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Perverse sheaves, nilpotent Hessenberg varieties, and

the modular law

Martha Precup∗ and Eric Sommers

Dedicated to George Lusztig

Abstract: We consider generalizations of the Springer resolution

of the nilpotent cone of a simple Lie algebra by replacing the cotan-

gent bundle with certain other vector bundles over the flag vari-

ety. We show that the analogue of the Springer sheaf has as di-

rect summands only intersection cohomology sheaves that arise in

the Springer correspondence. The fibers of these general maps are

nilpotent Hessenberg varieties, and we build on techniques estab-

lished by De Concini, Lusztig, and Procesi to study their geometry.

For example, we show that these fibers have vanishing cohomology

in odd degrees. This leads to several implications for the dual pic-

ture, where we consider maps that generalize the Grothendieck–

Springer resolution of the whole Lie algebra. In particular we are

able to prove a conjecture of Brosnan.

As we vary the maps, the cohomology of the corresponding

nilpotent Hessenberg varieties often satisfy a relation we call the

geometric modular law, which also has origins in the work of De

Concini, Lusztig, and Procesi. We connect this relation in type A

with a combinatorial modular law defined by Guay-Paquet that is

satisfied by certain symmetric functions and deduce some conse-

quences of that connection.

1. Introduction

Let G be a simple algebraic group over C with Lie algebra g. Let B be a
Borel subgroup with Lie algebra b containing a maximal torus T with Lie
algebra t. Denote by Φ the root system associated to the pair (T, B), with
simple roots Δ. Let U be the unipotent radical of B with u its Lie algebra.
Let W = NG(T )/T be the Weyl group of T and B := G/B the üag variety
of G.
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496 Martha Precup and Eric Sommers

Let N denote the variety of nilpotent elements in g. For complex varieties,
dim(X) refers to the complex dimension. Let N := dim(N ), which equals
2 dim(u). The Springer resolution of the nilpotent cone N in g is the proper,
G-equivariant map

μ : G ×B u → N

sending (g, x) ∈ G × u to g.x, where g.x := Ad(g)(x) denotes the adjoint
action of G on g.

Let C[N ] be the shifted constant sheaf on G ×B u with coefficients in C.
The shift makes it a G-equivariant perverse sheaf on G×B u. A central object
in Springer theory is the Springer sheaf Rμ∗(C[N ]), the derived pushforward
of C under μ. The Springer sheaf is a G-equivariant perverse sheaf on N . The
nilpotent cone N is stratiûed by nilpotent G-orbits. Let O be a nilpotent orbit
and L an irreducible G-equivariant local system on O. Denote by Θ the set of
all such pairs (O, L). Let IC(O, L) denote the intersection cohomology sheaf
on N deûned by a pair (O, L) ∈ Θ. We use the convention that if O′ ⊊ O,
then HjIC(O, L)|O′ = 0 unless

−dim O ≤ j < −dim O′.

The decomposition theorem implies that Rμ∗(C[N ]) is a direct sum of shifted
IC-complexes. That is,

Rμ∗(C[N ]) �
⊕

(O,L)∈Θ

IC(O, L) ⊗ VO,L,(1.1)

where each VO,L is a graded complex vector space. Since μ is semismall, VO,L

is concentrated in degree 0. Now, both sides of (1.1) carry an action of W
that makes the nonzero vector space VO,L into an irreducible representation
of W . Let Θsp denote the pairs (O, L) for which VO,L �= 0. The Springer
correspondence says that the map

(O, L) ∈ Θsp → VO,L ∈ Irr(W )(1.2)

is a bijection. Here, Irr(K) denotes the irreducible complex representations
of a group K. Our convention for the Springer correspondence sends the
zero orbit with trivial local system to the sign representation of W and the
regular nilpotent orbit with trivial local system to the trivial representation
of W . See [Ach21, Chapter 8] for a more detailed discussion of the Springer
correspondence.

This paper is concerned with the generalization of (1.1) when u is replaced
by a subspace I ⊂ u that is B-stable, as well as the connection of this map to
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related objects in Lie theory and combinatorics. The B-stable subspaces are
also called ad-nilpotent ideals of b and are well-studied Lie-theoretic objects
(see, for example, [Kos98, CP00]). Denote by Id the set of all B-stable sub-
spaces of u. The cardinality of Id is the W -Catalan number

∏n
i=1

di+h
di

where
d1, . . . , dn are the fundamental degrees of W and h is the Coxeter number. In
type A these ideals are in bijection with Dyck paths (see §7).

If I ∈ Id, then G.I is the closure of a nilpotent orbit, denoted by OI . The
restriction of μ gives a map

(1.3) μI : G ×B I → OI

that is still proper, but it is no longer a resolution or semismall in general.
Set NI := dim(G ×B I), which equals dim I + dim G/B. The decomposition
theorem still applies to the analogue of the Springer sheaf. Namely,

RμI
∗(C[NI ]) �

⊕

(O,L)∈Θ

IC(O, L) ⊗ V I
O,L,(1.4)

where V I
O,L is a graded vector space, but no longer concentrated in degree 0

in general.

Our ûrst main result is that if a pair (O, L) ∈ Θ contributes a nonzero
term in (1.4), then it must appear in the Springer correspondence, i.e., it
contributes a nonzero term in (1.1). In other words,

Theorem 1.1. Let I ∈ Id. If V I
O,L �= 0 in (1.4), then (O, L) ∈ Θsp.

The case when I = uP , the nilradical of the Lie algebra of a parabolic
subgroup P of G, was established by Borho and MacPherson [BM83] and
they gave a formula for the dimensions of the vector spaces V I

O,L (see (4.8)).

Theorem 1.1 is proved by analyzing the ûbers of the map μI . Let x ∈ N ,
and let

BI
x := (μI)−1(x).

For the I = u case, the ûbers μ−1(x) are the Springer ûbers and denoted more
simply as Bx. The ûber BI

x is a subvariety of Bx, and any variety deûned in
this way is called a nilpotent Hessenberg variety.

For x ∈ N , denote by Ox the G-orbit of x under the adjoint action. The
component group A(x) := ZG(x)/Z◦

G(x) is a ûnite group, which identiûes with
the fundamental group of Ox when G is simply-connected. The cohomology of
BI

x carries an action of A(x) and Theorem 1.1 is equivalent, using proper base
change, to showing that if χ ∈ Irr(A(x)) has nonzero multiplicity in H∗(BI

x),
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then the pair (Ox, Lχ) belongs to Θsp. Here, Lχ denotes the irreducible G-
equivariant local system on Ox deûned by χ.

The analysis of the BI
x occurs in §3, where we establish a decomposition

of BI
x into vector bundles over a small set of smooth varieties, from which

we also deduce that BI
x has no odd cohomology. These results are generaliza-

tions of those for the Springer ûbers Bx, handled by De Concini, Lusztig and
Procesi in [DCLP88], and we rely on the techniques developed in that paper.
Theorem 1.1 is then proved in §4.

Theorem 1.1 has an important implication for certain generalizations of
the Grothendieck–Springer resolution. For I ∈ Id, we can consider I⊥ ⊂ g,
the orthogonal complement to I under the Killing form. Then H = I⊥ is also
B-stable and it contains b, the Lie algebra of B. The map μH given by

(1.5) μH : G ×B H → g

is surjective and generalizes the Grothendieck–Springer resolution for H = b.
Using Theorem 1.1 and the Fourier transform, we deduce in Theorem 5.1,
that

RμH
∗ (CH [dim G ×B H])

has full support, proving a conjecture of Brosnan [Xue20, VX21]. This gen-
eralizes results of Bălibanu–Crooks [BC20] who proved the theorem in type
A and Xue [Xue20] who has given a proof in type G2. The remainder of §5
studies applications of Theorem 5.1. In Proposition 5.3 we establish a gener-
alization to all types of an unpublished result of Tymoczko and MacPherson
in type A. We conclude §5 by introducing two graded W -representations, the
dot action representation of Tymoczko and LLT representations of Procesi
and Guay-Paquet.

In §6 the main result relates the cohomology of BI
x for certain triples of

subspaces I ∈ Id. The setup is a triple I2 ⊂ I1 ⊂ I0 of ideals in Id, each
of codimension one in the next. For a simple root ³ ∈ Δ, let Pα denote
the minimal parabolic subgroup containing B associated to ³. The triples
I2 ⊂ I1 ⊂ I0 of interest are those satisfying the following conditions:

1. I2 and I0 are Pα-stable for some ³ ∈ Δ, and
2. the representation of the Levi subgroup of Pα (which is of type A1) on

the two-dimensional space I0/I2 is irreducible.

Such triples were introduced in [DCLP88, §2.8]. See Deûnition 6.1 for a purely
root-theoretic deûnition. The ûrst example of such a triple occurs when g =
sl3(C). Let ³, ´ denote the simple roots and let I0 = uPα

be the nilradical of

For the author's personal use only.

For the author's personal use only.



Perverse sheaves, nilp. Hessenberg varieties, and the modular law 499

parabolic subalgebra Lie(Pα). Set I2 = {0}. There is a unique I1 ∈ Id with
I2 ⊊ I1 ⊊ I0 and these three spaces form such a triple.

Our result below is a generalization of [DCLP88, Lemma 2.11] in that it
applies to all nilpotent elements, not just to those x ∈ OI0 .

Proposition 1.2 (The geometric modular law). Given a triple I2 ⊂ I1 ⊂ I0

as above and x ∈ N , there is an A(x)-equivariant isomorphism

(1.6) Hj(BI1
x ) ⊕ Hj−2(BI1

x ) � Hj(BI0
x ) ⊕ Hj−2(BI2

x )

for all j ∈ Z.

The proposition has a formulation as a statement about perverse sheaves.
If Q is any parabolic subgroup stabilizing I, then we can also consider the
map μI,Q : G ×Q I → OI and its derived pushforward

SI,Q := RμI,Q
∗ (C[dim(G ×Q I)]).

Proposition 1.2 has the following consequence (see Proposition 6.7): for any
triple I2 ⊂ I1 ⊂ I0 as above, there is an isomorphism

SI1,B � SI2,Pα
⊕ SI0,Pα

in the derived category of G-equivariant perverse sheaves on N .
Proposition 1.2 implies that various polynomials F I ∈ N[q], depending on

I ∈ Id, that arise in our study satisfy the following law for a triple of ideals:

(1 + q)F I1 = F I2 + qF I0 .

These include the Poincare polynomials of nilpotent Hessenberg varieties and
coefficients in the decomposition of the dot action and LLT representations,
see Proposition 6.5.

In type A this law is closely related to a linear relation, called the modular
law, satisûed by certain graded symmetric functions. It is due to Guay-Paquet
[GP13] and studied more recently by Abreu–Nigro [AN21a]. It was seeing this
law in the combinatorial setting that led us to connect it with the work of
[DCLP88]. Indeed, we show in §7 that the geometric modular law of Proposi-
tion 1.2 implies the combinatorial modular law. This allows us to give another
proof of the Shareshian and Wachs Conjecture [SW16, Conjecture 1.4] and
to show that the Frobenius characteristic of the LLT representation in type
A is a unicellular LLT polynomial, see Corollary 7.9. The key idea, due to
Abreu–Nigro [AN21a], is that in type A any set of polynomials F I for I ∈ Id
satisfying the modular law are completely determined by the F uP where P is
a parabolic subgroup.
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2. Preliminaries

Let Φ+, Φ− and Δ denote the positive, negative and simple roots associated to
the pair (T, B). For a simple root ³ ∈ Δ, let sα ∈ W denote the corresponding
simple reüection. Let �(w) denote the minimal length of w ∈ W when written
as a product of simple reüections. We ûx a representative w ∈ NG(T ) for
each w ∈ W , and denote both by the same letter. Let gγ ⊂ g denote the root
space corresponding to γ ∈ Φ.

If P is a parabolic subgroup of G, then p denotes its Lie algebra and uP

the nilradical of p. For P = B, we instead use b and u. Generally, P will
denote a standard parabolic subgroup, i.e., B ⊂ P .

For a rational representation M of P , the smooth variety G×P M consists
of equivalence classes of pairs (g, m) ∈ G × M with (gp, p−1.m) ∼ (g, m). If
M ⊂ g, there is a proper map from G ×P M to g given by (g, m) → g.m.
See [Jan04].

We use H∗(−) for Borel-Moore homology with complex coefficients and
H∗(−) for singular cohomology with complex coefficients.

2.1. Grading induced by a nilpotent orbit

Let x ∈ g be a nonzero nilpotent element and recall Ox is the G-orbit of
x. By the Jacobson–Morozov theorem, x can be completed to a sl2-triple
{x, h, y} ⊆ g. Namely, there exists h, y ∈ g such that

[h, x] = 2x, [h, y] = −2y, [x, y] = h,

which implies spanC{x, h, y} � sl2(C). For j ∈ Z, let

gj := {z ∈ g | [h, z] = jz}.

Without loss of generality, we may conjugate the triple so that h ∈ t and
³(h) ≥ 0 for all ³ ∈ Δ. Then h and the resulting grading g = ⊕i∈Zgi

are uniquely determined by Ox. We then have x ∈ g2 and b ⊆ p where
p =

⊕
i≥0 gi is a parabolic subalgebra of g.

Let P and G0 be the connected subgroups of G whose Lie algebras are
p and g0, respectively. Let UP be the unipotent radical of P . The Lie alge-
bra of UP is uP =

⊕
i≥1 gi. Then P = G0UP is a Levi decomposition of P

corresponding to the decomposition p = g0 ⊕ uP .
Set B0 = B + G0, which is a Borel subgroup in G0, with Lie algebra

b0 = b + g0. A key fact is that g≥2 is a P -prehomogeneous space, meaning
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there is a unique dense P -orbit. Indeed, Ox + g≥2 is a P -orbit in g≥2 and it is
dense. Moreover, g2 is a G0-prehomogeneous space, with dense orbit Ox + g2.
See [Car93] for these results.

Since t ⊂ g0, we can deûne Φ0 ⊆ Φ to be the roots of g0 relative to t with
simple roots Δ0 := Δ + Φ0 and Φ±

0 := Φ± + Φ0. Given a nonzero integer m,
deûne Φm := {γ ∈ Φ | gγ ⊆ gm} and Φ≥m := ,i≥mΦi.

2.2. P -orbits on B

Let B0 denote the üag variety G0/B0. The Weyl group of g0 is W0 :=
〈sα | ³ ∈ Δ0〉. Let W 0 be the set of right coset representatives for W0 in
W of shortest length in their respective cosets. Then

(2.1) W 0 = {w ∈ W | w−1(Φ+
0 ) ⊂ Φ+}.

The set W 0 parametrizes the P -orbits on the B = G/B. For w ∈ W 0, the
corresponding P -orbit is Pw := PwB/B.

Let λ : C∗ → T be a co-character satisfying ³(λ(z)) = zα(h) for z ∈
C∗ and ³ ∈ Φ. This gives a C∗-action on B preserving each P -orbit. The
ûxed points of this C∗-action on Pw is G0wB/B, which is isomorphic to B0.
Moreover, the smooth variety Pw is a vector bundle over its C∗-ûxed points
PC∗

w � B0 with map πw : Pw → B0 given by

πw(pwB) = lim
z→0

λ(z)pwB.(2.2)

The ûbers of this vector bundle identify with the affine space

A�(w) �
⊕

β∈Φ+∩w(Φ−)

gβ .

By (2.1) all roots ´ such that ´ ∈ Φ+ + w(Φ−) belong to Φ≥1. Hence C∗ acts
linearly with positive eigenvalues on the ûbers of this vector bundle, a key
fact used in [DCLP88] to decompose the the Springer ûber Bx.

3. A decomposition of Hessenberg varieties

3.1. Definition of Hessenberg varieties

The ûber of the map μI in (1.3) over x ∈ N is given by

BI
x = {gB ∈ B | g−1.x ∈ I},
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called a nilpotent Hessenberg variety. These varieties generalize Springer
ûbers by replacing u in the deûnition of Bx with I ∈ Id.

More generally, let M be a subspace of g that is B-stable. Since M is
also T -stable, it is a sum of weight spaces of T . Let ΦM denote the nonzero
weights (i.e., roots) of T that appear in the sum. For any such M and x ∈ g,
the Hessenberg variety associated to x and M is the closed subvariety BM

x of
the üag variety deûned by

(3.1) BM
x = {gB ∈ B | g−1.x ∈ M}.

When x is nilpotent, the BM
x are called nilpotent Hessenberg varieties. We

will mainly deal with the case where x is nilpotent, but in §5.2 below, the
case where x is regular semisimple also arises.

We are interested in two kinds of subspaces of g that are stable under
the action of B. Those of the ûrst kind are contained in u and are called ad-
nilpotent ideals (since they are Lie algebra ideals in b) or just ideals. Those
of the second kind contain b, and are called Hessenberg spaces. Let Id denote
the set of subspaces of the ûrst kind and H, those of the second kind. That
is,

Id = {I | I ⊂ u and B.I = I} and H = {H | b ⊂ H and B.H = H}.

The two sets are in bijection. If I ∈ Id, then the orthogonal subspace I⊥ to
I under the Killing form is B-stable since I is B-stable and I⊥ contains b.
Hence I⊥ ∈ H. Since the Killing form is non-degenerate, we have (I⊥)⊥ = I,
proving that taking the orthogonal complement deûnes a bijection between
ideals in Id and Hessenberg spaces H.

Let P be a parabolic subgroup of G with Lie algebra p. The varieties BI
x

for I ∈ Id are also a kind of generalization of Spaltenstein varieties: if I = uP

is the nilradical of p, then the image of BI
x in G/P is the Spaltenstein variety

P0
x from [BM83]. The varieties BH

x for H ∈ H are a kind of generalization
of Steinberg varieties: if H = p, the image of BH

x in G/P is the Steinberg
variety Px from [BM83].

We now describe a decomposition of BM
x when x is nilpotent that gener-

alizes the decomposition (for the Springer ûber Bx) deûned and studied by
De Concini, Lusztig, and Procesi in [DCLP88]. The story from loc. cit. goes
through: BM

x decomposes as a union of smooth varieties, each of which is a
vector bundle over one of a small set of smooth varieties.

For the rest of the section, we ûx x nilpotent and its induced grading on
g as in §2.

For the author's personal use only.

For the author's personal use only.



Perverse sheaves, nilp. Hessenberg varieties, and the modular law 503

3.2. Building block varieties

Recall that g2 is a prehomogeneous space for G0, with dense G0-orbit Ox +g2.
Let Id2 denote the set of B0-stable linear subspaces of g2, and Idgen

2 ⊂ Id2

denote those U ∈ Id2 with U + Ox �= ∅.
Following [DCLP88, §2.1], for U ∈ Idgen

2 deûne subvarieties of B0 as
follows

XU := {gB0 ∈ G0/B0 | g−1.x ∈ U}.

These are smooth, projective varieties and

(3.2) dim XU = dim(B0) − dim(g2/U).

For example, if U = g2 then XU = B0. The variety XU is empty for subspaces
U ∈ Id2 \ Idgen

2 .

Remark 3.1. Let U ∈ Idgen
2 . If we set I := U ⊕g≥3, then I ∈ Id and XU � BI

x

by [Fen08, Proposition 4.2], so the XU are special cases of the varieties being
considered.

3.3. The decomposition

Let M be a B-stable subspace of g. The main result of this section is that the
Hessenberg variety BM

x decomposes as a union of vector bundles over disjoint
copies of various XU for U ∈ Idgen

2 .

Lemma 3.2. For each w ∈ W 0, the subspace w.M + g2 of g2 is B0-stable.

Proof. Since M is B-stable and hence T -stable, w.M is also T -stable since
T = wTw−1. Also being T -stable, w.M is a sum of weight spaces for T and
thus w.M + g2 is a sum of root spaces. Let gβ ⊂ w.M and gγ ⊂ b0. Then
γ ∈ Φ+

0 and w−1(γ) ∈ Φ+ by (2.1). Now w−1(´) ∈ ΦM and M is B-stable, so
w−1(´) + w−1(γ) ∈ ΦM if the sum is a root. If so, w−1(´ + γ) ∈ ΦM , which
means ´ + γ ∈ Φw.M . This shows w.M is B0-stable. The result follows since
g2 is B0-stable, being G0-stable.

Recall that for w ∈ W 0, Pw denotes the P -orbit on B containing wB. The
next proposition shows that the intersection Pw +BM

x is smooth and describes
its structure. The proof is a generalization of the methods in [DCLP88].
Some cases of these generalizations have previously appeared in [Pre13, Fre16,
Xue20].

Proposition 3.3. Let w ∈ W 0 and U = w.M+g2 ∈ Id2. Set BM
x,w = Pw+BM

x .
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1. BM
x,w �= ∅ if and only if U ∈ Idgen

2 .
2. If BM

x,w is nonempty, then

(a) BM
x,w is smooth and

dim(BM
x,w) = �(w) + |Φ+

0 | − |{γ ∈ Φ≥2 | w−1(γ) /∈ ΦM }|.

(b) BM
x,w is a vector bundle over XU with dimension of its fiber equal

to

�(w) − |{γ ∈ Φ≥3 | w−1(γ) /∈ ΦM}|.

Proof. First, we prove 2(a). By deûnition (3.1),

BM
x,w =

{
pwB, p ∈ P | w−1p−1.x ∈ M

}
.

Since p−1.x ∈ g≥2 for p ∈ P , this can be rewritten as

BM
x,w =

{
pwB | p−1.x ∈ w.M + g≥2

}
.

The setup in [DCLP88, §2.1] now applies to the P -prehomogeneous space
g≥2, the linear subspace of g≥2 equal to w.M + g≥2, and the closed subgroup
of P equal to Bw := P + wBw−1. The subspace w.M + g≥2 is Bw-stable since
M is B-stable and g≥2 is P -stable. Then BM

x,w is isomorphic to the subvariety
of P/Bw given by

{pBw | p−1.x ∈ w.M + g≥2},

which is smooth by Lemma 2.2 in loc. cit., and its dimension equals

dim(P/Bw) − dim(g≥2/w.M + g≥2).

Simplifying the dimension formula above using the fact that dim(P/Bw) =
|Φ+

0 | + �(w), we get

dim(BM
x,w) = |Φ+

0 | + �(w) − |{γ ∈ Φ≥2 | w−1(γ) /∈ ΦM}|.(3.3)

This completes the proof of 2(a).
Recall the cocharacter λ from §2.2. Since λ(z)·x = z2x, the smooth closed

subvariety BM
x,w of Pw is C∗-stable. Now we can use the result in [DCLP88,

§1.5] (see also [BH85, Theorem 1.9]): let πw : Pw → G0wB be the vector
bundle map from §2.2. Since the C∗-action on Pw preserves the ûbers of πw

and acts with strictly positive weights, it follows that

BM
x,w → G0wB + BM

x,w
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is a vector sub-bundle of πw. Finally,

G0wB + BM
x,w � {gB0 ∈ G0/B0 | g−1.x ∈ w.M + g2} = XU

as in §3.7 of loc. cit.
By (3.2),

dim XU = dim(G0/B0) − dim(g2/U)

= |Φ+
0 | − |{γ ∈ Φ2 | w−1(γ) /∈ ΦM}|.

Subtracting this value from the one in (3.3) completes the proof of 2(b).
Finally, the proof of (1). If BM

x,w is nonempty, then by 2(b) it follows that
XU is nonempty, so it contains some gB0 for g ∈ G0, i.e., g−1.x ∈ U . Hence
the G-orbit of x meets U and U ∈ Idgen

2 . Conversely, if U ∈ Idgen
2 then

g−1.x ∈ U for some g ∈ G0, which means gB ∈ BM
x,w.

The centralizer ZG(x) acts on BM
x and this gives an action of the compo-

nent group A(x) = ZG(x)/Z◦
G(x) on the Borel-Moore homology H∗(BM

x ) of
BM

x since the induced action of a connected group is trivial.
There is also an action of A(x) on H∗(BM

x,w) and H∗(XU ). Namely, ZG(x) =
ZP (x) [Jan04, Proposition 5.9] and ZP (x) acts on BM

x,w, so A(x) acts on
H∗(BM

x,w). Set L = G0, then the centralizer ZL(x) acts on XU . Since ZL(x) is
a Levi factor of ZP (x), then A(x) � ZL(x)/Z◦

L(x) acts on H∗(XU ).
For each w ∈ W 0, let tM (w) = �(w) − |{γ ∈ Φ≥3 | w−1(γ) /∈ ΦM}|,

the dimension of the ûber of the vector bundle from Proposition 3.3. The
following corollary is implicit in [DCLP88].

Corollary 3.4. Let w ∈ W 0 and U = w.M + g2. Let U ∈ Idgen
2 . Then as

A(x)-modules, we have the isomorphism

(3.4) Hj+2tM (w)(B
M
x,w) � Hj(XU )

for all j ∈ N.

Proof. The isomorphism as vector spaces follows from the vector bundle result
in Proposition 2(a). Now the action of ZP (x) and ZL(x) on BM

x,w induce the
same action of A(x). Since the ZL(x)-action commutes with the C∗-action
coming from λ, the action of � ∈ ZL(x) commutes with the map πw deûned
in (2.2) and the result follows.

We also need the following crucial result from [DCLP88]. This is proved
by a reduction to distinguished nilpotent orbits, where the classical cases are
handled by explicit computation and the exceptional groups are handled by
a method that we review in §6.

For the author's personal use only.

For the author's personal use only.



506 Martha Precup and Eric Sommers

Theorem 3.5 (Theorem 3.9 in [DCLP88]). Let U ∈ Idgen
2 . Then Hi(XU ) = 0

for i odd.

For U ∈ Idgen
2 , deûne a subset WM,U of W 0 and polynomial gM,U (q) by

WM,U = {w ∈ W 0 | U = w.M + g2} and(3.5)

gM,U (q) =
∑

w∈WM,U

qtM (w).

Let VM,U be a graded vector space whose Poincaré polynomial is gM,U (q2).
We consider VM,U as an A(x)-module with trivial action.

Corollary 3.6. We have

H∗(BM
x ) �

⊕

U∈Idgen
2

VM,U ⊗ H∗(XU ),(3.6)

as A(x)-modules. In particular, H i(BM
x ) = 0 for i odd.

Proof. As in [DCLP88], BM
x admits an ³-partition of the nonempty BM

x,w.
Since each BM

x,w has no odd Borel-Moore homology by Theorem 3.5 and Corol-
lary 3.4, the long exact sequence in Borel-Moore homology gives the isomor-
phism as vector spaces. Then the naturality of the long exact sequence and
Corollary 3.4 yield the isomorphism as A(x)-modules. Since BM

x and the XU

are projective varieties, the Borel-Moore homology and singular cohomology
coincide, and the result follows.

Remark 3.7. In fact, the varieties BM
x satisfy Property (S) from §1.7 in

[DCLP88]. Namely, switching to Borel-Moore integral homology, we have
Hi(BM

x ) = 0 for i odd, Hi(BM
x ) has no torsion for i even, and the cycle

map from the i-th Chow group of BM
x to H2i(BM

x ) is an isomorphism. These
results follow from the fact that XU has Property (S) for all U ∈ Idgen

2 as
shown in [DCLP88] and Lemmas 1.8 and 1.9 in loc. cit.

Let

(3.7) P(X) =
∑

j

dim
(
H2j(X)

)
qj

denote the modiûed Poincaré polynomial of a variety X with no odd coho-
mology. If a group K acts on X and χ ∈ Irr(K), let

P(X; χ) =
∑

j

(
χ : H2j(X)

)
qj ,
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where (χ : χ′) = dim HomK(χ, χ′) denotes the multiplicity of χ in the K-
representation χ′. Then Corollary 3.6 immediately implies the following.

Corollary 3.8. We have

P(BM
x ) =

∑

U∈Idgen
2

gM,U (q)P(XU ).

and

P(BM
x ; χ) =

∑

U∈Idgen
2

gM,U (q)P(XU ; χ).(3.8)

for all χ ∈ Irr(A(x)).

Remark 3.9. Corollary 3.8 gives a way to compute P(BM
x ) and P(BM

x ; χ),
which is feasible in small ranks. There are three steps: (1) determine the set
Idgen

2 , (2) compute P(XU ; χ) for each U ∈ Idgen
2 , and (3) compute gM,U .

For (1), methods from Fenn’s thesis [Fen08] apply and Fenn and the
second author wrote computer code to do this, which works up to rank 10.
For (3) the second author wrote code that is efficient up to rank 7 and can
handle rank 8 for the cases where M ∈ Id. For (2), however, we only know how
to do the computation in type A, small rank cases, and for certain nilpotent
orbits in all cases. The method for doing this comes from [DCLP88], which
we explain in §6. We have carried out this computation in several small rank
cases and give the example of B3 for M ∈ Id in §8.

4. Proof of Theorem 1.1

We now restrict to the case where M = I for I ∈ Id and return to the
map μI : G ×B I → OI from the introduction. Pushing forward the shifted
constant sheaf yields

RμI
∗(C[NI ]) �

⊕

(O,L)

IC(O, L) ⊗ V I
O,L.(4.1)

where the sum is over pairs (O, L) ∈ Θ consisting of a nilpotent orbit O ⊂ OI

and an irreducible local system L on O. The V I
O,L are graded complex vectors

spaces. In this section we will prove Theorem 1.1: if V I
O,L �= 0 in (4.1), then

(O, L) is an element of Θsp, the pairs that arise in the Springer correspon-
dence (1.2).
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Taking stalks in (4.1) and using proper base change, the cohomology of
the ûbers of μI and local intersection cohomology are related by

(4.2) Hj+NI (BI
x,C) =

⊕

(O,L)

O⊂OI

Hj
x

(
IC(O, L) ⊗ V I

O,L

)

for x ∈ OI . We would like to write down the A(x)-equivariant version of this
statement as discussed in [BM83] (see also [Ach21]).

For x ∈ N and χ ∈ Irr(A(x)), we sometimes write (x, χ) in place of
(Ox, Lχ). Given (x, χ) ∈ Θ, we deûne the Laurent polynomial mI

x,χ(q) ∈
N[q, q−1] so that the coefficient of qj is the dimension of the j-th graded
component of V I

x,χ. By the properties of perverse sheaves, we have mI
x,χ(q−1) =

mI
x,χ(q). Let (Lχ : −) denote the multiplicity of Lχ in a local system on Ox.

For (x, χ) and (u, φ) in Θ, deûne

cu,φ
x,χ(q) =

∑

j∈Z

(
Lχ : HjIC(Ou, Lφ)|Ox

)
qj .

Then taking the dimension on both sides of the A(x)-equivariant version
of (4.2) gives

(4.3) P(BI
x; χ)(q2) = qNI

∑

(u,φ)∈Θ

cu,φ
x,χ(q)mI

u,φ(q).

Now suppose we know that P (BI
x; χ) = 0 for some χ ∈ Irr(A(x)). Then

since cx,χ
x,χ �= 0 and all the coefficients on the right side of (4.3) are nonnegative,

we conclude that mI
x,χ = 0 and thus V I

x,χ = 0. Hence, the proof of Theorem 1.1
is reduced to showing that P(BI

x; χ) = 0 for (x, χ) �∈ Θsp.
Next, by Corollary 3.8, if we can show that P(XU ; χ) = 0 for all (x, χ) �∈

Θsp and all U ∈ Idgen
2 , then it follows that P(BI

x; χ) = 0 for all (x, χ) �∈ Θsp.
For the case of I = u, which is the Springer resolution case, there is a

stronger equivariant statement. The Weyl group W acts on H∗(Bx) and this
action commutes with the A(x)-action, so W ×A(x) acts. For (x, χ) and (u, φ)
in Θsp,

(4.4) P(Bx; Vu,φ ⊗ χ)(q2) = qN cu,φ
x,χ(q)

where Vu,φ is the irreducible W -representation corresponding to (u, φ) ∈ Θsp

in (1.2). Moreover, the left side (and the right side) will always be zero for
those (x, χ) �∈ Θsp. This was ûrst established by Beynon–Spaltenstein by
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computer calculation in [BS84] for the exceptional groups and by Shoji in
[Sho83] for the classical groups. Later, Lusztig gave a uniform framework
that also included handling his Generalized Springer correspondence [Lus86].
The resulting algorithm from [Lus86, §24] is now known as the Lusztig–Shoji
algorithm and it computes either side of (4.4) knowing only the partial order
on the orbits in N , the component groups A(x), the Springer correspondence,
and the character table of W .

Returning to the proof of Theorem 1.1, since the left side of (4.4) is zero
for (x, χ) �∈ Θsp, it follows that P (Bx; χ) = 0 for (x, χ) �∈ Θsp. Therefore, if
(x, χ) �∈ Θsp and U ∈ Idgen

2 , then P(XU ; χ) = 0 whenever XU appears in the
decomposition of H∗(Bx) in Corollary 3.6. We can therefore ûnish the proof of
the theorem if we can show that XU appears in the decomposition of H∗(Bx)
for all U ∈ Idgen

2 . In other words, we will show gu,U �= 0 for all U ∈ Idgen
2 ,

or equivalently, Wu,U �= 0. This amounts to showing that, for all U ∈ Idgen
2 ,

there exists w ∈ W 0 such that U = w.u + g2.

By Lemma 3.2 there is a map Ψ : W 0 → Id2 deûned by

Ψ(w) = w.u + g2 for w ∈ W 0.(4.5)

In [DCLP88, §3.7(b)] it is shown that Ψ is surjective for the case when Ox is
an even orbit, i.e., when gi = 0 for i odd. We now extend that result to show
Ψ is surjective for all nilpotent orbits.

Lemma 4.1. Given U ∈ Id2, there exists w ∈ W 0 such that U = w.u + g2.

Proof. Let U ∈ Id2. It suffices to show that there exists w ∈ W 0 such that
ΦU = w(Φ+)+Φ2. When Ox is even, [DCLP88, §3.7(b)] gives a construction of
such a w ∈ W 0. Moreover, the w constructed is the unique element achieving
the largest possible value for �(w) among those w ∈ W 0 satisfying ΦU =
w(Φ+) + Φ2.

Suppose now that Ox is not even. Consider the Lie subalgebra

s :=
⊕

i∈2Z

gi.

Then s is the centralizer in g of an element of order 2 in G, namely, the image
of

(
−1 0
0 −1

)
under the map SL2(C) → G coming from the sl2-triple deûned in

§2. Hence s is a reductive subalgebra and its simple roots are a subset of the
extended simple roots of g (see [Car93]). Let Φs be the root system of s with
positive roots Φ+

s = Φ+ + Φs. Let Ws denote the Weyl group of s relative to
t ⊂ s.
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The sl2-triple for x in g lies in s and so the W0 deûned relative to g and s

coincide. Since U ⊂ g2 ⊂ s and Ox + s is an even orbit in s, where the lemma

holds, there exists w ∈ W 0 + Ws such that w(Φ+
s ) + Φ2 = ΦU .

Now let σ ∈ W be any element satisfying σ−1(Φ+
s ) ⊂ Φ+. Then Φ+

s ⊂
σ(Φ+) + Φs and so σ(Φ+) + Φs = Φ+

s . We claim that

wσ(Φ+) + Φ2 = ΦU .

Indeed, let ´ ∈ Φ2. Then ´ ∈ wσ(Φ+) if and only if w−1(´) ∈ σ(Φ+). Since

w ∈ Ws and Φ2 ⊂ Φs, we have w−1(Φ2) ⊂ Φs. Hence, w−1(´) ∈ σ(Φ+) if and

only if

w−1(´) ∈ σ(Φ+) + Φs = Φ+
s .

This shows that ´ ∈ wσ(Φ+) if and only if ´ ∈ w(Φ+
s ), proving that wσ(Φ+)+

Φ2 = w(Φ+
s ) + Φ2, as desired. Finally, we may take σ to be the identity of W

to see that w itself satisûes ΦU = w(Φ+) + Φ2.

The Lemma applies in particular to U ∈ Idgen
2 , completing the proof of

Theorem 1.1. We can now write (4.1) as

RμI
∗(C[NI ]) �

⊕

(O,L)∈Θsp

IC(O, L) ⊗ V I
O,L.(4.6)

Remark 4.2. The proof of Lemma 4.1 shows that for each w ∈ W 0 + Ws such

that U = Ψ(w), we have Ψ(wσ) = Ψ(w) where σ runs over the right coset

representatives of Ws in W that lie in W 0. It follows from Corollary 3.8 for

the Springer ûber case where M = u that the index [W : Ws] divides the

Euler characteristic of Bx when Ox is not an even orbit.

For example, in type E7 there are 3 involutions in G, up to conjugacy.

Curiously, among all non-even orbits, only the involution for which s is of type

D6 × A1 occurs for the s in the proof of Lemma 4.1. The Weyl group of the

standard D6 ×A1 is exactly the stabilizer of the line through the highest root,

showing that [W : Ws] = 63, the number of positive roots in E7. We deduce

that the Euler characteristic of any Springer ûber of a non-even nilpotent

element in E7 is divisible by 63, which was observed by Fenn.

It will be convenient sometimes to use a parametrization indexed by

Irr(W ) instead of Θsp. For each ϕ ∈ Irr(W ), we can write ϕ = ϕO,L for

a unique (O, L) ∈ Θsp by the Springer correspondence (1.2). We sometimes

write mI
ϕ or V I

ϕ in place of mI
x,χ or V I

Ox,Lχ
, respectively.
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Consider the partial order on Irr(W ) by ϕO′,L′ � ϕO,L if O′ ⊆ O. We

choose a linear ordering on Irr(W ) that respects this partial order. Deûne the

matrix K to have entries coming from the left side of (4.4):

Kϕ,ϕ′ =
∑

j

(
ϕ ⊗ χ : H2j(Bx)

)
qj

where ϕ′ = ϕOx,Lχ
. The entries of K lie in N[q] and K is lower triangular, with

powers of q along the diagonal. The matrix K is computable by the Lusztig–
Shoji algorithm [Lus86, §24]. The entries of K are sometimes referred to as the

Green functions of G. In type A, they coincide with modiûed Kostka–Foulkes

polynomials [GP92].

Set cI = dim u−dim I, the codimension of I in u. Then since cI = N −NI ,

we can rewrite Equation (4.3) as

(4.7) q2cI P(BI
x; χ)(q2) =

∑

ϕ∈Irr(W )

qcI mI
ϕ(q)Kϕ,ϕ′(q2).

where ϕ′ = ϕOx,Lχ
. Since the other expressions in (4.7) involve even expo-

nents, it follows that the exponents of qcI mI
ϕ(q) are also even, allowing us to

make the following deûnition.

Definition 4.3. For ϕ ∈ Irr(W ) and I ∈ Id, deûne f I
ϕ(q) by f I

ϕ(q2) =
qcI mI

ϕ(q).

Proposition 4.4. We have f I
ϕ ∈ N[q] and its coefficients are symmetric about

qcI /2.

Proof. The highest power of q on the left in (4.7) is 2cI + 2 dim BI
x, each term

in the sum is bounded by this value. In particular this holds for ϕ′ = ϕ. In

that case, Kϕ′,ϕ′(q2) = q2 dim(Bx) and so

2 deg(f I
ϕ′) + 2 dim(Bx) ≤ 2cI + 2 dim BI

x

Since BI
x ⊂ Bx and so dim BI

x ≤ dim Bx, we get deg(f I
ϕ′) ≤ cI . Hence, the

exponents of mI
ϕ′ are bounded by cI and therefore below by −cI by the

q → q−1 symmetry of mI
ϕ′ . Hence, f I

ϕ′ ∈ N[q] and its coefficients are symmetric

about qcI /2.

The polynomials f I
ϕ, or their transformations by a ûxed matrix indepen-

dent of I, make several appearances in the rest of this paper.
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The results in this section where obtained in [BM83] in the parabolic
setting, i.e., for I = uP where P is any parabolic subgroup of G. Borho and
MacPherson also did more, giving a formula for fuP

ϕ . Namely,

(4.8) fuP
ϕ = P(P/B)(ϕ : IndW

WP
(sgn)).

where sgn ∈ Irr(W ) denotes the sign representation of W and WP denotes
the Weyl group of P .

Remark 4.5. Although less efficient than the Lusztig–Shoji algorithm, our
methods give an inductive way to compute K while also computing mI

ϕ, or
equivalently f I

ϕ. The induction starts at the zero orbit and moves up in the
partial order on Θsp. The procedure relies on the dimension constraints for
the IC-sheaves and the symmetry of the coefficients of mI

ϕ. We need to know
H∗(BI

x) for all x and enough I and then we can use (4.7). This inductive
process is analogous to the usual method for computing the Kazhdan–Lusztig
polynomials, i.e., the IC stalks of Schubert varieties, using the Bott–Samelson
resolutions.

5. Generalized Grothendieck–Springer setting

In this section we prove a conjecture of Brosnan and show that the polyno-
mials f I

ϕ from Deûnition 4.3 control the decomposition of the pushforward of
the shifted constant sheaf when we move from the setting of I ∈ Id to that
of H ∈ H.

5.1. Brosnan’s conjecture

Let H ∈ H and consider the map

μH : G ×B H → g, (g, x) �→ g.x.(5.1)

This map is proper and since b ⊆ H, the image of μH is g. Let NH =
dim G/B + dim H, the dimension of the smooth variety G ×B H.

When H = b, this map is the Grothendieck–Springer resolution, which
Lusztig [Lus81] showed was a small map. In particular, Nb = dim g. Since
the map is small, Rμb

∗(C[Nb]) decomposes into a sum of irreducible perverse
sheaves on g with maximal support. More precisely

Rμb
∗(C[Nb]) =

⊕

ϕ∈Irr(W )

IC(g, Mϕ) ⊗ ϕ(5.2)
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where Mϕ is the irreducible local system supported on the regular semisimple
elements grs of g corresponding to ϕ ∈ Irr(W ) [Ach21, Lemma 8.2.5].

We wish to generalize Equation (5.2) to any H ∈ H and to compute the
sheaf RμH

∗ (CH [NH ]), as we did for the case of I ∈ Id. Recall in that situation,
as a consequence of Theorem 1.1 that (4.1) becomes

RμI
∗(C[NI ]) �

⊕

(O,L)∈Θsp

IC(O, L) ⊗ V I
O,L,(5.3)

where V I
O,L is a Z-graded vector space. For ϕ ∈ Irr(W ), we will write V I

ϕ for

V I
O,L where ϕ = ϕO,L under the Springer correspondence.

Our result is the following theorem, originally conjectured by Brosnan
(see [Xue20, Conjecture 5.2.2] and [VX21]).

Theorem 5.1. Let H ∈ H. Let I = H⊥, the annihilator of H under the
Killing form. There is an isomorphism

RμH
∗ (CH [NH ]) �

⊕

ϕ∈Irr(W )

IC(g, Mϕ) ⊗ V I
ϕ⊗sgn(5.4)

in the derived category of G-equivariant perverse sheaves on g. In particular,
every simple summand of RμH

∗ (CH [NH ]) is a simple perverse sheaf on g with
full support.

Proof. To prove the result, we apply the Fourier transform (see [Ach21,
Cor. 6.9.14]) to obtain

F(RμI
∗CI [NI ]) = RμH

∗ (CH [NH ]),(5.5)

where F maps each simple summand of RμI
∗(CI [NI ]) in (5.3) to a simple

summand of RμH
∗ (CH [NH ]). Next, for (O, L) ∈ Θsp, we have

F(IC(O, L)) = IC(g, Mϕ⊗sgn) where ϕ = ϕO,L

(see Sections 8.2, 8.3, and speciûcally equation (8.3.2) of [Ach21]). The result
follows.

Theorem 5.1 generalizes [BC20, Theorem 3.6] to all Lie types.

5.2. Monodromy action

Let s ∈ t be a regular semisimple element. The variety BH
s deûned as in (3.1)

is called a regular semisimple Hessenberg variety. There is an action of W on
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H∗(BH
s ) arising from monodromy [BC18], [BC20]. Then taking stalks in (5.4)

at s and using W -equivariant proper base change gives

(5.6) H∗+NH −dimg(BH
s ) �

⊕

ϕ∈Irr(W )

ϕ ⊗ V H⊥

ϕ⊗sgn

as W -modules. Here, ϕ is in degree 0 on the right and carries the W -action.

We have used that Hj
sIC(g, Mϕ) is zero, except for j = − dim g, where it

equals ϕ.

Now NH − dim g = dim H − dim b, which is the dimension of BH
s . We

deduce that for ϕ ∈ Irr(W ) that

(5.7) P(BH
s ; ϕ)(q2) = qdim H−dimbmH⊥

ϕ⊗sgn(q).

Since dim H − dim b = dim u − dim H⊥ = cH⊥ , we immediately have

Proposition 5.2. For H ∈ H and ϕ ∈ Irr(W ), we have P(BH
s ; ϕ) = fH⊥

ϕ⊗sgn.

Note that Proposition 5.2 gives another proof that f I
ϕ is a polynomial,

while Proposition 4.4 gives a (new) proof that P(BH
s ; ϕ) is palindromic.

5.3. Nilpotent Hessenberg varieties

We can also take the stalks in (5.4) at elements of N and get an interesting

result. First, we need the fact that

IC(g, Mϕ)|N [− dim t] � IC(O, L)

where ϕ = ϕO,L (for example, see [Ach21, Lemma 8.3.5]). Next, NH − N =

dim H − dim u. But with the extra shift by dim t from above, we get the

analogue of (4.7).

Proposition 5.3. For x ∈ N and χ ∈ Irr(A(x)), we have

(5.8) P(BH
x ; χ) =

∑

ϕ∈Irr(W )

fH⊥

ϕ⊗sgnKϕ,ϕ′

where ϕ′ = ϕOx,Lχ
.

Proposition 5.3 was known in the parabolic case. In [BM83], Borho and

MacPherson consider the restriction μH
N of μH to XN = G×B (H +N ). Since
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the intersection p + N is rationally smooth for H = p, they obtained the
stronger statement

(5.9) R(μp
N )∗(C[dim XN ]) �

⊕

(O,L)∈Θsp

IC(O, L) ⊗ V uP

ϕO,L⊗sgn.

We suspect that (5.9) holds for all H ∈ H, presumably because XN is
rationally smooth for all H ∈ H. In type A, Proposition 5.3, or perhaps
the stronger version in (5.9), is an unpublished theorem of Tymoczko and
MacPherson [Obe19, pg. 2882].

Finally, we note that when x is regular nilpotent, the only term in (5.8)
for which Kϕ,ϕ′ is nonzero occurs when ϕ is the trivial representation, in

which case the value is 1. Hence fH⊥

sgn = P(BH
x ). When x is regular nilpotent,

P(BH
x ) has a formula as a product of q-numbers depending only on the roots

ΦH + Φ− [AHM+20], [ST06].

5.4. The dot action and LLT representations

In [Tym08], Tymoczko deûned a Weyl group representation on the ordinary
cohomology of regular semisimple Hessenberg varieties, called the dot action.
The representation of W on H∗(BH

s ) from §5.2 was shown to coincide with
Tymoczko’s dot action representation by Brosnan and Chow in [BC18] in
type A, and their proof was adapted to all Lie types by Bălibanu and Crooks
in [BC20].

The dot action is closely related to another W -representation via a ten-
sor product formula, which ûrst arose in Procesi’s study of the toric variety
associated to the Weyl chambers from [Pro90] and was later treated by Guay–
Paquet in type A [GP16]. We summarize the key properties we need here and
include the details in Appendix A.

Let C denote the coinvariant algebra of W , with the reüection represen-
tation in degree 1. Then C � H∗(G/B) as graded W -representations, up to
the doubling of degrees. If g(q) =

∑
aiq

i is a polynomial, we regard it as a
graded representation consisting of ai copies of the trivial representation in
degree ai. The following result is a direct generalization of [Pro90, Theorem
2] and [GP16, Lemma 168].

Proposition 5.4. For each Hessenberg space H ∈ H there exists a unique
graded W -representation LLTH satisfying

P(G/B) ⊗ LLTH � C ⊗ H∗(BH
s ).(5.10)

Furthermore, LLTH is nonzero only in nonnegative degrees.
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We call LLTH the LLT representation; the reason for this terminology is
that, in Type A, the Frobenius characteristic of LLTH is a unicellular LLT
polynomial (see Corollary 7.9 below).

The coinvariant algebra C carries the regular representation and the tensor
product of any representation of dimension d with the regular representation is
the direct sum of d copies of the regular representation. Therefore when q = 1
both sides of (5.10) are isomorphic to |W | copies of the regular representation.
Thus LLTH is a graded version of the regular representation. At the same
time, forgetting the W -actions, H∗(BH

s ) and LLTH coincide as graded vector
spaces since P(G/B) measures the dimension of the components of C.

To compute LLTH from H∗(BH
s ) requires knowing the matrix Ω̃ with

entries

Ω̃ϕ,ϕ′ =
∑

j

(
ϕ ⊗ ϕ′ : Cj

)
qj .

The matrix Ω̃ is closely related to the matrix needed as input to the Lusztig–
Shoji algorithm. Deûne polynomials gH

ϕ (q) by

gH
ϕ (q) =

∑

j

(ϕ : LLTH)q2j .

Then

(5.11) P(G/B)gH
ϕ =

∑

ϕ′∈Irr(W )

P (BH
s ; ϕ′)Ω̃ϕ,ϕ′ =

∑

ϕ′∈Irr(W )

fH⊥

ϕ′ Ω̃ϕ,ϕ′ .

We have used Proposition 5.2 and the fact that

HomW (ϕ ⊗ ϕ′, Cj) � HomW (ϕ, ϕ′ ⊗ Cj)

since representations ϕ ∈ Irr(W ) satisfy ϕ∗ � ϕ.

For §7 we need to know the H∗(BH
s ) and LLTH in the parabolic case,

i.e., when H = p the Lie algebra of the parabolic subgroup P . Let CP be the
coinvariant algebra of WP as a Coxeter group, a graded representation of WP .

Proposition 5.5. In the parabolic setting, we have

1. H∗(Bp
s ) � P(P/B) ⊗ IndW

WP
(1).

2. LLTp � IndW
WP

(CP ).

where the modules on the left are zero for odd degrees and the component in
degree 2i on the left matches the one in degree i on the right.
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Proof. Part (1) follows directly from Equation (4.8) and Proposition 5.2.
For (2), we have the isomorphism CP � H∗(P/B), as WP -representations,

up to doubling of degrees. Then the ûber bundle of G/B over G/P with ûber
P/B gives rise to the isomorphism

H∗(G/B) � H∗(G/P ) ⊗ H∗(P/B)

as WP -representations where the action on H∗(G/P ) is trivial. Hence, C �
P(G/P )CP as WP -representations. Inducing up to W , we have

IndW
WP

(C) � P(G/P ) ⊗ IndW
WP

(CP )

as W -modules, or equivalently,

C ⊗ IndW
WP

(1) � P(G/P ) ⊗ IndW
WP

(CP )

since C is a W -representation. Now using Part (1) and the fact that P(G/B) =
P(G/P )P(P/B), the result follows.

6. The modular law

Let M ⊆ g be a B-invariant subspace. As mentioned in Remark 3.9, the
results of §3 give a method to compute the isotypic component H∗(BM

x )χ if
we can compute the isotypic component H∗(XU )χ for all U ∈ Idgen

2 , where
Idgen

2 is deûned as in §3.2 using the grading induced by x.
In [DCLP88], a method is given to compute H∗(XU )χ that works for all

distinguished nilpotent elements in the exceptional groups. Although it does
not work in general, it is a powerful technique. In this section we prove a
generalization of this method: for certain triples of I2 ⊂ I1 ⊂ I0 of ideals
in Id, knowing any two of the H∗(BIi

x )χ determines the third. We call this
relation the geometric modular law.

We were led to this generalization after seeing the type A combinatorial
version in [AN21a] and [GP13], where the relation is known as the modular
law. In Proposition 7.7 below, we show that our geometric modular law implies
the combinatorial one.

6.1. The basic move

We ûrst deûne a relation on ideals I1, I0 ∈ Id as in [FS20].

Definition 6.1. Two ideals I1, I0 ∈ Id are related by the basic move if
I0 = I1 ⊕ gβ for ´ ∈ Φ+ and there exists ³ ∈ Δ such that
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1. 〈´, ³∨〉 = −1, and
2. The set ΦI0 is invariant under the simple reüection sα ∈ W .

The second condition is equivalent to I0 being Pα-stable, where Pα is the
parabolic subgroup containing B corresponding to ³.

If ideals I1 ⊂ I0 satisfy I0 = I1 ⊕gβ, then ´ is a minimal root in ΦI0 under
the partial order on positive roots. If I1 and I0 are related by the basic move,
then condition (1) implies that sα(´) = ³ + ´, which is a positive root bigger
than ´ in the partial order; hence, ³+´ ∈ ΦI1 . In fact, ³+´ is a minimal root
of ΦI1 . Suppose otherwise; then ΦI1 contains a positive root γ = ³ + ´ − ³′

for a simple root ³′. Now, ³ �= ³′ since ´ �∈ ΦI1 . Since 〈³′, ³∨〉 ≤ 0 for any
distinct simple roots and 〈³ + ´, ³∨〉 = 1 by condition (1), then 〈γ, ³∨〉 ≥ 1.
But then sα(γ) < ´. Since γ ∈ ΦI1 ⊂ ΦI0 and

sα(ΦI0) = ΦI0

by condition (2), this means sα(γ) ∈ ΦI0 and we obtain a contradiction to ´
being a minimal root in ΦI0 .

Thus we can deûne I2 ∈ Id to be the subspace satisfying I1 = I2 ⊕ gα+β .
It is clear that I2 is Pα-stable. We call I2 ⊂ I1 ⊂ I0 a modular triple, or
just a triple. These triples were ûrst constructed in [DCLP88, §2.7].

Since Pα.I1 = I0, we have OI1 = OI0 , while the orbit OI2 need only satisfy
OI2 ⊂ OI0 .

Example 6.2. Consider the A3 root system with Δ = {³1, ³2, ³3}, where ³1

and ³3 orthogonal. Let I0 ∈ Id be such that ΦI0 has one minimal root ´ = ³2.
Then ´ satisûes condition (1) with respect to either ³1 or ³3. Hence I1 and
I0 are related by the basic move where ΦI1 = {³1 +³2, ³2 +³3, ³1 +³2 +³3}.
But there are two different triples that arise: I2 will satisfy I1 = I2 ⊕ gα1+α2

or I1 = I2 ⊕ gα2+α3 depending on whether ³ = ³1 or ³ = ³3, respectively.

6.2. Geometric modular law for the cohomology of fibers

Whenever three subspaces form a modular triple, they satisfy the three con-
ditions in §2.7 of [DCLP88] with U ′′ ⊂ U ⊂ U ′ in place of I2 ⊂ I1 ⊂ I0 and
M = G, H = B, and P = Pα.

Fix x ∈ N and let Xi = BIi
x . When x ∈ OI0 , it is shown in [DCLP88,

Lemmas 2.2] that the Xi are smooth (X2 can be empty), as was noted in §3.2.
In [DCLP88, Lemma 2.11] it is proved that there is a geometric relationship
among the three varieties, which we now show holds for all x ∈ N , not just
for x ∈ OI0 , and from this we deduce Proposition 1.2. Since the Xi are no
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longer smooth in general, our argument relies on the fact that BI
x has no odd

homology for any x ∈ N by Corollary 3.6. We are now ready to prove the
geometric modular law, which we restate here for the reader’s convenience.

Proposition 1.2 (The geometric modular law). Let I2 ⊂ I1 ⊂ I0 be a
modular triple and let x ∈ N . Write Xi for BIi

x . Then

Hj(X1) ⊕ Hj−2(X1) � Hj(X0) ⊕ Hj−2(X2) for all j ∈ Z.(6.1)

Proof. We again use Borel-Moore homology until the ûnal step. By Corol-
lary 3.6, the odd homology of all Xi vanish, so we need only consider j even.
Let ³ ∈ Δ from the deûnition of the modular triple. Consider

Z = {(gB, g′B) ∈ G/B × G/B | g−1.x ∈ I1 and g−1g′ ∈ Pα},

as in Lemma 2.11 in [DCLP88]. Then Z is a P1-bundle over X1 by forgetting
the second factor. Since X1 has no odd homology, and neither does P1, the
Leray spectral sequence degenerates and yields

Hj(Z) � Hj(X1) ⊕ Hj−2(X1) for all j ∈ N.(6.2)

Next, as in loc cit, the variety Z maps to a variety Z ′, which is P1-bundle
over X0, by sending (gB, g′B) ∈ Z to (gB, g′B) ∈ Z ′, where

Z ′ := {(gB, g′B) ∈ G/B × G/B | g′−1.x ∈ I0 and g−1g′ ∈ Pα}.

This works since g′ = gp for some p ∈ Pα, so g′−1.x = p−1g−1 ∈ I0 if
g−1.x ∈ I1 because Pα.I1 = I0. Inside Z ′ consider the subvariety Y consisting
of those (gB, g′B) ∈ Z ′ where the line gI1/g′I2 ⊂ g′I0/g′I2 contains x. Then
Z is isomorphic to Y .

At the same time, Y maps surjectively to X0 and the pre-image of X2 is
a P1-bundle E over X2. The complement of E in Y is isomorphic to X0\X2.
In [DCLP88], the proof ends since X2 and X0 are smooth and one knows the
singular cohomology of Y , which is a blow-up of X0 over X2. To get around
the lack of smoothness in the general case, we again use that the Xi have no
odd Borel-Moore homology.

First, Hj(E) � Hj(X2) ⊕ Hj−2(X2) for all j as in (6.2) since X2 has no
odd homology. Next, when j is even, there are two long exact sequences in
Borel-Moore homology. For X2 ⊂ X0, we have

0 → Hj+1(X0\X2) → Hj(X2) → Hj(X0) → Hj(X0\X2) → 0
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and for E ⊂ Y , we have

0 → Hj+1(Y \E) → Hj(E) → Hj(Y ) → Hj(Y \E) → 0

since E has no odd homology. Now, Y \E � X0\X2 and so it follows that

Hj(Y ) ⊕ Hj(X2) � Hj(E) ⊕ Hj(X0)

as Q-vector spaces. Thus Hj(Y ) � Hj(X0) ⊕ Hj−2(X2). The result follows
from (6.2) and the isomorphism Z � Y . We can switch back to singular
cohomology since the Xi are projective varieties.

6.3. Implications of the modular law

It follows from Proposition 1.2 that if I2 ⊂ I1 ⊂ I0 is a triple of ideals, then

(6.3) (1 + q)P(BI1
x ; χ) = P(BI0

x ; χ) + qP(BI2
x ; χ).

This leads us to deûne

Definition 6.3. A collection of objects {F I}I∈Id each carrying an action of
Q(q) is said to satisfy the modular law if

(6.4) (1 + q)F I1 = F I2 + qF I0

whenever I2 ⊂ I1 ⊂ I0 is a triple of ideals.

The F I could be polynomials or Laurent polynomials in Q(q) or a vector
of such polynomials indexed by Irr(W ) or, equivalently, Θsp. We could also
take F I to be a graded representation of Irr(W ), which in type A amounts
to a symmetric function with coefficients in Q(q).

Notice that we have reversed the role of I0 and I2 in (6.4) as compared
to (6.3).

Remark 6.4. If {F I
1 } and {F I

2 } satisfy the modular law, so does {aF I
1 + bF I

2 }
for any a, b ∈ Q(q).

Proposition 6.5. The following polynomials satisfy the modular law in (6.4).

1. P(BI
x; χ)(q−1) for (x, χ) ∈ Θsp.

2. f I
ϕ(q) for ϕ ∈ Irr(W ).

3. gI⊥

ϕ (q) for ϕ ∈ Irr(W ).

4. P(BI⊥

x ; χ)(q) for (x, χ) ∈ Θsp.
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Proof. Statement (1) follows (6.3) by substituting q−1 for q and then multi-
plying by q.

For (2), the determinant of K equals qm for some m ∈ N. So K is invertible
(and in fact the entries of qmK−1 are polynomials). We want to convert (4.7)
into a matrix equation. To that end, we construct vectors (P(BI

x; χ)) and(
q−cI f I

ϕ

)
using the linear order on Θsp and Irr(W ), respectively, from §4.

Then (4.7) becomes the matrix-vector equation

(P(BI
x; χ)) = (q−cI f I

ϕ)K

and therefore (
q−cI f I

ϕ

)
= (P(BI

x; χ))K−1.

Now part (1) and the Remark 6.4 imply that q−cI f I
ϕ(q−1) satisûes the modular

law for all ϕ ∈ Irr(W ). Multiplying by qcI2 we have

(1 + q) · q−1f I1
ϕ (q−1)) = f I2

ϕ (q−1) + q · q−2f I0
ϕ (q−1)

and the result follows by replacing q−1 with q.
Statement (3) now follows from (2) and (5.11) and Remark 6.4. Similarly

(4) follows from Proposition 5.3.

Remark 6.6. It is also possible to prove that P(BH
x ; χ) satisûes the modular

law by adapting the geometric proof in Proposition 1.2 to the varieties BH
x .

6.4. Alternative formulation of Proposition 1.2

As discussed in the introduction, if Q is any parabolic subgroup stabilizing
I ∈ Id, then we can consider the map

μI,Q : G ×Q I → OI

and its derived pushforward

SI,Q := RμI,Q
∗ (C[dim G/Q + dim I]).

Suppose Q′ is another parabolic subgroup stabilizing I with Q′ ⊂ Q. Then

(6.5) SI,Q′ = H∗(Q/Q′)[dim Q/Q′] ⊗ SI,Q

since G ×Q′

I is a ûber bundle over G ×Q I with ûber Q/Q′.
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Now let I2 ⊂ I1 ⊂ I0 be a modular triple of ideals. Since the f I
ϕ satisfy

(1 + q)f I1
ϕ = f I2

ϕ + qf I0
ϕ by Proposition 6.5, the mI

u,φ from §4 satisfy

(q + q−1)mI1

u,φ = mI2

u,φ + mI0

u,φ

for all (u, φ) ∈ Θsp. Since the mI
u,φ determine the V I

u,φ in Equation (5.3), it
follows that

(q + q−1)SI1,B = SI0,B ⊕ SI2,B.

Since I1 and I0 are Pα-stable and P(Pα/B) = 1 + q, we have SI0,B =
(q+q−1)SI0,Pα

and SI2,B = (q+q−1)SI2,Pα
. Hence, clearing away the (q+q−1)

from all three terms, we have the following.

Proposition 6.7. Let I2 ⊂ I1 ⊂ I0 be a modular triple. There is an isomor-
phism

SI1,B � SI2,Pα
⊕ SI0,Pα

in the derived category of G-equivariant perverse sheaves on N .

7. Type A results

In Proposition 6.5 we proved that the polynomials f I
ϕ and gI⊥

ϕ satisfy the
modular law of (6.4). We now connect those results to a combinatorial mod-
ular law for symmetric functions, proving that the two notions are equivalent
in the type A case.

Let G = SLn(C) throughout this section, B be the set of upper triangular
matrices in G, and T the set of diagonal matrices. Let Eij denote the elemen-
tary matrix with 1 in entry (i, j) and all other entries equal to 0. Then the Eij

for i < j are basis vectors of the positive root spaces of g = sln(C) relative to
t and b. The positive roots are εi − εj for i < j, where εk denotes the linear
dual of Ekk, and the simple roots Δ are ³k := εk − εk+1 for 1 ≤ k ≤ n − 1.
The simple reüection sk := sαk

corresponds to the simple transposition in
W � Sn exchanging k and k + 1.

The modular law was ûrst introduced for chromatic symmetric functions
by Guay–Paquet in [GP13]. More recently, Abreu and Nigro showed that any
collection of multiplicative symmetric functions satisfying the modular law are
uniquely determined up to some initial values [AN21a]. As an application of
our results, we apply their theorem to compute the Frobenius characteristic of
the dot action and LLT representations, recovering results of Brosnan–Chow
and Guay–Paquet [BC18, GP16].
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7.1. The combinatorial modular law

We introduce the combinatorial modular law in the context of Hessenberg
functions. In type An−1, each ideal I ∈ Id uniquely determines, and is deter-
mined by, a weakly increasing function

h : {1, 2, . . . , n} → {1, 2, . . . , n}

such that i ≤ h(i) for all i. Such a function is called a Hessenberg function
and its Hessenberg vector is (h(1), . . . , h(n)). Given a Hessenberg function h,
the ideal Ih ∈ Id corresponding to h is given by

Ih := spanC{Eij | h(i) < j}.(7.1)

The function h also determines a lattice path from the upper left corner
of an n × n grid to the lower right corner, by requiring that the vertical step
in row i occurs h(i) columns from the left. The requirement that h(i) ≥ i
guarantees that this lattice path never crosses the diagonal. Thus, Hessenberg
functions (and ideals Id and Hessenberg spaces H) are in bijection with the
set of Dyck paths of length 2n. By a slight abuse of notation, we write H for
the set of Hessenberg functions, or equivalently Dyck paths, throughout this
section.

Example 7.1. For n = 4, the Hessenberg function h with vector (2, 3, 3, 4)
corresponds to the ideal Ih = spanC{E13, E14, E24, E34} and deûnes the fol-
lowing lattice path. The matrices in Ih are those with all zeros below the
path.

Lemma 7.2. Let h ∈ H and ´ = εi − εj ∈ ΦIh
. Then ´ is a minimal root of

ΦIh
if and only if j = h(i) + 1 and h(i) < h(i + 1).

Proof. Suppose ´ = εi − εj ∈ ΦIh
, i.e. that h(i) < j. Assume ûrst that

j = i + 1. In this case, the lemma is trivial since ´ is a simple root (and
thus a minimal root of Φ+) and h(i) < i + 1 if and only if h(i) = i. We may
therefore assume j > i + 1 for the remainder of the proof. In this case, we
have ³ ∈ Δ such that ´ − ³ ∈ Φ if and only if ³ = ³i or ³ = ³j−1 since Φ is
a type A root system. Now ´ ∈ ΦIh

is minimal if and only if

´ − ³j−1 = εi − εj−1 /∈ ΦIh
and ´ − ³i = εi+1 − εj /∈ ΦIh

,
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or equivalently, h(i) ≥ j − 1 and h(i + 1) ≥ j. As h(i) < j these conditions

are equivalent to h(i) = j − 1 and h(i) < h(i + 1), as desired.

Lemma 7.3. Let h ∈ H and k ∈ {1, 2, . . . , n − 1}. Then sk(ΦIh
) = ΦIh

if

and only if h(k) = h(k + 1) and h−1(k) = ∅.

Proof. Suppose ûrst that h(k) = h(k + 1) and h−1(k) = ∅. Note that h(k) =

h(k + 1) ⇒ h(k) ≥ k + 1 so ³k /∈ ΦIh
. Let ´ = εi − εj ∈ ΦIh

, so h(i) < j.

Consider sk(´) = ´−〈´, ³∨
k 〉³k. If 〈´, ³∨

k 〉 ≤ 0 then sk(´) ∈ ΦIh
since Ih ∈ Id.

We may therefore assume 〈´, ³∨
k 〉 > 0, in which case we have either i = k

or j = k + 1 since Φ is a type A root system and ´ �= ³k. If i = k then

sk(´) = εk+1 − εj ∈ ΦIh
since h(k + 1) = h(i) < j. If j = k + 1, then

sk(´) = εi − εk ∈ ΦIh
since h(i) < k + 1 and h−1(k) = ∅ implies h(i) < k.

Now suppose either h(k) < h(k + 1) or h−1(k) �= ∅. If h(k) < h(k + 1),

then εk − εh(k)+1 is a minimal root of ΦIh
by Lemma 7.2 so

sk(εk − εh(k)+1) = εk+1 − εh(k)+1 = (εk − εh(k)+1) − ³k /∈ ΦIh
,

and ΦIh
is not sk-invariant. If h−1(k) �= ∅ then there exists i ∈ {1, 2, . . . , n−1}

such that h(i) = k and h(i) < h(i + 1). We have that εi − εk+1 is a minimal

root of ΦIh
so

sk(εi − εk+1) = εi − εk = (εi − εk+1) − ³k /∈ ΦIh
,

and, as before, ΦIh
is not sk-invariant.

We now introduce the triples used to deûne the combinatorial modular

law as in [AN21a, Def. 2.1].

Definition 7.4. We say h0, h1, h2 ∈ H is a combinatorial triple whenever

one of the following two conditions holds:

1. There exists i ∈ {1, 2, . . . , n − 1} such that h1(i − 1) < h1(i) < h1(i + 1)

and h1(h1(i)) = h1(h1(i) + 1). Moreover, h0 and h2 are deûned to be:

h0(j) =

{
h1(j) j �= i
h1(i) − 1 j = i

and(7.2)

h2(j) =

{
h1(j) j �= i
h1(i) + 1 j = i.
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2. There exists i ∈ {1, 2, . . . , n − 1} such that h1(i + 1) = h1(i) + 1 and
h−1

1 (i) = ∅. Moreover h0 and h2 are deûned to be:

h0(j) =

{
h1(j) j �= i + 1
h1(i) j = i + 1

and(7.3)

h2(j) =

{
h1(j) j �= i
h1(i + 1) j = i.

Example 7.5. Let n = 6 and set h1 = (2, 3, 4, 6, 6, 6). Then h1 satisûes condi-
tion (1) of Deûnition 7.4 for i = 3 since h1(2) < h1(3) < h1(4) and

h1(h1(3)) = h1(4) = 6 = h1(4 + 1) = h1(h1(3) + 1).

Using (7.2) we obtain h0 = (2, 3, 3, 6, 6, 6) and h2 = (2, 3, 5, 6, 6, 6).

Given a triple h0, h1, h2 of Hessenberg functions we let I0, I1, I2 ∈ Id be
the corresponding ideals deûned as in (7.1).

Lemma 7.6. The Hessenberg functions h0, h1, h2 form a combinatorial triple
if and only if I2 ⊂ I1 ⊂ I0 is a modular triple of ideals.

Proof. We ûrst prove that any combinatorial triple corresponds to a modular
triple of ideals in Id. Let h0, h1, h2 be a triple of Hessenberg functions sat-
isfying condition (1) of Deûnition 7.4. We must have h1(i) > i in this case.
Indeed, h1(i) ≥ i and if h1(i) = i then h1(h1(i)) = i and h1(h1(i) + 1) =
h1(i + 1) ≥ i + 1, violating the fact that h1(h1(i)) = h1(h1(i) + 1). We may
therefore assume i < h1(i) < n. The formula for h0 in (7.2) now yields

h0(h1(i)) = h1(h1(i)) = h1(h1(i) + 1) = h0(h1(i) + 1).(7.4)

Similarly, if j < i then h0(j) = h1(j) ≤ h1(i − 1) < h1(i) and if j > i
then h0(j) = h1(j) ≥ h1(i + 1) > h1(i). As h0(i) = h1(i) − 1 �= h1(i), this
proves h−1

0 (h1(i)) = ∅. Together with (7.4), this gives us sh1(i)(Ih0) = Ih0 by
Lemma 7.3. Set ´ = εi − εh1(i). Then 〈´, ³∨

h1(i)〉 = −1. As h1(i) = h0(i) + 1
and

h0(i) = h1(i) − 1 < h1(i + 1) = h0(i + 1),

we have that ´ is a minimal root of I0 by Lemma 7.2. The formulas for h0

and h2 given in (7.2) imply I0 = I1 ⊕ gβ and I1 = I2 ⊕ gαh1(i)+β. This proves
I2 ⊂ I1 ⊂ I0 is a modular triple.

Now suppose h0, h1, h2 satisfy condition (2) of Deûnition 7.4. The formula
for h0 in (7.3) gives us h−1

1 (i) = ∅ ⇒ h−1
0 (i) = ∅ and h0(i) = h1(i) = h0(i+1).
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Therefore si(ΦI0) = ΦI0 by Lemma 7.3. The assumption h1(i + 1) = h1(i) + 1
yields

h0(i + 1) + 1 = h1(i) + 1 = h1(i + 1)

and

h0(i + 1) = h1(i) < h1(i + 1) ≤ h1(i + 2) = h0(i + 1)

so εi+1 − εh1(i+1) is a minimal root of ΦI0 by Lemma 7.2. Setting ´ = εi+1 −
εh1(i+1) we get 〈´, ³∨

i 〉 = −1, I0 = I1 ⊕ gβ, and I1 = I2 ⊕ gαi+β . This proves
I2 ⊂ I1 ⊂ I0 is a modular triple.

Next we argue that any modular triple of ideals I2 ⊂ I1 ⊂ I0 corresponds
to a combinatorial triple h0, h1, h2. There exists ³k ∈ Δ and ´ ∈ Φ+ such that
〈´, ³∨

k 〉 = −1, I0 = I1 ⊕ gβ , and sk(ΦI0) = ΦI0 . Furthermore, by deûnition I2

is the ideal deûned by the condition I1 = I2 ⊕ gα+β. Since Φ is a type A root
system, ´ = εi − εk for some i < k or ´ = εk+1 − εp for some p > k + 1. We
consider each case.

Suppose ûrst that ´ = εi − εk for some i < k. We argue that the triple
of Hessenberg functions h0, h1, h2 satisûes condition (1) of Deûnition 7.4. As
³+´ = εi−εk+1 is a minimal root of I1, we have h1(i) = k and h1(i) < h1(i+1)
by Lemma 7.2. Since I0 = I1 ⊕ gβ ,

h0(j) = h1(j) for all j �= i and h0(i) = h1(i) − 1.(7.5)

If h1(i − 1) = h1(i) = k then h0(i − 1) = k by (7.5), contradicting, by
Lemma 7.3, the assumption that sk(ΦI0) = ΦI0 . Thus h1(i − 1) < h1(i).
Lemma 7.3 also implies h0(k) = h0(k + 1) and since i < k, (7.5) now yields
h1(k) = h1(k + 1) ⇒ h1(h1(i)) = h1(h1(i) + 1). Finally, as I2 satisûes I1 =
I2 ⊕ gα+β, the Hessenberg function h2 is deûned as in (7.2), concluding this
case.

Suppose ´ = εk+1 − εp for some p > k + 1. We argue that the triple
of Hessenberg functions h0, h1, h2 satisûes condition (2) of Deûnition 7.4.
Lemma 7.2 implies that p = h0(k + 1) + 1 since ´ is a minimal root of
Φh0 . Now that fact that I0 = I1 ⊕ gβ implies

(7.6) h1(k + 1) = p = h0(k + 1) + 1 and h1(j) = h0(j) for all j �= k + 1.

Lemma 7.3 and (7.6) together imply that h1(k + 1) = h0(k) + 1 = h1(k) + 1
and h−1

1 (k) = ∅. This proves h1 and h0 are as in Deûnition 7.4 with i = k.
The fact that I2 satisûes I1 = I2 ⊕ gα+β where ³ + ´ = εk − εp implies that
h2 is deûned as in (7.3) with i = k. The proof is now complete.
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Let Λn denote the Z-module of homogeneous symmetric functions of de-
gree n. The Schur functions {sλ | λ � n} are a basis of Λn. Here, λ � n means
λ = (λ1 ≥ λ2 ≥ · · · ≥ λ� > 0) is a partition of n.

We say the function F : H → Q(q) ⊗ Λn satisûes the combinatorial

modular law if

(1 + q) F (h1) = F (h2) + qF (h0)(7.7)

whenever h0, h1, h2 ∈ H is a combinatorial triple of Hessenberg functions.
With Lemma 7.6 in hand, we recover the combinatorial modular law as a
special case of the modular law from Deûnition 6.3.

Let F : H → Q(q) ⊗ Λn. Given I ∈ Id and λ � n, deûne F I
λ ∈ Q(q) by

F (h) =
∑

λ
n

F I
λ (q)sλ

where h ∈ H is the unique Hessenberg function with I = Ih.

Proposition 7.7. The function F : H → Q(q) ⊗ Λn satisfies the combinato-
rial modular law (7.7) if and only if {F I

λ }I∈Id satisfies (6.4) for all λ � n.

Proof. By Lemma 7.6, h0, h1, h2 ∈ H is a combinatorial triple if and only if
I2 ⊂ I1 ⊂ I0 is a modular triple in Id. Since the sλ form a basis of Λn, it
follows that

(1 + q) F (h1) = q F (h0) + F (h2)

if and only if

(1 + q) F I1

λ = qF I0

λ + F I2

λ

for all λ � n.

7.2. Chromatic quasisymmetric functions and LLT polynomials

When working in the context of chromatic and LLT polynomials, a Hessenberg
function (or Dyck path) is frequently identiûed with an indifference graph (see
[HP19, §2.3]). For a composition μ = (μ1, . . . , μr) of n, let h(μ) denote the
Hessenberg function with h(i) = μ1 + · · · + μk where k is the smallest index
satisfying i ≤ μ1 + · · ·+μk. Let Km denote the complete graph on m vertices.
Then the graph corresponding to h(μ) is a disjoint union Kμ1 �Kμ2 �· · ·�Kμr

of complete graphs.

Abreu-Nigro showed the following key result in [AN21a, Theorem 1.2].
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Theorem 7.8 (Abreu–Nigro). Let F : H → Q(q)⊗Λn be a function satisfying
the combinatorial modular law of Equation (7.7). Then F is determined by
its values F (h(μ)) where μ is a composition of n.

Let Rn denote the representation ring of Sn and recall that the Frobe-
nius characteristic map deûnes an isomorphism R = ⊕nRn → Λ = ⊕nΛn

(see [Ful97, Section 7.3]). Given a graded complex vector space U = ⊕iU2i

concentrated in even degree such that each U2i is a ûnite dimensional Sn-
representation, we let Ch(U) =

∑
i[U2i]q

i where [U2i] denotes the class of U2i

in Rn.
If μ is a composition of n and I ∈ Id is the ideal corresponding h(μ), then

H = I⊥ ∈ H is a parabolic subalgebra pμ of a parabolic subgroup Pμ in G
with WPµ

� Sμ1 × Sμ2 × · · · × Sμr
. Since we know the values of the dot action

and LLT representations at all pμ by Proposition 5.5, we can use Theorem 7.8
to identify the graded characters of the dot action and LLT representations
as symmetric functions under the Frobenius characteristic map. In the former
case, we obtain another proof of the Shareshian–Wachs conjecture, originally
proved by Brosnan and Chow in [BC18] and again using independent methods
by Guay-Paquet in [GP16]). We note that the proof below is not wholly
independent of that of Brosnan and Chow, since our computations in the
previous section rely on their result [BC18] identifying the dot action as a
monodromy action.

Rather than deûne the chromatic quasisymmetric and unicellular LLT
functions corresponding to a given Hessenberg function h in careful detail
here, we refer the interested reader to [SW16, AN21a, AN21b, AP18].

Corollary 7.9. Let h ∈ H and let H = I⊥
h .

1. The image of Ch(H∗(BH
s )⊗sgn) under the Frobenius characteristic map

is equal to the chromatic quasisymmetric function of h.
2. The image of Ch(LLTH) under the Frobenius characteristic map is equal

to the unicellular LLT polynomial of h.

Proof. Proposition 7.7 and Proposition 6.5 imply that the Frobenius charac-
teristic map of Ch(H∗(BH

s ) ⊗ sgn) and Ch(LLTH) in Q(q) ⊗ Λn both satisfy
the combinatorial modular law. It therefore suffices by Theorem 7.8 to show
that Ch(H∗(B

pµ
s )⊗ sgn) is equal to the chromatic quasisymmetric function of

h(μ) and Ch(LLTpµ
) is equal to the unicellular LLT polynomial of h(μ) under

the Frobenius characteristic map, for each composition μ of n.
By Proposition 5.5(1)

Ch(H∗(Bpµ

s ) ⊗ sgn) = P(Pμ/B)Ch(IndSn

Sµ1 ×···×Sµr
(sgn)).
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The Frobenius characteristic of IndSn

Sµ1 ×···×Sµr
(sgn) is the elementary symmet-

ric polynomial eμ. Also P (Pμ/B) =
∏r

i=1[μi]! where [m]! = [m][m−1] . . . [2][1]

and [m] is the q-number 1+q+. . .+qm−1. The chromatic quasisymmetric func-

tion of h(μ) is
∏r

i=1[μi]!eμ, so both sides agree in the parabolic setting and the

result follows.

By Proposition 5.5(2), Ch(LLTpµ
) equals the graded character of

IndSn

Sµ1 ×···×Sµr
(Cμ1 ⊗ Cμ2 ⊗ · · · ⊗ Cμr

),

where Cm denotes the covariant algebra of Sm. Let Frob(U) denote the Frobe-

nius characteristic of a graded representation U . Then

Frob
(
IndSn

Sµ1 ×···×Sµr
(Cμ1 ⊗ Cμ2 · · · ⊗ Cμr

)
)

=
r∏

i=1

Frob(Cμi
).

Since unicellular LLT polynomials corresponding to Hessenberg functions are

multiplicative (see [AN21b, Theorem 2.4]), it suffices to know that Frob(Cm)

equals the unicellular LLT polynomials for Sm for the case of the complete

graph Km, which is true by, for example, [AP18, Equation (30)].

8. Example in B3

In type B3, there are 20 ideals in Id and 10 irreducible representations in

Irr(W ). The ideals are grouped according to the nilpotent orbit OI . We specify

I by listing the minimal roots in ΦI , using the coefficients of the simple roots.

The elements of Θsp are listed in the top row of Table 1. The elements of

Irr(W ), as pairs of partitions, are listed in the top row of Table 2.

The ideals I for which OI = Ox and

I ⊂
⊕

i≥2

gi

for the grading induced by x are listed with a ∗ symbol. For such I, we have

I + g2 ∈ Idgen
2 and all such elements of Idgen

2 arise in this way.

There are 10 examples of the modular law in type B3, which we list using

the numbering of the ideals in the tables:

(3, 5, 11), (4, 5, 11), (4, 6, 9), (7, 8, 12), (9, 10, 13), (11, 12, 13),(8.1)

(12, 13, 17), (14, 15, 16), (17, 18, 19), (18, 19, 20).
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Table 1: The polynomials P(BI
x; χ) for B3.

Ideal Min roots [17] [22
, 13] [3, 14], ε [3, 14], 1 [3, 22] [32

, 1], ε [32
, 1], 1 [5, 12].ε [5, 12], 1 [7]

20* ∅ [2][4][6]

19* 122 [2][4][6] [2][2]

18 112 [2][4][6] [2][2][2]

17 012 [2][4][6] [2][2][3]

16* 111 [2][4][6] [2][2][2] [2][2] [2][2]

15* 110 [2][4][6] [2][2][3] q[2] [2][3]

14* 100 [2][4][6] [2][2][4] 0 [2][4]

13* 111, 012 [2][4][6] [2][2][3] [2][2] [2][2] [2]

12 011 [2][4][6] [2][2][3] [2][2][2] [2][2][2] [2][2]

11 001 [2][4][6] [2][2][3] [2][2][3] [2][2][3] [2][3]

10* 110, 012 [2][4][6] [2][2](1+ q+ 2q
2) q[2] [2][3] [2] 1 1

9 100, 012 [2][4][6] [2][2](1+q+2q
2+q

3) 0 [2][4] [2] [2] [2]

8* 110, 011 [2][4][6] [2][2](1+q+2q
2) 2q+3q

2 + q
3 [2](1+2q+2q

2) [2](1+2q) 0 [2]

7* 010 [2][4][6] [2][2](1+q+2q
2+q

3) q[2][2] [2][2][3] [2][2][2] 0 [2][2]

6* 100, 011 [2][4][6] [2][2](1+q+2q
2+q

3) q[2][2] [2][2][3] [2](1+2q) q 1+2q 1 1

5 110, 001 [2][4][6] [2][2](1+q+2q
2) q[2](2+2q+q

2) [2](1+2q+3q
2+q

3) [2][2][2] 0 [2] 1 1

4 100, 001 [2][4][6] [2][2](1+q+2q
2+q

3) q[2][2][2] [2](1+2q+3q
2+2q

3) [2](1+2q+2q
2) 0 [2][2] [2] [2]

3 010, 001 [2][4][6] [2][2](1+q+2q
2+q

3) q[2][2][2] [2](1+2q+3q
2+2q

3) [2](1+2q+2q
2) 0 [2][2] [2] [2]

2* 100, 010 [2][4][6] [2][2](1+q+2q
2+2q

3) q
2[2] [2](1+2q+2q

2+2q
3) [2][2][2] q[2] 1+3q+2q

2 0 [2]

1* ∆ [2][4][6] [2][2](1+q+2q
2+2q

3) 2q
2+3q

3+q
4 1+3q+5q

2+6q
3+3q

4 1+3q+5q
2+3q

3
q

2 1+3q+3q
2 2q 1+3q 1
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Table 2: The polynomials f I
ϕ for B3.

Ideal Min roots ∅, [13] ∅, [2, 1] [13], ∅ [1], [12] [12], [1] ∅, [3] [1], [2] [2, 1], ∅ [2], [1] [3], ∅

20 ∅ [2][4][6]

19 122 [2][4][5] q
3[2][2]

18 112 [2][4][4] q
2[2][2][2]

17 012 [2][3][4] q[2][2][3]

16 111 [2][3][4] q
2[2][2] q

2[2][2] q
2[2][2]

15 110 [2][2][4] q[2][3] q
2[2] q[2][3]

14 100 [2][4] [2][4] 0 [2][4]

13 111, 012 [2][3][3] q[2][2][2] q
2[2] q

2[2] q
2[2]

12 011 [2][2][3] q[2][2] q[2][2] q[2][2] q[2][2]

11 001 [2][3] 0 [2][3] [2][3] [2][3]

10 110, 012 [2][2][3] 2q[2][2] q
2

q[2][2] q
2

q
2

q
2

9 100, 012 [2][3] [2][2][2] 0 [2][3] 0 q[2] q[2]

8 110, 011 [2][2][2] 2q[2] q[2] 2q[2] 2q[2] 0 q[2]

7 010 [2][2] [2][2] 0 [2][2] [2][2] 0 [2][2]

6 100, 011 [2][2] 1+3q+q
2

q 1+3q+q
2 2q q 2q q q

5 110, 001 [2][2] q [2][2] 1+3q+q
2 1+3q+q

2 0 q q q

4 100, 001 [2] [2] [2] 2[2] 2[2] 0 [2] [2] [2]

3 010, 001 [2] [2] [2] 2[2] 2[2] 0 [2] [2] [2]

2 100, 010 [2] 2[2] 0 2[2] [2] [2] 2[2] 0 [2]

1 ∆ 1 2 1 3 3 1 2 2 3 1
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The modular triples (8.1) provide a check on our calculation in both tables,

as do the 8 cases in the parabolic setting in Table 2 using (4.8). We made use

of Binegar’s tables to check our calculation of the Green polynomial matrix

K [Bin].

Appendix A. Definition of the dot action and LLT

representations

This appendix introduces the dot action on the equivariant cohomology of

a regular semisimple Hessenberg variety and uses the construction to deûne

the dot action and LLT representations. Our main goal is to obtain a proof

of Proposition 5.4 above, which was used to deûne and study the LLT repre-

sentations.

Let H ∈ H be a Hessenberg space and s ∈ t a regular semisimple element.

Recall that the torus T acts on regular semisimple Hessenberg variety BH
s by

left multiplication. The variety is in fact equivariantly formal with respect to

this action [Tym05]. Applying the theory developed by Goresky, Kottwitz,

and MacPherson [GKM98], the equivariant cohomology H∗
T (BH

s ) has the fol-

lowing description. The inclusion map of the T -ûxed point BH,T
s = {wB |

w ∈ W} into BH
s induces an injection

ι : H∗
T (BH

s ) ↪→ H∗
T (BH,T

s ) �
⊕

w∈W

C[t∗].

Here C[t∗] denotes the polynomial ring in the simple roots C[³1, . . . , ³n].

We identify H∗
T (BH

s ) with its image under this map, which is given by the

following concrete description,

H∗
T (BH

s ) �

{
(fw)w∈W |

fw − fsγw ∈ 〈γ〉 for γ ∈ Φ+,
w−1(γ) ∈ ΦH + Φ−

}
.(A.1)

A more leisurely exposition of the above can be found in [AHM+20, Tym05].

Let T :=
⊕

w∈W C[t∗]. The ring T is a C[t∗]-module via the action,

(p, f) �→ pf where (pf)w = pfw(A.2)

for all p ∈ C[t∗] and f = (fw)w∈W ∈ T . Equation (A.1) identiûes H∗
T (BH

s ) as

a C[t∗]-submodule of T , and we make this identiûcation from now on. We can

also view T as a C[t∗]-module in another way. To distinguish this structure
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from that deûned in (A.2) we call this the right C[t∗]-module action on T ,
which is deûned by

(q, f) �→ fq where (fq)w = w(q)fw(A.3)

for all q ∈ C[t∗] and f = (fw)w∈W ∈ T . The equivariant cohomology H∗
T (BH

s )
is also a C[t∗]-submodule of T with respect to the right action.

Let 1 = (1)w∈W ∈ T . We can identify C[t∗] with the C[t∗]-submodule
generated by 1, via the left action from (A.2) or the right action from (A.3).
To distinguish between the left and right submodules generated by 1 we write:

• C[L] for the left C[t∗]-module generated by 1 via the action from (A.2).
• C[R] for the right C[t∗]-module generated by 1 via the action from (A.3).

This notation is inspired by the exposition in [GP16]. Both C[L] and C[R]
are submodules of H∗

T (BH
s ) in the appropriate sense. Recall that H∗(BH

s ) �
H∗

T (BH
s )/ 〈³1, . . . , ³n〉L where 〈³1, . . . , ³n〉L is the ideal of H∗

T (BH
s ) generated

by the positive degree elements in C[L] (see [Tym05, Prop. 2.3]).
The W -action on Φ ⊆ t∗ extends to a W -action on C[t∗] in a natural way.

We denote the action of w ∈ W on f ∈ C[t∗] by w(f). The dot action of W
on T is deûned by

(v · f)w := v(fv−1w) for all v ∈ W, f ∈ T .(A.4)

The dot action preserves the equivariant cohomology H∗
T (BH

s ) in T [AHM+20,
Lemma 8.7].

The submodules C[L] and C[R] introduced above are also invariant un-
der the dot action. Let C[t∗]W denote the ring of W -invariants in C[t∗]. By
Chevalley’s Theorem C[t∗] � C[t∗]W ⊗ C where C is the coinvariant algebra
of W . The following lemma computes the graded character of the dot action
on C[L] and C[R].

Lemma A.1. We have C[L] � C[t∗]W ⊗ C and C[R] � C[t∗]W ⊗ C′, where
C′ � C as vector spaces, but W acts trivially on C′. In particular,

Ch(C[L]) =
n∏

i=1

1

(1 − qdi)
Ch(C)

and

Ch(C[R]) =
n∏

i=1

1

(1 − qdi)

∑

w∈W

[1W ]q�(w)

where d1, . . . , dn denote the degrees of W (cf. [Hum90, Sec. 3.7-3.8]).
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Proof. We ûrst compute the dot action on C[L] and C[R], respectively. If
p ∈ C[L] then

(v · p)w = v(pv−1w) = v(p) = (v(p))w.

Thus the dot action on C[L] is the usual graded representation of W on the
polynomial ring C[t∗]. If q ∈ C[R] then

(v · q)w = v(qv−1w) = v(v−1w(q)) = w(q) = qw

so the dot action on C[R] is trivial. Since C[L] � C[R] � C[t∗] as vector
spaces, the ûrst assertion of the lemma follows from the above computations.
Finally, the second assertion follows from the fact that the Poincaré polyno-
mial of the ring C[t∗]W is precisely

∏n
i=1

1
(1−qdi )

and Ch(C′) =
∑

w∈W [1W ]q�(w).

Consider the ideals 〈³1, . . . , ³n〉L, and respectively 〈³1, . . . , ³n〉R, in the
equivariant cohomology H∗

T (BH
s ) generated by the positive degree elements

of C[L], and respectively C[R]. Both are W -invariant, and the dot action on
H∗

T (BH
s ) induces an action on the quotients

H∗(BH
s ) � H∗

T (BH
s )/ 〈³1, . . . , ³n〉L(A.5)

and

LLTH := H∗
T (BH

s )/ 〈³1, . . . , ³n〉R .(A.6)

We refer to the W -module H∗(BH
s ) as the dot action representation and the

W -module LLTH as the LLT representation.

Remark A.2. In the type A case LLTH � H∗(XH) where XH is the smooth
manifold of Hermitian matrices having a particular staircase form (determined
by H) and a given ûxed simple spectrum (determined by s) [AB20].

We can now prove Proposition 5.4; our argument closely follows that of
Guay-Paquet in [GP16] for the type A case. In the proof below, � denotes the
product (which corresponds to taking the tensor product of representations)
in the character ring of W .

Proof of Proposition 5.4. The equivariant cohomology H∗
T (BH

s ) is a free mod-
ule of rank n! over C[t∗] with respect to either (A.2) or (A.3), see the dis-
cussion in [GP16, Section 8.5] or [AHM+20, Section 2.3]. In particular, the
usual extension of scalars construction for free modules yields isomorphisms
of W -modules:

H∗
T (BH

s ) � C[L] ⊗C H∗(BH
s )(A.7)
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and

H∗
T (BH

s ) � C[R] ⊗C LLTH .(A.8)

It now follows that

Ch(C[L]) � Ch(H∗(BH
s )) = Ch(C[R]) � Ch(LLTH).

Applying the formulas from Lemma A.1 and dividing by
∏n

i=1
1

(1−qdi )
now

yields the desired result.

To conclude, we sketch a proof of the fact that if BH
s is disconnected then

both the dot action and LLT representations are induced by corresponding
representations of a parabolic subgroup of W . It is well known to experts
but, to the best of our knowledge, has not appeared in the literature so we
include an outline of the argument here. This fact can be used together with
Proposition 5.2 to give another proof of Borho and MacPherson’s result in
equation (4.8) above.

Let J = {³ ∈ Δ | −³ ∈ ΦH} ⊆ Δ. Then BH
s is connected if and only

if J = Δ [AT10, Appendix A]. Let L denote the standard Levi subgroup
associated to J with Lie algebra l. There is a natural embedding of the üag
variety BL := L/(B + L) of L into B given by �(B + L) �→ �B. Let WJ :=
〈sα | ³ ∈ J〉 be the corresponding parabolic subgroup of W , which is the
Weyl group of L. Denote by W J the set of shortest coset representatives
for the left cosets W/WJ . For each v ∈ W J we have that sv := v−1.s is a
regular semisimple element in l. Furthermore, by deûnition H := H + l is
a Hessenberg space in l and the regular semisimple Hessenberg variety BH

L,s

in the üag variety of L is connected. Now the decomposition of BH
s into

connected components is given by

BH
s =

⊔

v∈W J

v(BH
L,sv

)(A.9)

where BH
L,sv

= {�(B + L) ∈ BL | �−1.sv ∈ H}. Each v(BH
L,sv

) is isomorphic

to BH
L,s, and the cohomology decomposes accordingly. We now obtain the

following directly from the deûnition of the dot action together with the
decomposition cohomology induced by (A.9).

Corollary A.3. There is an isomorphism of W -modules:

H∗
T (BH

s ) � IndW
WJ

(H∗
T (BH

L,s)).(A.10)

For the author's personal use only.

For the author's personal use only.



536 Martha Precup and Eric Sommers

In particular, both the dot action and LLT representations are obtained by

induction from the corresponding representations for BH
L,s, namely,

H∗(BH
s ) � IndW

WJ
(H∗(BH

L,s)) and LLTH � IndW
WJ

(LLTH).
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