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We develop information-geometric techniques to analyze the trajectories of the
predictions of deep networks during training. By examining the underlying high-
dimensional probabilistic models, we reveal that the training process explores an
effectively low-dimensional manifold. Networks with a wide range of architectures,
sizes, trained using different optimization methods, regularization techniques, data
augmentation techniques, and weight initializations lie on the same manifold in the
prediction space. We study the details of this manifold to find that networks with
different architectures follow distinguishable trajectories, but other factors have a
minimal influence; larger networks train along a similar manifold as that of smaller
networks, just faster; and networks initialized at very different parts of the prediction
space converge to the solution along a similar manifold.

deep learning | information geometry | optimization | principal component analysis | visualization

We show that training trajectories of multiple deep neural networks with different
architectures, optimization algorithms, hyperparameter settings, and regularization
methods evolve on a remarkably low-dimensional manifold in the space of probability
distributions. The key idea is to analyze the probabilistic model underlying deep neural
networks via their representation as probabilistic models as they are trained to classify
images. Consider a dataset

{
(xn, y∗n)

}N
n=1 ofN samples, each of which consists of an input

xn and its corresponding ground-truth label y∗n ∈ {1, . . . , C} where C is the number of
classes. Let Ey = ( y1, . . . , yN ) ∈ {1, . . . , C}N denote any sequence of outputs. If samples
in the dataset are independent and identically distributed, then the joint probability of
the predictions can be modeled as

Pw( Ey) =
N∏

n=1
pnw( yn), [1]

where w are the parameters of the network and we have used the shorthand pnw( yn) ≡
pw( yn | xn). This is the joint likelihood of all the N labels given the inputs and the
parameters w; see SI Appendix, S.2 for details. The probability distribution in Eq. 1 is
N (C − 1)-dimensional object. Any network that makes predictions on the same set of
samples—irrespective of its architecture, the optimization algorithm and regularization
techniques that were used to train it—can be analyzed as a probabilistic model in this
same N (C − 1)-dimensional space; we will refer to this space as the “prediction space.”
We develop techniques to analyze such high-dimensional probabilistic models and embed
these models into lower-dimensional spaces for visualization.

We first show, using experimental data (with NC ∼ 106 to 108), that the training
process explores an effectively low-dimensional manifold in the prediction space. The top
three dimensions in our embedding explain 76% of the “stress” (which is a quantity used
to characterize how well the embedding preserves pairwise distances) between probability
distributions of about 150,000 different models with many different architectures, sizes,
optimization methods, regularization mechanisms, data augmentation techniques, and
weight initializations. In spite of this huge diversity in configurations, the probabilistic
models underlying these networks lie on the same manifold in the prediction space. This
sheds light upon a key open question in deep learning, namely how can training a deep
network, with many millions of weights, on datasets with millions of samples, using a
nonconvex objective, be feasible.

We next study the details of the structure of this manifold. We find that networks
with different architectures have distinguishable trajectories in the prediction space; in
contrast, details of the optimization method and regularization technique do not change
the trajectories in the prediction space much. We find that a larger network trains along

Significance

Training a deep neural network
involves solving
a high-dimensional, large-scale,
and nonconvex optimization
problem and should be
prohibitively hard—but it is quite
tractable in practice. To shed light
upon this paradox, we develop
tools for the analysis and
visualization of the prediction
space of high-dimensional
probabilistic models. Our
experimental data show that the
training process explores
a low-dimensional manifold in the
prediction space. Networks with
many different architectures,
trained with different
optimization procedures, and
regularization techniques
traverse the same manifold. This
suggests that the optimization
problem in deep learning is
inherently low dimensional.

Author contributions: J.M., I.G., H.K.T., R.R., R.Y., M.K.T.,
J.P.S., and P.C. designed research; J.M., I.G., H.K.T., R.R.,
and R.Y. performed research; J.M., I.G., H.K.T., R.R., R.Y.,
M.K.T., J.P.S., and P.C. contributed new reagents/analytic
tools; J.M., I.G., H.K.T., R.R., R.Y., M.K.T., J.P.S., and P.C.
analyzed data; and J.M., I.G., H.K.T., R.R., R.Y., M.K.T., J.P.S.,
and P.C. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
pratikac@seas.upenn.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2310002121/-/DCSupplemental.

Published March 12, 2024.

PNAS 2024 Vol. 121 No. 12 e2310002121 https://doi.org/10.1073/pnas.2310002121 1 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

13
6.

36
.1

73
.5

6 
on

 A
ug

us
t 2

8,
 2

02
5 

fr
om

 IP
 a

dd
re

ss
 1

36
.3

6.
17

3.
56

.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2310002121&domain=pdf&date_stamp=2024-03-12
https://orcid.org/0009-0005-7713-0051
https://orcid.org/0000-0003-1390-6621
https://orcid.org/0000-0001-5965-2343
https://orcid.org/0009-0009-0134-6883
https://orcid.org/0000-0001-9126-0892
https://orcid.org/0000-0003-4590-1956
https://www.pnas.org/lookup/doi/10.1073/pnas.2310002121#supplementary-materials
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pratikac@seas.upenn.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2310002121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2310002121/-/DCSupplemental


a similar manifold as that of a smaller network with a similar
architecture but it makes more progress for the same number of
gradient updates. We find that models initialized at very different
parts of the prediction space, e.g., by first fitting them to random
labels, train along trajectories that merge quickly, approaching
the true labels along the same manifold.

Methods
Measuring Distances in the Prediction Space. We* first mark two special
points inthepredictionspacethatwewill refer to frequently.Thetrueprobabilistic
model of the data which corresponds to ground-truth labels is denoted by
P∗ = � Ey∗(Ey) where Ey∗ are ground-truth labels and � is the Kronecker delta
function. We will call this the “truth.” Similarly, we will mark a point called
“ignorance”: It is a probability distribution P0 that predicts pn

0(c) = 1/C for all
samples n and classes c. Given two probabilistic models Pu and Pv with weights
u and v respectively, the Bhattacharyya distance per sample between them is

dB(Pu, Pv) = −N−1 log
∑
Ey

N∏
n=1

√
pn

u( yn)
√

pn
v ( yn)

(∗)
= −N−1 log

N∏
n=1

C∑
c=1

√
pn

u(c)
√

pn
v (c);

= −N−1
∑

n
log
∑

c

√
pn

u(c)
√

pn
v (c).

[2]

Here, (∗) follows because samples are independent; see SI Appendix, S.2.
for more details. In other words, the Bhattacharyya distance between two
probabilistic models can be written as the average of the Bhattacharyya distances
of their predictive distributions pn

u and pn
v on each input xn. We can also use

other distances to measure the discrepancy between Pu and Pv , such as the
symmetrized Kullback–Leibler divergence (1), or the geodesic distance on the
product space (SI Appendix, S.5.3). But many other distances [e.g., the Hellinger
distance dH(Pw , P∗) = 2

(
1−

∏
n
∑

c
√

pn
w(c)

√
pn
∗(c)

)
] saturate quickly

as the number of dimensions of the probability distribution grows, obscuring
the intrinsic low-dimensional structures we seek. This is because two high-
dimensional random vectors are orthogonal with high probability. When the
number of samples N is large, distances such as the Bhattacharyya distance are
better behaved due to their logarithms.

Measuring Distances between Trajectories in the Prediction Space.
Consider a trajectory (u(k))k=0,...,T in the weight space that is initialized
at u(0) and records the weights after each update made by the optimization
method during training. This corresponds to a trajectory �̃u = (Pu(k))k=0,...,T
in the prediction space. We are interested in distances between trajectories
in the prediction space. Different networks (depending upon the initialization,
architecture, and the training procedure) train at different speeds and make
different amounts of progress toward P∗ after each epoch. This makes it
problematic to simply use a distance like

∑
k dB(Pu(k), Pv(k)) which sums up

the distances between models at each instant k. To see why, observe that such a
distance between �̃u and �̃v := (u(0), u(2), u(4), . . . , u(2k), u(2k+2), . . .)
which progresses twice as fast as �̃u, is nonzero even if the two trajectories are
intrinsically the same.

To better compare trajectories, we need a notion of time that allows us to index
any trajectory in prediction space. We shall measure progress along the trajectory
by the projection onto the geodesic between ignorance and truth. Geodesics
are locally length-minimizing curves in a metric space. Our trajectories evolve
on the product manifold of the individual probability distributions in Eq. 1.
Geodesics in this space using the Fisher Information Metric (FIM) (2) are a good
candidate for constructing our index. The FIM is realized by a simple embedding.
For each n, consider a vector consisting of the square-root of the probabilities

*To aid the reader, SI Appendix, S.1. collects all the notation in one place.

(
√

pn
u(c))c=1,...,C as a point on a (C − 1)-dimensional sphere. Therefore, the

geodesic connecting two probability distributions Pu and Pv is the great circle
on the sphere. A point along it with interpolation parameter � ∈ [0, 1] denoted
by P�u,v(Ey) =

∏
n pn,�

u,v ( yn) satisfies (3, Eq. 47)√
pn,�

u,v =
sin((1− �)dn

G)

sin(dn
G)

√
pn

u +
sin(�dn

G)

sin(dn
G)

√
pn

v , [3]

where dn
G = cos−1(

∑
c
√

pn
u(c)

√
pn

v (c)) is one half of the great circle distance
between pn

u(·) and pn
v (·). Any point Pw along a trajectory can be reindexed

using “progress” that is defined as

sw = argmin
�∈[0,1]

dG(Pw , P�0,∗), [4]

where
dG(Pu, Pv) = N−1 ∑

n cos−1 ∑
c
√

pn
u(c)

√
pn

v (c)

is the geodesic distance on the product manifold. Note that progress sw ∈ [0, 1]
and it intuitively quantifies the motion along the trajectory by projecting onto the
geodesic connecting ignorance and truth as in Fig. 1. We discuss the relationship
between progress and error in SI Appendix, S.4.2. To find a point’s progress, we
solve Eq. 4 using a bisection search (4).

We would now like to convert each trajectory �̃u = (Pu(k))k=0,...,T into a
continuous curve �u = (Pu(s))s∈[0,1] and uniformly sample them for values
of s between [0, 1]. To do this, we first calculate the progress su(k) of all
checkpoints along the trajectory �̃u using Eq. 4. For any s ∈ [su(k), su(k+1)],
we can now define � = (s − su(k))/(su(k+1) − su(k)) and calculate
using Eq. 3 the geodesically interpolated probability distribution P�u(k),u(k+1)
that corresponds to this progress s on the trajectory of interest �̃u. Finally, we
define the distance between trajectories �u and �v as

dtraj(�u, �v) =

∫ 1

0
dB(Pu(s), Pv(s))ds, [5]

which compares points on the trajectories at equal progress.

Embedding Predictions into a Lower-Dimensional Space for Visualiza-
tion. We use a technique called intensive principal component analysis
(InPCA) (1, 5) which is closely related to multidimensional scaling MDS (6) to
project the predictions of the network into a lower-dimensional space to visually
inspect their training trajectories. For m probability distributions, consider a
matrix D ∈ Rm×m with entries Duv = dB(Pu, Pv) and

W = −LDL/2, [6]

where Luv = �uv − 1/m, and W is the centered version of D. An eigen-
decomposition of W = UΛU> where the eigenvalues are sorted in descending
order of their magnitudes |Λ00| ≥ |Λ11| ≥ . . . allows us to compute the

Fig. 1. A schematic of the procedure in Eq. 4 used to compute progress
sw by projecting a model Pw along a training trajectory onto the geodesic
between ignorance P0 and truth P∗.
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embedding of the m probability distributions into an m-dimensional Minkowski
space with metric signature (p, m− p) derived from the p positive eigenvalues
of W as Rp,m−p

3 X = U
√
|Λ|†. In standard PCA, the embedding is

always Euclidean since the eigenvalues of W are guaranteed to be nonnegative.
However, InPCA can have both positive and negative eigenvalues. Coordinates
corresponding to positive eigenvalues are analogous to “space-like” components
in special relativity that have a positive-squared contribution to the distance
between two points. Coordinates corresponding to negative eigenvalues are
“time-like” components in that they have a negative contribution to the distance
between two points. One can think of the coordinates with negative eigenvalues
as being imaginary axes in the embedding. Space-like and time-like coordinates
can give rise to “light-like” directions along which the distance between two
visually different points is zero.

The key property of InPCA that we exploit in this paper is that its embedding
is isometric, i.e.,

‖Xu − Xv‖
2 = dB(Pu, Pv) ≥ 0 [7]

for embeddings Xu, Xv ∈ Rp,m−p of two probability distributions Pu and Pv
and the norm in Minkowski space is

‖Xu − Xv‖
2 =

m∑
k=1

sign(Λkk)|Xuk − Xvk|
2;

see SI Appendix, S.4.1 for a proof. Like PCA, InPCA generates an optimal
embedding of a geometrical object with a fixed number of points, preserving
long-distance structures. Such an isometric embedding is different from the one
created by methods like t-SNE (7) or UMAP (8) which approximately preserve
local pairwise distances but distort the global geometry. All the analysis in this
paper is conducted using the full pairwise Bhattacharyya distance matrix D. In
contrast with t-SNE or UMAP, the isometric embedding in InPCA ensures that
the visualization is consistent with our conclusions (up to the fact that we only
visualize the top few dimensions). For a d < m dimensional InPCA embedding,
the fraction of the centered pairwise distance matrix W that is preserved is

1−

√∑
ij(Wij−

∑d
k=1
√
Λkk Uik

√
Λkk Ukj)2∑

ij W2
ij

= 1−

√∑m
k=d+1 Λ

2
kk∑

i Λ
2
ii

; [8]

which is similar to the explained variance for standard PCA. Following the MDS
literature, we call this quantity “explained stress.” In this paper, we embed
predictions of m ~ 103 to 105 models with NC ~ 106 to 108 using InPCA. This is
very challenging computationally. Implementing InPCA—or even PCA—for such
large matrices requires a large amount of memory. We reduced the severity
of this issue using Numpy’s memmap functionality. Note that calculating only
the top few eigenvectors of Eq. 6 by magnitude suffices for the purpose of
visualization. SI Appendix, S.5.3 discusses embeddings using other methods.

Adding New Networks into an Existing Embedding. Given the embedding
of predictions of m networks, we can project the prediction of a new network
into the same space. Observe that we can rewrite Eq. 6 to be

Wuv =−
dB(Pu, Pv)

2
+

1
2m

∑
u′

(dB(Pu, Pu′) + dB(Pv , Pu′)

−
1
m

∑
v′

dB(Pu′ , Pv′)), [9]

where u′, v′ ∈ {1, . . . , m}. The embedding of a new probability distribution
Pw into this space is Xw =

∑n
u=1 Ww,uUu|Λuu|

−1/2, where Uu denotes the
uth column of U. This is equivalent to a triangulation of the position of the added
points, such that distances and the overall geometry are preserved. We discuss
a generalization of this approach in SI Appendix, S.4.3. Although we do not do
so in this paper, this procedure can also be used to embed a large set of points
by computing the eigen-decomposition for only a subset, e.g., as done in ref. 9.

†In special relativity, the axes corresponding to negative eigenvalues are often referred
to as imaginary coordinates, and the metric signature is replaced by (x, it) · (x, it) =

x2 + i2t2 = x2
− t2 . However, this is not the inner product ‖(x, it)‖ = x2 + t2 over the

complex numbers. We define a space where the distance between “(1, i)” and the origin
vanishes and therefore its embedding is Rp,m−p and not Cm .

Computing Averages in the Prediction Space. For our analysis, we will
need to compute averages of the predictions of probabilistic models, e.g.,
of the same architecture but trained from different initializations. Depending
upon what distance we use in the prediction space, there can be different
ways to compute such an average. The most natural candidate is the
Bhattacharyya centroid of a set of m probability distributions {Pi}

m
i=1 given

by argminPw
m−1 ∑

i dB(Pi, Pw) (10). In this paper, we will need to compute
such averages thousands of times. For computational convenience, we will
instead use the arithmetic mean of the probabilities m−1 ∑

u pn
u(c) for all n, c

as our average, which we have found to produce similar results in preliminary
experiments (see Fig. S.14. from SI Appendix, which discusses the effect of
different kinds of averaging). We have found that the harmonic mean of an
ensemble of probabilistic models performs slightly better on the test data in
comparison to their arithmetic mean, which is commonly used in machine
learning.

Results

Experimental Data. We‡ trained 2,296 different configurations
on the CIFAR-10 dataset (11) corresponding to networks § with
different a) network architectures fully connected, convolutional:
AllCNN (12), residual: Wide ResNet (13), and ConvMixer (14),
self-attention-based: ViT (15), b) network sizes (a small residual
network and a large residual network), c) optimization methods
SGD, SGD with Nesterov’s acceleration and Adam (16), d)
hyperparameters (learning rate and batch-size), e) regulariza-
tion mechanisms with and without weight-decay (17), f) data
augmentation (mean-SD-based normalization, and another one
where we add horizontal flips and random crops), and g) random
initializations of weights (using 10 different random seeds). We
recorded the training trajectories at about 70 different points
during training (more frequently at the beginning of training
when the models train quickly). This gave us 151,407 different
models, after removing some models that did not train correctly
due to numerical overflows/underflows during gradient updates.

We also performed a smaller scale experiment on ImageNet
using a) three different architectures a small residual network:
ResNet-18 (18), a larger residual network ResNet-50, and a
self-attention-based network: ViT, b) different optimization
algorithms SGD with Nesterov’s acceleration for the residual
networks, and a variant of Adam for ViT (19), c) 5 random
weight initializations for the residual networks and 3 for the ViT.
We recorded each training trajectory at 61 different points to
obtain a total of 792 different models for ImageNet.

Table 1 summarizes the train and test errors of models used in
our analysis. SI Appendix, S.3 gives more details of the training
procedure. About 60,000 GPU hours were used to obtain and
analyze the data in this paper.

The Training Process Explores an Effectively Low-Dimensional
Manifold in the Prediction Space. Fig. 2A shows the first three
dimensions of the InPCA embedding of the probabilistic model
in Eq. 1 computed over samples in the training set. Each point
corresponds to one model (i.e., one architecture, optimization
algorithm, hyperparameters, regularization, weight initialization
and a particular checkpoint along the training trajectory) and is
colored by the architecture. The explained stress Eq. 8 of the first
three dimensions is 76% as shown in Fig. 2B; it increases to 98%

‡Data, preprocessing scripts, and code are available at https://github.com/grasp-lyrl/low-
dimensional-deepnets.
§In the sequel, “network” denotes a particular configuration with a specific architecture, op-
timization method, regularization technique, hyperparameter choice, data-augmentation,
and weight initialization. “Model” denotes a probability distribution along the training
trajectory of such a network.
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Table 1. Median (and 25 to 75 percentile on the second row) train and test error (%) of different architectures
(with number of parameters in the brackets) used in our analysis, averaged over different optimization methods,
regularization techniques, and weight initializations*

Fully connected AllCNN Small ResNet Large ResNet ConvMixer ViT
(3.8M) (0.4M) (0.3M) (43.9M) (0.6M) (9.5M)

CIFAR-10
Train error 1.5 0.1 0.6 0.0 0.0 0.3

(0.0, 4.4) (0.0, 0.5) (0.0, 2.3) (0.0, 0.0) (0.0, 0.0) (0.0, 18.6)
Test error 39.7 15.4 17.6 9.6 11.7 32.7

(38.1, 41.9) (11.7, 20.3) (12.5, 21.5) (6.5, 11.2) (9.9, 16.8) (21.7, 36.2)

ResNet-18 ResNet-50 ViT-S
(11.6M) (25.6M) (22M)

ImageNet
Train error 22.7 15.8 16.6

(22.5, 22.7) (15.8, 15.8) (15.1, 16.9)
Test error 31.9 25.2 41.5

(31.8, 31.9) (25.1, 25.3) (41.3, 42.2)

*For CIFAR-10, some configurations had models that did not get to zero train error, and in very few cases, models had 90% train error. For ImageNet, all networks were trained with
standard data augmentation techniques, and they do not reach zero training error.

within the first 50 dimensions. The prediction space for CIFAR-
10 has 4.5 × 105 dimensions (N = 5 × 104 and C = 10);
the rank of the distance matrix in InPCA is at most 151,407.
For ImageNet, all networks are trained on the entire training set
(N = 1.28 × 106), but we use a subset of the training samples
(N = 50, 000) acrossC = 103 classes to calculate the embedding
(i.e., the prediction space has 4.995 × 107 dimensions). For
ImageNet, nearly 84% of the explained stress is captured by
the top three components of the InPCA embedding Fig. 2D;
this increases to 96% in the top 50 dimensions. The fact that
so few dimensions capture such a large fraction of the stress
suggests that in spite of the huge diversity in the configurations
of these networks, they all explore an effectively low-dimensional
manifold in the prediction space during training.

Ignorance is marked by P0. The truth P∗ is off the edge of
the plot (Fig. 3B). The black curve denotes the embedding
of the geodesic between P0 and P∗ calculated using Eq. 3.
Typical weight initialization schemes initialize models near P0
irrespective of the configuration. Toward the end of training,
models that trained well are close to the truth P∗ in terms
of the Bhattacharyya distance. Note that if the truth P∗ has
probabilities that are either zero or one (which is the case in
our experiments), then the Bhattacharyya distance is one half
of the cross-entropy loss used for classification. In this large
prediction space, training trajectories of different configurations
could be very diverse; on the contrary, not only do they all lie
on an effectively low-dimensional manifold but trajectories of
different configurations appear remarkably similar to each other.
Submanifolds corresponding to each configuration seem to be
rather similar; we will analyze this quantitatively in Fig. 7A.
For now, we note that probabilistic models learned by different
architectures, training, and regularization methods are very
similar to each other—not only at the end of training when
they fit the data but also along the entire training trajectory.

All trajectories seem to take a different path than the geodesic
(shortest distance) path between P0 and P∗. However, the
geodesic is also largely captured by the top few dimensions
of InPCA. Along the geodesic, all samples are trained toward
the truth at the same rate, and so all models on it have zero
training error. The deviation of paths away from the geodesic may

reflect the learning of easy images early and confusing ones late,
perhaps due to first-order gradient-based methods. We explore
this further in Fig. S.7 A and B in SI Appendix. The geodesic
corresponds to the trajectory of natural gradient descent (21),
which is not a first-order method. That the geodesic is faithfully
represented in the low-dimensional embedding suggests that
the low dimensionality observed in Fig. 2A is not a direct
consequence of using gradient-based algorithms.

All these observations also hold for networks trained on
ImageNet. Note that in this case, the top three eigenvalues
of InPCA are all positive; we have noticed this to be the case
when the number of models embedded is small. The manifold of
all trajectories is still effectively low-dimensional. Submanifolds
spanned by ViTs and ResNets appear different from each other
while submanifolds of the smaller and larger ResNet are quite
similar; we will see in Fig. 7A that architectures are the primary
distinguishing factors of different training trajectories. In this
case, all three architectures are quite different from the geodesic.
Training trajectories do not end as close to truth P∗ as those of
CIFAR-10; for ImageNet, the trajectories end at a progress Eq. 4
close to 0.9. This should not be surprising because typically
networks trained on ImageNet do not achieve zero training error
(zero training error can be achieved but they perform very poorly
on the test data).
Characterizing the details of the train manifold. Fig. 3A shows a
pairwise comparison for the first three principal components of
InPCA (same data as that of Fig. 2A). Qualitatively, the first
principal component, which is space-like, distinguishes models
according to their distance to the truth P∗ (i.e., half of the
cross-entropy loss). The second principal component, however,
is time-like because the second eigenvalue of InPCA is negative;
shown in red in Fig. 2. The third principal component is again
space-like. All models that train well have small Bhattacharyya
distances to the truth P∗ toward the end of training; they also
have small errors (zero in almost all cases). But these probabilistic
models are different from each other, and they are also different
from the truth P∗. Our visualization technique emphasizes these
subtle differences using all coordinates, including the imaginary
coordinate corresponding to the negative eigenvalue. Fig. 3B
shows the train loss of all models (colored by purple for small,
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A B

C

D E
Fig. 2. The manifold of models along training trajectories of networks
with different configurations (architectures denoted by different colors,
optimization algorithms, hyperparameters, and regularization mechanisms)
is effectively low dimensional for networks trained on CIFAR-10 (A). Different
configurations train along similar trajectories but are quite different from the
geodesic between ignorance P0 and truth P∗ (not seen here). (B) The manifold
is hyperribbon-like (20): Eigenvalues of the InPCA distance matrix Eq. 6 for
CIFAR-10 are spread over a large range with the top few dimensions capturing
a large fraction of the stress Eq. 8 (numbers indicate explained stress in the
top 1, 3, 10, 25, and 50 dimensions). Time-like coordinates corresponding to
negative InPCA eigenvalues are red. (C) A pairwise comparison for the first
three principal components, note that PC2 is time-like (same data as (A)).
Results for models trained on ImageNet are similar (D and E). In (A and D),
we have drawn smooth curves denoting trajectories by hand to guide the
reader.

yellow for large). Even if the truth looks far away from them
visually (>4 in a Euclidean sense), models colored purple
in Fig. 3B have small distances from the truth dB(Pw, P∗) < 0.2;
incidentally their Minkowski distance to the truth in the top
three coordinates is negative.

In Fig. 3B, the spread of points (yellow) near P0 consists of
some models that have 90% error (same as that of ignorance).
There are 1,500 such points, coming from 370 different
trajectories (over 85% of points are from 145 trajectories). Over
half of these high error deviating networks (Fig. 4B) eventually
trained to zero error. These models have the same error as that
of ignorance P0 but the visualization method distinguishes them
from ignorance because their probabilities are not uniform. The
spread of the points in the visualization in this case is therefore
coming from differences in the probabilities. These models can be
brought back to the manifold of good training trajectories simply
by training them further. Now notice the points colored purple
in Fig. 3D. These models have a large Bhattacharyya distance
(>0.15) from points marked A, B or C on the geodesic (which
corresponds to progress of 0.01, 0.5, and 0.99 respectively).
Fig. 3C shows that these models also have very different errors
from each other. This spread of points away from the manifold is
therefore also coming from large differences in the probabilities.

Now notice the blue cluster of models (ConvMixer) in Fig. 3A;
as Fig. 3D shows, the distance of a bulk of these ConvMixer
models to point A is small (< 0.1). And Fig. 3C suggests that
these models have error <10% (some also have larger errors). In
this region, the spread of the points in the visualization is coming
predominantly from the small differences in the probabilities.

Fig. 4A studies models that are away from the manifold, with
dB(P, P∗) > 2 (yellow in Fig. 3B). For ConvMixer and the
two residual networks, a majority of these models were trained
by Adam. No AllCNN models were away from the manifold.

A B

C D
Fig. 3. Comparison of the top two principal components of an InPCA
embedding of all models on CIFAR-10 colored by the architectures (A) (same
as Fig. 2C), train loss (B), which is two times the Bhattacharyya distance
dB(P, P∗) for classification tasks like ours, train error in (C), and by whether
they are within a Bhattacharyya distance <0.15 from models marked A, B,
and C on the geodesic in (D). These figures are discussed in the narrative and
should be studied together with Fig. 2C.
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A B
Fig. 4. Number of models P with dB(P, P∗) > 2 (that are away from the main manifold) stratified by (A) architectures and (B) the number of epochs.

Fig. 4B stratifies these models by the optimization algorithm. In
early stages of training, these are networks trained with SGD or
SGD with Nesterov’s acceleration with large batch-sizes (more
than 500); this accounts for about 35% of the models. Adam is
primarily responsible for models that are away from the manifold
at later stages of training (about 55% of the points). We speculate
that this could be related to poorer test errors of Adam than SGD
for image classification tasks.

The Manifold of Predictions on the Test Data Is Also Effectively
Low-Dimensional, with More Significant Differences among
Architectures. Fig. 5A shows the first three dimensions of the
InPCA embedding of predictions on the test data using the same
networks as that of Fig. 2A. The explained stress of the first three
dimensions is still high (63%) and it increases to 95% within the
first 50 dimensions; these numbers are smaller than those for the
training data. For CIFAR-10, the prediction space has 9 × 104

dimensions (N = 104 and C = 10) and for ImageNet the
prediction space has 4.995× 107 dimensions (N = 50,000 and
C = 1,000). This suggests that in spite of the vast diversity
in configurations of these networks, their trajectories in the
prediction space of the test samples also lie on an effectively
low-dimensional manifold.

The test manifold is broadly similar to the train manifold
in Fig. 2A. Trajectories begin near ignorance (dB(P, P0) < 0.6
at the start of training) but they do not always end near P∗.
This is expected because different architectures have different
test loss/errors at the end of training. The Bhattacharyya distance
to the truth is one half of the test cross-entropy loss; models with
poor test loss should be farther from P∗ than those with a small
test loss. Bhattacharyya distances of the end points of trajectories
are as large as 0.58 for the test manifold compared to 0.02 for the
train manifold after excluding models with train error >10%.

Trajectories of different configurations seem to be more
dissimilar in Fig. 5A than those in Fig. 2A; networks of different
architectures have more distinctive test trajectories. We have
analyzed these differences quantitatively in Fig. S.9A in SI
Appendix. But it is remarkable that even if different architectures
have quite different trajectories, different models with the same
architecture predict similarly on the test data. In other words, all
fully connected networks make the same kind of mistakes, and all
convolutional networks are correct on generally the same samples.
For fully connected networks and ViTs, we see two different test
trajectories corresponding to the two kinds of data augmentation
techniques. For convolutional architectures, there are minor
differences in test trajectories due to augmentation. This could
be because we used randomly cropped images for augmentation:
Convolutional networks are relatively insensitive to random crops
because their features have translational equivariance.

SI Appendix S.5.2 provides a detailed analysis of the test
trajectories.

Embedding probabilistic models along train and test trajectories
into the same space. So far, we have analyzed train and test
manifolds independently of each other. Indeed, probabilistic
models Eq. 1 corresponding to train and test data belong to
different sample spaces, even if the two were created from the
same underlying weights. It is however useful to visualize the two
manifolds in the same space to understand how progress toward
the truth in the train space results in progress toward the truth in
the test space.

We first computed InPCA coordinates using probabilistic
models on train data, let us denote one such model with weights
u as Pu. We then used the procedure developed in Eq. 9 to embed
test models into these coordinates as follows. Let us denote by P′u
the model on the test data for the same weights u. Calculate

W ′uv =−
dB(P ′u, P

′
v)

2
+

1
2m

(∑
u′

dB(Pu, Pu′) + dB(Pv, Pu′)

−
1
m

∑
v′

dB(Pu′ , Pv′)

)
, [10]

for all models Pu and Pv. The first term is the distance between
two test models but the second term is computed using only
train data and is the same as that of Eq. 9. The embedding
of a test model P′w is set to be X ′w =

∑n
u=1 W

′
w,uUu|Λuu|

−1/2

using the eigenvectors and eigenvalues of the train embedding.
The procedure in Eq. 9 was intended to embed new models of
the same set of samples into an existing embedding. This present,
somewhat peculiar, trick works when the number of train models
and the number of test models are the same (which is the case for
us), and when the second term in Eq. 10 is close to its counterpart
in Eq. 9 (which is expected if there is self-averaging).

We first built an InPCA embedding using the train models and
then used the procedure in Eq. 10 to calculate the coordinates of
the test models and obtained Fig. 6A. Observations drawn from
this procedure are qualitatively the same as those from Figs. 2 and
5, e.g., train and test trajectories of different architectures still lie
on similar manifolds, test trajectories of AllCNN, ConvMixer,
and Small ResNet are close to each other, and test trajectories
of Fully Connected and ViT architectures are far from the
others. The explained pairwise distances for the test models
using the InPCA coordinates computed from the train models
are also consistent with those obtained from embedding the test
models independently like Fig. 5A; 0.52 vs. 0.56 in the top 10
dimensions, respectively. This indicates that pairwise distances
in the test data are well-preserved by the InPCA coordinates
constructed using pairwise distances on the train data. When
two models differ on the train data, they also differ in a similar
way on the test data.

We also built a new InPCA embedding using pairwise
Bhattacharyya distances in Eq. 2 calculated using only a subset
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A B

C

D E
Fig. 5. Predictions on the test data of networks with different configurations
(architectures denoted by different colors, different optimization algorithms,
and regularization mechanisms) trained on CIFAR-10 (A) is also effectively
low-dimensional. Trajectories of different architectures are distinctive on the
test data. (B) Test manifold is also hyperribbon-like: eigenvalues of the InPCA
distance matrix Eq. 6 for CIFAR-10 (B) and ImageNet (E) are spread over a large
range and the top few dimensions capture a large fraction of the stress Eq. 8
(numbers indicate explained stress in the top 1, 3, 10, 25 and 50 dimensions.
(C) shows a pairwise comparison for the first three principal components for
CIFAR-10 models. PC1-PC2 of Fig. 2C look quite similar to those of (C). Results
for models trained on ImageNet are similar (D and E). In (A and D), we have
drawn smooth curves denoting trajectories by hand to guide the reader.

A B
Fig. 6. (A) A joint embedding of a subset of networks on CIFAR-10 using their
predictions on samples from both the train (bold) and test (translucent) sets.
(B) The explained pairwise Bhattacharyya distances computed using Eq. 12 is
quite high for models on the train data after embedding them into an InPCA
embedding computed using a small number of samples (N = 5,000, N = 500,
and N = 50) in the train data. SI Appendix, S.4.4 discusses this further.

of the samples. Figs. S.3 and S.4 in SI Appendix show the result
of using the procedure in Eq. 10 to project the original distance
matrix into the coordinates of this new InPCA. The explained
pairwise distance of the original checkpoints is consistently quite
high, even when as few as N = 50 or N = 10 samples are
used to calculate the embedding out of the 50,000 and 10,000
samples for train and test sets respectively. This suggests that our
techniques for analysis of high-dimensional models can also be
used on very large datasets. For ImageNet, where C = 1,000,
we have also noticed that the InPCA embedding looks similar if
we first project the output probabilities into a smaller space by
multiplying by a random matrix (with columns that sum up to 1).

Architectures—Not Training or Regularization Schemes—Pri-
marily Distinguish Training Trajectories in the Prediction
Space. For all networks that trained to zero error, we interpolated
the checkpoints from their trajectories to get models along
the training trajectory that are equidistant in terms of their
progress Eq. 4 toward the truth P∗. Using these interpolations,
we calculated the distance between trajectories corresponding to
different configurations using Eq. 5, averaged over the weight
initializations. Fig. 7A shows a dendrogram obtained from a
hierarchical clustering of these distances. Clusters identified
from this analysis primarily correspond to different architectures
(row colors match those in Figs. 2A and 5A). The cluster of
trajectories of networks with convolutional architectures has a
diameter that is about as large as the cluster of trajectories of
fully connected and self-attention-based networks (about 0.1
pairwise Bhattacharyya distance on average between models on
these trajectories that have the same progress). This points to a
strong similarity in how networks with different architectures,
optimization algorithms, hyperparameters, regularization, and
data augmentation techniques learn. Fully connected and self-
attention-based networks train along different trajectories than
networks with convolutional architectures. The geodesic is far
from all trajectories.

Within a cluster, say fully connected networks (green),
there are only marginal differences between different configu-
rations, e.g., different optimization methods, different batch-
sizes, weight-decay vs. no weight decay, augmentation vs.
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A

B C
Fig. 7. (A) dendrogram obtained from hierarchical clustering of pairwise
distances (averaged over weight initializations) between training trajectories
(computed using Eq. 5) of networks with different configurations (X-labels
correspond to architecture, optimization algorithm, batch-size, learning rate,
weight-decay coefficient, and augmentation strategy). There are strong
similarities in how networks with different architectures, optimization algo-
rithms, and regularization mechanisms learn. (B) The first two components
of an InPCA embedding (without averaging over weight initializations) of
train trajectories, each point is one trajectory; explained stress of top two
dimensions is 63.6%. (C) Variable importance from a permutation test (P <

10−6) using a random forest to predict pairwise distances. These three plots
suggest that architecture is the primary distinguishing factor of trajectories
in the prediction space. Test trajectories exhibit similar patterns (Fig. S.9 in SI
Appendix).

no augmentation. The dendrogram is created using distances
between entire trajectories. So this analysis suggests that training
trajectories of most fully connected networks are similar. This
pattern largely holds for the other architectures also. Small vs.
large residual networks (orange vs. yellow respectively) have
similar training trajectories; Fig. 9 shows that the larger network
progresses faster toward P∗.

Optimization (i.e., the algorithm and the batch-size) is the
second prominent distinguishing factor. Within clusters of
different architectures, networks trained with the same opti-
mization algorithm have similar trajectories. In particular, for
convolutional architectures, trajectories of Adam are more similar
to each other than those of SGD or SGD with Nesterov’s
acceleration. We do not see such a separation for nonconvo-
lutional architectures where different optimization algorithms
lead to similar trajectories (for them, differences come from data
augmentation techniques). The details of different optimization
algorithms matter little, e.g., trajectories of networks trained with
different learning rates and batch-sizes are quite similar to each
other. In general, networks that use weight-decay and networks
that do not use weight-decay have similar trajectories. In general,
for all architectures, networks trained with augmentation and
without augmentation have only marginally different trajectories
in the prediction space.

In Fig. 7B, we computed an InPCA embedding of the pairwise
distances between trajectories corresponding to different config-
urations (without averaging across weight initializations). This
gives a qualitative understanding of the dendrogram: Clusters
of InPCA are consistent with the clusters in the dendrogram.
While an InPCA embedding of the pairwise distances between
models in Fig. 2C depicts a low-dimensional manifold, Fig. 7B
illustrates differences in how different configurations train, in
particular architectures. This is also evidence that our techniques
can also be used to understand entire trajectories in the prediction
space. We built a random forest-based predictor of the distance
between trajectories of two configurations using their distance to
the geodesic (real-valued covariate) and their configuration (cate-
gorical covariate) as inputs. A permutation-test performed using
the random forest to estimate variable importance in Fig. 7C
confirms our discussion above: Architecture is the most important
distinguishing factor of these trajectories and optimization
(batch-size, training algorithm) is the next important factor.

SI Appendix, S.5.1 provides a more detailed analysis of the
train trajectories. For all architectures, optimization algorithms,
and regularization mechanisms, networks with different weight
initializations train along very similar trajectories in the prediction
space. We quantify this phenomenon using “tube widths”
which capture the differences between models corresponding
to different weight initializations at the same progress. Train
trajectories are close to the geodesic at early (because they begin
near P0) and late parts (because they end near P∗) of the training
process. While test trajectories also begin near ignorance P0, their
distance to the geodesic is larger, and toward the end of training
all test models are quite far from truth. As S.5.2 and Fig. S.9A in SI
Appendix show, test trajectories exhibit largely consistent patterns.

A Larger Network Trains along a Similar Manifold as That of a
Smaller Network with a Similar Architecture but Makes More
Progress toward the Truth for the Same Number of Gradient
Updates. Networks with different configurations make progress
toward the truth P∗ at different rates. As Fig. 8 shows, progress
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A B
Fig. 8. Progress of models with different configurations (color scheme is
same as that of Fig. 2A) is strongly correlated with (A) train error (R2 = 0.95),
and (B) test error (R2 = 0.88).

is strongly correlated with both train error (R2 = 0.95) and
test error (R2 = 0.88). Progress toward the train truth and
toward the test truth is also highly correlated with each other
(R2 = 0.99). This suggests that progress, which can be calculated
easily using Eq. 4, is a good way to judge how close models are
to both train and test truths. Note that models may not have
a progress of 1 even if they have zero training error (AllCNN
trained with Adam in our case). In our work, we have used
progress, which is a geometrically natural quantity in probability
space, to measure and interpolate trajectories. Fig. 8 also suggests
that we could have used training error to interpolate checkpoints
and would have obtained similar conclusions.

On both train and test manifold, at low error, AllCNN in
red and Large ResNet in yellow have markedly different progress
than other architectures (too low and too high respectively).
Recall from Fig. 2A and Fig. S.7A in SI Appendix that trajectories
of AllCNNs are also closest to the geodesic and those of Large
ResNet are farthest. At high errors, which are typically seen at
early training times, all architectures exhibit similar progress.
Different weight initializations do not result in different rates
of progress. For the same batch-size, SGD with Nesterov’s
acceleration makes faster progress than SGD or Adam at very
early training times but this difference vanishes at later stages of
training. In general, models trained with weight decay achieve a
lower final progress on both train and test manifolds.

A B
Fig. 9. A Large ResNet makes more progress toward the truth than a
Small ResNet for the same number of gradient updates on CIFAR-10 (A) and
ImageNet (B), irrespective of the optimization algorithms. Since the manifold
of train and test trajectories for the two architectures are very similar (Fig. 7A),
this suggests that larger networks and smaller networks make the same kind
of predictions but the larger ones simply learn faster.

We saw in Fig. 7A that trajectories of the Large ResNet lie on
the same submanifold as that of the Small ResNet; see Fig. S.6 in
SI Appendix for the tube widths. The trend for the test manifold
in Fig. S.9A in SI Appendix is similar. After the same number of
gradient updates, the Large ResNet makes more progress toward
the truth than the Small ResNet on CIFAR-10 (Fig. 9A). Fig. 9B
shows the training progress against epochs averaged over different
weight initializations for models trained on ImageNet. Again, the
larger network (ResNet-50) makes more progress compared to
the smaller network (ResNet-18) when trained using an identical
optimization algorithm, learning rate schedule, batch-size, and
data augmentation.

Discussion
An Insight into Optimization in Deep Learning. The central
challenge in understanding why we can train deep networks
effectively stems from the fact that the likelihood pw( y | x)
of an output y given an input x is a complicated function of
the parameters w. There is a large body of work that tackles this
issue, e.g., optimization and generalization in function spaces
for simpler architectures (22, 23) or analytical models (24–26),
analyzing representations of different layers (27, 28), properties of
stochastic optimization methods (29) etc. This has led to some
successes, e.g., a characterization of the training dynamics and
generalization for two-layer neural networks. But there is a vast
diversity of different architectures, optimization methods, and
regularization mechanisms in deep learning, and it is difficult to
draw general conclusions from these analyses.

We have taken a different approach in this experimental
paper. We studied many different network configurations to find
surprising phenomena that are not predicted by existing theory.
We give two examples here. First, the optimization process
explores an effectively low-dimensional manifold in the space
of predictions on the train and test data, in spite of the enormous
dimensionality of both the embedding space and the weight
space. This suggests that the optimization problem in deep
learning might have a much smaller computational complexity
than what is suggested by existing theory. Second, there is
overwhelming empirical evidence that large networks with more
parameters generalize better than smaller networks with fewer
parameters (30–32). A large body of work has sought to analyze
this phenomenon (33–35), and it has also been argued that we
need to rethink our understanding of generalization in machine
learning (36). We have found that a Large ResNet trains along
the same manifold as that of a Small ResNet. It proceeds further
toward the truth in the later parts of the trajectory. In view of the
effectiveness of pruning and knowledge distillation (37, 38), this
could mean that the superior test error of large networks could
be matched by smaller networks using better training methods.

There is some previous work that has argued that weight
configurations along a particular training trajectory lie on low-
dimensional manifolds, e.g., using PCA (39), or by arguing that
the minibatch gradient has a large overlap with the subspace
spanned by the top few eigenvectors of the Hessian during
training for networks without batch-normalization (40–42).
These analyses that study the low-dimensionality of trajectories
in the weight space provide important insights into the dynamics
of training and foreshadow our work. But their findings are not
related to the ones we discussed here. To wit, weights of different
architectures lie in totally different vector spaces. We also checked
that weights along trajectories of the same network configuration
but different weight initialization cannot be explained using few
principal components, i.e., they do not lie in a low-dimensional
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linear subspace, and in fact, the explained variance of the top few
dimensions decreases proportionally with the number of distinct
weight initializations. The mapping between the weight space
and the prediction space is quite complicated, and phenomena
that occur in the former do not imply that they occur in the
latter space in general. Even if the set of models explored by the
training process were to lie in a low-dimensional linear subspace,
the set of predictions of these models need not lie in a low-
dimensional linear subspace. This is because the singular vectors
of the Jacobian between the prediction space and the weight space
can rotate. Conversely, if the predictions of a set of models lie
on low-dimensional manifolds, this does not imply that weights
do so as well, because, for instance, there are symmetries in the
parameterization of deep networks.

Computational Information Geometry. Information Geome-
try (2) is a rich body of sophisticated ideas, but it has been difficult
to wield it computationally, especially for high-dimensional
probabilistic models like deep networks. The construction
in Eq. 1 is a finite-dimensional probability distribution, in
contrast to the standard object in information geometry which is
an infinite-dimensional probability distribution defined over the
entire domain of input data. It is this construction fundamentally
that enables us to perform complicated computations such as,
embeddings of high-dimensional models, geodesics in these
spaces, projections of a model onto the geodesic, distances
between trajectories in the prediction space, etc. Analysis of
high-dimensional probabilistic models is challenging due to the
curse of dimensionality: Most points are orthogonal to each
other in such spaces (43). Our visualization techniques, that
build upon InPCA and IsKL (1, 5), work around this issue
using multidimensional scaling (6, 44) and distances between
probability distributions that violate the triangle inequality, e.g.,
the Bhattacharya distance. This has some mysterious benefits,
e.g., our visualization technique can distinguish between small
differences in high-dimensional probability distributions as they
approach the truth in Minkowski space (45). Together with these
visualization techniques, the theory developed in this paper gives
tools for the analysis of high-dimensional probabilistic models.

Interpretation of the Top Three Principal Coordinates. It is
surprising that just three dimensions can capture 76% of the stress
(for CIFAR-10) of such a large set of diverse training trajectories
in Fig. 2A. We next offer an interpretation of this phenomenon.
Our probabilistic models are an N -product of probability
distributions corresponding to points (

√
pnu(1), . . . ,

√
pnu(C))

which lie on a (C − 1)-dimensional sphere. Training trajectories
begin near ignorance P0 and end near P∗, so let us consider the
straight line that joins ignorance and truth as one basis. Tangents
to a training trajectory at ignorance (e.g., when networks are
presumably learning “easy” images) and at truth (e.g., when
networks are learning the most challenging images) can be two
more basis vectors. This defines a three-dimensional subspace
of the 450,000-dimensional prediction space. To represent
this three-dimensional space, we can choose four probability
distributions: P0, P∗, and Ps1 , Ps2 computed by weighted averages
of models with progress close to s1 and s2, respectively. The latter
two are stand-ins for the tangents to the trajectories at P0 and P∗
and they are calculated using

Ps =
1
Z

∑
P′

exp
(
−(sP′ − s)2

2�2

)
P′, [11]

Fig. 10. The procedure in Eq. 9 was used to add original models used
for Fig. 2A into an InPCA embedding created using four points corresponding
to three “bases” (straight line from ignorance to truth, and tangents to the
training trajectories at ignorance and truth) for three configurations, all with
AllCNN architecture. This new embedding preserves pairwise Bhattacharyya
distances between the original models to a similar degree as that of the
original InPCA embedding. The two embeddings also assign the same signs
to the top few eigenvalues; for the embedding using four points, only the first
three dimensions are nontrivial.

where Z =
∑

P′ exp(−(sP′ − s)2/(2�2)) is the normalizing
factor and s′P is the progress of the model P′. We choose � = 0.05
for all the experiments and experiment with different choices of s1
and s2. We can now build an InPCA embedding using these four
models, and using the procedure in Eq. 9 (which is equivalent
to weighted-InPCA discussed in SI Appendix, S.4.3), we can add
our original models in Fig. 2A into this new InPCA embedding.

Fig. 10 shows how well these new coordinates explain pairwise
Bhattacharyya distances in D ∈ Rm×m for models of three
configurations (AllCNN architectures trained with SGD, SGD
with Nesterov’s acceleration and Adam) for ten different weight
initializations by calculating

1−
∑

ij|Dij−‖Xi−Xj‖2|∑
ij Dij

, [12]

where Xi ∈ Rq,d−q are the d -dimensional coordinates of the
embedded points; we can calculate this quantity that we call
“explained pairwise distances” using both these new and the
original InPCA coordinates. Explained pairwise distances using
the original InPCA embedding (which was created using all
models) and this new InPCA embedding (which was created
using only the four points: P0, P∗ and Ps1 , Ps2 for s1 = 1− s2 =
0.3) are both quite large—and similar to each other. The two
embeddings are also consistent as to which coordinates are time-
like (dimensions in Fig. 10 are ordered by the magnitude of
eigenvalues).

We next performed the same analysis but with all models
in Fig. 2A with dB(P, P∗) < 2, which effectively removes
models that lie away from the manifold. In Fig. 11a, we
created an InPCA embedding using four points: ignorance P0,
truth P∗ and Ps1 , Ps2 for s1 = 1 − s2 = 0.2 by computing
the average over all models P′ in Eq. 11, and projected the
original probabilistic models into these new coordinates using
the procedure in Eq. 9 to visualize them. We rotated the top
3 nontrivial dimensions of this embedding to best align the
embedding created using the original InPCA procedure that
uses all models to compute the embedding. This alignment was
done using the Kabsch–Umeyama algorithm (46) which finds the
optimal translation, rotation, and sign-flips of the coordinates to
align two sets of points; the root mean square deviation (RMSD)
is 0.06. As Fig. 11B shows, there are structural similarities in
the embedding computed using only the four points and the
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A InPCA using 4 points B Original InPCA C Explained Pairwise Distances

Fig. 11. All models in Fig. 2A with Bhattacharya distance dB(P, P∗) < 2, which effectively removed the spread of points away from the train manifold (Fig. 3B),
were embedded using InPCA coordinates constructed using four points corresponding to three “bases” (straight line from the ignorance to truth, and tangents
to the training trajectories at ignorance and truth) in (A) and using the original InPCA coordinates in Fig. 2A computed using all models in (B). The top three
coordinates in both (A) and (B) are space-like. The manifold in (A) is structurally similar to that of (B), e.g., Small and Large ResNet models are close to those
of ConvMixer models, and far from fully connected models, some ResNets and ConvMixer models are away from the main manifold at intermediate training
times. (C) shows that the explained pairwise Bhattacharyya distances between models in the new embedding is very high, and comparable to that of the first
eight dimensions in the original InPCA. We have drawn smooth curves denoting trajectories by hand to guide the reader.

one computed using all models, e.g., Small and Large ResNet
models are close to those of ConvMixer models, and far from
fully connected models, some ResNets and ConvMixer models
are away from the main manifold at intermediate training times.
Fig. 11C shows that the new embedding also preserves pairwise
Bhattacharyya distances between the models to a similar degree.

This exercise gives us an interpretation for the low-dimensional
embedding identified by InPCA. It may point to a mechanistic
explanation for our findings: The train and test manifolds
are effectively low-dimensional because networks with different
architectures, optimization algorithms, hyperparameter settings,
and regularization mechanisms fit the same easy images in the
dataset first and the same challenging images toward the end of
training; this phenomenon has also been studied in ref. 47.

Why Are the Train and Test Manifolds Effectively Low-Dimen-
sional? It is remarkable that trajectories of networks with such
different configurations lie on a manifold whose dimensionality
is much smaller than the embedding dimension. To explore
this further, we analyzed trajectories of networks trained on
synthetic data: a) sampled from a “sloppy” Gaussian, i.e., with
eigenvalues of the covariance that are distributed uniformly on
a logarithmic scale this structure has been noticed in many
typical problems (48, 49), and b) sampled from an isotropic
Gaussian (nonsloppy data). We labeled these samples using a
random two-layer fully connected teacher network and trained
student networks with different configurations to fit these labels.
When students are initialized near ignorance P0, train and test
manifolds are effectively low-dimensional for both kinds of data
(87% explained stress in top ten dimensions). When students
are initialized at different initial points {P(k)

0 }k=1,...,10 similar
to those in Fig. S.10 in SI Appendix, train and test manifolds
are still effectively low-dimensional for both kinds of data; top
ten dimensions have 85% explained stress. But the explained
stress is higher in the top few dimensions if trajectories begin
from near each other, e.g., from fewer initial points, or from
ignorance. For sloppy input data, trajectories converge to the

same manifold quickly even if they begin from very different
initial points. SI Appendix, S.6 discusses this experiment further.

We therefore believe that the low-dimensionality of the
manifold arises from a) the structure of typical datasets (50–
52), e.g., spectral properties, and b) the fact that typical training
procedures initialize models near one specific point in the
prediction space, the ignorance P0. Along the first direction,
recent work on understanding generalization (48, 53) has argued
that deep networks, as also linear/kernel models, can interpolate
without overfitting if input data have a sloppy spectrum. Work
in neuroscience (54, 55) has also argued for visual data being ef-
fectively low-dimensional. Theories in machine learning (56, 57)
and information-theory (58, 59) for model selection are based
on estimates of the number of models in a hypothesis class
that are consistent with the data. In this context, our second
suspect, namely initialization, suggests that even if the size of the
hypothesis space might be very large for deep networks (60, 61),
the subset of the hypothesis space explored by typical training
algorithms might be much smaller.

Data, Materials, and Software Availability. Code data have been deposited
in Github (https://github.com/grasp-lyrl/low-dimensional-deepnets) (62).
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