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Spatial Correlation-Aware Opportunistic Beamforming in
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Abstract—This paper addresses the high overheads associated
with intelligent reflecting surface (IRS) aided wireless systems.
By exploiting the inherent spatial correlation among the IRS
elements, we propose a novel approach that randomly samples
the IRS phase configurations from a carefully designed dis-
tribution and opportunistically schedules the user equipments
(UEs) for data transmission. The key idea is that when IRS
configuration is randomly chosen from a channel statistics-aware
distribution, it will be near-optimal for at least one UE, and upon
opportunistically scheduling that UE, we can obtain nearly all
the benefits from the IRS without explicitly optimizing it. We
formulate and solve a variational functional problem to derive the
optimal phase sampling distribution. We show that, when the IRS
phase configuration is drawn from the optimized distribution,
it is sufficient for the number of UEs to scale exponentially
with the rank of the channel covariance matrix, not with the
number of IRS elements, to achieve a given target SNR with
high probability. Our numerical studies reveal that even with
a moderate number of UEs, the opportunistic scheme achieves
near-optimal performance without incurring the conventional
IRS-related signaling overheads and complexities.

Index Terms—Intelligent reflecting surfaces (IRS), spatial cor-
relation, opportunistic scheduling, multi-user diversity.

I. INTRODUCTION

A
n intelligent reflecting surface (IRS) comprises multiple

passive elements that can be independently configured

to reflect signals in required directions, thereby controlling

the overall channel and improving the spectral efficiency (SE)

of next-generation wireless systems [1]. However, optimally

configuring the IRS entails three-fold control overheads: 1)
acquisition of channel state information (CSI), 2) optimization

of IRS phase angles, and 3) phase transportation from the base

station (BS) to the IRS via control links. These overheads

can easily undermine the professed benefits of an IRS when

the number of IRS elements is large. This paper overcomes

this bottleneck by leveraging a spatial correlation-aware oppor-

tunistic beamforming framework that reaps optimal IRS gains

without optimization/three-fold overheads, as described above.

In the pursuit of reducing the complexity while maximizing

the IRS-aided performance, [2] leverages correlation among

different user equipments (UEs) to minimize the pilot over-

heads, and [3] proposed to use only the partial CSI of the

channel. In [4], a blind BF approach without CSI estimation

is proposed; however, it suffers from high time complexity.

In this view, [5] and [6] utilize opportunistic scheduling tech-

niques to mitigate both time and computational complexity.

However, they consider independent fading channels and need

a very large number of UEs to achieve optimal gains.
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In this paper, we progress upon this problem by exploiting

the inherent spatial correlation at the IRS and show that the

performance of the opportunistic scheme can be significantly

improved even with a small number of UEs at very low time

and computational complexities. Our key contributions are:

1) We pose and solve a variational functional problem to ob-

tain the optimal sampling distribution for the random IRS

phases, as a function of the channel statistics. (Sec. IV-C.)

2) We show that, when the derived spatial-correlation-aware

distribution is used, it is sufficient for the number of UEs

to scale exponentially in the rank of the channel covariance

matrix, to obtain near-optimal SNR in every slot. (Sec. V.)

3) In the process, we derive the tail probability of the Rayleigh

quotient of a heteroscedastic complex Gaussian random

vector, which may be of independent interest. (Lemma 3.)

We empirically illustrate the efficacy of the opportunistic

scheme when the IRS phase is randomly sampled from the

optimal distribution. For example, with N = 32 IRS elements,

the sum-SE is only 0.7 bps/Hz (5%) away from that achieved

via IRS optimization with just K = 25 UEs (see Fig. 2a).

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider an N -element IRS-aided downlink scenario

where a BS serves K UEs in a time-division multiple-access

fashion. Let the small-scale channel from the BS to IRS be

h1∈CN, and from IRS to UE-k be h2,k∈C
N. Since the BS

and IRS are envisioned to be deployed at fixed positions, we

model h1 as a deterministic vector, with entries [7]

[h1]n = exp (j2πdn/λ) , n = 1, 2, . . . N, (1)

where dn is the distance between the BS antenna and nth IRS

element. The channel from IRS to UE can be random; so, we

model h2,k ∼ CN (0,Σk), where Σk is the spatial correlation

matrix at the IRS for UE-k. The overall channel at UE-k is

hk =
√
βd,khd,k +

√
βr,kh

T
2,kΘ̃h1,

where hd,k ∼ CN (0, 1) is the direct channel from BS to UE-

k, Θ̃ ∈ C
N×N is a diagonal matrix containing the IRS phase

shifts, and βd,k, βr,k denote the path loss of the direct path

and cascaded path via the IRS, respectively. We now write

hk =
√

βd,khd,k +
√

βr,k θ̃
T
(h2,k » h1) ≜ θH

hf,k, (2)

where » is the hadamard product, θ≜

[
1, θ̃

∗T
]T
∈C

N+1 is the

effective IRS vector and θ̃∈C
N has the diagonal elements of

Θ̃, and hf,k ≜ [
√

βd,khd,k,
√

βr,kh
T
r,k]

T is the fading vector

with hr,k≜h2,k» h1. The system is illustrated in Fig. 1.

Let P , σ2 be the transmit and noise power, respectively.

Configuring the IRS to UE-k with the SE-optimal phase:

θopt = argmax
θ

log2

(
1 + |θH

hf,k|2P/σ2
)
, (P1)

s.t. [θ]1 = 1, |[θ]n| = 1, n = 2, . . . , N + 1, (C1-1)
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Fig. 1: System model for one UE.

incurs inordinate overheads (see Sec. III.) So, we answer:

1) Can we leverage the spatial correlation to randomly config-

ure θ (without determining θopt), opportunistically sched-

ule the best UE, and thereby obtain benefits from the IRS?

2) For the above scheme, what is the probability that a random

IRS phase procures a target near-optimal SE as in (P1)?

To this end, we first analyze the benchmark SE obtained under

IRS optimization with round-robin (RR) scheduling of UEs.

III. THE BENCHMARK: SUM-SE VIA IRS OPTIMIZATION

Under RR scheduling, the BS sequentially schedules UEs

using a pre-defined ordering. Considering that the IRS is

configured as per (P1) in every time slot, the achievable beam-

forming (BF) sum-SE is characterized in the following [6].

Lemma 1. With K-UEs, under RR scheduling, the BF sum-

SE obtained when the BS optimizes the IRS to the channel of

the scheduled UE in every time slot is given by Ropt
K =

1

K

K∑

k=1

log2


1 +

∣∣∣∣∣
√
βd,k |hd,k|+

√
βr,k

N∑

n=1

|[hr,k]n|
∣∣∣∣∣

2

P

σ2


 ,

and is achieved with the optimal IRS configurations given by

[θopt]n=exp
{
j ("[hr,k]n−1−"hd,k)

}
, n = 2, . . . , N+1. (3)

Remark 1. Achieving Ropt
K as in Lemma 1 incurs compu-

tationally expensive three-fold overheads in every time slot:

1) Channel estimation: The BS acquires the CSI of all the

links; this potentially requires O(N) pilot transmissions.

2) Phase optimization: The BS must optimize the IRS to

achieve the best SE during data transmission.

3) Phase transportation: The BS transports the optimal phase

of each IRS element to the IRS controller via an error-free

control link, and its overhead scales as O(N).

IV. SPATIAL CORRELATION-AWARE OPPORTUNISTIC BF

A. The Proportional-fair Scheduler

In each slot, the PF scheduler selects a UE with the

highest instantaneous-to-average SE ratio [8], thereby oppor-

tunistically enhancing throughput via the multi-user diversity

effect while ensuring fairness in UE scheduling. Let Rk(t)≜
log2(1+|hk(t)|2P/σ2) be the achievable SE of UE-k at time

t. The PF scheduler selects the k∗(t)th UE, where

k∗(t) = argmaxk∈{1,...,K} Rk(t)/Tk(t),

where Tk(t) is the exponentially weighted moving average

(EWMA) SE seen by UE-k till time t, which is parameterized

by the EWMA factor τ [8]. Smaller (larger) values of τ favor

short (long)-term fairness in UE scheduling. We will refer to

Rk(t)/Tk(t) as the PF metric of UE-k at time t.

B. Opportunistic Communication using an IRS

The proposed opportunistic communication (OC) scheme

has two steps per slot: 1) the IRS configuration is randomly

chosen from an appropriate sampling distribution, and 2) the

BS opportunistically selects a UE using the PF scheduler. In

this view, we next state a lemma, proved similar to [8].

Lemma 2. In a K-UE system, using a PF scheduler with

τ →∞, when the IRS configurations are randomly sampled

from a spatial correlation-aware distribution, the sum-SE of

the IRS-aided OC scheme, denoted by Ropp
K obeys

lim
K→∞

(
Ropp

K −Ropt
K

)
= 0,

where Ropt
K is the optimal sum-SE as given in Lemma 1.

From Lemma 2, we deduce that with a large number of

UEs, the PF scheduler selects the UE for which the random

IRS phase is close to its BF configuration and procures the

BF benefits without explicitly optimizing the IRS [8]. This

is called opportunistic beamforming. We next characterize the

IRS phase sampling distribution that satisfies Lemma 2 from a

variational perspective, which is one of our key contributions.

C. Optimal Distribution for Sampling the Random IRS Phases

We observe that the optimal IRS vector in (3) is obtained

as the deterministic map F : CN+1−→{1}×U
N , given by

F : hf,k 7−→
[
1,
(
exp
{
j ("hr,k − "hd,k)

})T ]T
, (4)

where U
N ≜

{
z ∈ C

N
∣∣∣|zi| = 1, i = 1, . . . , N

}
. As a conse-

quence, the design of the random distribution is coupled with

the statistics of the channels to the UEs. We can write the

small-scale channel between the IRS and UE-k as

h2,k = Σ
1/2
k h̃2,k

(a)≈ Σ
1/2

h̃2,k, (5)

where h̃2,k ∼ CN (0, IM ), M = rank(Σ), Σ
1/2
k contains the

first M columns of a square root of Σk, and in (a), we used

Σk = Σ, ∀k. This corresponds to a Kronecker channel model

where the correlation is induced by local spatial scattering at

the IRS elements or a scenario where many UEs are located

in a hotspot area [5], [9].1 Since R(Σ1/2) = R(Σ), where

R(A) is the range space of A, from (5), we get h2,k ∈ R(Σ).
Thus, h2,k lies in an M -dimensional subspace of C

N . Let

Σ = UΛU
H be the spectral decomposition of Σ; Λ contains

the non-zero eigenvalues of Σ. Then, for every h2,k ∈ R(Σ),

by the Karhunen–Loève Theorem, there exists {αk,i}Mi=1 s.t.

h2,k =
∑M

i=1
αk,iui, and αk,i = ïh2,k,uið, (6)

with ui being the ith orthonormal eigenvector of Σ. Hence, the

channel at each UE is uniquely determined by the UE-specific

coefficients {αk,i}Mi=1 along with the basis vectors {ui}Mi=1.

Conversely, with a large number of UEs, for any given

{αk,i ∈ C}Mi=1, there exists a UE whose channel corresponds

to the chosen coefficients via (6). Since h2,k is a Gaussian

1To serve UEs with different covariance matrices at the IRS, we first cluster
UEs sharing similar covariance matrices as in [10]. Then, we select a cluster
in an RR manner, and within the slots allocated for the selected cluster, a UE
is served via the opportunistic BF scheme considered in this paper.
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Scheme 1: Spatial Correlation-aware Opportunistic BF

Input: Correlation values: U, Σα; BS-IRS link: h1.

1 for time slot t = 1, 2, 3, . . . do
/* Random sampling of IRS configurations */

2 Sample the random vectorβ ∼ CN (0,Σα).

3 Set θrand = F
([

1, (h1 »Uβ)
T
]T)

, as per (4).

/* Towards identifying the best UE */

4 BS broadcasts a common pilot signal to every UE.

5 All UEs compute their PF metrics & feedback

their identities to BS using timer schemes [11].

/* Proportional-fair scheduling of UEs */

6 The BS identifies and schedules UE-k∗(t) for data

transmission with k∗(t) = argmax
k∈{1,...,K}

Rk(t)/Tk(t).

vector, αk,i ∼ CN (0, [Σα]i,i), with [Σα]i,i = E[|uH
i h2,k|2] =

u
H
i Σui, i.e., Σα=U

H
ΣU=Λ. We have the following result.

Theorem 1. The probability density function for drawing the

random samples of the IRS vector in every time slot to ensure

that a PF scheduler achieves the BF-SE as in Lemma 2 is

fopt
θ

(θ′) =

∫

F−1(θ′)

δ
(
h−F−1(θ′)

)
phf

(h)dh,

where F−1(θ′) denotes the set-inverse under the F(·) map-

ping, i.e., F−1(θ′) ≜ {h ∈ C
N+1 : F(h) = θ′}, and phf

(h)

is the probability density function of hf =
[
hd, (h1 » h2)

T
]T

with hd ∼ CN (0, 1), h1 as given in (1), and h2 ∼ CN (0,Σ).

Proof. Suppose the IRS-UEs channel process is jointly sta-

tionary and ergodic. With PF scheduling, the optimal sampling

distribution at the IRS so that a scheduled UE obtains the BF-

SE as K→∞ is the solution to the variational problem:

argmaxfθ(θ′)R̄ ≜Eθ,hf,k

[
log2

(
1+|θ′H

hf,k|2P/σ2
)]

, (P2)

s.t.

∫

θ′∈UN∪{1}

fθ(θ
′)dθ′ = 1, (C2-1)

and

∫

[θ′]2

. . .

∫

[θ′]N+1

fθ(θ
′)dθ′ = δ([θ′]1 − 1), (C2-2)

where in (P2), we seek to maximize the achievable throughput

with expectation taken over the joint distribution of the UEs,

and (C2-1), (C2-2) account for the constraints of a density

function and the structure of θ′ as per (2), respectively. We

begin by solving the unconstrained version of (P2) and then

assess its feasibility under (C2-1), (C2-2). So, the problem is

max
fθ(θ′)

Ehf,k

[
Eθ|hf,k

[
log2

(
1 +

∣∣∣θ′H
hf,k

∣∣∣
2 P

σ2

) ∣∣∣hf,k

]]

(a)
= max

gθ(θ′)

∫

h

(∫

θ′

log2

(
1+
∣∣∣θ′H

hf,k

∣∣∣
2 P

σ2

)
gθ(θ

′)dθ′

)
phf

(h)dh,

where in (a), gθ(θ
′) ≡ gθ|hf

(θ′) is the conditional density

function of the IRS configurations given the channel realiza-

tion. It is related to fθ(θ
′) via the law of total probability:

fθ(θ
′) =

∫

h

gθ(θ
′)phf

(h)dh. (7)

Then, an equivalent functional optimization problem is

I ≜ max
gθ(θ′)

∫

θ′

log2

(
1 + |θ′H

hf,k|2P/σ2
)
gθ(θ

′)dθ′. (8)

Using the Hölder inequality: |θ′H
hf,k| f ∥hf,k∥1∥θ′∥∞

along with the fact that ∥θ′∥∞ = 1, we upper bound (8) as

I f IU ≜ log2

(
1+∥hf,k∥21 P/σ2

)
max
gθ(θ′)

∫

θ′

gθ(θ
′)dθ′

︸ ︷︷ ︸
=1

.

From Lemma 2, since the PF scheduler achieves the BF-SE,

gθ(θ
′) must satisfy the following lower bound:

I g IL≜ max
gθ(θ′)

∫

θ′

log2

(
1+
{
∥hf,k∥21+o(K)

} P

σ2

)
gθ(θ

′)dθ′.

Now, letting K → ∞ and using the sandwich theorem,

limK→∞ I = IL = IU, and the upper bound is achieved if

and only if θ′=F (hf,k). So, the optimal conditional density

for a given channel at scheduled UE-k is

gopt
θ

(θ′) = δ
(
θ′ −F(hf,k)

)
. (9)

Substituting (9) in (7), we get

fopt
θ

(θ′)
(b)
=

∫

h

δ
(
θ′ −F(h)

)
phf

(h)dh

(c)
=

∫

F−1(θ′)

δ
(
h−F−1(θ′)

)
phf

(h)dh, (10)

where, in (b), we dropped the index k from (9) as F(hf,k) are

i.i.d. across k ∈ [K] ≜ {1, . . . ,K}; and in (c), we used the

definition F−1(·) and the sifting property of the Dirac-delta

function. By construction, since fopt
θ

(·) in (10) is a valid prob-

ability density function obtained via the F(·) mapping, (C2-1)

and (C2-2) are trivially satisfied. This completes the proof. ■

Remark 2. The IRS-aided OC scheme achieves the BF-SE

without incurring the overheads discussed in Remark 1:

1) The OC scheme requires just one pilot symbol, as the UEs

only need to estimate the composite channel.

2) No phase optimization: The phase optimization procedure

is absent since the IRS phases are randomly chosen.

3) No phase transportation: The IRS autonomously samples

a random phase configuration in every slot, so phase

transportation is obviated.

Further, to help the BS identify the best UE that yields

the highest PF metric, efficient and low-complexity feedback

schemes like timer/splitting-based methods can be used [11].

Using Theorem 1, we present the overall protocol of spatial-

correlation-aware OC in Scheme 1 on top of this page.2

V. HOW MANY USERS ARE SUFFICIENT IN PRACTICE?

We now consider the success rate of scheme 1 for a practical

system with a finite number of UEs. Let Eδ
k denote the (1 −

δ)N2-success event that the channel gain at UE-k is at least

a (1− δ) factor of the BF gain obtained via the IRS, i.e.,

Eδ
k ≜

{
|θH

hf,k|2 g (1− δ) ∥hf,k∥21
}
, δ ∈ (0, 1). (11)

2We absorb the overall phase in the F -mapped channel vectors due to the
angle of the direct channel into the randomness in the angle of the cascaded
channel. So, the 1st entry in the input to F -map in line 3 equals 1. We also
assume that the spatial correlation matrix Σ is known, as in [2], [10].
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In the sequel, we evaluate the probability of Eδ
k . To that

end, we require a characterization of the Rayleigh quotient

of heteroscedastic Gaussian random vectors, discussed next.

Lemma 3. Let A ∈ C
L×L be a Hermitian rank-1 matrix, and

α ∈ R be such that 0 < α < ∥A∥F . If x ∈ C
L ∼ CN (0,R)

and R has full rank, the Rayleigh quotient of A w.r.t. x obeys

Pr

(
x
H
Ax

xHx
gα

)
g

L∏

l=1

(
1

/{
1 +

α

(∥A∥F − α)
· λx,l

λx,L

})
,

where λx,1 g . . . g λx,L are the ordered eigenvalues of R.

Proof. We note that the required probability can be written as

Pα ≜ Pr
(
x
H
Ax g αxH

x
)
= Pr

(
x
H (A− αIL)x g 0

)
.

Let B ≜ A − αIL; B is a full-rank, Hermitian matrix. Its

spectral decomposition can be written as B = VΓV
H . Then

Pα
(a)
= Pr

(
x̃
H
Γx̃ g 0

) (b)
= Pr

(∑L

l=1
γl |[x̃]l|2 g 0

)
,

where in (a), x̃ ≜ V
H
x ∼ CN (0,VH

RV); in (b), γl is the

lth largest eigenvalue of B. Since A has rank 1, A = aa
H for

some a ∈ C
L. Then, the eigenvalues of B are γ1 = ∥a∥22−α >

0, and γ2 = γ3 . . . = γL = −α < 0. Using this, we have

Pα = Pr

(
|[x̃]1|2 g α

∥a∥22 − α

L∑

l=2

|[x̃]l|2
)

= E{[x̃]l}
L
l=2

[
Pr

(
|[x̃]1|2g

α

∥a∥22−α

L∑

l=2

|[x̃]l|2
∣∣∣∣∣[x̃]2, . . . , [x̃]L

)]
.

Now, we decompose x = R
1/2

x
′, where R

1/2 ∈ C
L×L is a

square root of R, and x
′ ∼ CN (0, IL). In particular, we can

write R
1/2 = UxΛ

1/2
x

so that x̃ = W
H
Λ

1/2
x

x
′, where W ≜

U
H
x
V = [w1, . . . ,wL] ∈ C

L×L is a unitary matrix. We then

have [x̃]1 ∼ CN (0,
∑L

l=1 λx,l|[w1]l|2). Since ∥A∥F = ∥a∥22,

and
∑L

l=1 λx,l|[w1]l|2 g λx,L, we can lower bound Pα as

Pα g E[x̃]2,...,[x̃]L

[
e
−
(

α
/
((∥A∥F−α)λx,L)

) L
∑

l=2

|[x̃]l|
2]
. (12)

Define x̃(1) ≜ [[x̃]2, . . . , [x̃]L]
T

, W(1) ≜ [w2, . . . ,wL]. Then,

L∑

l=2

|[x̃]l|2=
∥∥x̃(1)

∥∥2
2
=x

′H
Λ

1/2
x

W(1)W
H
(1)Λ

1/2
x

x
′
(c)

f
∥∥∥Λ1/2

x
x
′
∥∥∥
2

2
,

where in (c), we first noted that W(1)W
H
(1) is an orthogonal

projector with eigenvalues either 0 or 1 and then used the

Rayleigh-Ritz Theorem. So, we further bound (12) as

Pα g E[x′]2,...,[x′]L

[
e
−
(

α
/
((∥A∥F−α)λx,L)

) L
∑

l=2

λx,l|[x′]l|2]

(d)

g
∏L

l=1
E[x′]l

[
e
−
(

α
/
((∥A∥F−α)λx,L)

)

λx,l|[x′]l|2]

(e)
=
∏L

l=1

(
1

/{
1 +

α

(∥A∥F − α)
· λx,l

λx,L

})
,

where in (d), we used the independence of {[x′]l}Ll=1 and in-

cluded λx,1|[x′]1|2 term; in (e), we used the moment generating

function of the exponential random variables{[x′]l}, l∈ [L]. ■

We are now ready to state the main theorem of this section.

Theorem 2. The probability of the (1−δ)N2-success event at

a scheduled UE (as defined in (11)) using a PF scheduler over

K UEs, denoted by Psucc, with the spatial correlation-aware

random IRS configuration as in Theorem 1 is bounded as

Psucc g 1−
(
1−

M∏

m=1

1

1 + 1−δ
δ · λm

λM

)K

, (13)

where M = rank(Σ) and λ1 g . . . g λM are the ordered

non-zero eigenvalues of the channel covariance matrix, Σ.

Proof. With a PF scheduler used over K UEs, the probability

of at least one UE witnessing the (1− δ)N2-success event is

Psucc = Pr
(
∪K
k=1Eδ

k

) (a)
= 1−

∏K

k=1

(
1− Pr

(
Eδ
k

))
, (14)

where (a) follows the independence of channels across UEs.

Let f ′ ≜h1» f , where f =UΛ
1/2

f̃ with f̃ ∼CN (0, IM ). So,

θ = [1, ej∠[f ′]1 , . . . , ej∠[f ′]N ] is a candidate random IRS phase

vector as per Theorem 1. For simplicity, we ignore the BS-

UE direct path. Then, in (11), θ=[ej∠[f ′]1 , . . . , ej∠[f ′]N ], and

hf,k=
√
βr,k[[hr,k]1, . . . , [hr,k]N ]T . Now, we have Pr

(
Eδ
k

)
=

Pr

(∣∣∣∣
∑N

n=1
e−j∠[f ′]n [hr,k]n

∣∣∣∣
2

g (1− δ)

∣∣∣∣
∑N

n=1
|[hr,k]n|

∣∣∣∣
2
)

= Pr

(∣∣∣∣
∑N

n=1
e−j∠[f ]n [h2,k]n

∣∣∣∣
2

g (1− δ) ∥h2,k∥21

)
,

where we used the form of f
′ and |[h1]n| = 1. From the

decomposition h2,k = UΛ
1/2

h̃2,k, f = UΛ
1/2

f̃ , since the

channel and IRS vectors are generated using the same basis

U, and their distributions are invariant to left multiplication

by a unitary matrix, we let U = [e1, . . . , eM ] without loss in

generality, where em is mth column of IN . Thus, Pr
(
Eδ
k

)
=

Pr

(∣∣∣∣
∑M

m=1
e−j∠[f̃ ]m

√
λm[h̃2,k]m

∣∣∣∣
2

g (1− δ)
∥∥∥Λ1/2

h̃2,k

∥∥∥
2

1

)

g Pr

(∣∣∣∣
∑M

m=1

√
λm[h̃2,k]m

∣∣∣∣
2

g (1− δ)M
∥∥∥Λ1/2

h̃2,k

∥∥∥
2

2

)
,

where we dropped e−j∠[f̃ ]m because "[f̃ ]m is uniformly

distributed in [0, 2π) and independent of "[h̃]m, which does

not alter the distribution of [h̃]m. We also used the property:

∥x∥1 f
√
M∥x∥2. Now, the above can be rewritten as

Pr
(
Eδ
k

)
g Pr

(
ĥ
H
k Eĥk

/
(ĥH

k ĥk) g (1− δ)M
)
,

where ĥk ≜ Λ
1/2

h̃2,k, and E ≜ 1M1
H
M with 1M being an M -

length all ones vector. Note that ∥E∥F = M > (1−δ)M > 0,

and that E[ĥkĥ
H
k ] = Λ has full-rank. Then, using Lemma 3,

Pr
(
Eδ
k

)
g
∏M

m=1

(
1
/{

1 +
1− δ

δ
· λm

λM

})
. (15)

Substituting (15) in (14), we get (13) as desired. ■

The following result is a consequence of Theorem 2.

Corollary 1. Let δ ∈ (0, 1). With Scheme 1, if K is at least

K∗ ≜ − log (1− Psucc)
∏M

m=1
1 +

[(
(1− δ)

/
δ
)(

λm

/
λM

)]

∼ O
(
−[log (1− Psucc)]/δ

M
)
, (16)

then, with probability Psucc, the channel gain using a randomly

configured IRS exhibits a (1−δ)N2 success in every time slot.

This article has been accepted for publication in IEEE Wireless Communications Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LWC.2025.3588257

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 21,2025 at 23:50:39 UTC from IEEE Xplore.  Restrictions apply. 



5

(a) Sum-SE vs. K for different N at ρ = 0.9. (b) Sum-SE vs. K for different ρ at N = 16. (c) Success probability vs. M .

Fig. 2: Performance of spatial correlation-aware opportunistic beamforming in IRS-aided systems.

Corollary 1 shows that a sufficient number of the UEs for

(1 − δ)N2-success grows exponentially with the rank of the

channel covariance matrix and not with the number of IRS

elements. Thus, if the UE’s channel lies in a fixed-dimensional

subspace, the number of UEs needed to reap the benefits from

the IRS is fixed even if the number of IRS elements grows.

VI. NUMERICAL RESULTS

We numerically evaluate our results for a setup with the

BS at (0, 0) (in meters), an IRS at (1000, 1000), and up to

K = 1000 UEs distributed in [900, 1100] × [900, 1100]. The

path loss is β = C0(d/d0)
κ, with κ = 2, 2, 4 for the BS-IRS,

IRS-UE, and BS-UE links, respectively [12]. A PF scheduler

with τ = 5000 is used. The IRS covariance matrix is Σ =
Toeplitz

([
1, ρ, . . . , ρN−1

])
, where Toeplitz(x) is a hermitian

Toeplitz matrix with x as the 1st row, and ρ is the correlation

coefficient between adjacent elements. Since Σ is full-rank

when ρ ̸= 1, we use the effective rank [13] for Scheme 1.

In Fig. 2a, we plot the sum-SE vs. the number of UEs, K,

for N = 16 and 32, at ρ = 0.9. For both values of N , the sum-

SE with the spatial correlation-aware OC grows with K and

approaches the SE obtained by optimizing the IRS in every slot

using an RR scheduler. Thus, we leverage multi-user diversity

and achieve the BF sum-SE in Lemma 1 without incurring the

overheads of optimizing the IRS. We also compare the sum-

SE with the method in [5], [6], which samples the IRS phases

using an i.i.d. uniform distribution. While the SE improves

with K, it is much smaller than the BF-SE, underscoring the

importance of sampling IRS phases based on channel statistics.

Our scheme also outperforms a system without an IRS.

In Fig. 2b, we plot the sum-SE vs. K for N = 16 and

different correlation values ρ. For a fixed K, the gap between

the BF-SE and OC-SE decreases as ρ increases. This is

because the effective rank of the channel decreases with ρ,

making it easier for the IRS to achieve a near-BF configuration

with fewer UEs, in line with Corollary 1. Conversely, with

uniformly sampled IRS phase, the SE gap is large since the

configuration spans the full N -dimensional space, while the

channels lie in a lower M -dimensional subspace. So, as ρ in-

creases, the mismatch between the IRS phase and the channel

phase distribution increases, widening the performance gap.

In Fig. 2c, we plot the success probability, Psucc (see (11))

vs. M = rank(Σ). For fixed K, Psucc decreases with M be-

cause the effective dimension grows with M . Also, Theorem 2

is a valid lower bound and succinctly captures the scaling with

M . Finally, we verify that Psucc = 1 for any M, δ if K = K∗

(see Corollary 1), and Psucc < 1 when K =
√
K∗ < K∗,

validating that the scaling we derived is tight.

VII. CONCLUSIONS

We developed a low-complexity, spatial-correlation-aware

opportunistic BF scheme for IRS-aided multi-user systems.

Exploiting multi-user diversity, we showed that randomly

sampling the IRS phases from an appropriate distribution

yields optimal array gains. Interestingly, achieving near BF-

SE requires the number of UEs to scale exponentially with the

rank of the spatial covariance matrix, rather than the number

of IRS elements. Future work could account for UE mobility.
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