block B where ý (ý) = {ÿ, ÿ} is

not an internal block. However, if (ÿ, ÿ) � Γ and

���Γ ÿÿ
��� > 1, then i cannot be a leaf, (ÿ, ÿ) must be a cut edge

and the block B where ý (ý) = {ÿ, ÿ} is not a leaf in the block-cut tree. So ICΓ =

{
(ÿ, ÿ) � Γ |

���Γ ÿÿ
��� > 1

}
.

In particular, ∑
ý∈ICΓ

(
ÿ

|ÿý |

)
=

∑
(ÿ, ÿ)�Γ���Γ ÿ

ÿ

���>1

(
ÿ���Γ ÿÿ
���
)
.

After cancelling this value from both sides of (**), it remains to show that

ÿ|{ý | ý a block in Γ, |ý | > 2, ÿ ∉ ý}| =
∑

(ÿ, ÿ)>Γ

ÿ. (***)

(3) We argue that

|{ý | ý a block in Γ, |ý | > 2, ÿ ∉ ý}| = |{(ÿ, ÿ) > Γ}|.

The bijection is as follows. If B is a block in Γ that does not contain n, then there is a unique path from

B to the block ý0 that contains n in the block-cut tree of Γ. The first edge in that path is from B to a cut

vertex of Γ that is contained within B. Let j be this cut vertex, and let i be the maximal vertex in B that

is not equal to j. Note that B is not connected to n in Γ − ÿ .

Since Γ is naturally labeled, (ÿ, ÿ) is an edge and i must also be the maximal vertex in its connected

component of Γ − ÿ (every path from n to that component first passes through j, and i is the largest
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vertex in that component that is adjacent to j). Since |ý | > 2, there is at least one other element of B in

the neighborhood of j, so (ÿ, ÿ) is not a cut edge. In particular, (ÿ, ÿ) > Γ.

However, if (ÿ, ÿ) > Γ, let B be the block containing i. This block cannot contain n by the definition

of a natural label and must be of size at least 2 since (ÿ, ÿ) is not a cut edge.

So we have a bijection, proving as a consequence (***), and the claim follows. �

The bijection between certain dominant pairs and blocks that we constructed in the proof of Lemma

8.5 above will be used again to compute a recursive formula for ÿΓ and provide a label-independent

formula for ch(LΓ)1 and ch(RΓ)1 in Corollary 9.3 below. Visually, when Γ is naturally labeled, we have

the following correspondences between blocks in Γ and dominant pairs.

Blocks ý

{
|ý | > 2

ÿ ∉ ý

} {
ý ∈ LBΓ

|ý | = 2, ÿ ∉ ý

} {
ý ∈ IBΓ

|ý | = 2

}
3⏐5 3⏐5 3⏐5

Dominant

pairs(i, j)
{(ÿ, ÿ) > Γ}

{
(ÿ, ÿ) � Γ���Γ ÿÿ

��� = 1

} {
(ÿ, ÿ) � Γ���Γ ÿÿ

��� > 1

}

Example 8.6. Consider the naturally labeled graph Γ drawn below:

1

2 3

4

5

6 7

8 9

10

11

12

with block-cut tree

ý1 4 ý2

ý3 8

ý4

ý5 9

ý6

ý7

The blocks of size at least 2 that do not contain n correspond to weakly dominant pairs in the following

manner:

Blocks Pairs

ý2 on {2, 3, 4} (3, 4) > Γ

ý3 on {4, 5, 8} (5, 8) > Γ

ý4 on {6, 7, 8} (7, 8) > Γ
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The leaf blocks of size 2 that do not contain n correspond to strongly dominant pairs (ÿ, ÿ) where

���Γ ÿÿ
��� = 1

in the following manner:

Blocks Pairs

ý1 on {1, 4} (1, 4) > Γ

ý6 on {9, 10} (9, 10) > Γ

Finally, the internal block ý5 on {8, 9} (so of size 2) corresponds to the dominant pair (8, 9) � Γ.

Example 8.7. When Γ is naturally labeled, each sum appearing in the formula in Lemma 8.5 has the

following combinatorial interpretation:

◦ ÿ : Every vertex of Γ contributes 1 to the sum,

◦ ÿ − 1 −
∑
ÿ	Γ

ýΓ ( ÿ) : Every vertex that is not the lower vertex in a dominant pair or the vertex n

contributes an additional 1 to the sum (recall that the lower vertices in a dominant pair determine the

pair uniquely).

◦
∑
ÿ	Γ

∑
(ÿ, ÿ)>Γ

ÿ : Every weakly dominant pair contributes n to the sum.

◦
∑
ÿ	Γ

∑
(ÿ, ÿ)�Γ

(
ÿ���Γ ÿÿ
���
)

: Every strongly dominant pair (ÿ, ÿ) contributes

(
ÿ���Γ ÿÿ
���
)

to the sum.

Below, we have drawn Γ from Example 6.11, with the associated values for ÿΓ in blue. In this picture,

dashed lines indicate weak dominance and double lines indicate strong dominance.

Remark 8.8. It is not obvious that the formula in Lemma 8.5 is the same for different naturally labeled

graphs in the isomorphism class. However, it is clear from the definition in (8.1) that ÿΓ is an invariant,

so they must be equal.

The following Proposition 8.9 gives an inductive formula for ÿΓ when Γ is cliqued and naturally

labeled that matches the inductive formula for dimC (M
1
Γ
) from Theorem 7.2.

Proposition 8.9. If Γ is a cliqued and naturally labeled graph on at least 4 vertices, then ÿΓ can be

computed recursively as follows:

ÿΓ = 1 + ÿΓ−ÿ +

⎧⎪⎪«
⎪⎪¬

(
ÿ − 1

1

)
if Γ is type A

1 if Γ is type B/C

+
∑

(ÿ, ÿ)�Γ

(
ÿ − 1���Γ ÿÿ
��� − 1

)
+ |{(ÿ, ÿ) > Γ}|.
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Before proving Proposition 8.9, we prove several computational lemmas and construct a finer cate-

gorization of type A graphs. The key idea is to concretely describe the block-cut tree of Γ − ÿ in terms

of the block-cut tree of Γ.

If B is a block in Γ that does not contain n, then B is still 2-connected in Γ − ÿ. Additionally, if i and

k where ÿ ∉ {ÿ, ý} are vertices in Γ such that i and k are in different connected components of Γ − ÿ ,

then i and k are also in different connected components of (Γ − ÿ) − ÿ . In particular, If B is a block in Γ

that does not contain n, then B is a block in Γ − ÿ.

Lemma 8.10 below describes the simplest case, when Γ is either type B or type C

Lemma 8.10. Let Γ be a cliqued and naturally labeled graph on at least 4 vertices. If Γ is of type B or

C, then the following equalities hold:

◦ |LBΓ | = |LBΓ−ÿ |,

◦ IBΓ = IBΓ−ÿ, and

◦ ICΓ = ICΓ−ÿ.

Proof. Let ý0 be the block in Γ that contains n. Since Γ is type B or C, |ý0 | > 2. Since Γ is cliqued, the

subgraph ý0 − ÿ has at least 2 vertices and is also a clique, and in particular, ý0 − ÿ is a block in Γ − ÿ.

Every other block or cut vertex in Γ is a block or cut vertex in Γ − ÿ. Thus, the block-cut tree of Γ is

isomorphic to the block-cut tree of Γ − ÿ.

Since the block-cut trees are isomorphic they have the same number of leaves, and so |LBΓ | = |LBΓ−ÿ |.

Since the only block that changes is ý0 and all non-leaf blocks in Γ are non-leaf blocks in Γ − ÿ, it

follows that IBΓ = IBΓ−ÿ. This equality implies ICΓ = ICΓ−ÿ by definition. �

We now assume that Γ is type A. We will give a similar computation for type-A graphs, but there are

several cases to consider. Since (ÿ − 1, ÿ) is a cut edge, it corresponds to a block ý0 containing ÿ in Γ

that has no natural counterpart in the block-cut tree of Γ − ÿ. Not only that, but ÿ − 1 may not be a cut

vertex in Γ − ÿ.

Addressing this requires further decomposition of type A graphs, which we denote A1, A2, A3, A4

and A5. We will define them carefully below, but the consequences in each case in terms of moving from

the block-cut tree of Γ to that of Γ−ÿ are essentially as follows (recall ý0 is the block in Γ containing n):

(A1) The block-cut tree of Γ − ÿ is simply that of Γ with the block ý0 removed.

(A2) The block-cut tree of Γ − ÿ is the block-cut tree of Γ with the block ý0 and the cut vertex ÿ − 1

removed, and an internal block ý′ of size 2 for Γ becomes a leaf block for Γ − ÿ.

(A3) The block-cut tree of Γ − ÿ is the block-cut tree of Γ with the block ý0 and the cut vertex ÿ − 1

removed, but every other internal (resp. leaf) block of Γ remains an internal (resp. leaf) block of

Γ − ÿ.

(A4) The block-cut tree of Γ − ÿ is the block-cut tree of Γ with the block ý0 and the cut vertex ÿ − 1

removed, and an internal block ý′ of size greater than 2 for Γ becomes a leaf block for Γ − ÿ.

(A5) The graph Γ − ÿ is 2-connected.

First, a type A graph Γ is type A1 if ýΓ (ÿ − 1) > 1. Graphically, Γ looks like

ÿ ÿ − 1 Γÿ−1
ý (ÿ−1)A1:

ÿ − 2 · · · ÿ − ý

Note that in type A1, Γ − ÿ has the same cut vertices as Γ, so the block-cut tree of Γ − ÿ is the block-cut

tree of Γ with ý0 removed.
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If Γ is type A but not type A1, then ÿ − 1 is a cut vertex of Γ, but it is not a cut vertex of Γ − ÿ. So

the block-cut tree of Γ − ÿ is the block-cut tree of Γ with both the block ý0 and the cut vertex ÿ − 1

removed. In particular, ÿ − 1 is contained within precisely two blocks in Γ: one that contains n (so ý0)

and one that contains ÿ − 2. Let ý′ be the block in Γ that contains ÿ − 1 and ÿ − 2.

We say Γ is type A2 if |ý′ | = 2 (i.e., ý (ý′) = {ÿ − 2, ÿ − 1}). Graphically, Γ and its block-cut tree

look like

ÿ ÿ − 1 ÿ − 2

Γÿ−2
1

Γÿ−2
ý (ÿ)

...A2: ← Γ

ý0 ÿ − 1 ý′ ÿ − 2 · · · ←
Block-cut

tree of Γ

Note that the ý′ where ý (ý′) = {ÿ − 2, ÿ − 1} is associated to an internal cut edge in Γ and is a leaf

block in Γ − ÿ.

The graph Γ is type A3 if |ý′ | > 2 and ý′ contains more than 2 cut vertices of Γ. So ý′ is adjacent

to more than two vertices in the block-cut tree of Γ. Graphically, the block-cut tree of Γ looks like

ý0 ÿ − 1 ý′

ÿý

ÿ1

... · · ·A3:

where ý > 1. Note that ý′ is an internal block in both Γ and Γ − ÿ.

The graph Γ is type A4 if |ý′ | > 2, and ý′ contains precisely 2 cut vertices of Γ, ÿ − 1 and some

other cut vertex v of Γ. In particular, ý′ is adjacent to precisely two vertices in the block-cut tree of Γ.

Graphically, the block-cut tree of Γ looks like

ý0 ÿ − 1 ý′ ÿ · · ·A4:

Note that ý′ is an internal block of size at least 3 in Γ and a leaf block in Γ − ÿ.

Finally, the graph Γ is type A5 if ÿ − 1 is the only cut vertex in ý′. In particular, ý0 and ý′ are the

only two blocks in Γ, so the block-cut tree of Γ is

ý0 ÿ − 1 ý′A5:

The computations for type A5 are generally easy, as Γ − ÿ is 2-connected.

Lemmas 8.11, 8.12 and 8.13 below use this finer categorization of type A graphs to explicitly compute

the relationship between sums in the formulas of ÿΓ and ÿΓ−ÿ. For the proofs of Lemmas 8.12, 8.13

and 8.11 below, ý0 is the block in Γ that contains n and (if Γ type A2-A5) ý′ is the block in Γ that

contains ÿ − 1 but not n (so ý′ is still a block in Γ − ÿ).

Lemma 8.11. Let Γ be a cliqued and naturally labeled graph on at least 4 vertices. Then the number of

leaf blocks in Γ − ÿ is

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press



48 N. R. T. Lesnevich

|LBΓ−ÿ | =

⎧⎪⎪⎪«
⎪⎪⎪¬
|LBΓ | if Γ is type A2 or A4

|LBΓ | − 1 if Γ is type A1 or A3

|LBΓ | − 2 if Γ is type A5.

Proof. If Γ is type A2 or A4, then ý′ ∈ LBΓ−ÿ is a leaf block of Γ − ÿ, but ý′ ∈ IBΓ is an internal

block of Γ. So LBΓ−ÿ = (LBΓ \ {ý0}) ∪ {ý′}. Less formally, we lose a block ý0 and gain a block ý′,

maintaining the same size.

If Γ is type ý1 or ý3, every leaf block in Γ − ÿ is a leaf block in Γ, but we still lose ý0. So the size

decrements by 1.

If Γ is type A5, then Γ has two leaf blocks (ý0 and ý′), whereas Γ − ÿ is a clique, with zero leaf

blocks. We directly compute |LBΓ | = 2 and |LBΓ−ÿ | = 0. �

Lemma 8.12. Let Γ be a cliqued and naturally labeled graph on at least 4 vertices. Then

|{ý ∈ IBΓ−ÿ | |ý | > 2}| =

⎧⎪⎪⎪«
⎪⎪⎪¬
|{ý ∈ IBΓ | |ý | > 2}| if Γ is type A1, A2, or A3

|{ý ∈ IBΓ | |ý | > 2}| − 1 if Γ is type A4

|{ý ∈ IBΓ | |ý | > 2}| + 1 if Γ is type A5.

Proof. If Γ is type A1, then every internal block of Γ is an internal block of Γ′ and vice versa. If Γ is

type A2, then ý′ where ý (ý′) = {ÿ − 2, ÿ − 1} is an internal block for Γ but a leaf block for Γ − ÿ.

However, ý′ is not counted above since |ý′ | = 2. Every other internal block of Γ is an internal block of

Γ − ÿ and vice versa. If Γ is type A3, then ý′ is still an internal block in Γ − ÿ because it is adjacent to

more than 2 cut vertices in the block-cut tree of Γ − ÿ. Every other internal block is also the same, and

so the equality follows.

If Γ is type A4, then ý′ is an internal block of Γ but a leaf block in Γ − ÿ. Every other internal block

in Γ − ÿ is an internal block in Γ, so |{ý ∈ IBΓ−ÿ | |ý | > 2}| = |{ý ∈ IBΓ | |ý | > 2}| − 1.

If Γ is type A5, then IBΓ = ∅. However, IBΓ−ÿ = {ý′}. Since Γ has at least 4 vertices, we know that

|ý′ | > 2, and the claim follows. �

Lemma 8.13. Let Γ be a cliqued and naturally labeled graph on at least 4 vertices. Then the internal

cut edges in Γ − ÿ are

ICΓ−ÿ =

{
ICΓ if Γ is type A1, A3, A4, or A5

ICΓ \ {(ÿ − 2, ÿ − 3)} if Γ is type A2.

Proof. The set ICΓ is the set of internal cut edges in Γ. The two types where ý′ is an internal block in

Γ but a leaf block in Γ − ÿ are types A2, A3 and A4. In types A3 and A4, the block ý′ is assumed to

have size |ý | > 2 and so does not correspond to an element of ICΓ. If Γ is type A2, ý′ contributes to

ICΓ but not ICΓ−ÿ, and that contribution is precisely the cut edge (ÿ − 2, ÿ − 1). �

Now we are ready to prove the recursive formula for ÿΓ.

Proof of Proposition 8.9. Consider the sum
∑

ÿ	Γ−ÿ
ýΓ−ÿ ( ÿ). If Γ is type B or C, then every cut vertex of

Γ is a cut vertex of Γ − ÿ and vice versa. For each such cut vertex ÿ 	 Γ (and ÿ 	 Γ − ÿ), since Γ is type

B/C, no connected component of Γ − ÿ consists of only the vertex n, so ýΓ ( ÿ) = ýΓ−ÿ ( ÿ).

If Γ is type A1, then every cut vertex of Γ is a cut vertex of Γ − ÿ but ýΓ (ÿ − 1) = ýΓ−ÿ (ÿ − 1) + 1.

If Γ is type A2, A3, A4 or A5, then ÿ − 1 is not a cut vertex of Γ − ÿ but ýΓ (ÿ − 1) = 1. So we set

ýΓ−ÿ (ÿ − 1) � 0, and the same relationship as in type A1 applies. Now for every other ÿ ≠ ÿ − 1, the

vertex ÿ 	 Γ if and only if ÿ 	 Γ − ÿ, and then ýΓ ( ÿ) = ýΓ−ÿ ( ÿ). So we compute

∑
ÿ	Γ−ÿ

ýΓ−ÿ ( ÿ) =
∑
ÿ	Γ

ýΓ ( ÿ) −

{
1 if Γ type A

0 if Γ type B/C.
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Next, we compare the contributions to ÿΓ and ÿΓ−ÿ by leaf blocks and internal blocks of size greater

than 2. By Lemmas 8.10, 8.12 and 8.13, it follows that

|ÿýΓ−ÿ | + |{ý ∈ IBΓ−ÿ | |ý | > 2}| = |ÿýΓ | + |{ý ∈ IBΓ | |ý | > 2}| −

{
1 if Γ type A but not A2,

0 if Γ type B, C, or A2.

Since Γ is naturally labeled, if ý ∈ ICΓ−ÿ (so ý ≠ (ÿ, ÿ − 1)), then the connected component of

([ÿ − 1], ý (Γ − ÿ) \ ý) that does not contain the vertex ÿ − 1 is equal to the connected component of

([ÿ], ý (Γ) \ {ý}) that does not contain the vertex n. It is important for proving the recursion that for

each internal cut edge ý ∈ ICΓ−ÿ ⊂ ICΓ, we always pick the component ÿý to be equal in Γ and Γ − ÿ

(i.e., always choose ÿ ∉ ÿý ⊂ Γ), so we adopt this convention. If Γ is type A2 (i.e., ICΓ ≠ ICΓ−ÿ), we

remove the ‘over-counting’ from the internal cut edge (ÿ − 2, ÿ − 1) ∈ ICΓ below and get that

∑
ý∈ICΓ−ÿ

(
ÿ − 1

|ÿý |

)
=

∑
ý∈ICΓ

(
ÿ − 1

|ÿý |

)
−

⎧⎪⎪«
⎪⎪¬

(
ÿ − 1

ÿ − 2

)
Γ is type A2

0 otherwise.

Now we compute

ÿΓ−ÿ = 2ÿ − 3 −
∑
ÿ	Γ−ÿ

ýΓ−ÿ ( ÿ) + (ÿ − 1) (|LBΓ−ÿ | + |{ý ∈ IBΓ−ÿ | |ý | > 2}| − 1)

+
∑

ý∈ICΓ−ÿ

(
ÿ − 1

|ÿý |

)

= 2ÿ − 3 −
∑
ÿ	Γ

ýΓ ( ÿ) +

{
1 if Γ type A

0 if Γ type B/C.

+ (ÿ − 1) (|ÿýΓ | + |{ý ∈ IBΓ | |ý | > 2}| − 1) −

{
ÿ − 1 if Γ type A but not A2

0 if Γ type B, C, or A2.

+
∑
ý∈ICΓ

(
ÿ − 1

|ÿý |

)
−

⎧⎪⎪«
⎪⎪¬

(
ÿ − 1

ÿ − 2

)
Γ is type A2

0 otherwise.

= 2ÿ − 2 −
∑
ÿ	Γ

ýΓ ( ÿ) −

{
ÿ − 1 if Γ type A

1 if Γ type B/C.

+ (ÿ − 1) (|ÿýΓ | + |{ý ∈ IBΓ | |ý | > 2}| − 1) +
∑
ý∈ICΓ

(
ÿ − 1

|ÿý |

)

Now we have ÿΓ−ÿ in a form that closely resembles that of ÿΓ. Recall Pascal’s identity

(
ÿ

ý

)
=(

ÿ − 1

ý

)
+

(
ÿ − 1

ý − 1

)
. For each ý ∈ ICΓ, we have that

(
ÿ

|ÿý |

)
−

(
ÿ − 1

|ÿý |

)
=

(
ÿ − 1

|ÿý | − 1

)
.
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In particular,

∑
ý∈ICΓ

(
ÿ

|ÿý |

)
−

∑
ý∈ICΓ

(
ÿ − 1

|ÿý |

)
=

∑
ý∈ICΓ

(
ÿ − 1

|ÿý | − 1

)
.

So we compute that the difference ÿΓ − ÿΓ−ÿ is equal to

1 + (|LBΓ | + |{ý ∈ IBΓ | |ý | > 2}| − 1) +
∑
ý∈ICΓ

(
ÿ − 1

|ÿý | − 1

)
+

{
ÿ − 1 if Γ type A

1 if Γ type B/C.

The remainder of the proof is essentially the same as the proof for Lemma 8.5. In particular,

1. Leaf blocks of size 2 that do not contain the vertex n are in bijection with strongly dominant pairs

(ÿ, ÿ) where

���Γ ÿÿ
��� = 1,

2. The set of internal cut edges ICΓ is equal to the set of strongly dominant pairs (ÿ, ÿ), where

���Γ ÿÿ
��� > 1,

and

3. Leaf blocks and internal blocks of size at least three (i.e., all blocks of size at least 3) that do not

contain the vertex n are in bijection with weakly dominant pairs (ÿ, ÿ).

We note that

(
ÿ − 1

1 − 1

)
= 1 and get that

(|LBΓ | + |{ý ∈ IBΓ | |ý | > 2}| − 1) +
∑
ý∈ICΓ

(
ÿ − 1

|ÿý | − 1

)
=

∑
(ÿ, ÿ)�Γ

(
ÿ − 1���Γ ÿÿ
��� − 1

)
+ |{(ÿ, ÿ) > Γ}|.

Thus, ÿΓ − ÿΓ−ÿ has the claimed form. �

Corollary 8.14. Let Γ be a connected graph on [ÿ] where ÿ ≥ 3, and ÿΓ as defined in Equation (8.1).

Then dimC(M
1
Γ
) = ÿΓ. Moreover, dimC (LΓ)1 = dimC(RΓ)1 = ÿΓ − ÿ.

Proof. It suffices to assume that Γ is cliqued and naturally labeled. In this case, by Theorem 7.2 and

Proposition 8.9, both dimC (M
1
Γ
) and ÿΓ follow the same recursion. Thus, it suffices to show equality

on all connected graphs on 3 vertices. Quick computation confirms that

dimC (M
1
ÿ3
) = 5 = ÿÿ3

and dimC(M
1
ÿ3
) = 7 = ÿÿ3

,

and so the two statistics must be equal. The ‘moreover’ part follows from the fact that C{ý̄1, ..., ý̄ÿ}

and C{ý̄1, ..., ý̄ÿ} are the (n-dimensional) linear subspace of M1
Γ

quotiented to obtain LΓ and RΓ,

respectively. �

We now have a closed combinatorial formula for the C-dimension of the first graded piece of M1
Γ
. In

particular, we have the dimension of the representations corresponding to ch(LΓ)1 and ch(RΓ)1. We are

also quite close to constructing C-bases of M1
Γ
, as the formulae for ÿΓ in Lemma 8.5 and the natural

one for |BΓ | are very similar.

9. The left and right linear representations

This subsection computes ch(LΓ)1 and ch(RΓ)1 for all connected Γ, proving Theorem 1.4 from the

introduction. We prove this assuming that Γ is naturally labeled and get the label-independent formula

as a corollary. The computation is direct and achieved by computing the dot action on two subsets LSΓ

and RSΓ of BΓ that project to bases of (LΓ)1 and (RΓ)1, respectively.
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Say Γ is a naturally labeled connected graph. By Proposition 6.12 and Theorem 7.2, if

BΓ � {ý̄ÿ | ÿ ∈ [ÿ]} ∪ {ý̄ÿ | ÿ ∈ [ÿ]} ∪

{
ÿ̄ ýý

�����
ý = (ÿ, ÿ) � Γ,

|ý| =

���Γ ÿÿ
���

}
∪

{
ÿ̄
ÿ

ÿ,ý

����(ÿ, ÿ) > Γ,

ý ∈ [ÿ]

}
,

then M1
Γ
= CBΓ. For the first graded piece of LΓ and RΓ, we will remove elements from BΓ using the

relations in Lemma 5.5, prove that the image of what remains is a basis by dimension, and then compute

the representations on (LΓ)1 and (RΓ)1 using Lemma 9.1 below.

Lemma 9.1. Let ý ∈ ÿÿ. Then

ý · ÿ̄
(ÿ, ÿ)

ý
= ÿ̄

(ÿ, ÿ)

ý (ý)
and ý · ÿ̄

ÿ

ÿ ,ý
= ÿ̄

ÿ

ÿ ,ý (ý)
.

The proof of Lemma 9.1 is direct from the definitions.

Now we will define two subsets of BΓ – one for (LΓ)1 and one for (RΓ)1 – that project to C-bases in

these quotients.

For the linear piece of the left quotient (LΓ)1, we first remove from BΓ the splines {ý̄1, ..., ý̄ÿ}. We

may also discard

(1) The single spline ý̄ÿ by Lemma 5.5(1),

(2) The splines {ý̄ÿ | (ÿ, ÿ) � Γ} by Lemma 5.5(2), and

(3) The splines {ý̄ÿ | (ÿ, ÿ) > Γ} by Lemma 5.5(3).

Note the set of splines in (2) and (3) is size |{ý̄ÿ | (ÿ, ÿ) � Γ} ∪ {ý̄ÿ | (ÿ, ÿ) > Γ}| =
∑
ÿ	Γ

ý( ÿ). So the

image of

LSΓ � {ý̄ÿ ∈ Xÿ−1 | ÿ is not ý-dominant ∀ý ∈ [ÿ]} ∪
{
ÿ̄ ýý | ý � Γ

}
∪

{
ÿ̄
ÿ

ÿ ,ý
| (ÿ, ÿ) > Γ, ý ∈ [ÿ]

}

in (LΓ)1 is a spanning set. Note that the size of {ý̄ÿ ∈ Xÿ−1 | ÿ is not s-dominant ∀ý ∈ [ÿ]} is ÿ − 1 −∑
ÿ	Γ

ý( ÿ), the size of
{
ÿ̄ ý
ý
| ý � Γ

}
is

∑
(ÿ, ÿ)�Γ

(
ÿ���Γ ÿÿ
���
)
, and the size of

{
ÿ̄
ÿ

ÿ ,ý
| (ÿ, ÿ) > Γ, ý ∈ [ÿ]

}
is

∑
(ÿ, ÿ)>Γ

ÿ.

Thus, the size of LSΓ is precisely the dimension ÿΓ − ÿ of (LΓ)1, as computed in Lemma 8.5. So LSΓ

projects to a basis of (LΓ)1. In fact, LSΓ is a permutation basis for the dot action representation, from

which it is easy to compute the dot action representation (we will state and prove this in Theorem 9.2).

For the linear piece of the right quotient (RΓ)1, we first remove from BΓ the splines {ý̄1, ..., ý̄ÿ}. Let

ÿÿ ÿ �

���Γ ÿÿ
���, and let

{
ýý | ý ∈

[(
ÿ

ÿÿ ÿ

)]}
be an enumeration of the

(
ÿ

ÿÿ ÿ

)
-many subsets A associated to

a strongly dominant pair (ÿ, ÿ) � Γ. By Lemma 5.5, the following three relations hold in RΓ:

ÿ∑
ÿ=1

ý̄ÿ ∼ 0,
∑
ý⊂[ÿ]

ÿ̄
(ÿ, ÿ)

ý
∼ 0 and

ÿ∑
ý=1

ÿ̄
ÿ

ÿ,ý
∼ 0.

The natural subset of BΓ whose image spans (RΓ)1 is therefore

RSΓ � {ý̄ÿ − ý̄ÿ+1 | ÿ ∈ [ÿ − 1]} ∪

⎧⎪⎪«
⎪⎪¬

ÿ̄
(ÿ, ÿ)

ýý
− ÿ̄

(ÿ, ÿ)

ýý+1

������
ý ∈

[(
ÿ

ÿÿ ÿ

)
− 1

]
,

(ÿ, ÿ) � Γ

«⎪⎪¬
⎪⎪­
∪

{
ÿ̄
ÿ

ÿ ,ý
− ÿ̄

ÿ

ÿ ,ý+1

���� (ÿ, ÿ) > Γ,

ý ∈ [ÿ − 1]

}
.
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The first subset is size ÿ − 1. The second subset is size
∑

(ÿ, ÿ)�Γ

���
(

ÿ���Γ ÿÿ
���
)
− 1

 !"
, and the third subset is size

∑
(ÿ, ÿ)>Γ

(ÿ − 1). The number of (strong or weak) dominant pairs is

| (ÿ, ÿ) ∈ ý (Γ) | (ÿ, ÿ) � Γ or (ÿ, ÿ) > Γ}| =
∑
ÿ	Γ

ý( ÿ),

so ∑
(ÿ, ÿ)�Γ

���
(

ÿ���Γ ÿÿ
���
)
− 1

 !"
+

∑
(ÿ, ÿ)>Γ

(ÿ − 1) =
∑

(ÿ, ÿ)�Γ

(
ÿ���Γ ÿÿ
���
)
+

∑
(ÿ, ÿ)>Γ

ÿ −
∑
ÿ	Γ

ý( ÿ).

So the image of RSΓ is a basis for (RΓ)1.

Theorem 9.2. Let Γ be a naturally labeled graph. If (ÿ, ÿ) � Γ, define the partition ÿÿ ÿ �(
ÿ −

���Γ ÿÿ
���, ���Γ ÿÿ

���) (reordered if necessary). Then

ch(LΓ)1 =

∑
(ÿ, ÿ)�Γ

ℎÿÿ ÿ +
∑

(ÿ, ÿ)>Γ

ℎÿ−1,1 +

(
ÿ − 1 −

∑
ÿ	Γ

ý( ÿ)

)
ℎÿ,

and

ch(RΓ)1 = ýÿ−1,1 +
∑

(ÿ, ÿ)�Γ

(
ℎÿÿ ÿ − ýÿ

)
+

∑
(ÿ, ÿ)>Γ

ýÿ−1,1.

Proof. SinceCLSΓ andCRSΓ are ÿÿ-invariant vector spaces, the dot action on each is a representation.

Since the projection of these spaces to (LΓ)1 and (RΓ)1 are in fact isomorphisms, the symmetric

functions ch(LΓ)1 and ch(RΓ)1 are the characters of the dot action representation on CLSΓ and CRSΓ,

respectively. Each of the identified subsets in bases LSΓ and RSΓ span ÿÿ-invariant subspaces ofCLSΓ

and CRSΓ, respectively.

First, we will compute each part of ch(LΓ)1. The dot action fixes each ý̄ÿ , and so the character of the

dot action representation on C{ý̄ÿ ∈ Xÿ−1 | ÿ is not s-dominant ∀ý ∈ [ÿ]} is

(
ÿ − 1 −

∑
ÿ	Γ

ý( ÿ)

)
ℎÿ. By

Lemma 9.1, the character of the dot action representation restricted to C
{
ÿ̄ ý
ý
| ý � Γ

}
is

∑
(ÿ, ÿ)�Γ

ℎÿÿ ÿ .

By Lemma 9.1 as well, the character of the dot action representation on C
{
ÿ̄
ÿ

ÿ ,ý
| (ÿ, ÿ) > Γ, ý ∈ [ÿ]

}
is

∑
(ÿ, ÿ)>Γ

ℎÿ−1,1.

Now we will compute each part of ch(RΓ)1. Each of the following computations use the same principle

argument. If K is an integer, and the set {ÿÿ | ÿ ∈ [ÿ]} is a permutation basis of some permutation

representation of ÿÿ with character ℎÿ, then the vector
ÿ∑
ÿ=1

ÿÿ is invariant under that representation.

Furthermore, the character of the representation on the orthogonal subspace spanned by {ÿÿ+1 − ÿÿ | ÿ ∈

[ÿ − 1]} is ℎÿ − ýÿ.

The character of the dot action representation onC{ýÿ | ÿ ∈ [ÿ]} is ℎÿ−1,ÿ, and so the dot action repre-

sentation onC{ý̄ÿ−ý̄ÿ+1 | ÿ ∈ [ÿ−1]} is ℎÿ−1,ÿ−ýÿ = ýÿ−1,1. The character of the dot action representation

onC

{
ÿ̄
(ÿ, ÿ)

ýý

����ý ∈

[(
ÿ

ÿÿ

)]
, (ÿ, ÿ) � Γ

}
is

∑
(ÿ, ÿ)�Γ

ℎÿÿ ÿ , and so the character of the dot action representation

on C

{
ÿ̄
(ÿ, ÿ)

ýý
− ÿ̄

(ÿ, ÿ)

ýý+1

����ý ∈

[(
ÿ

ÿÿ

)
− 1

]
, (ÿ, ÿ) � Γ

}
is

∑
(ÿ, ÿ)�Γ

ℎÿÿ ÿ − ýÿ. The character of the dot action

representation on C
{
ÿ̄
ÿ

ÿ ,ý

���(ÿ, ÿ) > Γ, ý ∈ [ÿ]
}

is
∑

(ÿ, ÿ)>Γ

ℎÿ−1,1, and so the character of the dot action

representation on C
{
ÿ̄
ÿ

ÿ ,ý
− ÿ̄

ÿ

ÿ ,ý+1

���(ÿ, ÿ) > Γ, ý ∈ [ÿ − 1]
}

is
∑

(ÿ, ÿ)>Γ

(ℎÿ−1,1 − ýÿ) =
∑

(ÿ, ÿ)>Γ

ýÿ−1,1. �
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The Schur-expansion of ℎÿÿ ÿ is easy to compute since ÿÿ ÿ is only a two-part partition. In particular,

if K is the larger of

���Γ ÿÿ
��� and ÿ −

���Γ ÿÿ
���, then ℎÿÿ ÿ − ýÿ =

ÿ−ÿ−1∑
ÿ=0

ýÿ+ÿ,ÿ−ÿ−ÿ.

The following corollary gives the label-independent description, from the statistics on block-cut trees

described in Section 8.

Corollary 9.3. Let Γ be a connected simple graph, and let LBΓ, IBΓ and ICΓ be the leaf blocks, internal

blocks and internal cut edges of Γ as defined in the beginning of Section 8. For (ÿ, ÿ) ∈ ICΓ, let ÿÿ ÿ be

the partition
(
ÿ −

��ÿ (ÿ, ÿ)

��, ��ÿ (ÿ, ÿ)

��) (reordered if necessary), where ÿ (ÿ, ÿ) is a connected component of

the graph ([ÿ], ý (Γ) \ {(ÿ, ÿ)}). Then

ch(LΓ)1 =

∑
(ÿ, ÿ) ∈ICΓ

ℎÿÿ ÿ + (|LBΓ | + |{ý ∈ IBΓ | |ý | > 2}| − 1)ℎÿ−1,1 +

(
ÿ − 1 −

∑
ÿ	Γ

ý( ÿ)

)
ℎÿ,

and

ch(RΓ)1 =

∑
(ÿ, ÿ) ∈ICΓ

(
ℎÿÿ ÿ − ýÿ

)
+ (|LBΓ | + |{ý ∈ IBΓ | |ý | > 2}|)ýÿ−1,1.

Proof. This follows directly from Theorem 9.2 and the bijections/equalities described in the proof of

Lemma 8.5 (and also the proof of Proposition 8.9). �

We note that in the statement of Theorem 1.4 in the introduction, the sets are ý1 = ICΓ and

ý2 = LBΓ ∪ {ý ∈ IBΓ | |ý | > 2}, and the integer ý = ÿ − 1 −
∑
ÿ	Γ

ý( ÿ).

Example 9.4. Let Γ be the graph from Example 8.6. We may compute the representations with either

Theorem 9.2 or Corollary 9.3. Then

ch(LΓ)1 = 6ℎ12 + 4ℎ11,1 + ℎ8,4

and

ch(RΓ)1 = 4ý11,1 + ℎ8,4 − ý12 = 4ý11,1 + (ý8,4 + ý9,3 + ý10,2 + ý11,1).

We note that, by this formula, the symmetric function ch(LΓ)1 is h-positive for all graphs Γ. So

Theorem 9.2 and Corollary 9.3 prove an extension of the linear part of the graded Stanley–Stembridge

conjecture from Hessenberg graphs to all connected graphs.

A. Tables of polynomials

Without geometric methods, it is quite difficult to compute these representations. One can, however,

compute the dimension more easily using [17, 24]. For example, despite our current inability to compute

the representation, we do know that dim(Lÿ4
)3 = 9 = dim(Rÿ4

)3. We also note that M≤3
ÿ4

is not a free

module, but M≤2
ÿ4

is free (and ch
(
Lÿ4

)
is, in degree ≤ 2, h-positive).
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Table 1. The polynomials
∑
ÿ≥0

ch(LΓ)ÿÿ
ÿ in the homogeneous basis and

∑
ÿ≥0

ch(RΓ)ÿÿ
ÿ in the Schur basis for all

graphs on 3 and 4 vertices, excluding ch
(
Lÿ4

)
3

and ch
(
Rÿ4

)
3
..

Γ
∑
ÿ≥0

ch(LΓ)ÿÿ
ÿ

∑
ÿ≥0

ch(RΓ)ÿÿ
ÿ

ℎ3 +
(
ℎ3 + ℎ2,1

)
ÿ + (ℎ3)ÿ

2 ý3 +
(
2ý2,1

)
ÿ +

(
ý1,1,1

)
ÿ2

ℎ3 (1 + 2ÿ + 2ÿ2 + ÿ3) ý3 +
(
ý2,1

)
ÿ +

(
ý2,1

)
ÿ2 +

(
ý1,1,1

)
ÿ3

ℎ4 +
(
ℎ2,2 + ℎ3,1 + ℎ4

)
ÿ +(

ℎ2,2 + ℎ3,1 + ℎ4

)
ÿ2 + (ℎ4)ÿ

3
ý4 +

(
ý2,2 + 3ý3,1

)
ÿ +

(
3ý2,1,1 + ý2,2

)
ÿ2 +(

ý1,1,1,1

)
ÿ3

ℎ4 +
(
ℎ4 + 2ℎ3,1

)
ÿ +(

ℎ4 + 2ℎ3,1 − ℎ2,2 + ℎ2,1,1

)
ÿ2 + (ℎ4)ÿ

3
ý4 +

(
3ý3,1

)
ÿ +

(
3ý2,2 + 3ý2,1,1

)
ÿ2 +

(
ý1,1,1,1

)
ÿ3

ℎ4 +
(
ℎ3,1 + 2ℎ4

)
ÿ +

(
2ℎ3,1 + 2ℎ4

)
ÿ2 +(

ℎ3,1 + 2ℎ4

)
ÿ3 + (ℎ4)ÿ

4
ý4 +

(
2ý3,1

)
ÿ +

(
ý2,1,1 + 2ý2,2 + ý3,1

)
ÿ2 +(

2ý2,1,1

)
ÿ4 +

(
ý1,1,1,1

)
ÿ4

ℎ4 + (3ℎ4)ÿ +
(
ℎ2,2 + ℎ3,1 + 3ℎ4

)
ÿ2 +

ch(LΓ)3ÿ
3 + (ℎ4)ÿ

4
ý4 +

(
ý3,1

)
ÿ +

(
2ý2,2 + 3ý3,1

)
ÿ2 + ch(RΓ)3ÿ

3 +(
ý1,1,1,1

)
ÿ4

ℎ4 + (3ℎ4)ÿ +
(
ℎ3,1 + 4ℎ4

)
ÿ2 +(

ℎ3,1 + 4ℎ4

)
ÿ3 + (3ℎ4)ÿ

4 + (ℎ4)ÿ
5

ý4 +
(
ý3,1

)
ÿ +

(
ý2,2 + 2ý3,1

)
ÿ2 +(

2ý2,1,1 + ý2,2

)
ÿ3 +

(
ý2,1,1

)
ÿ4 +

(
ý1,1,1,1

)
ÿ5

ℎ4 (1 + 3ÿ + 5ÿ2 + 6ÿ3 + 5ÿ4 + 3ÿ5 + ÿ6) ý4 +
(
ý3,1

)
ÿ +

(
ý2,2 + ý3,1

)
ÿ2 +

(
ý2,1,1 + ý3,1

)
ÿ3 +(

ý2,1,1 + ý2,2

)
ÿ4 +

(
ý2,1,1

)
ÿ5 +

(
ý1,1,1,1

)
ÿ6
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Table 2. The rank-generating functions and total rank for all isomorphism classes of graphs on 5 vertices. Geometric cases are marked

with †..

ý (Γ)
∑

dim(LΓ)ÿÿ
ÿ =

∑
dim(RΓ)ÿÿ

ÿ Total

(1, 5) , (2, 5) , (3, 5) , (4, 5) 1 + 16ÿ + 66ÿ2 + 56ÿ3 + ÿ4 140

(1, 4) , (1, 5) , (2, 5) , (3, 5) 1 + 21ÿ + 71ÿ2 + 31ÿ3 + ÿ4 125

(1, 4) , (1, 5) , (2, 5) , (3, 5) , (4, 5) 1 + 12ÿ + 42ÿ2 + 52ÿ3 + 22ÿ4 + ÿ5 130

(1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 5) 1 + 8ÿ + 38ÿ2 + 68ÿ3 + 13ÿ4 + ÿ5 129

(1, 4) , (1, 5) , (2, 4) , (3, 5) , (4, 5)† 1 + 12ÿ1 + 47ÿ2 + 47ÿ3 + 12ÿ4 + ÿ5 120

(1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 5) , (4, 5) 1 + 8ÿ + 24ÿ2 + 49ÿ3 + 34ÿ4 + 8ÿ5 + ÿ6 125

(1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 4) , (3, 5) 1 + 4ÿ + 17ÿ2 + 47ÿ3 + 62ÿ4 + 6ÿ5 + ÿ6 138

(1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 4) ,

(3, 5) , (4, 5)

1 + 4ÿ + 17ÿ2 + 33ÿ3 + 43ÿ4 + 27ÿ5 + 4ÿ6 + ÿ7 130

(1, 3) , (1, 5) , (2, 4) , (2, 5)† 1 + 26ÿ1 + 66ÿ2 + 26ÿ3 + 1ÿ4 120

(1, 3) , (1, 5) , (2, 4) , (2, 5) , (3, 5)† 1 + 17ÿ1 + 42ÿ2 + 42ÿ3 + 17ÿ4 + 1ÿ5 120

(1, 3) , (1, 5) , (2, 4) , (2, 5) , (3, 5) , (4, 5)† 1 + 8ÿ1 + 29ÿ2 + 44ÿ3 + 29ÿ4 + 8ÿ5 + 1ÿ6 120

(1, 3) , (1, 4) , (2, 4) , (2, 5) , (3, 5) 1 + 4ÿ + 49ÿ2 + 69ÿ3 + 14ÿ4 + ÿ5 138

(1, 3) , (1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 5) 1 + 4ÿ + 26ÿ2 + 51ÿ3 + 36ÿ4 + 5ÿ5 + ÿ6 124

(1, 3) , (1, 4) , (1, 5) , (2, 4) , (2, 5) ,

(3, 5) , (4, 5)†
1 + 4ÿ1 + 17ÿ2 + 38ÿ3 + 38ÿ4 + 17ÿ5 + 4ÿ6 + ÿ7 120

(1, 3) , (1, 4) , (1, 5) , (2, 5) , (3, 4) , (3, 5)† 1 + 8ÿ1 + 29ÿ2 + 44ÿ3 + 29ÿ4 + 8ÿ5 + ÿ6 120

(1, 3) , (1, 4) , (1, 5) , (2, 5) , (3, 4) ,

(3, 5) , (4, 5)†
1 + 8ÿ1 + 20ÿ2 + 31ÿ3 + 31ÿ4 + 20ÿ5 + 8ÿ6 + ÿ7 120

(1, 3) , (1, 4) , (1, 5) , (2, 4) , (2, 5) ,

(3, 4) , (3, 5) , (4, 5)†
1 + 4ÿ1 + 13ÿ2 + 26ÿ3 + 32ÿ4 + 26ÿ5 +

13ÿ6 + 4ÿ7 + ÿ8
120

(1, 3) , (1, 4) , (1, 5) , (2, 3) , (2, 4) ,

(2, 5) , (3, 5)

1 + 4ÿ + 13ÿ2 + 35ÿ3 + 45ÿ4 + 24ÿ5 + 5ÿ6 + ÿ7 128

(1, 3) , (1, 4) , (1, 5) , (2, 3) , (2, 4) ,

(2, 5) , (3, 5) , (4, 5)

1 + 4ÿ + 9ÿ2 + 23ÿ3 + 39ÿ4 + 33ÿ5 +

10ÿ6 + 4ÿ7 + ÿ8
124

(1, 3) , (1, 4) , (1, 5) , (2, 3) , (2, 4) ,

(2, 5) , (3, 4) , (3, 5) , (4, 5)†
1 + 4ÿ1 + 9ÿ2 + 19ÿ3 + 27ÿ4 + 27ÿ5 +

19ÿ6 + 9ÿ7 + 4ÿ8 + ÿ9
120

(1, 2) , (1, 3) , (1, 4) , (1, 5) , (2, 3) ,

(2, 4) , (2, 5) , (3, 4) , (3, 5) , (4, 5)†
1 + 4ÿ1 + 9ÿ2 + 15ÿ3 + 20ÿ4 + 22ÿ5 +

20ÿ6 + 15ÿ7 + 9ÿ8 + 4ÿ9 + ÿ10
120
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