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Perverse sheaves, nilpotent Hessenberg varieties, and
the modular law

MARTHA PRECUP* AND ERIC SOMMERS

Dedicated to George Lusztig

Abstract: We consider generalizations of the Springer resolution
of the nilpotent cone of a simple Lie algebra by replacing the cotan-
gent bundle with certain other vector bundles over the flag vari-
ety. We show that the analogue of the Springer sheaf has as di-
rect summands only intersection cohomology sheaves that arise in
the Springer correspondence. The fibers of these general maps are
nilpotent Hessenberg varieties, and we build on techniques estab-
lished by De Concini, Lusztig, and Procesi to study their geometry.
For example, we show that these fibers have vanishing cohomology
in odd degrees. This leads to several implications for the dual pic-
ture, where we consider maps that generalize the Grothendieck—
Springer resolution of the whole Lie algebra. In particular we are
able to prove a conjecture of Brosnan.

As we vary the maps, the cohomology of the corresponding
nilpotent Hessenberg varieties often satisfy a relation we call the
geometric modular law, which also has origins in the work of De
Concini, Lusztig, and Procesi. We connect this relation in type A
with a combinatorial modular law defined by Guay-Paquet that is
satisfied by certain symmetric functions and deduce some conse-
quences of that connection.

1. Introduction

Let G be a simple algebraic group over C with Lie algebra g. Let B be a
Borel subgroup with Lie algebra b containing a maximal torus 7" with Lie
algebra t. Denote by ® the root system associated to the pair (T, B), with
simple roots A. Let U be the unipotent radical of B with u its Lie algebra.
Let W = Ng(T')/T be the Weyl group of T' and B := G//B the flag variety
of G.
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Let NV denote the variety of nilpotent elements in g. For complex varieties,
dim(X) refers to the complex dimension. Let N := dim(N'), which equals
2dim(u). The Springer resolution of the nilpotent cone N in g is the proper,
G-equivariant map

p:GxBu—sN

sending (g,z) € G X u to g.x, where g.z := Ad(g)(x) denotes the adjoint
action of G on g.

Let C[N] be the shifted constant sheaf on G xZ u with coefficients in C.
The shift makes it a G-equivariant perverse sheaf on G' xZu. A central object
in Springer theory is the Springer sheaf Ry, (C[N]), the derived pushforward
of C under p. The Springer sheaf is a G-equivariant perverse sheaf on A/. The
nilpotent cone A is stratified by nilpotent G-orbits. Let O be a nilpotent orbit
and £ an irreducible G-equivariant local system on O. Denote by © the set of
all such pairs (O, £). Let IC(O, £) denote the intersection cohomology sheaf
on N defined by a pair (O, L) € ©. We use the convention that if O’ C O,
then H/IC(O, L)|or = 0 unless

—dimO < j < —dim O'.

The decomposition theorem implies that Ry (C[N]) is a direct sum of shifted
IC-complexes. That is,

(1.1) Ry (C[N]) ~ @ IC(@, L)®Vor,
(0,£)e©

where each Vp  is a graded complex vector space. Since p is semismall, Vo 2
is concentrated in degree 0. Now, both sides of (1.1) carry an action of W
that makes the nonzero vector space Vo  into an irreducible representation
of W. Let O, denote the pairs (O, L) for which Vp  # 0. The Springer
correspondence says that the map

(1.2) (O,.L) € Oy — Vo elr(W)

is a bijection. Here, Irr(K’) denotes the irreducible complex representations
of a group K. Our convention for the Springer correspondence sends the
zero orbit with trivial local system to the sign representation of W and the
regular nilpotent orbit with trivial local system to the trivial representation
of W. See [Ach21, Chapter 8] for a more detailed discussion of the Springer
correspondence.

This paper is concerned with the generalization of (1.1) when u is replaced
by a subspace I C u that is B-stable, as well as the connection of this map to
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related objects in Lie theory and combinatorics. The B-stable subspaces are
also called ad-nilpotent ideals of b and are well-studied Lie-theoretic objects
(see, for example, [Kos98, CP00]). Denote by Jd the set of all B-stable sub-
spaces of u. The cardinality of Jd is the W-Catalan number J]"; dijh where
di,...,d, are the fundamental degrees of W and h is the Coxeter number. In
type A these ideals are in bijection with Dyck paths (see §7).

If I € Jd, then G.I is the closure of a nilpotent orbit, denoted by O;. The

restriction of p gives a map

(1.3) p G xP 1 — Of

that is still proper, but it is no longer a resolution or semismall in general.
Set N; := dim(G x5 I), which equals dim I + dim G/B. The decomposition
theorem still applies to the analogue of the Springer sheaf. Namely,

(1.4) Rul(CIN))~ € IC(0,L) RV,
(0,£)€0

where Vé7 ¢ is a graded vector space, but no longer concentrated in degree 0
in general.

Our first main result is that if a pair (O, L) € © contributes a nonzero
term in (1.4), then it must appear in the Springer correspondence, i.e., it
contributes a nonzero term in (1.1). In other words,

Theorem 1.1. Let I € Jd. If Vij » # 0 in (1.4), then (O, L) € O

The case when I = up, the nilradical of the Lie algebra of a parabolic
subgroup P of G, was established by Borho and MacPherson [BM83] and
they gave a formula for the dimensions of the vector spaces Vé} ¢ (see (4.8)).

Theorem 1.1 is proved by analyzing the fibers of the map u!. Let z € N,
and let

By = (u') 7 (2).

For the I = u case, the fibers u~!(x) are the Springer fibers and denoted more
simply as B,. The fiber Bl is a subvariety of B,, and any variety defined in
this way is called a nilpotent Hessenberg variety.

For x € N, denote by O, the G-orbit of x under the adjoint action. The
component group A(z) := Zg(z)/Z&(x) is a finite group, which identifies with
the fundamental group of O, when G is simply-connected. The cohomology of
B! carries an action of A(x) and Theorem 1.1 is equivalent, using proper base
change, to showing that if y € Irr(A(x)) has nonzero multiplicity in H*(BL),
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then the pair (O, £,) belongs to Og,. Here, L, denotes the irreducible G-
equivariant local system on O, defined by x.

The analysis of the BL occurs in §3, where we establish a decomposition
of BL into vector bundles over a small set of smooth varieties, from which
we also deduce that BL has no odd cohomology. These results are generaliza-
tions of those for the Springer fibers B,, handled by De Concini, Lusztig and
Procesi in [DCLP88], and we rely on the techniques developed in that paper.
Theorem 1.1 is then proved in §4.

Theorem 1.1 has an important implication for certain generalizations of
the Grothendieck-Springer resolution. For I € Jd, we can consider I+ C g,
the orthogonal complement to I under the Killing form. Then H = I+ is also
B-stable and it contains b, the Lie algebra of B. The map pff given by

(1.5) p G xBPH =g

is surjective and generalizes the Grothendieck—Springer resolution for H = b.
Using Theorem 1.1 and the Fourier transform, we deduce in Theorem 5.1,
that

R (Cy[dim G <7 H])

has full support, proving a conjecture of Brosnan [Xue20, VX21]. This gen-
eralizes results of Balibanu—Crooks [BC20] who proved the theorem in type
A and Xue [Xue20] who has given a proof in type G5. The remainder of §5
studies applications of Theorem 5.1. In Proposition 5.3 we establish a gener-
alization to all types of an unpublished result of Tymoczko and MacPherson
in type A. We conclude §5 by introducing two graded W-representations, the
dot action representation of Tymoczko and LLT representations of Procesi
and Guay-Paquet.

In §6 the main result relates the cohomology of BI for certain triples of
subspaces I € Jd. The setup is a triple Iy C I; C Iy of ideals in Jd, each
of codimension one in the next. For a simple root a € A, let P, denote
the minimal parabolic subgroup containing B associated to a. The triples
I, C I C Iy of interest are those satisfying the following conditions:

1. I and Iy are P,-stable for some o € A, and
2. the representation of the Levi subgroup of P, (which is of type A1) on
the two-dimensional space [y/I5 is irreducible.

Such triples were introduced in [DCLP88, §2.8]. See Definition 6.1 for a purely
root-theoretic definition. The first example of such a triple occurs when g =
sl3(C). Let a, 8 denote the simple roots and let Iy = up, be the nilradical of
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parabolic subalgebra Lie(P,). Set Iy = {0}. There is a unique I; € Jd with
I, € I} € Iy and these three spaces form such a triple.

Our result below is a generalization of [DCLP88, Lemma 2.11] in that it
applies to all nilpotent elements, not just to those z € Oy, .

Proposition 1.2 (The geometric modular law). Given a triple Iy C Iy C Iy
as above and x € N, there is an A(x)-equivariant isomorphism

(1.6) HY(By') & H'™*(By') = HY(By) & H'™*(B?)

forall j € Z.

The proposition has a formulation as a statement about perverse sheaves.
If Q is any parabolic subgroup stabilizing I, then we can also consider the
map pl@ : G x? I — Oy and its derived pushforward

Sr.q = Rpl?(Cldim(G x9 I)]).

Proposition 1.2 has the following consequence (see Proposition 6.7): for any
triple Iy C I; C Iy as above, there is an isomorphism

Sn,B =~ Sn,p, Sy, P,

in the derived category of G-equivariant perverse sheaves on N.
Proposition 1.2 implies that various polynomials I/ € N[g|, depending on
I € Jd, that arise in our study satisfy the following law for a triple of ideals:

(1+¢q)F" = F® + qF".

These include the Poincare polynomials of nilpotent Hessenberg varieties and
coefficients in the decomposition of the dot action and LLT representations,
see Proposition 6.5.

In type A this law is closely related to a linear relation, called the modular
law, satisfied by certain graded symmetric functions. It is due to Guay-Paquet
[GP13] and studied more recently by Abreu-Nigro [AN21a]. It was seeing this
law in the combinatorial setting that led us to connect it with the work of
[DCLP8S|. Indeed, we show in §7 that the geometric modular law of Proposi-
tion 1.2 implies the combinatorial modular law. This allows us to give another
proof of the Shareshian and Wachs Conjecture [SW16, Conjecture 1.4] and
to show that the Frobenius characteristic of the LLT representation in type
A is a unicellular LLT polynomial, see Corollary 7.9. The key idea, due to
Abreu-Nigro [AN21a], is that in type A any set of polynomials F! for I € Jd
satisfying the modular law are completely determined by the F“# where P is
a parabolic subgroup.
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2. Preliminaries

Let @+, ®~ and A denote the positive, negative and simple roots associated to
the pair (7', B). For a simple root a € A, let s, € W denote the corresponding
simple reflection. Let /(w) denote the minimal length of w € W when written
as a product of simple reflections. We fix a representative w € Ng(T) for
each w € W, and denote both by the same letter. Let g, C g denote the root
space corresponding to v € O.

If P is a parabolic subgroup of GG, then p denotes its Lie algebra and up
the nilradical of p. For P = B, we instead use b and u. Generally, P will
denote a standard parabolic subgroup, i.e., B C P.

For a rational representation M of P, the smooth variety G x* M consists
of equivalence classes of pairs (g,m) € G x M with (gp,p~t.m) ~ (g,m). If
M C g, there is a proper map from G x¥ M to g given by (g,m) — g.m.
See [Jan04].

We use H,(—) for Borel-Moore homology with complex coefficients and
H*(—) for singular cohomology with complex coefficients.

2.1. Grading induced by a nilpotent orbit

Let x € g be a nonzero nilpotent element and recall O, is the G-orbit of
z. By the Jacobson—Morozov theorem, x can be completed to a sls-triple
{z,h,y} C g. Namely, there exists h,y € g such that

[h7 (L'] = 2.%, [h7 y] = _2y7 {1’, y] = ha
which implies spanc{x, h,y} ~ sly(C). For j € Z, let

g ={zeglhz]=jz}.

Without loss of generality, we may conjugate the triple so that A € t and
a(h) > 0 for all & € A. Then h and the resulting grading g = ®;cz0;
are uniquely determined by O,. We then have x € go and b C p where
p = @, 8 is a parabolic subalgebra of g.

Let P and Gy be the connected subgroups of G whose Lie algebras are
p and go, respectively. Let Up be the unipotent radical of P. The Lie alge-
bra of Up is up = @;>1 9;- Then P = GoUp is a Levi decomposition of P
corresponding to the decomposition p = go & up.

Set By = B N Gy, which is a Borel subgroup in Gg, with Lie algebra
bp = bN go. A key fact is that g>o is a P-prehomogeneous space, meaning
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there is a unique dense P-orbit. Indeed, O, N g>2 is a P-orbit in g>2 and it is
dense. Moreover, g is a Go-prehomogeneous space, with dense orbit O, Ngs.
See [Car93] for these results.

Since t C gg, we can define &y C ® to be the roots of gg relative to t with
simple roots Ag := AN ®y and <I>0jE = ®* N (. Given a nonzero integer m,
define @,,, :=={y € ®| gy C g} and P>, := Ui, D;.

2.2. P-orbits on B

Let By denote the flag variety Go/By. The Weyl group of gy is Wy =
(5o | @ € Ag). Let WO be the set of right coset representatives for Wy in
W of shortest length in their respective cosets. Then

(2.1) WO={weW|w ' (d]) cd}.

The set W parametrizes the P-orbits on the B = G/B. For w € W°, the
corresponding P-orbit is P, := PwB/B.

Let A\ : C* — T be a co-character satisfying a(\(z)) = 22" for » €
C* and a € ®. This gives a C*-action on B preserving each P-orbit. The
fixed points of this C*-action on P, is GowB/B, which is isomorphic to By.
Moreover, the smooth variety P, is a vector bundle over its C*-fixed points
PE ~ By with map 7, : Py — Bo given by

(2.2) Tw(pwB) = lin% A(z)pwB.
Z—

The fibers of this vector bundle identify with the affine space

Ag(w) ~ @ gg.
BePTNW(P)

By (2.1) all roots /3 such that 8 € & Nw(P~) belong to P>1. Hence C* acts
linearly with positive eigenvalues on the fibers of this vector bundle, a key
fact used in [DCLP88] to decompose the the Springer fiber B,.
3. A decomposition of Hessenberg varieties
3.1. Definition of Hessenberg varieties

The fiber of the map 7 in (1.3) over x € N is given by

Bl ={gBeB|gtacll,
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called a nilpotent Hessenberg variety. These varieties generalize Springer
fibers by replacing u in the definition of B, with I € Jd.

More generally, let M be a subspace of g that is B-stable. Since M is
also T-stable, it is a sum of weight spaces of T'. Let ®;; denote the nonzero
weights (i.e., roots) of T" that appear in the sum. For any such M and z € g,
the Hessenberg variety associated to x and M is the closed subvariety B of
the flag variety defined by

(3.1) BY ={¢4BeB|gtze M}

When z is nilpotent, the B} are called nilpotent Hessenberg varieties. We
will mainly deal with the case where x is nilpotent, but in §5.2 below, the
case where x is regular semisimple also arises.

We are interested in two kinds of subspaces of g that are stable under
the action of B. Those of the first kind are contained in u and are called ad-
nilpotent ideals (since they are Lie algebra ideals in b) or just ideals. Those
of the second kind contain b, and are called Hessenberg spaces. Let Jd denote
the set of subspaces of the first kind and H, those of the second kind. That
is,

Jd={I|ICuand BI=I}and H={H |bC H and B.H = H}.

The two sets are in bijection. If I € Jd, then the orthogonal subspace I+ to
I under the Killing form is B-stable since I is B-stable and I+ contains b.
Hence I+ € H. Since the Killing form is non-degenerate, we have (I+)* = I,
proving that taking the orthogonal complement defines a bijection between
ideals in Jd and Hessenberg spaces H.

Let P be a parabolic subgroup of G with Lie algebra p. The varieties B.
for I € Jd are also a kind of generalization of Spaltenstein varieties: if I = up
is the nilradical of p, then the image of BL in G/P is the Spaltenstein variety
PY from [BM83]. The varieties BY for H € H are a kind of generalization
of Steinberg varieties: if H = p, the image of BY in G/P is the Steinberg
variety P, from [BM83].

We now describe a decomposition of BM when z is nilpotent that gener-
alizes the decomposition (for the Springer fiber B,) defined and studied by
De Concini, Lusztig, and Procesi in [DCLP88]. The story from loc. cit. goes
through: BM decomposes as a union of smooth varieties, each of which is a
vector bundle over one of a small set of smooth varieties.

For the rest of the section, we fix x nilpotent and its induced grading on
g as in §2.
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3.2. Building block varieties

Recall that go is a prehomogeneous space for G, with dense Gg-orbit O, Ngs.
Let Jds denote the set of By-stable linear subspaces of g, and Jd5™" C Jds
denote those U € Jdy with U N O, # 0.

Following [DCLPS8S8, §2.1], for U € Jdj™" define subvarieties of By as
follows

Xy :={gBy € Go/By | g .2 € U}.

These are smooth, projective varieties and

For example, if U = go then Xy = By. The variety Xy is empty for subspaces
U € Jdy \ Jd5™".

Remark 3.1. Let U € 3d§™". If we set I := U ®g>3, then I € Jd and Xy ~ BL
by [Fen08, Proposition 4.2], so the Xy are special cases of the varieties being
considered.

3.3. The decomposition

Let M be a B-stable subspace of g. The main result of this section is that the
Hessenberg variety BY decomposes as a union of vector bundles over disjoint
copies of various Xy for U € Jd™".

Lemma 3.2. For each w € W°, the subspace w.M N gy of go is By-stable.

Proof. Since M is B-stable and hence T-stable, w.M is also T-stable since
T = wTw™'. Also being T-stable, w.M is a sum of weight spaces for T and
thus w.M N gg is a sum of root spaces. Let gg C w.M and g, C by. Then
v € ®f and w(y) € F by (2.1). Now w=(B) € @y and M is B-stable, so
wH(B) + w™t(y) € @)y if the sum is a root. If so, w™ (5 + ) € &), which
means 3 + v € ®,,.a7. This shows w.M is By-stable. The result follows since
gs is By-stable, being Gy-stable. O

Recall that for w € W, P,, denotes the P-orbit on B containing wB. The
next proposition shows that the intersection P, NBM is smooth and describes
its structure. The proof is a generalization of the methods in [DCLP8g].
Some cases of these generalizations have previously appeared in [Prel3, Frel6,
Xue20].

Proposition 3.3. Letw € W% and U = w.MNgy € Jdy. Set B%w = Pwﬂl')’iw.
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1. BY, # 0 if and only if U € Jdj™.
2. If B%U is nonempty, then

(a) By, is smooth and
dim(By,) = £(w) + || = [{y € ®x2 | w™'(7) ¢ Par}l.

(b) B%U is a vector bundle over Xy with dimension of its fiber equal
to
Uw) = [{v € 23 |w™(7) ¢ Par}l.
Proof. First, we prove 2(a). By definition (3.1),

B, = {puB.pe P vy aeM}
Since p~t.z € g for p € P, this can be rewritten as
Bfw = {pr ]p_l.x cw.Mn 922}.

The setup in [DCLP88, §2.1] now applies to the P-prehomogeneous space
g>2, the linear subspace of g>9 equal to w.M N g>2, and the closed subgroup
of P equal to B, := PNwBw~!. The subspace w.M N gsy is By-stable since
M is B-stable and g>2 is P-stable. Then Biv’[w is isomorphic to the subvariety
of P/B,, given by

{pBy | p~ o € w.M N gss},

which is smooth by Lemma 2.2 in loc. cit., and its dimension equals

Simplifying the dimension formula above using the fact that dim(P/B,) =
|D4 | + £(w), we get

(33)  dim(Byy,) = ||+ L(w) — [{y € P2 | w™'(7) & Par}l.

This completes the proof of 2(a).

Recall the cocharacter A from §2.2. Since A(z)-x = 2%z, the smooth closed
subvariety Bi\f[w of P, is C*-stable. Now we can use the result in [DCLPS8S,
§1.5] (see also [BH85, Theorem 1.9]): let m, : P, — GowB be the vector
bundle map from §2.2. Since the C*-action on P,, preserves the fibers of m,,
and acts with strictly positive weights, it follows that

Bi\f[ — GowBnN Bﬁ{w

w
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is a vector sub-bundle of 7. Finally,

GowB NnBM ~ {gBo S GO/B[] ’ gil.l’ S w.Mﬂgg} =Xy

Tw —

as in §3.7 of loc. cit.
By (3.2),

dim XU = dlm(Go/Bo) — dlm(gg/U)
= |of| —[{v € @2 | w(7) & Pu}l.

Subtracting this value from the one in (3.3) completes the proof of 2(b).
Finally, the proof of (1). If B%w is nonempty, then by 2(b) it follows that

Xy is nonempty, so it contains some gBy for g € Gy, i.e., g~'.z € U. Hence

the G-orbit of x meets U and U € Jd5™". Conversely, if U € Jd5™" then

g t.x € U for some g € Gy, which means gB € Bi\f"w. U

The centralizer Zg(x) acts on B and this gives an action of the compo-
nent group A(z) = Zg(z)/Zg(x) on the Borel-Moore homology H.(BM) of
BM since the induced action of a connected group is trivial.

There is also an action of A(x) on H,(B}",) and H,(Xy ). Namely, Zg(z) =
Zp(z) [Jan04, Proposition 5.9] and Zp(x) acts on By, so A(x) acts on
H.(BY,). Set L = Gy, then the centralizer Zz(z) acts on Xy. Since Zp(z) is
a Levi factor of Zp(z), then A(x) ~ Z(z)/Z;(z) acts on H.(Xp).

For each w € W9, let ty(w) = l(w) — [{y € @53 | w(y) & Pum}l,
the dimension of the fiber of the vector bundle from Proposition 3.3. The
following corollary is implicit in [DCLPS88].

Corollary 3.4. Let w € W and U = w.M N gy. Let U € 3d5™". Then as
A(x)-modules, we have the isomorphism

(3.4) H;j oty (w) (B%w ~ H;(Xy)
for all j € N.

Proof. The isomorphism as vector spaces follows from the vector bundle result
in Proposition 2(a). Now the action of Zp(z) and Zp(z) on BY,, induce the
same action of A(z). Since the Zp(z)-action commutes with the C*-action
coming from A, the action of ¢ € Zj,(x) commutes with the map 7, defined
in (2.2) and the result follows. O

We also need the following crucial result from [DCLP88]. This is proved
by a reduction to distinguished nilpotent orbits, where the classical cases are
handled by explicit computation and the exceptional groups are handled by
a method that we review in §6.
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Theorem 3.5 (Theorem 3.9 in [DCLP8S]). Let U € 3d5™". Then H;(Xy) =0
for i odd.

For U € Jd§™, define a subset Wy of W° and polynomial gas(q) by

(3.5) Wyo ={weW" | U=w.Mngy} and
gmu(q) = Z th(w).
weWnu

Let Vi be a graded vector space whose Poincaré polynomial is g (¢?).
We consider Vyp as an A(z)-module with trivial action.

Corollary 3.6. We have

(3.6) H*(BM) ~ @ Vo @ H (Xy),
Ueddge"

as A(z)-modules. In particular, H{(BM) =0 fori odd.

Proof. As in [DCLP8S], B} admits an a-partition of the nonempty By,
Since each B%w has no odd Borel-Moore homology by Theorem 3.5 and Corol-
lary 3.4, the long exact sequence in Borel-Moore homology gives the isomor-
phism as vector spaces. Then the naturality of the long exact sequence and
Corollary 3.4 yield the isomorphism as A(z)-modules. Since BM and the X
are projective varieties, the Borel-Moore homology and singular cohomology
coincide, and the result follows. O

Remark 3.7. In fact, the varieties BM satisfy Property (S) from §1.7 in
[DCLP88]. Namely, switching to Borel-Moore integral homology, we have
H;(BM) = 0 for i odd, H;(BM) has no torsion for i even, and the cycle
map from the i-th Chow group of BM to Hy;(BM) is an isomorphism. These
results follow from the fact that Xy has Property (S) for all U € Jd3*" as
shown in [DCLP88] and Lemmas 1.8 and 1.9 in loc. cit.

Let

(3.7) P(X) = dim (H2J'(X)) ¢

denote the modified Poincaré polynomial of a variety X with no odd coho-
mology. If a group K acts on X and x € Irr(K), let

POXGX) =Y (x: HY (X)) .

J
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where (x : x') = dimHomg (y, x’) denotes the multiplicity of x in the K-
representation y’. Then Corollary 3.6 immediately implies the following.

Corollary 3.8. We have

PBY)= > guu(q)P(Xp).

U€Idy
and
(3.8) PBY:x) = > guu(@)P(Xu;x).
UeIdy”

for all x € Irr(A(x)).

Remark 3.9. Corollary 3.8 gives a way to compute P(BM) and P(BM;y),
which is feasible in small ranks. There are three steps: (1) determine the set
Jd5", (2) compute P(Xy; x) for each U € Jd3", and (3) compute garv.

For (1), methods from Fenn’s thesis [Fen08] apply and Fenn and the
second author wrote computer code to do this, which works up to rank 10.
For (3) the second author wrote code that is efficient up to rank 7 and can
handle rank 8 for the cases where M € Jd. For (2), however, we only know how
to do the computation in type A, small rank cases, and for certain nilpotent
orbits in all cases. The method for doing this comes from [DCLP88|, which
we explain in §6. We have carried out this computation in several small rank
cases and give the example of B3 for M € Jd in §8.

4. Proof of Theorem 1.1

We now restrict to the case where M = I for I € Jd and return to the
map u! : G xB I — Oy from the introduction. Pushing forward the shifted
constant sheaf yields

(4.1) Rui(CIN) = D 1C(0,L) @ Vo ..
(©.2)

where the sum is over pairs (O, £) € © consisting of a nilpotent orbit O C Oy
and an irreducible local system £ on O. The Vé’ ¢ are graded complex vectors
spaces. In this section we will prove Theorem 1.1: if Vé’c # 0 in (4.1), then
(O, L) is an element of O, the pairs that arise in the Springer correspon-
dence (1.2).
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Taking stalks in (4.1) and using proper base change, the cohomology of
the fibers of ;! and local intersection cohomology are related by

(4.2) HIN(BLC) = @ H] (100, L)V,
(0.£)
OC@[

for € O;. We would like to write down the A(z)-equivariant version of this
statement as discussed in [BM83] (see also [Ach21]).

For x € N and x € Irr(A(z)), we sometimes write (x,x) in place of
(O, Ly). Given (z,x) € ©, we define the Laurent polynomial mf  (q) €
N[g,q '] so that the coefficient of ¢/ is the dimension of the j-th graded
component of Vw{ - By the properties of perverse sheaves, we have mix(q_l) =

I

m;,(q). Let (£, : —) denote the multiplicity of £, in a local system on O,.

For (z,x) and (u, ¢) in O, define

(@) =Y (L HICOu Lo)lo. ) 7'

JET

Then taking the dimension on both sides of the A(x)-equivariant version
of (4.2) gives

(4.3) PBL (@) =" > c(q)ml4(q).
(u,0)€O

Now suppose we know that P(BL;x) = 0 for some x € Irr(A(z)). Then
since ;X # 0 and all the coefficients on the right side of (4.3) are nonnegative,
we conclude that méx = 0 and thus VI{ x = 0. Hence, the proof of Theorem 1.1
is reduced to showing that P(BL; x) = 0 for (z,x) & Osp.

Next, by Corollary 3.8, if we can show that P(Xy; x) = 0 for all (x, ) &
Ogp and all U € Jd§™", then it follows that P(BL;x) = 0 for all (z,x) & Osp.

For the case of I = u, which is the Springer resolution case, there is a
stronger equivariant statement. The Weyl group W acts on H*(B,) and this
action commutes with the A(z)-action, so W x A(z) acts. For (x, x) and (u, ¢)
in O,

(4.4) P(By; Vip @ x)(¢*) = ¢V el (a)

where V,, 4 is the irreducible W-representation corresponding to (u, ¢) € O,
n (1.2). Moreover, the left side (and the right side) will always be zero for
those (z,x) & ©sp. This was first established by Beynon-Spaltenstein by
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computer calculation in [BS84] for the exceptional groups and by Shoji in
[Sho83] for the classical groups. Later, Lusztig gave a uniform framework
that also included handling his Generalized Springer correspondence [Lus86].
The resulting algorithm from [Lus86, §24] is now known as the Lusztig—Shoji
algorithm and it computes either side of (4.4) knowing only the partial order
on the orbits in AV, the component groups A(z), the Springer correspondence,
and the character table of W.

Returning to the proof of Theorem 1.1, since the left side of (4.4) is zero
for (z,x) & Osp, it follows that P(B,;x) = 0 for (z,x) & Osp. Therefore, if
(z,%) € Ogp and U € Td§™, then P(Xy; x) = 0 whenever Xy appears in the
decomposition of H*(B,) in Corollary 3.6. We can therefore finish the proof of
the theorem if we can show that Xy appears in the decomposition of H*(B,)
for all U € 3d§™. In other words, we will show g,y # 0 for all U € Jd™",
or equivalently, Wy, v # 0. This amounts to showing that, for all U € Jd§™",
there exists w € W such that U = w.un gs.

By Lemma 3.2 there is a map ¥ : W% — Jd, defined by

(4.5) U(w) = w.un gy for we WP

In [DCLPS8S, §3.7(b)] it is shown that ¥ is surjective for the case when O, is
an even orbit, i.e., when g; = 0 for ¢ odd. We now extend that result to show
V¥ is surjective for all nilpotent orbits.

Lemma 4.1. Given U € Jdy, there exists w € WO such that U = w.uN gs.

Proof. Let U € Jd,. It suffices to show that there exists w € W such that
Py = w(PT)NPy. When O, is even, [DCLPSS, §3.7(b)] gives a construction of
such a w € WP, Moreover, the w constructed is the unique element achieving
the largest possible value for /(w) among those w € WP satisfying ®y =
QU(Q@+)[W‘$2.

Suppose now that O, is not even. Consider the Lie subalgebra

5 = {}9 9

1€27

Then s is the centralizer in g of an element of order 2 in GG, namely, the image
of (' %) under the map SLy(C) — G coming from the sly-triple defined in
§2. Hence s is a reductive subalgebra and its simple roots are a subset of the
extended simple roots of g (see [Car93]). Let ®; be the root system of s with
positive roots ®F = &+ N ®,. Let W, denote the Weyl group of s relative to
tCs.
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The slo-triple for x in g lies in s and so the W) defined relative to g and s
coincide. Since U C go C s and O, Ns is an even orbit in s, where the lemma
holds, there exists w € W° N W, such that w(®F) N dy = Oy

Now let ¢ € W be any element satisfying o= }(®J) C ®*. Then &} C
o(®T) N ®; and so o(PT) NPy = &F. We claim that

’LUU((I)+) N q)g = (I)U.

Indeed, let 3 € ®3. Then 8 € wo(®T) if and only if w™1(B) € o(®T). Since
w € Wy and @y C s, we have w1 (Py) C ®. Hence, w1(B) € o(®F) if and
only if

w(B) € (@) N D, = .

This shows that 5 € wo(®T) if and only if 3 € w(®]), proving that wo ()N
Oy = w(PF) N Py, as desired. Finally, we may take o to be the identity of W
to see that w itself satisfies @ = w (1) N Dy. O

The Lemma applies in particular to U € Jd§™, completing the proof of
Theorem 1.1. We can now write (4.1) as

(4.6) Rul(C[N/) = & 1C(0,L) &V,
(0,£)€0.,

Remark 4.2. The proof of Lemma 4.1 shows that for each w € W°nN W, such
that U = ¥(w), we have U(wo) = V(w) where o runs over the right coset
representatives of W, in W that lie in WP. It follows from Corollary 3.8 for
the Springer fiber case where M = u that the index [W : W;] divides the
Euler characteristic of B, when O, is not an even orbit.

For example, in type E7; there are 3 involutions in G, up to conjugacy.
Curiously, among all non-even orbits, only the involution for which s is of type
Dg x Ay occurs for the s in the proof of Lemma 4.1. The Weyl group of the
standard Dg X A; is exactly the stabilizer of the line through the highest root,
showing that [W:Ws] = 63, the number of positive roots in E;. We deduce
that the Fuler characteristic of any Springer fiber of a non-even nilpotent
element in F; is divisible by 63, which was observed by Fenn.

It will be convenient sometimes to use a parametrization indexed by
Irr(W) instead of Og,. For each ¢ € Irr(W), we can write ¢ = @p , for
a unique (O, L) € O, by the Springer correspondence (1.2). We sometimes

I I I I :
or V7 in place of my, or Vg Ly respectively.

write M,
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Consider the partial order on Irr(W) by por o < po if 0" C O. We
choose a linear ordering on Irr(W) that respects this partial order. Define the
matrix K to have entries coming from the left side of (4.4):

Ky = Z (80 @X: H2j(B:c)) qj

J

where ¢' = @0, £, . The entries of K lie in N[g] and K is lower triangular, with
powers of ¢ along the diagonal. The matrix K is computable by the Lusztig—
Shoji algorithm [Lus86, §24]. The entries of K are sometimes referred to as the
Green functions of G. In type A, they coincide with modified Kostka—Foulkes
polynomials [GP92].

Set ¢; = dimu—dim 7, the codimension of I in u. Then since ¢; = N — Ny,
we can rewrite Equation (4.3) as

(4.7) PPBLNA) = D mL(@)Ke e (dP).
pelrr(W)

where ¢’ = ¢o, . Since the other expressions in (4.7) involve even expo-
nents, it follows that the exponents of ¢* m{o(q) are also even, allowing us to
make the following definition.

Definition 4.3. For ¢ € Irr(W) and I € Jd, define fl(q) by fi(¢*) =
Cr I
q'my,(q).

Proposition 4.4. We have fé € Nq| and its coefficients are symmetric about
ch/2-

Proof. The highest power of ¢ on the left in (4.7) is 2¢; + 2 dim BZ, each term
in the sum is bounded by this value. In particular this holds for ¢’ = ¢. In
that case, Ky, (¢?) = ¢?3mBs) and so

2deg(fé,) + 2dim(B,) < 2¢; + 2dim BL

Since B. C B, and so dim B} < dim B,, we get deg(f.) < ¢;. Hence, the
exponents of mfa
q — ¢! symmetry of mé/. Hence, fé, € N[¢| and its coefficients are symmetric

about ¢¢/2. O

, are bounded by c¢; and therefore below by —c; by the

The polynomials fé, or their transformations by a fixed matrix indepen-
dent of I, make several appearances in the rest of this paper.
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The results in this section where obtained in [BMS83] in the parabolic
setting, i.e., for I = up where P is any parabolic subgroup of G. Borho and
MacPherson also did more, giving a formula for f27. Namely,

(4.8) f47 =P(P/B)(¢ : Indyy, (sgn)).

where sgn € Irr(W) denotes the sign representation of W and Wp denotes
the Weyl group of P.

Remark 4.5. Although less efficient than the Lusztig—Shoji algorithm, our
methods give an inductive way to compute K while also computing mé, or
equivalently fé. The induction starts at the zero orbit and moves up in the
partial order on ©,. The procedure relies on the dimension constraints for
the IC-sheaves and the symmetry of the coefficients of m{o. We need to know
H*(BL) for all x and enough I and then we can use (4.7). This inductive
process is analogous to the usual method for computing the Kazhdan—Lusztig
polynomials, i.e., the IC stalks of Schubert varieties, using the Bott—Samelson
resolutions.

5. Generalized Grothendieck—Springer setting

In this section we prove a conjecture of Brosnan and show that the polyno-
mials fg{ from Definition 4.3 control the decomposition of the pushforward of
the shifted constant sheaf when we move from the setting of I € Jd to that
of HeH.

5.1. Brosnan’s conjecture
Let H € H and consider the map
(5.1) p G xP H =g (g,2) — g

This map is proper and since b C H, the image of ug is g. Let Ny =
dim G/B + dim H, the dimension of the smooth variety G xZ H.

When H = b, this map is the Grothendieck—Springer resolution, which
Lusztig [Lus81] showed was a small map. In particular, N, = dimg. Since
the map is small, Ru®(C[Ne]) decomposes into a sum of irreducible perverse
sheaves on g with maximal support. More precisely

(5.2) Rul(CINe) = €D IC(g.My) @
pelr(W)
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where M, is the irreducible local system supported on the regular semisimple
elements g, of g corresponding to ¢ € Irr(1W) [Ach21, Lemma 8.2.5].

We wish to generalize Equation (5.2) to any H € H and to compute the
sheaf Rul (Cy[Ny]), as we did for the case of I € Jd. Recall in that situation,
as a consequence of Theorem 1.1 that (4.1) becomes

(5.3) Ru(CINI) ~ P 1C(0.L)@ Vo,
(0,£)€0,,

where Vé ¢ is a Z-graded vector space. For ¢ € Irr(W), we will write Vé for
Vé ¢ wWhere ¢ = ¢ » under the Springer correspondence.

Our result is the following theorem, originally conjectured by Brosnan
(see [Xue20, Conjecture 5.2.2] and [VX21]).

Theorem 5.1. Let H € H. Let I = H*, the annihilator of H under the

Killing form. There is an isomorphism

(5.4) Rﬂf(@H[NHD = @ I1C(g, My) ® Vé@sgn
welrrw)

in the derived category of G-equivariant perverse sheaves on g. In particular,
every simple summand of Ryl (Cy[Ny)) is a simple perverse sheaf on g with
full support.

Proof. To prove the result, we apply the Fourier transform (see [Ach21,
Cor. 6.9.14]) to obtain

(5.5) S(Rp,Ci[N1)) = Rul! (Cy[Nu)),

where § maps each simple summand of Rul(C;[N;]) in (5.3) to a simple
summand of Ruf (Cy[Ny)). Next, for (O, L) € O, we have

FIC(0,L)) = I1C(g, Mygsgn) where o = @o o

(see Sections 8.2, 8.3, and specifically equation (8.3.2) of [Ach21]). The result
follows. .

Theorem 5.1 generalizes [BC20, Theorem 3.6] to all Lie types.
5.2. Monodromy action

Let s € t be a regular semisimple element. The variety B defined as in (3.1)
is called a regular semisimple Hessenberg variety. There is an action of W on
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H*(BH) arising from monodromy [BC18], [BC20]. Then taking stalks in (5.4)
at s and using W-equivariant proper base change gives

* —di €L
(5.6) qrNa—dme (Bl ~ (o Vi,
p€elrr(W)

as W-modules. Here, ¢ is in degree 0 on the right and carries the W-action.
We have used that HZIC(g, M,,) is zero, except for j = —dim g, where it
equals .

Now Ny — dimg = dim H — dim b, which is the dimension of BH. We
deduce that for ¢ € Irr(W) that

(5.7) P(BH o) (q?) = ¢ =l o (q).

Since dim H — dim b = dimu — dim H+ = cp1, we immediately have

Proposition 5.2. For H € H and ¢ € Irr(W), we have P(BH; p) = f<p®sgn
Note that Proposition 5.2 gives another proof that fé is a polynomial,

while Proposition 4.4 gives a (new) proof that P(BX; ¢) is palindromic.

5.3. Nilpotent Hessenberg varieties

We can also take the stalks in (5.4) at elements of A/ and get an interesting
result. First, we need the fact that

I1C(g, M) v [— dimt] ~ IC(O, L)

where ¢ = po ¢ (for example, see [Ach21, Lemma 8.3.5]). Next, Ny — N =
dim H — dimu. But with the extra shift by dimt from above, we get the
analogue of (4.7).

Proposition 5.3. For x € N and x € Irr(A(z)), we have

(5.8) P(BfD() = Z <p®sgn

pEIrr(W)

where ' = o, . -

Proposition 5.3 was known in the parabolic case. In [BM83], Borho and
MacPherson consider the restriction uf of p to Xpr = G xP (HNN). Since
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the intersection p N N is rationally smooth for H = p, they obtained the
stronger statement

(5.9) R(p3)+(Cldim Xn]) = @ 1C(0,L) @ Vi osen-
(0,£)€Bp

We suspect that (5.9) holds for all H € H, presumably because Xy is
rationally smooth for all H € H. In type A, Proposition 5.3, or perhaps
the stronger version in (5.9), is an unpublished theorem of Tymoczko and
MacPherson [Obel9, pg. 2882].

Finally, we note that when x is regular nilpotent, the only term in (5.8)
for which K, . is nonzero occurs when ¢ is the trivial representation, in
which case the value is 1. Hence fsfé; = P(BX). When 7 is regular nilpotent,

P(B) has a formula as a product of g-numbers depending only on the roots
Oy Nd~ [AHMT20], [STO6].

5.4. The dot action and LLT representations

In [TymO08], Tymoczko defined a Weyl group representation on the ordinary
cohomology of regular semisimple Hessenberg varieties, called the dot action.
The representation of W on H*(BH) from §5.2 was shown to coincide with
Tymoczko’s dot action representation by Brosnan and Chow in [BC18] in
type A, and their proof was adapted to all Lie types by Balibanu and Crooks
in [BC20].

The dot action is closely related to another W-representation via a ten-
sor product formula, which first arose in Procesi’s study of the toric variety
associated to the Weyl chambers from [Pro90] and was later treated by Guay—
Paquet in type A [GP16]. We summarize the key properties we need here and
include the details in Appendix A.

Let C denote the coinvariant algebra of W, with the reflection represen-
tation in degree 1. Then C ~ H*(G/B) as graded W-representations, up to
the doubling of degrees. If g(q) = 3" a;q¢* is a polynomial, we regard it as a
graded representation consisting of a; copies of the trivial representation in
degree a;. The following result is a direct generalization of [Pro90, Theorem
2] and [GP16, Lemma 168].

Proposition 5.4. For each Hessenberg space H € H there exists a unique
graded W -representation LLT i satisfying

(5.10) P(G/B) ® LLTy ~ C ® H*(BH).

Furthermore, LLT g is nonzero only in nonnegative degrees.
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We call LT the LLT representation; the reason for this terminology is
that, in Type A, the Frobenius characteristic of LLTy is a unicellular LLT
polynomial (see Corollary 7.9 below).

The coinvariant algebra C carries the regular representation and the tensor
product of any representation of dimension d with the regular representation is
the direct sum of d copies of the regular representation. Therefore when g = 1
both sides of (5.10) are isomorphic to |W| copies of the regular representation.
Thus LLTg is a graded version of the regular representation. At the same
time, forgetting the W-actions, H*(BH) and LLT g coincide as graded vector
spaces since P(G/B) measures the dimension of the components of C.

To compute LLTy from H*(BY) requires knowing the matrix Q with
entries

Q= Z (90 ®¢ Cj) 7.

J

The matrix € is closely related to the matrix needed as input to the Lusztig—
Shoji algorithm. Define polynomials gf (q) by

9 (@) => (¢ : LLTy)q".
j
Then
_ L
(5.11) PG/B)g = > PBELE Qe = DY [ Q.
@' €lrr(W) @' €lrr(W)

We have used Proposition 5.2 and the fact that
Homyy (¢ © ¢',€¢7) = Homy (i, ' © C7)

since representations ¢ € Irr(WW) satisfy ¢* ~ .

For §7 we need to know the H*(BI) and LLTy in the parabolic case,
i.e., when H = p the Lie algebra of the parabolic subgroup P. Let Cp be the
coinvariant algebra of Wp as a Coxeter group, a graded representation of Wp.

Proposition 5.5. In the parabolic setting, we have
1. H*(B?) ~ P(P/B) ® Indyy,,(1).
2. LLT, ~ Indyy, (Cp).

where the modules on the left are zero for odd degrees and the component in
degree 2i on the left matches the one in degree i on the right.
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Proof. Part (1) follows directly from Equation (4.8) and Proposition 5.2.

For (2), we have the isomorphism Cp ~ H*(P/B), as Wp-representations,
up to doubling of degrees. Then the fiber bundle of G/B over G/ P with fiber
P/ B gives rise to the isomorphism

H*(G/B) ~ H*(G/P) @ H*(P/B)

as Wp-representations where the action on H*(G/P) is trivial. Hence, C ~
P(G/P)Cp as Wp-representations. Inducing up to W, we have

Ind}}, (C) ~ P(G/P) ® Indyy,(Cp)
as W-modules, or equivalently,
C ® Indyy, (1) ~ P(G/P) ® Indyy, (Cp)

since C is a W-representation. Now using Part (1) and the fact that P(G/B) =
P(G/P)P(P/B), the result follows. O

6. The modular law

Let M C g be a B-invariant subspace. As mentioned in Remark 3.9, the
results of §3 give a method to compute the isotypic component H*(BM)x if
we can compute the isotypic component H*(Xy)X for all U € Jdj", where
Jd5™" is defined as in §3.2 using the grading induced by x.

In [DCLP88], a method is given to compute H*(X )X that works for all
distinguished nilpotent elements in the exceptional groups. Although it does
not work in general, it is a powerful technique. In this section we prove a
generalization of this method: for certain triples of Is C Iy C Iy of ideals
in Jd, knowing any two of the H*(BL)X determines the third. We call this
relation the geometric modular law.

We were led to this generalization after seeing the type A combinatorial
version in [AN21la] and [GP13], where the relation is known as the modular
law. In Proposition 7.7 below, we show that our geometric modular law implies
the combinatorial one.

6.1. The basic move

We first define a relation on ideals I, Iy € Jd as in [FS20].

Definition 6.1. Two ideals I;, [y € Jd are related by the basic move if
In=1 ®gp for § € T and there exists & € A such that
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1. (8,a") = —1, and
2. The set @y, is invariant under the simple reflection s, € W.

The second condition is equivalent to Iy being P,-stable, where P, is the
parabolic subgroup containing B corresponding to «.

If ideals Iy C Iy satisfy Iy = I; © gg, then 3 is a minimal root in ®;, under
the partial order on positive roots. If I; and Iy are related by the basic move,
then condition (1) implies that s,(5) = a+ 3, which is a positive root bigger
than § in the partial order; hence, o+ € ®y,. In fact, o+ is a minimal root
of ®y,. Suppose otherwise; then ®;, contains a positive root v = a +  — o
for a simple root o. Now, a # o since 8 € ®p,. Since (o/,a¥) < 0 for any
distinct simple roots and (o + 3, a¥) = 1 by condition (1), then (v, ") > 1.
But then s,(v) < . Since v € &5, C ®y, and

SO&((I)IO) = q)fo

by condition (2), this means s,(7y) € ®;, and we obtain a contradiction to
being a minimal root in ®y,.

Thus we can define I, € Jd to be the subspace satisfying Iy = I» @ ga+3-
It is clear that I is P,-stable. We call I, C I C Iy a modular triple, or
just a triple. These triples were first constructed in [DCLP88, §2.7].

Since P, .11 = Iy, we have Oy, = Oy, while the orbit Oy, need only satisfy
) I, C O Io-

Ezample 6.2. Consider the Az root system with A = {ay, ag, ag}, where oy
and ag orthogonal. Let [y € Jd be such that &, has one minimal root 8 = axs.
Then [ satisfies condition (1) with respect to either ay or ag. Hence I3 and
Iy are related by the basic move where ®;, = {1 + ag, ag + a3, a1 + as +as}.
But there are two different triples that arise: I will satisfy Iy = I2 @ gy +as
or Iy = Is @ gay+a; depending on whether o = a3 or a = a3, respectively.

6.2. Geometric modular law for the cohomology of fibers

Whenever three subspaces form a modular triple, they satisfy the three con-
ditions in §2.7 of [DCLP88] with U” C U C U’ in place of Iy C I; C Iy and
M =G, H=B,and P=P,.

Fix € N and let X; = Bi. When z € Oy, it is shown in [DCLPSS,
Lemmas 2.2] that the X; are smooth (X3 can be empty), as was noted in §3.2.
In [DCLP88, Lemma 2.11] it is proved that there is a geometric relationship
among the three varieties, which we now show holds for all z € N, not just
for x € Oy,, and from this we deduce Proposition 1.2. Since the X; are no
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longer smooth in general, our argument relies on the fact that B% has no odd
homology for any z € N by Corollary 3.6. We are now ready to prove the
geometric modular law, which we restate here for the reader’s convenience.

Proposition 1.2 (The geometric modular law). Let I C I; C Iy be a
modular triple and let z € A/. Write X; for BL. Then

(6.1) HY(X))® H (X)) ~ H(X,) ® H%(Xy) for all j € Z.

Proof. We again use Borel-Moore homology until the final step. By Corol-
lary 3.6, the odd homology of all X; vanish, so we need only consider j even.
Let a € A from the definition of the modular triple. Consider

7 ={(gB,¢B) € G/BxG/B|gtxel and g '¢ € P,},

as in Lemma 2.11 in [DCLP88]. Then Z is a P'-bundle over X; by forgetting
the second factor. Since X; has no odd homology, and neither does P!, the
Leray spectral sequence degenerates and yields

(6.2) H;(Z) ~ H;(X1) ® H;_o(X,) for all j € N.

Next, as in loc cit, the variety Z maps to a variety Z’, which is P'-bundle
over Xy, by sending (¢B,¢'B) € Z to (9B,g'B) € Z', where

7' :={(9yB,¢dB) € G/BxG/B|¢g tx€lyand g '¢g € P,}.

This works since ¢ = gp for some p € P,, so ¢ to = p~lg7! € I if
g Ltz € I because P,.I; = Iy. Inside Z’ consider the subvariety Y consisting
of those (¢B, ¢'B) € Z' where the line gI1/¢'Is C ¢'Iy/¢'I> contains x. Then
Z is isomorphic to Y.

At the same time, Y maps surjectively to Xy and the pre-image of X5 is
a P'-bundle E over X5. The complement of E in Y is isomorphic to Xo\ Xo.
In [DCLP8S], the proof ends since X3 and Xy are smooth and one knows the
singular cohomology of Y, which is a blow-up of Xy over X5. To get around
the lack of smoothness in the general case, we again use that the X; have no
odd Borel-Moore homology.

First, H;(E) ~ H;(X2) & H;_2(X2) for all j as in (6.2) since X5 has no
odd homology. Next, when j is even, there are two long exact sequences in
Borel-Moore homology. For Xs C X, we have

0— Hj+1(X0\X2) — HJ(XQ) — H](Xo) — H](XO\XQ) — 0
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and for £ C Y, we have
0— H;(Y\E) = Hj(E) = H;(Y) = H;(Y\E) = 0
since E has no odd homology. Now, Y\ E ~ X\ X, and so it follows that
H;(Y) @ Hj(Xs) =~ Hj(E) ® Hj(Xo)

as Q-vector spaces. Thus H;(Y) ~ H;(Xo) @ Hj_2(X32). The result follows
from (6.2) and the isomorphism Z ~ Y. We can switch back to singular
cohomology since the X; are projective varieties. O

6.3. Implications of the modular law
It follows from Proposition 1.2 that if Iy C I; C Iy is a triple of ideals, then
(6.3) (1+@)P(B;'5 x) = P(By*; x) + gP(B22; x).

This leads us to define

Definition 6.3. A collection of objects {F!};c54 each carrying an action of
Q(q) is said to satisfy the modular law if

(6.4) (1+q)F* = F2 4 qFD

whenever Iy C I; C I is a triple of ideals.

The F! could be polynomials or Laurent polynomials in Q(g) or a vector
of such polynomials indexed by Irr(W) or, equivalently, ©;,. We could also
take F! to be a graded representation of Irr(W), which in type A amounts
to a symmetric function with coefficients in Q(q).

Notice that we have reversed the role of Iy and I in (6.4) as compared
to (6.3).

Remark 6.4. If {F{} and {F}} satisfy the modular law, so does {aF{ +bFJ}
for any a,b € Q(q).

Proposition 6.5. The following polynomials satisfy the modular law in (6.4).
1. P(Byix)(q ") for (2,X) € Osp.
2. f(q) for ¢ € Irr(W).
3. gg(q) for ¢ € Irr(W).
4. P(BL i x)(a) for (z,X) € Op.
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Proof. Statement (1) follows (6.3) by substituting ¢! for ¢ and then multi-
plying by q.

For (2), the determinant of K equals ¢ for some m € N. So K is invertible
(and in fact the entries of ¢™K~! are polynomials). We want to convert (4.7)
into a matrix equation. To that end, we construct vectors (P(BL;y)) and

(q_C’ fé) using the linear order on O, and Irr(W), respectively, from §4.

Then (4.7) becomes the matrix-vector equation

(P(BL;x)) = (¢ fLK

and therefore
(a7 £1) = (PBLX)K .

Now part (1) and the Remark 6.4 imply that ¢—¢ fé(qfl) satisfies the modular
law for all ¢ € Irr(W). Multiplying by ¢“z we have

A+q) - fa™) =f2@ ) +a- a2 f2 ™)

and the result follows by replacing ¢! with q.

Statement (3) now follows from (2) and (5.11) and Remark 6.4. Similarly
(4) follows from Proposition 5.3. O

Remark 6.6. Tt is also possible to prove that P(BX; ) satisfies the modular
law by adapting the geometric proof in Proposition 1.2 to the varieties B .

6.4. Alternative formulation of Proposition 1.2

As discussed in the introduction, if @) is any parabolic subgroup stabilizing
I € Jd, then we can consider the map

pl? G x99I - 0O
and its derived pushforward
S1.¢ := Rul?(C[dim G/Q + dim T]).
Suppose @' is another parabolic subgroup stabilizing I with ' C Q. Then
(6.5) S =H"(Q/Q)[dimQ/Q'® 81

since G x9' I is a fiber bundle over G' x® I with fiber Q/Q’.
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Now let I C Iy C Iy be a modular triple of ideals. Since the fé satisfy
(1+ q)fé1 = f<£2 + qféO by Proposition 6.5, the mfw from §4 satisfy

—1y, T I I
(74 q7 Iyl = mijs + may

for all (u,¢) € Oy,. Since the m/ , determine the V], in Equation (5.3), it
follows that

(q+q S8 = 818D S5

Since I and Iy are P,-stable and P(P,/B) = 1+ ¢, we have Sp, p =
(q+q Y)S1,.p, and Si, 5 = (¢+q1)S1,.p, - Hence, clearing away the (q+¢~ 1)
from all three terms, we have the following.

Proposition 6.7. Let Iy C I} C Iy be a modular triple. There is an isomor-
phism

Sn.B ~ Sn,.p, ® Sy, P,

in the derived category of G-equivariant perverse sheaves on N .
7. Type A results

In Proposition 6.5 we proved that the polynomials ff, and g{; satisfy the
modular law of (6.4). We now connect those results to a combinatorial mod-
ular law for symmetric functions, proving that the two notions are equivalent
in the type A case.

Let G = SL,(C) throughout this section, B be the set of upper triangular
matrices in G, and T the set of diagonal matrices. Let E;; denote the elemen-
tary matrix with 1 in entry (4, j) and all other entries equal to 0. Then the E;;
for i < j are basis vectors of the positive root spaces of g = sl,,(C) relative to
t and b. The positive roots are €; — ¢; for ¢ < j, where ¢, denotes the linear
dual of Ejk, and the simple roots A are ag := € — €11 for 1 < k <n—1.
The simple reflection s; := s,, corresponds to the simple transposition in
W =~ S, exchanging k and k + 1.

The modular law was first introduced for chromatic symmetric functions
by Guay—Paquet in [GP13]. More recently, Abreu and Nigro showed that any
collection of multiplicative symmetric functions satisfying the modular law are
uniquely determined up to some initial values [AN21a]. As an application of
our results, we apply their theorem to compute the Frobenius characteristic of
the dot action and LLT representations, recovering results of Brosnan—Chow
and Guay-Paquet [BC18, GP16].
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7.1. The combinatorial modular law

We introduce the combinatorial modular law in the context of Hessenberg
functions. In type A,_1, each ideal I € Jd uniquely determines, and is deter-
mined by, a weakly increasing function

h:{1,2,....,n} = {1,2,...,n}

such that ¢ < h(i) for all . Such a function is called a Hessenberg function
and its Hessenberg vector is (h(1),...,h(n)). Given a Hessenberg function h,
the ideal I, € Jd corresponding to h is given by

(7.1) Iy, :=spanc{E;; | h(i) < j}.

The function h also determines a lattice path from the upper left corner
of an n X n grid to the lower right corner, by requiring that the vertical step
in row ¢ occurs h(i) columns from the left. The requirement that h(i) > i
guarantees that this lattice path never crosses the diagonal. Thus, Hessenberg
functions (and ideals Jd and Hessenberg spaces H) are in bijection with the
set of Dyck paths of length 2n. By a slight abuse of notation, we write H for
the set of Hessenberg functions, or equivalently Dyck paths, throughout this
section.

Ezxample 7.1. For n = 4, the Hessenberg function h with vector (2,3,3,4)
corresponds to the ideal I, = spanc{FE13, F14, Fo4, E34} and defines the fol-
lowing lattice path. The matrices in I are those with all zeros below the
path.

Lemma 7.2. Leth € H and B = ¢; —¢j € ®r,. Then 3 is a minimal root of
Oy, if and only if j = h(i) + 1 and h(i) < h(i+1).

Proof. Suppose § = ¢ —¢; € ®p,, i.e. that h(i) < j. Assume first that
j = i+ 1. In this case, the lemma is trivial since [ is a simple root (and
thus a minimal root of ®) and h(i) < i+ 1 if and only if h(¢) = i. We may
therefore assume 5 > i + 1 for the remainder of the proof. In this case, we
have a € A such that § —a € @ if and only if &« = a; or a = j_; since @ is
a type A root system. Now € @7, is minimal if and only if

B—oj1=¢€—€-1¢ P, and f—o; =€ — €5 ¢ O,
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or equivalently, h(i) > j — 1 and h(i + 1) > j. As h(i) < j these conditions
are equivalent to h(i) = 7 — 1 and h(i) < h(i + 1), as desired. O

Lemma 7.3. Let h € H and k € {1,2,...,n — 1}. Then sp(®y,) = @5, if
and only if h(k) = h(k + 1) and h=1(k) = 0.

Proof. Suppose first that h(k) = h(k + 1) and k=1 (k) = 0. Note that h(k) =
h(k+1) = h(k) > k+1so o ¢ @5,. Let § = ¢ —¢; € Py, so h(i) < j.
Consider s () = B— (8, ) )au,. If (8, ) < 0 then six(8) € Py, since I, € Id.
We may therefore assume (3, )/) > 0, in which case we have either i = k
or j = k+ 1 since @ is a type A root system and 8 # «ag. If i = k then
sk(B) = exp1 — € € Py, since h(k + 1) = h(i) < j. If j = k+ 1, then
sk(B) = € — e, € @y, since h(i) < k+ 1 and h= (k) = () implies h(i) < k.

Now suppose either h(k) < h(k + 1) or h=1(k) # 0. If h(k) < h(k + 1),
then €, — €p(x)41 is @ minimal root of ®;, by Lemma 7.2 so

Sk(€k — €n(k)+1) = €kt1 — Enkyr1 = (€6 — Enryr1) — ak & Py,

and ®;, is not sg-invariant. If h=1(k) # 0 then there exists i € {1,2,...,n—1}
such that h(i) = k and h(i) < h(i + 1). We have that ¢; — €41 is a minimal
root of @y, so

si(€i — €p1) = € — e = (6 — €pq1) — o & Py,
and, as before, ®;, is not si-invariant. O

We now introduce the triples used to define the combinatorial modular
law as in [AN21a, Def. 2.1].

Definition 7.4. We say hg, h1, ho € H is a combinatorial triple whenever
one of the following two conditions holds:

1. There exists i € {1,2,...,n—1} such that hy (i —1) < h1(i) < h1(i+1)
and hi(h1(i)) = hi(h1(i) + 1). Moreover, hy and hy are defined to be:

(7.2) ho(j) = {Zig;_ 1 ; i z and
ha(j) = {Zig))ﬂ j fﬁ
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2. There exists ¢ € {1,2,...,n — 1} such that hy(i + 1) = hy(i) + 1 and
hit(i) = (). Moreover hg and hy are defined to be:

(7.3) ho(j) = {Zig)) jf;ﬁ and
haj) = {Zig‘fl 1) ﬁii

Ezample 7.5. Let n = 6 and set hy = (2,3,4,6,6,6). Then hy satisfies condi-
tion (1) of Definition 7.4 for ¢ = 3 since h1(2) < h1(3) < hy(4) and

hi(hi(3)) =hi1(4) =6 =h1(4+1) = hi(h1(3) +1).

Using (7.2) we obtain hy = (2,3,3,6,6,6) and he = (2,3,5,6,6,6).

Given a triple hg, h1, ho of Hessenberg functions we let Iy, I1, Io € Jd be
the corresponding ideals defined as in (7.1).

Lemma 7.6. The Hessenberg functions hg, hy, ho form a combinatorial triple
if and only if I, C Iy C Iy is a modular triple of ideals.

Proof. We first prove that any combinatorial triple corresponds to a modular
triple of ideals in Jd. Let hg, ki, ho be a triple of Hessenberg functions sat-
isfying condition (1) of Definition 7.4. We must have hq(7) > ¢ in this case.
Indeed, hq(i) > i and if hy(i) = i then hy(hq(7)) = i and hy(h1(i) + 1) =
hi(i 4+ 1) > i+ 1, violating the fact that hy(hi(i)) = hi(h1(i) + 1). We may
therefore assume ¢ < hy(i) < n. The formula for hy in (7.2) now yields

(7.4) ho(h1(2)) = h1(h1(2)) = ha(h1(2) + 1) = ho(h1(i) 4+ 1).

Similarly, if j < i then ho(j) = hi1(j) <

then hg(]) = hl(j) > hl(Z + 1) > hl(l) As ho(l) = hl(l) -1 7£ hl(l), this
proves hgy'(hi(i)) = 0. Together with (7.4), this gives us sy, (;)(In,) = In, by
Lemma 7.3. Set § = € — €, (). Then (B8, (;y) = —1. As hi(i) = ho(i) + 1
and

hi(i — 1) < hy(i) and if j > i

ho(l) = hl(l) —1< h1<’L + 1) = h()(l + 1),

we have that 8 is a minimal root of Iy by Lemma 7.2. The formulas for hg
and hy given in (7.2) imply Io = [ & gg and I1 = I> @ ga,, ,+4- This proves
I, C I C Iy is a modular triple.

Now suppose hq, h1, he satisfy condition (2) of Definition 7.4. The formula
for hg in (7.3) gives us hy '(i) = 0 = hy (i) = 0 and ho(i) = hi(i) = ho(i+1).
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Therefore s;(®y,) = @7, by Lemma 7.3. The assumption hy(i+1) = hy(i) + 1
yields

ho(i +1)+1=hi(i) +1=hi(i +1)
and
ho(i +1) =hi(i) <hi(i+1) < hi(i +2) = ho(i + 1)

SO €11 — €p,(i+1) 18 @ minimal root of ®;, by Lemma 7.2. Setting 8 = €;41 —
€y (i+1) We get (B, 0) = =1, Io = I ® g, and I; = Iy @ ga,+3. This proves
I, C I; C Iy is a modular triple.

Next we argue that any modular triple of ideals Iy C I; C Iy corresponds
to a combinatorial triple hg, hi, ho. There exists aj, € A and 3 € & such that
(B,a)) = =1, Iy = I ® gg, and s;(Py,) = ®y,. Furthermore, by definition I
is the ideal defined by the condition I; = I ® ga+ . Since @ is a type A root
system, 3 = ¢; — €, for some @ < k or 8 = €41 — €, for some p > £+ 1. We
consider each case.

Suppose first that § = ¢; — € for some ¢ < k. We argue that the triple
of Hessenberg functions hyg, hy, ho satisfies condition (1) of Definition 7.4. As
a+[ = €;—¢€x41 is a minimal root of I, we have hq (i) = k and hy (i) < hy(i+1)
by Lemma 7.2. Since Iy = I; @ gg,

(7.5) ho(j) = h1(j) for all j #1i and ho(i) = hi(i) — 1.

If hi(i —1) = hy(i) = k then ho(i — 1) = k by (7.5), contradicting, by
Lemma 7.3, the assumption that si(®j) = ®z,. Thus hi(i — 1) < hi(4).
Lemma 7.3 also implies hg(k) = ho(k + 1) and since i < k, (7.5) now yields
hl(k) = hl(k + 1) = hl(hl(Z)) = hl(hl(’t) -+ 1) Finally, as Iy satisfies Iy =
Iy & ga+p, the Hessenberg function hy is defined as in (7.2), concluding this
case.

Suppose 3 = €1 — €, for some p > k + 1. We argue that the triple
of Hessenberg functions hg, hy, hy satisfies condition (2) of Definition 7.4.
Lemma 7.2 implies that p = ho(k + 1) + 1 since [ is a minimal root of
®y,. Now that fact that Iy = I} @ gg implies

(76) h1<k‘ +1)=p=holk+ 1) +1 and hl(j) = ho(j) for all j # k+ 1.

Lemma 7.3 and (7.6) together imply that hy(k + 1) = ho(k) +1 = hy(k) + 1
and hy'(k) = 0. This proves h; and hg are as in Definition 7.4 with i = k.
The fact that I, satisfies Iy = Iy ® ga4p Where a + 3 = €, — ¢, implies that
ho is defined as in (7.3) with ¢ = k. The proof is now complete. O
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Let A™ denote the Z-module of homogeneous symmetric functions of de-
gree n. The Schur functions {sy) | A - n} are a basis of A”. Here, A - n means
A= (A > X > > )\ >0) is a partition of n.

We say the function F' : H — Q(q) ® A" satisfies the combinatorial
modular law if

(7.7) (1+q) F(h1) = F(ha) + ¢F (ho)

whenever hg, h1,hs € H is a combinatorial triple of Hessenberg functions.
With Lemma 7.6 in hand, we recover the combinatorial modular law as a
special case of the modular law from Definition 6.3.

Let F: H — Q(q) ® A™. Given I € Jd and \ - n, define F{ € Q(q) by

F(h) = Z F>{(Q)S>\

AFn

where h € H is the unique Hessenberg function with I = Ij,.

Proposition 7.7. The function F : H — Q(q) ® A™ satisfies the combinato-
rial modular law (7.7) if and only if {F{}1c3a satisfies (6.4) for all X+ n.

Proof. By Lemma 7.6, hg, h1, ha € H is a combinatorial triple if and only if
I, C I} C Iy is a modular triple in Jd. Since the sy form a basis of A", it
follows that

(L4 q) F(h1) = g F(ho) + F(h2)
if and only if
(1+q) Fy! = qFy° + Fy?
for all A F n. O

7.2. Chromatic quasisymmetric functions and LLT polynomials

When working in the context of chromatic and LLT polynomials, a Hessenberg
function (or Dyck path) is frequently identified with an indifference graph (see
[HP19, §2.3]). For a composition p = (p1, ..., i) of n, let h*) denote the
Hessenberg function with A(i) = uy + - - - + g where k is the smallest index
satisfying ¢ < pq +- - -+ . Let K, denote the complete graph on m vertices.
Then the graph corresponding to A" is a disjoint union K, UK, - UK,
of complete graphs.
Abreu-Nigro showed the following key result in [AN21a, Theorem 1.2].
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Theorem 7.8 (Abreu—Nigro). Let F' : H — Q(q)®A™ be a function satisfying
the combinatorial modular law of Equation (7.7). Then F is determined by
its values F(h\™) where  is a composition of n.

Let R,, denote the representation ring of S, and recall that the Frobe-
nius characteristic map defines an isomorphism R = &, R, -+ A = §,A"
(see [Ful97, Section 7.3]). Given a graded complex vector space U = @;Us;
concentrated in even degree such that each Uy; is a finite dimensional S;,-
representation, we let Ch(U) = 3°,[Ua]q" where [Uy;] denotes the class of Us;
inR,.

If 11 is a composition of n and I € Jd is the ideal corresponding A", then
H = I+ € # is a parabolic subalgebra p, of a parabolic subgroup P, in G
with Wp, >~ S, x Sy, x-+- xS, . Since we know the values of the dot action
and LLT representations at all p,, by Proposition 5.5, we can use Theorem 7.8
to identify the graded characters of the dot action and LLT representations
as symmetric functions under the Frobenius characteristic map. In the former
case, we obtain another proof of the Shareshian—Wachs conjecture, originally
proved by Brosnan and Chow in [BC18] and again using independent methods
by Guay-Paquet in [GP16]). We note that the proof below is not wholly
independent of that of Brosnan and Chow, since our computations in the
previous section rely on their result [BC18] identifying the dot action as a
monodromy action.

Rather than define the chromatic quasisymmetric and unicellular LLT
functions corresponding to a given Hessenberg function h in careful detail
here, we refer the interested reader to [SW16, AN21a, AN21b, AP18].

Corollary 7.9. Let h € H and let H = I;-.

1. The image of Ch(H*(BH)® sgn) under the Frobenius characteristic map
1s equal to the chromatic quasisymmetric function of h.

2. The image of Ch(LLTg) under the Frobenius characteristic map is equal
to the unicellular LLT polynomial of h.

Proof. Proposition 7.7 and Proposition 6.5 imply that the Frobenius charac-
teristic map of Ch(H*(BX) @ sgn) and Ch(LLT) in Q(q) ® A™ both satisfy
the combinatorial modular law. It therefore suffices by Theorem 7.8 to show
that Ch(H*(B5*) ®sgn) is equal to the chromatic quasisymmetric function of
AW and Ch(LLT, ) is equal to the unicellular LLT polynomial of 2(*) under
the Frobenius characteristic map, for each composition p of n.

By Proposition 5.5(1)

Ch(H*(BE") @ sgn) = P(P,/B)Ch(Indg’ ..., (sen)).
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The Frobenius characteristic of Indgz1 XX S (sgn) is the elementary symmet-
ric polynomial e,,. Also P(P,/B) = [[;_;[w]! where [m]! = [m][m—1]...[2][1]
and [m] is the g-number 1+¢+. . 4+¢™ *. The chromatic quasisymmetric func-
tion of A® is [T/_; [u]'e,, so both sides agree in the parabolic setting and the
result follows.

By Proposition 5.5(2), Ch(LLT},) equals the graded character of

Indgzl XX Sy, (Cm ® Cuz Q- ® Cﬂfr')’

where C,,, denotes the covariant algebra of S,,. Let Frob(U) denote the Frobe-
nius characteristic of a graded representation U. Then

Frob (g’ s, (Cus @ Cpy -+ ®Cp)) = [ Frob(Cy,).
=1

Since unicellular LLT polynomials corresponding to Hessenberg functions are
multiplicative (see [AN21b, Theorem 2.4]), it suffices to know that Frob(C,,)
equals the unicellular LLT polynomials for S, for the case of the complete
graph K,,, which is true by, for example, [AP18, Equation (30)]. O

8. Example in Bj

In type Bs, there are 20 ideals in Jd and 10 irreducible representations in
Irr(W). The ideals are grouped according to the nilpotent orbit O;. We specify
I by listing the minimal roots in @, using the coefficients of the simple roots.
The elements of ©g, are listed in the top row of Table 1. The elements of
Irr(W), as pairs of partitions, are listed in the top row of Table 2.

The ideals I for which O; = O, and

]C@Qi

i>2

for the grading induced by x are listed with a * symbol. For such I, we have
I'Ngs € 3d5"™ and all such elements of Jd§™ arise in this way.

There are 10 examples of the modular law in type Bs, which we list using
the numbering of the ideals in the tables:

(8.1) (3,5,11), (4,5,11), (4,6,9), (7,8,12), (9,10, 13), (11,12, 13),
(12,13,17), (14, 15, 16), (17, 18, 19), (18, 19, 20).
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Table 1: The polynomials P(BZ; x) for Bs.

| Ideal | Min roots | [17] | (22, 19] R 3,14, 1 | B2 || Braa [ B%e] b | M|

20* 0 [2][4][6]

19% 122 (2][4]6] (2][2]

18 112 (2][4][6] [2][2][2]

17 012 (2][4][6] [2][2][3]

16* 111 (2][4]6] [2][2][2] (2][2] (2][2]

15% 110 (2][4][6] [2][2][3] q[2] (2][3]

14% 100 (2][4]6] [2][2][4] 0 (2][4]

13* | 111,012 | [2][4][6] [2][2](3] (2][2] (2][2] (2]

12 011 (2][4][6] [2][2][3] (2]2][2] (2][2][2] (2][2]

11 001 (2][4]6] [2][2][3] (2][2][3] (2][2][3] (2][3]

10* 110,012 | [2][4][6] 2][2](1+ g+ 2¢°) q(2] 23] 2] 1 1

9 100,012 | [2][4](6] | [2][2](1+q+2¢*+4) 0 (2][4] 2] 2] 2]

8 110,011 | [2][4][6) 2112](1+q+24?) 2¢+3¢* + ¢3 [2](1+2g+2¢%) [2](1+2q) 0 2]

7 010 (2][4]6] | [21[2(1+q+2¢>+4°) ql2][2] (2][2][3] (2][2][2] 0 [2][2]

6* | 100,011 | [2][4](6] | [2[2](1+q+24°+4%) q2][2] (2][2][3] [2](1+2q) q 1+2q 1 1
5 110,001 | [2][4][6] (21211 +q+24°) al2(2+2g+¢%) | [21(1+29+3¢%+¢°) (2][2][2] 0 (2] 1 1
4 100,001 | [2][4](6] | [2][2](1+q+2¢*+¢) q2][2][2] [2)(1+2¢+3¢°+2¢°) | [2](1+29+2¢°) 0 [2][2] 2] 2]
3 010,001 | [2][4][6] | [2)[2](1+q+2¢%+¢°) q[2][2][2] [2/(1+2g+3¢°+2¢%) | [2](1+2¢+2¢%) 0 [2]2] 2] 2]
2% | 100,010 | [2][4][6] | [2][2](1+q+2¢7+2¢%) 7°[2] [2](1+29+2¢°+2¢°) (2][2][2] ql2) | 14+3¢+2¢° 0 2]
1* A 21[4][6] | [2][21(1+q+2¢24+2¢%) | 2¢®+3¢3+¢* | 14+3q+5¢°+6¢°+3¢* | 14+3q+5¢>+3¢° e 14+3q+3¢> 2q 1+3q
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The modular triples (8.1) provide a check on our calculation in both tables,
as do the 8 cases in the parabolic setting in Table 2 using (4.8). We made use
of Binegar’s tables to check our calculation of the Green polynomial matrix
K [Bin].

Appendix A. Definition of the dot action and LLT
representations

This appendix introduces the dot action on the equivariant cohomology of
a regular semisimple Hessenberg variety and uses the construction to define
the dot action and LLT representations. Our main goal is to obtain a proof
of Proposition 5.4 above, which was used to define and study the LLT repre-
sentations.

Let H € H be a Hessenberg space and s € t a regular semisimple element.
Recall that the torus T acts on regular semisimple Hessenberg variety B by
left multiplication. The variety is in fact equivariantly formal with respect to
this action [Tym05]. Applying the theory developed by Goresky, Kottwitz,
and MacPherson [GKM98], the equivariant cohomology H(BH) has the fol-
lowing description. The inclusion map of the T-fixed point BZT = {wB |
w € W} into B induces an injection

v Hiy(BE) — Hi(BIT) ~ €D C[t).
weW

Here C[t*] denotes the polynomial ring in the simple roots Clas,. .., ay,].
We identify Hi(BH) with its image under this map, which is given by the
following concrete description,

«(RHY fuw — fsw € (7) for vy € ®F,
(Al) HT(BS ) - {(fw)wGW ‘ w™ ('Y) eEby NP~ :

A more leisurely exposition of the above can be found in [AHM 20, Tym05].
Let T := @ e C[t*]. The ring 7 is a C[t*]-module via the action,

(A.2) (p, f) = pf where (pf)w = pfuw

for all p € C[t*] and f = (fu)wew € T. Equation (A.1) identifies H;(BH) as
a C[t*]-submodule of 7", and we make this identification from now on. We can
also view 7 as a C[t*]-module in another way. To distinguish this structure
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from that defined in (A.2) we call this the right C[t*]-module action on T,
which is defined by

(A.3) (¢,f) = fq where (fq)w = w(q)fw

for all ¢ € C[t*] and f = (fuw)wew € T. The equivariant cohomology H3(BH)
is also a C[t*]-submodule of 7 with respect to the right action.

Let 1 = (1)wew € T. We can identify C[t*] with the C[t*]-submodule
generated by 1, via the left action from (A.2) or the right action from (A.3).
To distinguish between the left and right submodules generated by 1 we write:

« C[L] for the left C[t*]-module generated by 1 via the action from (A.2).
 C[R] for the right C[t*]-module generated by 1 via the action from (A.3).

This notation is inspired by the exposition in [GP16]. Both C[L] and C[R)]
are submodules of Hi(B) in the appropriate sense. Recall that H*(B) ~
Hi(BI)/ (aq, ..., an); where (ai,...,an); is the ideal of H}(BH) generated
by the positive degree elements in C[L] (see [Tym05, Prop. 2.3]).

The W-action on ® C t* extends to a W-action on C[t*] in a natural way.
We denote the action of w € W on f € C[t*] by w(f). The dot action of W
on T is defined by

(A.4) (V- flw :=v(fp-1,) forall veW, feT.

The dot action preserves the equivariant cohomology Hz(BH) in T [AHM ™20,
Lemma 8.7].

The submodules C[L] and C[R] introduced above are also invariant un-
der the dot action. Let C[t*]"" denote the ring of W-invariants in C[t*]. By
Chevalley’s Theorem C[t*] ~ C[t*]" ® C where C is the coinvariant algebra
of W. The following lemma computes the graded character of the dot action

on C[L] and C[R].
Lemma A.1. We have C[L] ~ C[t*]" ® C and C[R] ~ C[t]" & C’, where

C' ~ C as vector spaces, but W acts trivially on C'. In particular,

and
Y
(1 —a%) wew
where dy, ..., d, denote the degrees of W (cf. [Hum90, Sec. 3.7-3.8]).
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Proof. We first compute the dot action on C[L] and C[R], respectively. If
p € C[L] then

(V- Plw = V(Po-1w) = v(p) = (V(P))w-

Thus the dot action on C[L] is the usual graded representation of W on the
polynomial ring C[t*]. If ¢ € C[R] then

(v @)w = v(go-10) = v(v ™ w(q)) = w(q) = qu

so the dot action on C[R] is trivial. Since C[L] ~ C[R] ~ C[t*] as vector
spaces, the first assertion of the lemma follows from the above computations.

Finally, the second assertion follows from the fact that the Poincaré polyno-

mial of the ring C[]"" is precisely [Ti) —ay and Ch(C’) = S wew L] ™).
O

Consider the ideals (a,. .., ay), and respectively (o, ..., ) g, in the
equivariant cohomology H(BH) generated by the positive degree elements
of C[L], and respectively C[R]. Both are W-invariant, and the dot action on
H3(BH) induces an action on the quotients

(A.5) H*(BT) ~ H:(BT)/ (ay,...,00),
and
(A.6) LLTy := H;(BY)/ (o1, ..., an)p -

We refer to the W-module H*(BX) as the dot action representation and the
W-module LLTy as the LLT representation.

Remark A.2. In the type A case LLTy ~ H*(Xp) where Xy is the smooth
manifold of Hermitian matrices having a particular staircase form (determined
by H) and a given fixed simple spectrum (determined by s) [AB20].

We can now prove Proposition 5.4; our argument closely follows that of
Guay-Paquet in [GP16] for the type A case. In the proof below, x denotes the
product (which corresponds to taking the tensor product of representations)
in the character ring of W.

Proof of Proposition 5.4. The equivariant cohomology Hi(BH) is a free mod-
ule of rank n! over C[t*] with respect to either (A.2) or (A.3), see the dis-
cussion in [GP16, Section 8.5] or [AHM™20, Section 2.3]. In particular, the
usual extension of scalars construction for free modules yields isomorphisms

of W-modules:

(A7) H(B") = C[L] ®c H*(B.)
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and
(A.8) Hi(BY) ~ C[R] ®¢ LLTy.
It now follows that
Ch(C[L]) x Ch(H*(B¥)) = Ch(C[R]) x Ch(LLT ).
Applying the formulas from Lemma A.1 and dividing by [\, (17%

j now
yields the desired result. 0

To conclude, we sketch a proof of the fact that if B is disconnected then
both the dot action and LLT representations are induced by corresponding
representations of a parabolic subgroup of W. It is well known to experts
but, to the best of our knowledge, has not appeared in the literature so we
include an outline of the argument here. This fact can be used together with
Proposition 5.2 to give another proof of Borho and MacPherson’s result in
equation (4.8) above.

Let J = {a € A| —a € g} C A. Then B is connected if and only
if J = A [AT10, Appendix A]. Let L denote the standard Levi subgroup
associated to J with Lie algebra [. There is a natural embedding of the flag
variety By, := L/(BN L) of L into B given by (BN L) — (B. Let W; :=
(Sa | @ € J) be the corresponding parabolic subgroup of W, which is the
Weyl group of L. Denote by W+ the set of shortest coset representatives
for the left cosets W/W,. For each v € W7 we have that s, := v"lsis a
regular semisimple element in [. Furthermore, by definition H := H N[ is
a Hessenberg space in [ and the regular semisimple Hessenberg variety Bf{ B
in the flag variety of L is connected. Now the decomposition of B into
connected components is given by

(A9) B = ] v(BL,,)

veWw/
where Bgsv ={l(BNL)e B | ts, € H}. Each U(Bgsv) is isomorphic
to Bf{ s, and the cohomology decomposes accordingly. We now obtain the

following directly from the definition of the dot action together with the
decomposition cohomology induced by (A.9).

Corollary A.3. There is an isomorphism of W-modules:

(A.10) Hy (BT ~ Ind (H4(BE,)).
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In particular, both the dot action and LLT representations are obtained by
induction from the corresponding representations for Bﬁs, namely,

H*(BT) >~ dly,, (H*(BY)) and LLTp =~ Ind}}. (LLT).
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