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Primordial black holes (PBHs) remain a viable dark matter candidate in the asteroid-mass range. We
point out that, in this scenario, the PBH abundance would be large enough for at least one object to cross
through the inner Solar System per decade. Since Solar System ephemerides are modeled and measured to
extremely high precision, such close encounters could produce detectable perturbations to orbital
trajectories with characteristic features. We evaluate this possibility with a suite of simple Solar System
simulations, and we argue that the abundance of asteroid-mass PBHs can plausibly be probed by existing
and near-future data.
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I. INTRODUCTION

Our Universe contains a substantial amount of dark
matter (DM), per decades-old consensus [1,2]. Despite
well-motivated theoretical models for various particle DM
candidates spanning nearly 50 orders of magnitude in mass
(see, e.g., Refs. [3–7]), there is as yet no direct evidence that
DM consists of a new elementary particle species. In recent
years, an alternative hypothesis has regained traction: that
perhaps much or all of the DM consists of primordial black
holes (PBHs) [8–10]. Numerous observables restrict the
properties of PBHs that could account for DM, but a
window of about 6 orders of magnitude in mass remains
fully unconstrained. For masses 1017g≲MPBH ≲ 1023g—
that is, for masses typical of asteroids—PBHs could
account for the entire DM abundance. (For recent reviews,
see Refs. [11–15].)
The constraints at the boundaries of this region are well

established. The upper limit is set by constraints from
extragalactic microlensing surveys [16,17]. The lower limit
arises from efficient Hawking evaporation, since high-
energy cosmic rays emitted by light black holes would
be readily detectable [18–24]. (See also Refs. [11–15].)
However, the asteroid-mass range has proven difficult to
probe. Originally, microlensing constraints were thought to
apply in this regime as well as at higher masses [25].
However, Refs. [16,17,26] demonstrated that the effects of

wave optics and finite source sizes severely weaken lensing
constraints below 1023 g.1 Moreover, limits from stellar
capture estimated by Ref. [27] were later weakened by
updated arguments in Ref. [26]. As a result, PBH DM
remains largely unconstrained in the asteroid-mass regime,
and the future of the PBH DM hypothesis depends crucially
on probes of this portion of the parameter space.
In this paper, we consider a novel means to probe PBHs

in the asteroid-mass range. We focus on the effects of
PBHs on the motions of visible objects, similarly to
Refs. [28–33]. In particular, in order to achieve the highest
possible sensitivity, we propose the use of the highest-
precision astronomical measurements available: Solar
System ephemerides. Given more than five decades of
lunar laser-ranging data [34–36], more than two decades of
precision monitoring of Mars orbiters [37,38], and sophis-
ticated tracking of the motions of thousands of smaller
objects [39–43], our own Solar System is richly instru-
mented for the detection of massive interlopers. We there-
fore evaluate the observable effects of low-mass PBH
encounters on the revolutions of the celestial spheres [44].
In particular, we study the prospects for detecting

perturbations to the measured distances between Earth
and Solar System objects (SSOs) due to PBH flybys. If
they account for all of DM, the abundance and phase space
distribution of PBHs can be readily determined—and if
MPBH lies in the asteroid-mass range, then at least several
flybys through the Solar System should be expected to have
occurred over the lifetime of modern observing programs.*Contact author: tungtran@mit.edu

†Contact author: sageller@ucsc.edu
‡Contact author: benvlehmann@gmail.com
§Contact author: dikaiser@mit.edu

1These effects were later incorporated into an updated version
of Ref. [25].
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The expected rate of observable events depends both on
the PBH mass distribution and on the precision with
which the motions of various Solar System objects are
presently monitored. As we demonstrate here, if the
entire DM abundance consists of PBHs with masses
1018g≲MPBH ≲ 1023g, then Solar System ephemerides
could plausibly detect PBH flybys at a rate of order once
per decade. This could either enable a quasidirect detection
of PBHs or place new constraints in the asteroid-mass range.
This paper is organized as follows. In Sec. II, we perform

a simple order-of-magnitude estimate of the expected
effects of a PBH transit on Solar System observables,
demonstrating a favorable detection rate for perturbations
to the distances between Earth and Solar System objects
from flybys at an impact parameter of several astronomical
units. In Sec. III, we improve on our analytical estimate
with simplified Solar System simulations, and we identify
the expected properties of observable signals, focusing
on the distances between Earth and various inner planets
(Mercury, Venus, and Mars). We justify this choice with a
discussion of damping mechanisms that might attenuate a
signal of a PBH transit and argue that our minimalist
simulations are representative of the qualitative features of
transits. In Sec. IV, we analyze ensembles of simulated
PBH transits and estimate the sensitivity of Solar System
ephemerides to transits with varying parameters. Section V
summarizes our proposal for a new means of probing
asteroid-mass PBHs. We also discuss next steps, particu-
larly the incorporation of more sophisticated numerical
methods that include additional physical effects. We high-
light the prospects for our proposed observable to test the
hypothesis that PBHs account for all of DM.
Throughout this paper, we work in natural units with

c ¼ ℏ ¼ kB ¼ 1 unless otherwise noted.

II. ENCOUNTERS IN THE SOLAR SYSTEM

In this section, we introduce our proposed observable
and perform a rough estimate of the size of the effect. This
leads us to a first estimate of the rate of detectable flyby
events. We then discuss the physical effects that complicate
a proper computation of the flyby signature, motivating the
application of numerical computations in the following
section.

A. Detecting PBH flybys

If a PBH were to transit our Solar System, it would
perturb the motion of visible objects. State-of-the-art sim-
ulations of the motions of objects within our Solar System
include the DE441 model maintained by the Jet Propulsion
Laboratory [40] and the INPOP21a model maintained by the
Observatoire de Paris [42] (see also Refs. [45,46]). The JPL
DE441 model, for example, incorporates the Sun and eight
planets, nearly 300 planetary satellites, more than 1.3 million
asteroids, and almost 4000 comets. Such simulations depend

on high-precision observations of various objects for bench-
marking. Among the most precise data used in these
ephemerides concern the Earth-Moon distance and the
Earth-Mars distance. For the Earth-Moon distance, lunar
laser ranging has succeeded in achieving an accuracy of
Oð1 mmÞ over the past 15 yr [34,35], while precision
monitoring of various Mars orbiters and landers since the
late 1990s yields an accuracy of Oð10 cmÞ for the Earth-
Mars distance [37,38,42].
Motivated by the extraordinary precision of these

measurements, we consider the Solar System as a single
large compact object detector. The calculation of the rate
of observable flybys is similar to the calculation of the
event rate in a DM direct detection experiment. For
simplicity, we assume a monochromatic mass distribution
for PBHs at a mass MPBH. Given the mass density ρPBH,
the number density is nPBH ¼ ρPBH=MPBH. If PBHs
account for all of DM, then ρPBH ≃ 0.4 GeV=cm3 in the
solar neighborhood [47–49]. In particular, within a sphere
centered on the Sun with radius equal to the orbit of
Jupiter (5.2 AU), one expects to find a number of PBHs
given by NPBH ¼ 1.4 × ½MPBH=ð1018 gÞ%−1 at any given
time. Moreover, these objects should have a Maxwellian
distribution of velocities, with a typical speed of v0 ≈
220 km=s [48,49]. Thus, given a geometric cross section
σ, the rate of transits through this patch is given
by Γ ¼ hnPBHσvPBHi ≃ nPBHσv0.
We now estimate the cross section σ for detectable PBH

flybys. As a first estimate of the effect on various Solar
System objects from a PBH flyby, we consider a simplified
picture involving only the Newtonian interaction of two
point masses: a PBH of mass MPBH and a visible Solar
System object of mass MSSO. Since v0 is much larger than
typical orbital speeds in the Solar System—e.g., vMoon ≈
30 km=s and vMars ≈ 24 km=s—we may assume an instan-
taneous interaction, in which the Solar System object
remains at rest while the PBH travels in a straight path
along its initial direction v̂, with an impact parameter bPBH
with respect to the object. Then the instantaneous force
perpendicular to v̂ exerted on the Solar System object by the
PBH flyby will have magnitude

F⊥ ¼ GMPBHMSSO

ðb2PBH þ ðv0tÞ2Þ
bPBHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2PBH þ ðv0tÞ2
p : ð1Þ

Since the flyby occurs on a timescale that is very short
compared to the orbital period of the Solar System body, we
can ignore the effects of other forces on this timescale and
compute the imparted momentum from the instantaneous
force within the well-known impulse approximation. The
instantaneous momentum imparted to the Solar System
object is dp⊥ ¼ F⊥dt ¼ F⊥dx=v0. The net impulse veloc-
ity δv ¼ p⊥=MSSO imparted to the Solar System object by
the PBH flyby can then be estimated by integrating this
differential impulse over the entire trajectory, yielding
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δv ≃
Z

dx
v0

GMPBHbPBH
ðb2PBH þ x2Þ3=2

¼ 2GMPBH

bPBHv0
: ð2Þ

We now use Eq. (2) to estimate the rate of detectable
perturbations at the order-of-magnitude level. Suppose that
the object is monitored for a time Δt following the
perturbation. Over this time, the difference induced in
the measured distance from Earth, r, can be crudely
estimated by δr ¼ δv × Δt. The actual value of δr is
dependent on all of the parameters of the encounter.
However, the value δv × Δt can be plausibly attained if
the encounter accelerates the object along its direction of
motion, modifying its orbital period. Over time, the orbit
accumulates a slight phase difference with respect to the
original trajectory, corresponding to a difference in the
distance with respect to Earth.
This shift, δr, is the difference between the distance r

that would be measured with a PBH flyby versus without,
as a function of time. In the context of a Solar System
model, δr would be the residual introduced between the
model and data when the system is perturbed by a PBH
flyby. We will refer to δr as the “residual” or “perturbation”
for the remainder of this work. Note that r always denotes
the distance between Earth and a given Solar System
object. We use x to denote the position of an object in
barycentric coordinates, so the distance of an object from
the Sun is denoted by x ¼ jxj.
For a first estimate of the detection rate, we take a flyby

to be detectable if δr exceeds the uncertainty σr of the
measured distances, i.e., if δv × Δt≳ σr. Saturating the
inequality yields the maximal impact parameter for a
detectable encounter as

bmaxðΔtÞ ¼
2GMPBH

v0σr
× Δt: ð3Þ

The impact parameter bmax translates to a cross section
σ ¼ πb2max for detectable events. The total observing time
(including time before the encounter) is bounded below as
Δtobs ≥ Δt, so Nobs ≳ Γ × Δt. Thus, we can solve for
the minimum observing time required for the expected
number of detectable encounters to exceed 1. We obtain
Δtmin ¼ ½v0σ2r=ð4πG2MPBHρPBHÞ%1=3, or

Δtmin ≈ 26 yr
"
MPBH

1020
g
#−1=3" v0

220
km=s

#
1=3

×
"

σr
0.1 m

#
2=3

"
ρPBH

0.4 GeV=cm3

#−1=3
: ð4Þ

The corresponding value of bmax is given by

bmaxðΔtminÞ ¼
"
2

π
GM2

PBH

ρPBHv20

1

σr

#
1=3

; ð5Þ

which is 3.3 AU for the benchmark values in Eq. (4). This
suggests that current and near-future ephemerides are
capable of probing PBH DM at masses that are otherwise
unconstrained, with sensitivity driven mainly by flybys at
distances typical of inner planet orbits. This enormous
effective detector area is what enables the “direct detection”
of such massive DM particles.
Even as crude approximations, these results are only

viable in a fairly narrow mass range. At low masses, the
result of Eq. (4) is cut off when bmax becomes comparable
to the radius of the object in question. For Mars, this occurs
at a very low mass MPBH ∼ 1012 g, but such a detection
would require an implausibly long observing time of order
Δtmin ∼ 104 yr. Moreover, such perturbations will be
damped by other physical effects on timescales that are
long compared to the orbital period of the target object.
We anticipate that perturbations could be detectable for
PBH masses as low as 1018 g, but no lower—indeed, our
observable breaks down entirely at low masses, since
the high number density of PBHs would lead to a high rate
of encounters, introducing interference between different
flyby signatures and ultimately washing out the signal of
interest. At very high PBH masses, when bmax ≫ r, Earth
itself receives a comparable impulse, and δr is suppressed.
For this reason, we do not expect to constrain PBH masses
above 1023 g. Conveniently, 1023 g is also the upper bound
of the unconstrained mass range for PBH DM.
Note that Δtmin has no dependence on the parameters of

the target object itself, but only the precision with which
the distance between the target and Earth is measured.
Naively, this suggests that the Earth-Moon system would
be the ideal detector: since the Earth-Moon distance is
measured with a precision of σr ∼ 1 mm, one might hope
to detect objects with MPBH ∼ 1017 g on a short timescale
of Δtmin ∼ 10 yr. This would fully cover the open window
for PBH DM. However, as we will discuss in the next
subsection, damping effects are more significant in the
Earth-Moon system, and the methods we use here are not
well suited to estimate δr in this case. Instead, we will
focus on the distances between Earth and the other inner
planets, which guides our estimates in the following
sections.

B. Damping of orbital perturbations

We emphasize that the estimate in the previous subsection
assumes not only that observational measurements of
distances can be performed with precision σr, but also that
simulations can reproduce these distances with comparable
accuracy, so that the residual δr can be meaningfully
computed. This is no small feat: such simulations are
extremely complex and computationally expensive. In this
work, we develop only a proof of principle, and we make no
effort to reproduce the sophisticated simulation frameworks
developed over several decades in the Solar System dynam-
ics community. Instead, we seek a case in which the many
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physical effects in these simulations should make a small
fractional contribution to the residual δr induced by a PBH
flyby, regardless of their impact on the distance r itself.
More precisely, we estimate δr in a perturbative frame-

work, separating the response of the system into an initial
perturbation δr0 and higher-order terms δrn describing the
backreaction of the system on the modeled perturbation due
to the unmodeled effects. Formally, we write

δr ¼ δr0 þ
X∞

n¼1

δrn½δrn−1%; ð6Þ

where we note that δrn depends on the functional form of
δrn−1ðtÞ as a function of time. We assume that, in the
presence of the perturbation δr0, each unmodeled effect
makes an instantaneous contribution δr001ðtÞ to δr00ðtÞ, which
can be integrated over the observing period to give
δr1ðtÞ ¼

R
t
0 dt1

R t1
0 dt2δr001ðt2Þ. The perturbation δr1 itself

sources a correction δr2, and so on. We seek a case where
the higher-order contribution

P∞
n¼1 δrn is small compared

to δr0. This framework is illustrated in Fig. 1, which shows
schematically how δr0 can be interpreted as an approxi-
mation to δr.
The interpretation of the higher-order terms is best

illustrated by an example. A PBH flyby occurs, and we
compute the residual in our simple model: this is the
modeled initial perturbation δr0. However, our model does
not include the acceleration due to solar radiation pressure,
which is slightly modified in the presence of the pertur-
bation δr0. The difference in radiation pressure gives rise
to a difference in the acceleration of the object in question,
which is integrated to give a correction δrrad1 . This
correction again modifies the acceleration due to radiation
pressure, which gives rise to a correction δrrad2 , and so on.
Our computation of δr0 from modeled effects is a

reliable approximation to δr only under conditions in
which the higher-order terms δrn>0 can be shown to be
small in comparison to the initial perturbation. In what
follows, we demonstrate that, for the inner planets,
jδr1=δr0j ≪ 1 over the observational timescale for all
effects that are not included in our model but that are
included in reference-quality models such as DE441 [39]
and INPOP21a [41]. We assume, in particular, that
jδr1=δr0j ≪ 1 implies that jδrn=δrn−1j ≪ 1 for all n.
This is equivalent to the assumption that our perturbative
treatment is valid.
Notice that, when δr0 ¼ 0, all of the terms δrn>0 also

vanish, which might lead one to think that the higher-order
terms δrn>0 scale with δr0=r. This need not be the case,
because these terms may instead scale with other dimen-
sionless ratios δr0=li. There are many other length scales
li—for example, the distances to other bodies, the radius of
the object, the scale of inhomogeneities within the object,

and the gravitational parameters GMi of various bodies.
These other length scales can be much smaller than r, so that
δr0=li can be large even when δr0=r is small.
Using this perturbative language, we now identify

specific unmodeled contributions and assess their signifi-
cance for our computations. The simple estimates of the
previous section neglect several physical effects that must
be included when simulating the motion of visible objects
within our Solar System to the accuracy attained by
reference-quality models. In this section, we study the
size of the ratio jδr1=δr0j for each of the effects that are
considered in the detailed numerical simulations of

FIG. 1. A schematic illustration summarizing the notation and
premise of Sec. II B. In this work, we approximate δr with a
simplified model, which is not sufficient for accurate predictions of
real ephemeris data. Still, under certain conditions, we can use our
simplified model to compute the differences in distance produced
by a PBH flyby at time t0. Bottom: distances from Earth to a given
SSO as might be produced by the simple model (yellow curve).
The simple model closely fits mock data (yellow crosses) before
the PBH flyby, but is always a poor fit to actual ephemerides
(blue crosses). Fitting these is possible only with a sophisticated,
reference-quality model (blue curve). Nonetheless, we seek a case
in which the residuals between data and model induced by the
PBH flyby (gray bars) are comparable in the simple model and the
reference-quality model. Top: shows both sets of residuals, with
the difference between them (shaded region) accounted for by
terms δrn>0 in Eq. (6). We argue in Secs. II and III that for some
Solar System objects, the higher-order contribution is small
compared to the residuals, as illustrated in the top panel. This
is precisely why we need not attain the amazing precision of
models like DE441 or INPOP21a in order to estimate sensitivity to
PBH flybys.
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Refs. [39,41] but which are not included in our simple
model, and we identify cases where the corrections are
subdominant over the relevant observational timescale.
We consider four categories of corrections, in roughly

descending order of importance for Solar System flybys:
(1) Inclusion of additional bodies. State-of-the-art com-

putational models of Solar System ephemerides
include many Solar System objects beyond the
Sun and planets. (We address this point in Sec. III.)

(2) Newtonian finite-size effects. Since Solar System
objects are not point masses, there are tidal forces
between extended bodies, which allow energy loss
to heating and deformation. The nonvanishing sur-
face area of extended bodies leads to an additional
force from solar radiation pressure.

(3) Relativistic point-mass effects. Post-Newtonian
point-mass corrections to the gravitational inter-
actions among N bodies, proportional to both
ðv=cÞ2 and to the Newtonian potential GM=r,
modify the acceleration of each object.

(4) Relativistic finite-size effects. Finally, in the context
of extended bodies, post-Newtonian corrections
including the Lense-Thirring effect contribute to
spin-orbit coupling in particular.

Each of these effects contributes to δr1 and higher terms
in Eq. (6).
It is tempting to think of a PBH flyby of an orbiting

body in the Solar System as a perturbation to an equilib-
rium system in the same way that we think of perturbations
to a classical harmonic oscillator. However, such a simple
picture is inaccurate. Indeed, over very long timescales, the
orbits of Solar System bodies are far from stable [50–52].
Furthermore, this approach misses the key difference that
while energy-dissipating effects, such as friction, tend to
damp the perturbations to a classical harmonic oscillator,
the opposite can sometimes be true for dissipative effects
in complex Solar System orbits over long timescales (i.e.,
many orbital periods) [53]. Moreover, dissipative effects in
the Solar System are driven by finite-size effects that are
suppressed by the small sizes of objects in comparison
with their distances. Nondissipative effects can also correct
δr, particularly many-body effects that can transfer energy
from the body in question and redistribute it among other
Solar System bodies. But ultimately, to good approxima-
tion, bodies in the Solar System conserve their mechanical
energy on timescales of order their orbital periods [53].
Thus, if a perturber exchanges energy with one of the
bodies in the system, there is no mechanism to quickly
restore the system’s prior configuration.
That said, the observable that we consider here is an

extremely small effect, so even a very small amount of
differential dissipation or energy exchange could erase the
signature of a PBH transit. Thus, in the remainder of this
section, we briefly estimate the significance of each of
effects 2–4 above. Effect 1 is treated in Sec. III.

1. Newtonian finite-size effects

Finite-size effects are famously non-negligible between
planets and their moons. Indeed, for the Earth-Moon system,
these effects are significant: given that REarth ¼ 6357 km
and the average Earth-Moon distance is rEarth-Moon ¼
3.84 × 105 km, the suppression of tidal effects is only of
order REarth=rEarth-Moon ∼ 10−2. On the other hand, finite-size
effects are much more strongly suppressed for the Earth-
Mars system, with REarth=rEarth-Mars ∼ 10−5. Therefore, for
the remainder of this paper, we focus on quantities such as
the Earth-Mars distance rather than on the Earth-Moon
system. Treating such well-separated objects as point masses
is consistent with the treatment in the reference-quality
models DE441 [40] and INPOP21a [42,43]. For similar
reasons, we neglect spin-orbit coupling, which remains
thoroughly subdominant for the systems and scales of
interest here. Fully controlling corrections from tidal dis-
sipation in the Earth-Moon system requires more sophisti-
cated simulations and is beyond the scope of this work.
The effects of solar radiation pressure, on the other

hand, are easy to approximate. The incident radiation
power is Prad ≃ L⊙ × ðπR2

SSOÞ=ð4πx2SSOÞ, where RSSO
denotes the radius of the object, xSSO denotes the distance
from the Sun, and L⊙ ¼ 1.60 × 1012 GeV2 is the solar
luminosity. If all of the light is reflected, then the force is
Frad ¼ 2Prad ¼ 1

2L⊙ðRSSO=xSSOÞ2. Thus, following a per-
turbation δx0 ∼ δr0 directed away from the Sun, the force
changes by at most δFrad ≃ −L⊙ðRSSO=xSSOÞ2ðδr0=xSSOÞ.
The differential displacement over one (circular) orbital
period is then bounded from above as

$$$$
δrrad1

δr0

$$$$≲
2π2R2

SSOL⊙
GMSSOM⊙

∼ 10−12 ×
"
MSSO

MMars

#−1"RSSO

RMars

#
2

: ð7Þ

Thus, regardless of the direction of δr, the displacement
induced by differential radiation pressure is minuscule. For
a spherical object with the same density as Mars, achieving
δrrad1 ≳ δr0 requires RSSO ≲ 10 μm, so this effect is not
relevant even for the smallest visible objects.

2. Relativistic point-mass effects

State-of-the-art ephemeris computations incorporate the
leading-order post-Newtonian (PN) corrections to the
motion of N point masses moving under their mutual
gravitation [40,42,43], as encapsulated in the Einstein-
Infeld-Hoffmann-Droste-Lorentz (EIHDL) equations of
motion [54–56]. We may parametrize the EIHDL correc-
tions by writing the spatial acceleration ai of the ith
body (in the barycentric reference frame) in the form
ai ¼ ãi þ δai, where ãi ¼

P
j≠i GMjx̂ij=x2ij is the usual

Newtonian contribution, and
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δai¼
X

j≠i

GMjx̂ij

x2ij

%
v2i þ2v2j −4vi ·vj−

3

2
ðx̂ij ·vjÞ2

−4
X

k≠i

GMk

xik
−
X

k≠j

GMk

xjk
−
1

2
ðxij ·ajÞ

&

þ
X

j≠i

GMj

x2ij

%
ðvi−vjÞ½x̂ij · ð4vi−3vjÞ%þ

7

2
xijaj

&
: ð8Þ

(Recall we use natural units in which c ¼ 1.) Here xij ≡
xi − xj is the vector that points from the ith to the jth body,
xij ¼ jxi − xjj is its norm, and x̂ij is the associated unit
vector. The largest contribution to δr from the EIHDL
corrections on a Solar System object comes from the post-
Newtonian acceleration imparted to the Solar System
object by the Sun. As we did for the case of radiation
pressure, we consider a perturbation δx0 ∼ δr0. The
EIHDL acceleration then makes an instantaneous contri-
bution to δr00ðtÞ, which gives an integrated contribution to
δr1 of order

$$$$
δrPN1
δr0

$$$$ ≃
5

2

GM⊙
xSSO

"
3GM⊙

x3SSO
−
2v2SSO
x2SSO

#
× t2; ð9Þ

where vSSO is taken to be the average orbital velocity of
the Solar System body and xSSO is the object’s distance
from the Sun at perihelion. For the Earth-Mars system, we
arrive at the conservative bound

$$$$
δrPN1
δr0

$$$$
Earth-Mars

≲ 10−4 ×
"

t
10 yr

#
2

: ð10Þ

On a 10-yr timescale, the effect on the Earth-Venus system
is about 4 times larger, at up to 5 × 10−4, and for the Earth-
Mercury system, the correction can be as large as 5 × 10−3.
Note that the dependence on observation time is quadratic,
so a longer observation time has a pronounced effect on the
size of the EIHDL correction. For example, over 100 years,
the fractional correction for the Earth-Mercury system
reaches 5 × 10−1, which is no longer negligible. However,
even on this timescale, the correction to the Earth-Mars
distance remains small.

3. Relativistic finite-size effects

Here we evaluate the impact of the Lense-Thirring effect.
In the Lense-Thirring (LT) effect, also called the gravito-
magnetic or “frame-dragging” effect, the rotation of the
Sun contributes to the precession angular velocity of a
Solar System object by an amount δΩ, given by [40,43]

δΩ ¼ G
x3SSO

"
−J⊙ þ 3ðJ⊙ · xSSOÞxSSO

x2SSO

#
; ð11Þ

where J⊙ is the spin angular momentum of the Sun and
xSSO is the instantaneous position of the Solar System object
with respect to the Sun. Over a time t, the accumulated
angular displacement due to the LTangular velocity is given
by δθ ¼

R
t
0 dt1δΩðt1Þ ≃ δΩ × t. Taking the motion of the

SSO to be parametrically described by an ellipse with
semimajor and semiminor axes aSSO and bSSO, respectively,
the SSO accumulates a spatial displacement δx in a time t
given by

δxðtÞ ¼
$$$$

"
aSSO cos½θðtÞ þ δθðtÞ%
bSSO sin½θðtÞ þ δθðtÞ%

#
−
"
aSSO cos θðtÞ
bSSO sin θðtÞ

#$$$$:

ð12Þ

Over any observational timescale of interest, we can be
assured that the LT precession angle is small, δθ ≪ 1, so we
have δxðtÞ ≃ δθ ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaSSO sin θÞ2 þ ðbSSO cos θÞ2

p
.

The perturbation δr0 induces a correction δΩ1 to the
angular velocity of precession, which induces a correction
δθ1 to the integrated angular precession, which finally
leads to a correction to the displacement δx1 ¼ δθ1×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaSSO sin θÞ2 þ ðbSSO cos θÞ2

p
≤ aSSOδθ1. This displace-

ment correction approximately bounds the correction to the
Earth-SSO distance, i.e., δr1 ≲ δx1. We now make this
bound explicit by estimating δΩ1. Equation (11) implies
that jδΩj ≤ 2GJ⊙=b3SSO. If the perturbation δr0 changes the
semiminor axis from bSSO to bSSO − δr0, and the semimajor
axis from aSSO to aSSO þ δr0, then the induced change in
the Lense-Thirring angular velocity δΩ1 is bounded as

jδΩ1j≲ 6GJ⊙
b4

× jδr0j: ð13Þ

Taking the spin angular momentum of the Sun to be
J⊙ ¼ 1.9 × 1041 kg · m2=s [57], this leads to the bound

$$$$
δrLT1
δr0

$$$$≲
6GJ⊙
b3SSO

aSSO
bSSO

× t

∼ 10−11 ×
"
bSSO
bMars

#−3" t
10 yr

#
: ð14Þ

Clearly, then, the Lense-Thirring contribution to δr1 is
negligible for the inner planets on the timescale of interest.
The above discussion accounts for all effects of interest

except for item 1 in our original list: the inclusion of other
Solar System objects. This is intractable analytically,
so in the next section, we turn to simulations to study
the correction δrNB1 due to a complexN-body Solar System.

III. SOLAR SYSTEM SIMULATIONS

A. Features of flybys

We simulate PBH flybys using the Rebound code [58],
taking the masses and initial conditions of Solar System
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objects from the JPL Horizons database [59,60]. Our
simulations include all of the planets and a selection of
smaller objects. To simplify integration, we combine planets
and their moons into single particles. The full list of objects
is given in Table I. We perform the simulations using the
WHFast integrator [61]. For high-precision simulations, the
IAS15 integrator [62] is usually more appropriate, despite
higher computational complexity. We directly compared the
behavior of WHFast to IAS15 and found that WHFast is
sufficient for the cases considered in this work.
As discussed in Sec. II B, our simulations are much

simpler than the state-of-the-art simulations used to con-
struct Solar System ephemerides. Relativistic corrections,
radiation pressure, and extended-body effects are not
included. Additionally, the list of objects is far from
exhaustive. Beyond moons, high-quality simulations
include at least hundreds of individual asteroids and addi-
tionally include the averaged effects of many smaller
asteroids [39–43].
The population of Solar System asteroids is of particu-

lar relevance. After all, one might expect that asteroids
would have effects on the same order as PBHs in the

“asteroid-mass” range, which could pose a challenge to
the goal of using Solar System dynamics to identify PBHs
at these masses. However, the unconstrained window for
PBH DM actually extends to masses that are quite high for
asteroids. There are very few asteroids in our Solar System
with masses of order 1023 g, and those asteroids are well
tracked [63]. Moreover, even asteroids at lower masses
have manifestly different kinematics: most noticeably,
their influence on the ephemerides of other Solar
System objects is periodic, as opposed to the single
impulse delivered by a PBH. Thus, we expect that the
effects of a PBH at the upper end of the asteroid-mass
range can be differentiated from the effects of asteroids.
When adding a PBH to the simulation, we give the PBH a

fixed initial speed of 200 km=s, reflecting the typical DM
velocity in the Milky Way halo. We specify the flyby with
six parameters: one for the mass, three for the initial position,
and two for the direction of the initial velocity. The initial
position rPBH0 is specified with respect to the Solar System
barycenter in spherical coordinates rPBH0 , Π0, and ϕ0. The
initial distance rPBH0 is an important parameter: it controls the
phase of the orbits at the time of the encounter. The direction
of the initial velocity vPBH0 is specified by two angles α and β
in another spherical coordinate system whose polar axis is
aligned with −rPBH0 . Here α denotes the angle between
−rPBH0 and vPBH0 , and β denotes the azimuthal angle, chosen
such that the projection of a vector with β ¼ 0 into the x − y
plane coincides with x̂. In this parametrization, α directly
corresponds to the impact parameter bPBH of the PBH with
respect to the barycenter—and given that the encounter is
fast, this is approximately equivalent to the perihelion. In
particular, for rPBH0 ≫ bPBH, we have bPBH ≈ αrPBH0 .
We begin with a benchmark simulation taking MPBH ¼

1021 g, rPBH0 ¼ 450 AU, Π0 ¼ ϕ0 ¼ 0, α ¼ 2=450, and
β ¼ π. These parameters are chosen so that the impact
parameter with the barycenter (and therefore the perihelion)
is approximately 2 AU. We show a point in time from this
simulation in Fig. 2. The estimates in the preceding sections
suggest that an impulse from a PBH flyby should be
detectable in Solar System ephemerides. However, in the
context of the real Solar System, two critical questions must
still be addressed:
(1) Is a measurable impulse generated at all, given

realistic orbital trajectories?
(2) How do complicated N-body dynamics affect the

evolution of the initial perturbation?
In this section, we answer these questions using N-body
simulations. We configure simulations with and without a
perturbing PBH and directly estimate δr (that is, compute
δr0) by comparing these simulations.

B. Simulation configuration

We run our simulations for a total of 20 yr, and we
sample the positions of objects in our simulations with a

TABLE I. Solar System objects included in the simulations
performed in this work. Planets and their moons (indented) are
combined into single particles to reduce computational complex-
ity. Names and IDs are drawn directly from the JPL Horizons
database [59].

Object Mass (g) Horizons ID

Sun 2.0 × 1033 10

Mercury 3.3 × 1026 199

Venus 4.9 × 1027 299

Earth 6.0 × 1027 399
Moon / (Earth) 7.3 × 1025 301

Mars 6.4 × 1026 499
Phobos 1.1 × 1019 401
Deimos 1.8 × 1018 402

Jupiter 1.9 × 1030 599
Io 8.9 × 1025 501
Europa 4.8 × 1025 502
Ganymede 1.5 × 1026 503
Callisto 1.1 × 1026 504

Saturn 5.7 × 1029 699
Titan 1.3 × 1026 606

Uranus 8.7 × 1028 799

Neptune 1.0 × 1029 899

Pluto 1.5 × 1025 999

Ceres 9.4 × 1023 2000001

Vesta 2.6 × 1023 2000004
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realistic observational cadence of 20 days (40 days for
Mars). At each sample time, we record the distance rSSOðtÞ
between Earth and each tracked object. We also perform a
simulation with no added PBH, obtaining time series
rbaseSSOðtÞ. For each SSO, we then obtain

δrSSOðtÞ ≈ δrSSO0 ðtÞ ¼ rSSOðtÞ − rbaseSSOðtÞ: ð15Þ

The value of δr0 in this simulation is shown as a function
of time for each of the inner planets in the left panel of
Fig. 3. The simple estimate of the impulse model in Eq. (2)
is shown by the dashed lines. A few qualitative features are
immediately clear from the figure:
(1) The flyby is rapid: the vertical gray band shows the

extent of the time period during which the PBH is
within 10 AU of any of the Solar System objects for
which δr is shown. The PBH flyby indeed represents
a momentary impulse.

(2) For this combination of parameters, δrMars
0 exceeds

σr ¼ 0.1 m within Oð1 yrÞ and grows to 1 m within
ten years of PBH perihelion, even though Mars has
the largest distance to the PBH among the objects
tracked.

(3) The impulse model predicts the size of δr at the
order-of-magnitude level, but noticeably fails at the
Oð1Þ level. In particular, the sizes of the impulse
predictions follow the opposite order from those of
the simulated δr values. The difference is especially
pronounced for Mercury.

(4) Each perturbation is oscillatory and, indeed, nearly
monochromatic. The envelope grows almost linearly
with time.

We now comment briefly on the implications of each of
these features.
The fact that the flyby is rapid justifies the use of

the impulse approximation in Eq. (2), explaining why this
remarkably simple computation succeeds at predicting the

FIG. 2. Trajectories for the example PBH encounter considered
in Sec. III. Objects beyond the inner planets are omitted from the
figure. The PBH perihelion distance is 1.98 AU.

FIG. 3. Left: δr between Earth and Mercury (purple), between Earth and Venus (green), and between Earth and Mars (orange) for the
same encounter shown in Fig. 2. For each object, the distance of closest approach of the PBH is given in parentheses. We set t ¼ 0 at the
PBH perihelion. (Note that the PBH follows a hyperbolic trajectory, so perihelion occurs only once.) The vertical gray band indicates
times at which the PBH lies within 10 AU of any of the objects shown here. Dashed lines show the simple prediction of Eq. (2), i.e.,
δr ¼ δv × t. Right: power spectral density (PSD) P½δr% for the 100 years following the PBH perihelion. Vertical lines mark the peak
frequency of the PSD of the unperturbed distance between Earth and each object, P½r%. The power peaks sharply at these frequencies, as
expected for a slight modification to the orbital parameters.
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rough behavior of δr. It also establishes a clear distinction
between the kinematics of a PBH flyby and what might be
expected of a close encounter between two Solar System
objects: the PBH flyby is nearly instantaneous on the
dynamical timescale of the Solar System. Any successful
fit of a PBH transit model to data will sharply identify the
time at which the transit took place, whereas Solar System
objects interact over longer timescales.
Moreover, one of the objects tracked in this fairly generic

simulation exhibits a computed δr larger than any of the
estimates from the impulse approximation. This serves as
the first numerical evidence for the plausibility of our
overall premise: that detection of PBHs is possible with
current and future data on realistic observational timescales.
However, despite the order-of-magnitude success of

Eq. (2), the fact that this computation fails to predict the
relative magnitudes of the impulses delivered to each of the
Solar System objects signifies the importance of the phases
of the planets in their orbits and the precise location and
direction of the PBH flyby. In particular, this means that
Eq. (2) is not well suited to predict event rates, and we
should expect the rates of Eq. (4) to be substantially
modified in the context of simulations. This also means
that even an order-of-magnitude estimate of the overall rate
requires an ensemble of simulations in order to properly
marginalize over arrival directions and times.
Finally, we observe that the actual perturbation δr is not

only oscillatory, but is dominated by a particular frequency:
the peak frequency of the variation in the unperturbed
Earth-SSO distance rðtÞ. Motivated by the nearly mono-
chromatic oscillations in the left panel of Fig. 3, we show in
the right panel the power spectral density of δr for the
100 years following the PBH perihelion. The dashed
vertical lines mark the frequencies fSSOr at which the power
spectral density of the unperturbed rðtÞ attains its maximum
for each tracked object—essentially, the inverse period of
the main component of the distance from Earth to each
object. This is to be expected for small changes to the orbital
parameters, since the perturbation to the distance will then
oscillate on the timescale of the orbital period. The spectrum
of δr also contains decreasing peaks at the integer harmon-
ics nfSSOr for each object. This characteristic profile in
frequency space is of great utility, since it enables the use of
template-matching techniques to identify PBH flyby events
in noisy data. We discuss this possibility further in the
coming sections.
At this point, we have performed a simple estimate of δr

using the impulse approximation in Eq. (2); we have argued
that all of the neglected physical effects are unimportant to
the computation of δr, apart from the presence of other
bodies; and we have performed N-body simulations to
demonstrate that the signal in δr remains viable in a realistic
Solar System and, indeed, has several valuable properties.
Our first set of simulations also suggests that such param-
eters as arrival direction and the phases of planetary orbits

cannot be neglected. Since PBHs would arrive from random
directions and at random times, the effects of these
parameters should be included into our estimates via an
ensemble of simulations. We take up this task in the next
section.

IV. PROSPECTS FOR DETECTING PBH
DARK MATTER

We now combine the results of the previous sections to
obtain appropriate figures of merit for potential constraints
on PBH dark matter. We frame the expected detection rate
Γ in language similar to DM direct detection experiments.
The detection rate for fixed PBH parameters Π is simply
the flux Φ of objects multiplied by the probability p of
detection. That is, we have

Γ ¼
Z

dnΠ dΦ
dΠ × pðΠÞ: ð16Þ

The flux of objects is nσ̄v0, where n is the number density,
v0 is the typical velocity, and σ̄ is the cross section of the
“detector”—in our case, an arbitrary large volume encom-
passing the inner Solar System. (The larger the volume, the
lower the average probability of detection.) We choose this
volume to be a sphere of radius rtarget ≡ 50 AU centered
at the Solar System barycenter, so that σ̄ ¼ πð50 AUÞ2,
and we fix v0 ¼ 200 km=s. Then the differential rate
is dΓ=dΠ ¼ σ̄v0ðdn=dΠÞpðΠÞ.
We estimate Γ by taking a simple representative form for

the probability of detection: we say that a PBH flyby is
detected if the peak value of δr exceeds some threshold
value in ratio to the width of the noise in the measurement
of r. Specifically, we define qFOM as the maximum value
of the sum in quadrature of qSSO ≡ δrSSO=σSSOr over all
objects. That is,

qFOM ≡max
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

SSO

ðδrSSOðtÞ=σSSOr Þ2
r

: ð17Þ

This is a figure of merit (FOM) for the size of the
perturbation induced by the flyby with a form motivated
by statistical considerations, and we set pðΠÞ ¼ ΘðqFOM −
q0Þ for some fixed q0, where Θ is the Heaviside step
function. With this definition, pðΠÞ is an indicator function
on the PBH flyby parameter space that is 1 for detectable
flybys and 0 otherwise. We can then perform the integral in
Eq. (16) directly by sampling flybys with impact parameter
bPBH < 50 AU, i.e., flybys whose trajectories pass through
the target region with cross section σ̄.
Detailed analysis of the range of realistic values for q0 is

beyond the scope of the present work. Obviously, the value
of q0 ¼ 1, corresponding to max δr ¼ σr, corresponds to a
large effect and surely should be counted as detectable.
However, given the properties of the perturbation in our
numerical results, much smaller values of q0 are plausibly
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accessible. The perturbation δr is very long-lived, with a
regular and predictable form in Fourier space, which
suggests that filtration techniques from signal processing
can substantially enhance the sensitivity to small signals. As
a reference point, we consider the methods used in the
analysis of LIGO data, which routinely enables extraction
of signals with an amplitude of order 10−4 relative to
noise [64]. This level of refinement is prior to any analysis
of correlations between detectors, an analog of which is also
possible in our case by use of correlations between
perturbations to different Solar System objects. Hence,
for the remainder of this work, we consider 10−2 < q0 <
10−4 as a benchmark range.
We numerically approximate the integral of Eq. (16) by

sampling values of Π. We work at fixed mass and speed, so
only five parameters remain: rPBH0 , θ0, ϕ0, α, and β, per the
parametrization of Sec. III. We sample uniformly in ϕ0 and
cos θ0, reflecting a random arrival direction. (We neglect the
DM “wind” associated with the motion of the Solar System
in the Galactic frame.) We sample rPBH0 uniformly on [300,
700] AU, so that all starting points are far from the Solar
System, and with perihelion times in a uniform range with
a width of 400 AU=ð200 km=sÞ ≈ 9.5 yr. We sample β
uniformly on ½0; 2π%. We sample α uniformly subject to the
restriction that the impact parameter should fall within the
cross section of the target, i.e., bPBH ¼ r0 tan α ≤ rtarget. We
draw 218 ¼ 2.6 × 105 samples from this parameter space
using the Sobol sequence method.
Naively, one might expect to evaluate this integral anew

for each PBH mass of interest. We simplify our compu-
tation by observing that Eq. (3) predicts that δr is linear in
MPBH. Equation (3) is only a simple estimate, but this
feature motivates us to check linearity within our numerical
simulations: while linearity should not hold for general
MPBH, it should be restored for sufficiently smallMPBH. We
thus directly compute δr for Mars ten years after the PBH
perihelion in our benchmark configuration for a range of
different PBH masses, with the results shown in Fig. 4. We
find that δr is indeed linear in the PBH mass as long as
MPBH ≲ 1031 g. All of the masses we consider in this work
are well within the linear regime, so we can always obtain
δr at any mass of interest from a simulation at a single mass
by simply rescaling the result. We choose to perform all
simulations with MPBH ¼ Mbase

PBH ≡ 1027 g.
The numerical sampling produces a full distribution of

qFOM at MPBH ¼ Mbase
PBH. Given that qFOM can also be

rescaled linearly with the PBH mass, we can readily study
the behavior of the detection rate as a function of mass.
We fit a power law to the tail of the distribution of qFOM,
truncating at the most extreme values ðqmin

FOM; q
max
FOMÞ

obtained in our simulations. This simple form for the
distribution of qFOM, combined with the simple form for
pðΠÞ, leads to a simple and interpretable mass dependence.
The survival function of qFOM takes the form

SðqFOMÞ¼

8
>>><

>>>:

1 qFOM<qmin
FOM

ðqmax
FOMÞ

γþ1−qγþ1
FOM

ðqmax
FOMÞ

γþ1−ðqmin
FOMÞ

γþ1 qmin
FOM ≤ qFOM≤ qmax

FOM

0 qFOM>qmax
FOM;

ð18Þ

where γ is the index of the power law fit, which we find
to be −1.68. As noted above, the quantity SðqFOMÞ is
computed only for MPBH ¼ Mbase

PBH. Then the rate with a
threshold q0 is estimated as

Γðq0Þ ≃
ρPBH
MPBH

× σ̄v0 × S
"
Mbase

PBH

MPBH
q0

#
: ð19Þ

This estimate is shown for several values of q0 in Fig. 5,
assuming ρPBH ¼ ρDM. The features of ΓðMPBHÞ are
readily understood. At masses above a critical value
Mdet ¼ ðq0=qmin

FOMÞMbase
PBH, the probability of detection is

very high, i.e., the survival function in Eq. (19) is 1. In this
regime, the detection rate is simply the flyby rate, which
scales with the PBH number density and hence inversely
with the PBH mass at fixed mass density. The massMdet is
marked with a dot for each curve in Fig. 5. As the mass is
lowered below Mdet, the survival function drops below 1,
and the detectable event rate is limited by the detection
sensitivity. The rate peaks at

Mpeak
PBH ¼ Mbase

PBH × ðγ þ 2Þ1=ðγþ1Þ ×
q0

qmax
FOM

; ð20Þ

FIG. 4. Size of δr for Mars as a function of PBH mass. The
magnitude is shown at a fixed time, ten years after PBH
perihelion, in ratio to δr with MPBH ¼ 1025 g. All other param-
eters are consistent with the encounters shown in Figs. 2 and 3.
For sufficiently small perturber mass, the size of the perturbation
is linear in the mass, as anticipated from Eq. (2). For an encounter
with these parameters, PBH masses below 1031 g are in the linear
regime.
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which corresponds to Mpeak
PBH ≈ 2.3 × 1018 g × q0. This is

indicated by the dashed black line in Fig. 5. At yet lower
masses, the survival function drops rapidly to zero and the
detection rate with it.
Under the assumptions above, Fig. 5 demonstrates the

potential for nontrivial constraints on PBH DM in the
range 1018g < MPBH < 1023g with the use of Oð30 yrÞ of
ephemeris data. Above 1023 g, the rate is suppressed by the
very small number density of PBHs in the neighborhood
of our Solar System. Below 1018 g, despite the high rate
shown in Fig. 5, the flux becomes so large that there are
many encounters over the observing period, and our
estimates are no longer valid. Backgrounds also become
much more significant in this regime, as there are numerous
Solar System objects with masses of this order, and not all
of them are well tracked.
If future observations identify candidate events, it will be

important to distinguish rapid transits by PBHs from likely
background sources. The most important distinguishing
feature will likely be the trajectory of the perturbing object.
As emphasized throughout our analysis, typical speeds for
transiting PBHs should be v ≈ 200 km=s. In contrast,
among the 465,778 objects included within the Jet
Propulsion Laboratory’s small-body database that have
come within 3 AU of any Solar System planet since
1900, we find v ¼ 14.2' 7.7 km=s, with a maximum
speed among that set of vmax ¼ 105.5 km=s [65]. In
addition, objects bound within the Solar System tend to
be on coplanar trajectories, whereas the direction of
transiting PBHs should be uncorrelated with the ecliptic
plane. We study the prospects for recovering trajectory
information in more detail in the Appendix.

Beyond trajectory information, it is possible that a
baryonic perturber in this mass range could be directly
identified. Active searches for transient objects throughout
the inner Solar System are able to identify very low-mass
objects, such as the interstellar object ‘Oumuamua, which
has a mass of order 1012g and spatial dimensions ∼100m ×
30m × 10m [66,67]. The successful identification of one
such object does not mean that all others are found, but it
does suggest that if a nonexotic perturber with mass 1020 g
were to transit the inner Solar System, there is a reasonable
possibility that the object could be directly detected and
correlated with measured perturbations δr in the motion of
an SSO like Mars. Additional study of likely backgrounds
in the asteroid-mass range remains an important area for
further research.
Our findings suggest that the method proposed here is

complementary to that of Refs. [32,33], which propose a
means of detecting (or constraining) PBHs within the
asteroid-mass range using decades of high-precision
tracking data from the network of global navigation
satellite systems (GNSS) in Earth orbit. Whereas our
proposed method is most sensitive to the mass range
1018g < MPBH < 1023g, the GNSS data are most effective
for MPBH ≤ 1017 g.

V. DISCUSSION AND CONCLUSIONS

Primordial black holes remain a compelling candidate for
dark matter. To date, a combination of observational and
theoretical constraints leaves open a window 1017g≲
MPBH ≲ 1023 g within which PBHs could account for the
entire DM abundance [11–15]. Probing this mass range—
either to yield a quasidirect detection of a DM candidate or
to further constrain PBHs as DM—has proven difficult. In
this paper, we describe a new observable for PBHs as DM,
which leverages decades of precision tracking of the
motions of objects within the inner Solar System. In
particular, we demonstrate that the inner Solar System itself
could function as a compact object detector, by exploiting
state-of-the-art observing programs and Solar System
ephemerides.
In this paper we have identified robust observables from

transient flybys of PBHs within several astronomical units
of the Solar System barycenter, estimated the likely effects
on the motion of closely tracked Solar System objects from
such flybys, and simulated an ensemble of such flybys with
which to estimate a realistic detection rate. Given these
simulations, much of the presently allowed mass range
1017g≲MPBH ≲ 1023g could be successfully probed using
the types of data and Solar System simulations that are
already available.
Our present N-body simulations have neglected sub-

dominant effects on objects’ motions—such as Newtonian
finite-size effects, relativistic point-mass corrections, and
relativistic finite-size effects—and our simulations include

FIG. 5. Estimated detectable encounter rate as a function of
PBH mass. The rate peaks for PBH masses within the uncon-
strained asteroid-mass range. Dots indicate the transition from
scaling with PBH number density to scaling with flyby detect-
ability (Mdet). The dashed line shows the peak rate varying the
threshold q0, following Eq. (20). See text for details.
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only a subset of the huge number of Solar System objects
that are included in leading ephemerides programs such as
the DE441 model maintained by the Jet Propulsion
Laboratory [39,40] and the INPOP21a model maintained
by the Observatoire de Paris [41–43]. Nonetheless, by
quantifying the relative contributions to Solar System
dynamics from the types of objects and dynamics that
our simulations neglect, we have argued that our proposed
observable provides a viable and realistic possibility for
probing the stubborn, remaining mass range within which
PBHs could account for all of DM.
To move beyond the estimates analyzed in this paper,

several steps will be necessary. First, because the expected
signals δr from transient PBH flybys are comparable to the
present errors σr with which the distances between Earth
and various Solar System objects are tracked, it will be
imperative to use more precise Solar System simulations
and decades of high-precision observational data.
Second, upon using more accurate models of Solar

System dynamics, one may exploit the quasiperiodic nature
of the expected signal from a PBH flyby, as shown in Fig. 3,
to develop a bank of time series templates with which
observational data may be filtered, akin to standard proce-
dures for projects like LIGO [64]. In addition, observable
signals could be extracted from real-world noisy data by
focusing on correlations among the (perturbed) motions of
several Solar System objects, such as Mars and Venus,
rather than focusing on single objects alone.
By using decades of high-precision tracking data from

various Solar System observing programs, combined with
expertise already at hand within the Solar System dynamics
community, the intriguing possibility that DM consists of
PBHs may soon be investigated within our own Earthly
neighborhood—adding a novel search strategy to the
decades of direct detection efforts that have been devoted
to finding a well-motivated DM candidate.
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APPENDIX: RECOVERY OF PERTURBER
PARAMETERS

In this appendix, we demonstrate how the parameters of
a perturbing object can be approximately recovered from

measured ephemeris data. The main pitfall in this process is
the possibility of degeneracies between PBH parameters
and SSO parameters, particularly their masses. The masses
of SSOs are best determined by the very same models that
are fit to ephemerides, so an anomalous contribution to
SSO trajectories from a perturber might, in principle, be
absorbed by modification of SSO masses instead.
To address this issue, we perform a numerical experiment

as a proof of principle. Beginning with a variant on the
simulated benchmark transit considered in Sec. III (Figs. 2
and 3), we attempt to determine the PBH parameters directly
from the mock ephemeris data. In particular, we show that
the mass of the transiting object can be determined quite
accurately.
Even with our simplified Solar System model, numeri-

cally exploring the full parameter space is challenging. The
parameter space is large: a PBH transit is characterized by
the five parameters described in Sec. III, and we also allow
a perturbation δMSSO to the mass of each SSO. Ideally, one
would be able to marginalize over all δM parameters and
accurately determine all five PBH parameters in order to
allow for follow-up observations. However, this is likely
infeasible. Aside from noise, we expect at least one
degeneracy in the PBH parameters: under the impulse
approximation, the same PBH on a time-reversed trajectory
gives very nearly the same perturbation to the SSOs.
Moreover, follow-up would need to be rapid: within a
single year, a typical PBH would travel ∼50 AU from
perihelion.
Instead, our immediate goal is to identify the mass of the

transiting object. In particular, if the PBH mass can be
statistically distinguished from zero while allowing SSO
masses to vary, then ephemerides can at least establish that
a transit took place, even if the kinematical parameters of
the transit are substantially uncertain. Given the relative
simplicity of this objective, we use an appropriately simple
method: without foreknowledge of the true parameters of
the transit, we search for the best-fit parameters and use the
likelihood ratio test to determine the statistical preference
for the best-fit point over the unperturbed Solar System.
We searched for the best-fit parameters using simulated

annealing2 on a personal computer. To narrow the param-
eter space, we use the impulse model (Sec. II A) to restrict
the range of masses we test. From Eq. (2), the impulse
model predicts a contribution to the residual that increases
linearly with time over the simulated time period, at a
rate δv ≃ 2GMPBH=ðbPBHvPBHÞ. The PBH parameters
fΠ0;ϕ0; α; βg determine the impact parameter bPBH.
Thus, for any choice of the initial angular position and
direction of the PBH, the impulse model makes a concrete
prediction for δv=MPBH. We estimate δv from the mock
data by computing the slope of a line from the start of the

2https://docs.scipy.org/doc/scipy/reference/generated/scipy
.optimize.dual_annealing.html.
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perturbation to the highest peak in the simulated jδrj. In
Fig. 3, this would correspond to finding the slope of a line
going from the beginning of the encounter to the rightmost
peak in each solid curve. This estimate of δv then
translates to an order-of-magnitude estimate M̃PBH of
the PBH mass. We then allow the mass to vary by a
factor of 10 in each direction. Concretely, we take the
following steps:
(1) The PBH mass is parametrized as logðMPBH=M⊙Þ,

for MPBH=M̃PBHðΠ0;ϕ0; α; βÞ∈ ½1=10; 10%.
(2) We make an affine transformation to map each

parameter to the unit interval [0, 1].
(3) For each parameter point p we consider, we perform

a simulation to obtain mock residuals. We compare
these residuals to the “true” residuals obtained
from the benchmark simulation to define a log-
likelihood lðpÞ.

(4) We use simulated annealing in the unit hypercube
½0; 1% × ( ( ( × ½0; 1% to find a parameter point pmax

PBH
maximizing the likelihood.

(5) We use simulated annealing a second time to find the
optimal parameter point for the null hypothesis, i.e.,
fixing MPBH ¼ 0 and allowing δMSSO to vary for
each object. We denote this parameter point by pmax

SSO.
(6) We test for significance. The likelihood ratio test

statistic is given by λ ¼ 2½lðpmax
PBHÞ − lðpmax

SSOÞ%. We
take λ to be distributed according to a χ2 distribution
with 5 degrees of freedom, corresponding to the five
additional parameters needed to describe a PBH
transit.

We first performed this test for a transit with MPBH ¼
1023 g and otherwise identical to the benchmark transit
discussed in Sec. III (MPBH ¼ 1021 g). The loss landscape is
trivial in δMSSO, with δMSSO ¼ 0 always favored, but very
complicated in the transit parameters, with sharp peaks.
Despite the numerical complexity, we readily found an
optimal parameter point pmax

PBH with λ ¼ 21.8. This corre-
sponds to rejecting the null hypothesis of MPBH ¼ 0 with
p < 0.00057. Moreover, the PBH mass at this parameter
point is 7.6 × 1022 g, which compares favorably with the
input value of 1023 g. Thus, the inclusion of modifications
to SSO masses is clearly not an obstruction to establishing
the occurrence of a transit. While these masses are important
to Solar System dynamics, they are not degenerate with the
mass of a perturber.
While the mass is easily estimated, the angular

parameters are more difficult to recover accurately.
The input parameter values for the benchmark case
were ðΠ0;ϕ0; α; βÞ ¼ ð0; 0; 0.00106; 1Þ × π, whereas for
this particular optimal point, we find the values

ð0.9986; 1.3360; 1.1810; 1.7964Þ × π. From the value of
Π, the polar angle of the initial position, it is clear that this
optimum is close to the nearly degenerate time-reversed
trajectory with the opposite initial position. The corre-
spondence between the velocities is more obvious in
Cartesian coordinates. The input parameters correspond
to a velocity unit vector

v̂0 ¼ f−0.003333; 0.000000;−0.999994g;

while the recovered parameters correspond to

v̂0 ¼ f−0.005010; 0.003680; 0.999981g:

One might account for the degenerate optimum by
directly testing points in the vicinity of the time-reversed
optimum after the initial optimization. For present pur-
poses, we do not attempt such a validation step. Instead, we
simply demonstrate that the true optimum can be obtained
in the context of a more violent encounter. To that end,
we also attempted parameter recovery for a transit with
MPBH ¼ 1027 g. The transits of such heavy PBHs should
not be observable given the local DM density and existing
constraints in this mass range, but we nonetheless use this
case to check that our computational pipeline can accu-
rately recover kinematical parameters in a case with a
higher signal-to-noise ratio.
For this heavy transit, we obtained an optimum with

λ ¼ 25.2 (p < 0.00013), and the parameters of the transit
were estimated with high accuracy. The PBH mass was
found to be 9.5 × 1026 g, and the angular parameters were
found as ðΠ0;ϕ0; α; βÞ ¼ ð0.0012; 1.232; 0.0020; 5.046Þ. It
seems at first that the angles ϕ0 and β are quite discrepant.
However, since Π0 is small, the difference in ϕ0 is
inconsequential except in the definition of β. In fact, the
initial angular position is nearly identical, and the initial
velocity v0 is quite close to the input as well, with
v̂0 ¼ f−0.002760;−0.001323;−0.999995g. This corre-
sponds to an impact parameter of b ¼ 1.71 AU, which
compares favorably with the input value of b ¼ 1.79 AU.
Given the simplicity of our approach, these examples
suggest that the prospects for PBH parameter recovery
with more sophisticated methods are extremely promising.
Finally, we emphasize that these optimizations were

performed in less than one day on a single computer and do
not reflect the computational techniques that are already
used in fitting models of Solar System ephemerides without
the inclusion of perturbers. In future work, we will explore
these advanced fitting techniques in combination with fully
detailed ephemeris models.
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