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Abstract. Anderson acceleration (AA) is a popular algorithm designed to enhance the conver-
gence of fixed-point iterations. In this paper, we introduce a variant of AA based on a truncated
Gram--Schmidt process (AATGS) which has a few advantages over the classical AA. In particular, an
attractive feature of AATGS is that its iterates obey a three-term recurrence in the situation when
it is applied to solving symmetric linear problems and this can lead to a considerable reduction of
memory and computational costs. We analyze the convergence of AATGS in both full-depth and
limited-depth scenarios and establish its equivalence to the classical AA in the linear case. We also
report on the effectiveness of AATGS through a set of numerical experiments, ranging from solving
nonlinear partial differential equations to tackling nonlinear optimization problems. In particular,
the performance of the method is compared with that of the classical AA algorithms.

Key words. Anderson acceleration, Gram--Schmidt process, short-term recurrence, Krylov
subspace, nonlinear equations
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1. Introduction and motivation. This paper considers numerical schemes for
solving the nonlinear system of equations

f(x) = 0,(1.1)

where f is a continuously differentiable mapping from \BbbR n to \BbbR n. Problem (1.1) can
be reformulated as an equivalent fixed point problem

x= g(x)(1.2)

for a suitable mapping g from \BbbR n to \BbbR n. For example, we can set g(x) = x+\beta f(x) for
some nonzero scalar \beta . When the fixed point iteration, i.e., the sequence generated by
xj+1 = g(xj), converges to the fixed point of (1.2), then this limit is a solution to the
problem (1.1). However, the fixed-point iteration can be slow or it can diverge, and
therefore acceleration methods are often invoked to improve or establish convergence.
Anderson acceleration (AA) [1], which is equivalent to the DIIS method, or Pulay
mixing [22, 23] in quantum chemistry, is a popular acceleration technique that has
been developed for this purpose. AA has found extensive applications in scientific
computing and, more recently, in machine learning [2, 13, 17, 19, 21, 30, 31, 32].
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ANDERSON ACCELERATION WITH TRUNCATED GRAM--SCHMIDT 1851

If the jth iterate is denoted by xj and if we set fj \equiv f(xj), then AA starts with
an initial x0 and defines x1 = g(x0) = x0 + \beta 0f0, where \beta 0 > 0 is a parameter. Let
mj =min\{ m,j\} and jm =max\{ 0, j  - m\} \equiv j  - mj , and assume that the most recent
mj iterates are saved at each step. At step j, we define the matrices of differences:

\scrX j = [\Delta xjm . . . \Delta xj - 1]\in \BbbR n\times mj , \scrF j = [\Delta fjm . . . \Delta fj - 1]\in \BbbR n\times mj ,(1.3)

where \Delta xi := xi+1  - xi and \Delta fi := fi+1  - fi. Then AA defines the next iterate as
follows:

xj+1 = xj + \beta jfj  - (\scrX j + \beta j\scrF j)\theta j where(1.4)

\theta j = argmin\theta \in \BbbR mj \| fj  - \scrF j\theta \| 2.(1.5)

Note that xj+1 can be expressed with the help of intermediate vectors:

\=xj = xj  - \scrX j\theta j , \=fj = fj  - \scrF j\theta j , xj+1 = \=xj + \beta j
\=fj .(1.6)

AA is closely related to Broyden's multisecant-type methods. This connection was
initially revealed in [8] and further discussed in [25]. Essentially, AA acts as a ``block
version"" of Broyden's second update method where an update of rank mj is applied
at each step, instead of the traditional rank 1 update. Note that the AA scheme
just discussed retains mj past iterates where m is often called the window size, or
sometimes depth, of the AA procedure in the literature. In subsequent sections, we
will refer to this scheme as AA(m). Retaining and using all past iterates is equivalent
to setting m=\infty in the procedure, and so it will be often denoted by AA(\infty ). This is
often referred to as the full-depth Anderson Acceleration, while when m<\infty , AA(m)
is known as a limited-depth, windowed, or truncated version of AA.

The study of the convergence of AA has been an active research area in recent
years. It was shown in [30] that the full-depth AA(\infty ) applied to g(x) =Gx+b is ``es-
sentially equivalent"" to the GMRES method [27] applied to (I - G)x= b when I - G is
nonsingular and the linear residuals are strictly decreasing in the norm. Under these
assumptions, the iterate xj returned by AA(\infty ) at step j is equal to GxGMRES

j - 1 + b,
where xGMRES

j - 1 is the iterate returned by GMRES(j--1) with the same initial guess
x0. The first rigorous convergence analysis of AA(m) for contractive fixed-point map-
pings was conducted in [29], where the authors prove the q-linear convergence of the
residuals for linear problems and the local r-linear convergence for nonlinear prob-
lems when the coefficients in the linear combination remain bounded. In addition,
they also prove the q-linear convergence of the residuals for AA(1) separately. These
convergence results show that the convergence rate of AA(m) is not worse than that
of the underlying fixed-point iteration. The explicit improvement of AA(m) over the
underlying fixed point iteration at each step is studied in [7], where the authors show
that AA(m) can improve the convergence rate to first order by a factor \tau j \leq 1 that is
equal to the ratio of \| fj  - \scrF j\theta j\| 2 to \| fj\| 2. They also point out that although AA(m)
can increase the radius of convergence, AA(m) typically fails to improve the conver-
gence in quadratically converging fixed-point iterations. The asymptotic convergence
analysis of AA(m) is conducted in [4], where the authors show that the r-linear con-
vergence factor strongly depends on the initial condition for the r-linearly convergent
AA(m) sequence and the coefficients \theta j do not converge but oscillate as the sequence
converges. The one-step convergence analysis of inexact AA(m) with a potentially
noncontractive mapping is conducted in [35]. The convergence rate of AA(m) on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1852 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

Table 1
List of some notation and symbols used in this paper.

Symbol Description Symbol Description

fj f(xj) \Delta xi xi+1  - xi

\Delta fi fi+1  - fi m window size
mj min\{ m,j\} jm max\{ 0, j  - m\} 
\scrX j [\Delta xjm . . . \Delta xj - 1] \scrF j [\Delta fjm . . . \Delta fj - 1]

superlinearly and sublinearly converging fixed-point iterations has recently been stud-
ied in [24]. Recent work has also addressed the numerical stability of AA(m). The
article [5] showed some interesting theoretical results for AA(1) for linear problems
and numerically studied the least-squares problem in AA(m). The paper emphasized
that the robustness of least-squares solution techniques like those based on the QR
factorization can ensure small backward errors and accurate results without the need
for regularization. A comprehensive analysis of backward stability for approximate
least-squares solves in AA for linear problems can also be found in [16], where rigorous
theoretical bounds are exploited to minimize computational costs.

While recent studies have concentrated on the convergence of AA and on improv-
ing its convergence properties, relatively little attention has been devoted to reducing
its memory usage. One of the goals of this paper is to address this issue. The paper
develops a variant of AA that can exploit the symmetry (or near symmetry) of the
Jacobian of the function f . In doing so, the iterates will obey short-term update ex-
pressions akin to those of the conjugate gradient or conjugate residual methods. The
end result is a substantial reduction in memory and computational costs when solv-
ing large-scale nonlinear equations or optimization problems. Short-term recurrences
often lead to numerical instabilities, and thus the proposed algorithm may encounter
numerical issues in some situations. To circumvent this problem, we introduce a
restarting strategy that aims at monitoring the growth of floating point errors.

The remaining sections are organized as follows. AATGS is introduced in sec-
tion 2, which also presents a convergence analysis. The restarting strategy is dis-
cussed in section 3, and numerical experiments are provided in section 4. Finally, a
few concluding remarks are drawn in section 5. Table 1 provides a summary of the
notation and symbols used throughout the paper.

2. Anderson acceleration with truncated Gram--Schmidt (AATGS).
The variant of Anderson acceleration to be introduced in this section relies on build-
ing an orthonormal set of vectors which will be used in place of the set \scrF j in AA.
The idea of using an orthonormal basis in AA is not completely new. For example,
it is common to use the QR decomposition to determine the minimizer \theta j in (1.5)
by orthonormalizing the columns of \scrF j . This will lead to a process that is less prone
to numerical errors than an approach based on normal equations. However, in the
limited-depth case, this approach requires the successive QR factorization of an evolv-
ing set of vectors in which the oldest vector is removed at each step once the buffer
that stores \scrF j is full, which occurs when j + 1 \geq m. The proper way to implement
this effectively in order to obtain the QR factorization of each new set of vectors is
through a simple QR-downdating scheme; see, e.g., [30]. In this paper, we adopt a
different viewpoint, proceeding similarly to the truncated GCR algorithm [6] to pro-
duce a ``locally"" orthonormal basis, i.e., a basis in which the last vector is orthogonal
to the most recent mj  - 1 vectors instead of all previous vectors. We will show that
this variant has some advantages over classical AA.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ANDERSON ACCELERATION WITH TRUNCATED GRAM--SCHMIDT 1853

2.1. AATGS(m). The basic idea of AATGS(m) is to exploit an evolving set
of ``locally orthonormal"" vectors \{ qi\} to simplify and improve the solution of the
least-squares problem (1.5). At the jth step we start with mj  - 1 such vectors
qjm+1, qjm+2, . . . , qj - 1 (when j = 0, this set is empty). We orthonormalize \Delta fj - 1

against these vectors to obtain the next member qj of the set. Now the set \scrF j in (1.3)
is replaced by Qj = [qjm+1, . . . , qj ] and so the least-squares problem (1.5) is trivial
to solve: \theta j = QT

j fj and \=fj = fj  - Qj\theta j replaces the \=fj in (1.6). However, the new
intermediate solution \=xj can no longer be written as \=xj = xj  - \scrX j\theta j because the sets
\scrX j ,Qj are no longer paired by a secant condition. This can be remedied by replacing
the set \scrX j by a set Uj = [ujm+1, ujm+2, . . . , uj ] which is paired with the qi's. Here uj is
initially set to \Delta xj - 1 and this is linearly combined with the previous ui's in exactly
the same way \Delta fj - 1 is combined with the previous qi's. In this way, the sets Qj and
Uj are paired by a secant relation, in the sense that each qi is approximately Jui,
where J is the Jacobian at xi. The relation \=fj = fj  - Qj\theta j indicates that the correct
\=xj is \=xj = xj  - Uj\theta j and we can compute xj+1 = \=xj + \beta j

\=fj as before. The whole
procedure is sketched as Algorithm 2.1.

When m = \infty , lines 6--10 in Algorithm 2.1 perform a modified Gram--Schmidt
process to orthonormalize \Delta fj - 1 against all previous qi's, resulting in the vector qj .
When m < \infty , the same lines of pseudocode perform an incomplete orthonormal-
ization via a truncated Gram--Schmidt procedure in which \Delta fj - 1 is orthonormalized
against the previous mj  - 1 vectors' qi's, resulting again in the vector qj . In the loop,
the exact same linear transformation is applied to get uj from \Delta xj - 1 and the previous
ui's. We prefer the modified Gram--Schmidt (MGS) to the numerically unreliable clas-
sical Gram--Schmidt (CGS), but we stress that CGS with reorthogonalization can also
be useful in a parallel computing environment [28]. Throughout the entire AATGS
iterations, the bases Qj and Uj will always contain at most m vectors. Figure 1 shows
an illustration of how the truncated Gram--Schmidt process operates for AATGS(3).

Define the mj\times mj upper triangular matrix Sj = \{ sik\} i=jm+1:j,k=jm+1:j resulting
from the orthogonalization process, where the nonzero entries sij are defined in lines 7

Algorithm 2.1. AATGS(m).

1: Input: Function f(x), initial guess x0, window size m
2: Set f0 \equiv f(x0), x1 = x0 + \beta 0f0, f1 \equiv f(x1)
3: for j = 1,2, . . . , until convergence do
4: u :=\Delta x= xj  - xj - 1

5: q :=\Delta f = fj  - fj - 1

6: for i= jm + 1, . . . , j  - 1 do
7: sij := (q, qi)
8: u := u - sijui

9: q := q - sijqi
10: end for
11: sjj = \| q\| 2
12: qj := q/sjj , uj := u/sjj
13: Set Qj = [qjm+1, . . . , qj ], Uj = [ujm+1, . . . , uj ]
14: Compute \theta j =Q\top 

j fj
15: xj+1 = (xj  - Uj\theta j) + \beta j(fj  - Qj\theta j)
16: fj+1 = f(xj+1)
17: end for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1854 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

Fig. 1. An illustration of the truncated Gram--Schmidt process to build the qi's in lines 6--10
in Algorithm 2.1. In this figure, the window size is m= 3. The same picture illustrates the process
for the ui's: the new vector \Delta xj - 1 is linearly combined with (instead of orthonormalized against)
at most two previous ui's, using the same scalars sij as for the qi's.

and 11 of the algorithm. In the full window case (m=\infty ) or when j \leq m, the block
in lines 4--12 essentially performs a Gram--Schmidt QR factorization of the matrix \scrF j

and enacts identical operations on the set \scrX j = [\Delta xjm ,\Delta xjm+1, . . . ,\Delta xj - 1]. A result
of the algorithm in this particular case is that we have

\scrF j =QjSj , \scrX j =UjSj ,(2.1)

but the above relation no longer holds when j >m.
Let us examine what happens when j = m + 1, focusing on the set Qj . Before

the orthogonalization begins, we have \scrF m = QmSm. To simplify notation, we set
vi \equiv \Delta fi - 1 so that \scrF m = [v1, v2, . . . , vm] =QmSm. Next, the vector qm+1 is computed
and before truncation is applied we actually have the factorization: [v1, v2, . . . , vm+1] =
[Qm, qm+1]Sm+1, where Sm+1 is an (m + 1) \times (m + 1) upper triangular matrix
and qm+1 is orthogonal to q2, . . . , qm. This factorization is now truncated. Ignor-
ing the first column from the equality in this relation leads to (recall that Qm+1 \equiv 
[q2, q3, . . . , qm+1])

[v2, . . . , vm+1] = [q1, q2, . . . , qm+1]

\biggl[ 
sT1
\^Sm+1

\biggr] 
= q1s

T
1 +Qm+1

\^Sm+1,

where, using MATLAB notation, sT1 \equiv Sm+1(1,2 : m + 1), an 1 \times m vector, and
\^Sm+1 \equiv Sm+1(2 :m+ 1,2 :m+ 1), an m\times m matrix. The end result is that the pair
of matrices Qm+1 and \^Sm+1 constitute the QR factorization of [v2, . . . , vm+1] - q1s

T
1 .

Note that q1 is a multiple of v1. In the next step, the set is modified by a rank-one
matrix of the form q2s

T and the process continues in the same way adding one more
rank-one perturbation at each step.

After step j of Algorithm 2.1 is applied, we would have built the orthonormal
basis Qj = [qjm+1, . . . , qj ] along with a paired system Uj = [ujm+1, . . . , uj ]. Note that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ANDERSON ACCELERATION WITH TRUNCATED GRAM--SCHMIDT 1855

Qj has orthonormal columns but not Uj . The vector \theta j computed in line 14 by a
simple matrix-vector product is the least-squares solution of min\theta \| fj  - Qj\theta \| 2. The
resulting residual fj  - Qj\theta j is not necessarily the same as the \=fj = fj  - \scrX j\theta j of AA
since the span of \scrF j differs from the span of Qj when j > m. Line 15 computes the
next iterate xj+1 using the two paired bases Qj and Uj and \theta j . Note that as for
classical Anderson, we can also define \=xj and \=fj and rewrite xj+1 in the following
form:

\=xj = xj  - Uj\theta j , \=fj = fj  - Qj\theta j , xj+1 = \=xj + \beta j
\=fj .(2.2)

We mentioned the case j >m in the above discussion. It is easy to see that in the
case where j \leq m, the subspaces spanned by \scrF j and Qj are identical, and in this
situation the iterates xj+1 resulting from AA and AATGS will be the same. In par-
ticular, when m=\infty this will always be the case; i.e., the full-depth AATGS(\infty ) and
AA(\infty ) return the same iterate xj+1 in exact arithmetic at each iteration and thus
are mathematically equivalent.

In the next section, we will study the properties of AATGS(\infty ), including a
particularly interesting short-term recurrence of the algorithm when it is applied to
symmetric linear systems.

2.2. Theoretical analysis of AATGS(\infty ). Consider a linear problem where
f(x) = b - Ax and A is invertible. Note that in this case we have

\scrF j = - A\scrX j .(2.3)

In the next lemma, we show that the matrix Uj returned by Algorithm 2.1 forms a
basis of the Krylov subspace \scrK j(A,f0) and that under mild conditions, Qj ,Uj satisfy
the same relation as \scrF j ,\scrX j in (2.3) for AATGS(\infty ).

Lemma 2.1. Assume A is invertible and f(x) = b - Ax. If Algorithm 2.1 applied
for solving f(x) = 0 with m=\infty does not break at step j, then the system Uj forms a
basis of the Krylov subspace \scrK j(A,f0). In addition, the orthonormal system Qj built
by Algorithm 2.1 satisfies Qj = - AUj.

Proof. We first prove Qj =  - AUj by induction. When j = 1, we have q1 =
(f1  - f0)/s11 = - Au1. Assume Qj - 1 = - AUj - 1. Then we have

sjjqj = (fj  - fj - 1) - 
j - 1\sum 
i=1

sijqi = - A(xj  - xj - 1) - 
j - 1\sum 
i=1

sij( - Aui)

= - A

\Biggl[ 
(xj  - xj - 1) - 

j - 1\sum 
i=1

sijui

\Biggr] 
= sjj( - Auj).

Thus, since sjj \not = 0, we get qj =  - Auj and therefore Qj =  - AUj , completing the
induction proof.

Next, we prove by induction that Uj forms a basis of \scrK j(A,f0). It is more
convenient to prove by induction the property that for each i\leq j, Ui forms a basis of
\scrK i(A,f0). The result is true for j = 1 since we have u1 = (x1  - x0)/s11 = \beta 0f0/s11.
Now let us assume the property is true for j  - 1, i.e., that for each i= 1,2, . . . , j  - 1,
Ui is a basis of the Krylov subspace \scrK i(A,f0). Then we have

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1856 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

sjjuj = (xj  - xj - 1) - 
j - 1\sum 
i=1

sijui(2.4)

= - Uj - 1\theta j - 1 + \beta j - 1(fj - 1  - Qj - 1\theta j - 1) - 
j - 1\sum 
i=1

sijui

= - Uj - 1\theta j - 1 + \beta j - 1fj - 1  - \beta j - 1Qj - 1\theta j - 1  - 
j - 1\sum 
i=1

sijui

= \beta j - 1fj - 1  - Uj - 1\theta j - 1 + \beta j - 1AUj - 1\theta j - 1  - 
j - 1\sum 
i=1

sijui.

The induction hypothesis shows that  - Uj - 1\theta j - 1 + \beta j - 1AUj - 1\theta j - 1  - 
\sum j - 1

i=1 sijui \in 
\scrK j(A,f0). It remains to show that fj - 1 = b - Axj - 1 \in \scrK j(A,f0). For this, we expand
b - Axj - 1 as

b - Axj - 1 = b - Axj - 1 +Axj - 2  - Axj - 2 + \cdot \cdot \cdot  - Ax1 +Ax0  - Ax0

=

j - 1\sum 
i=1

 - A(xi  - xi - 1) + f0.

From the relation (2.4) applied with j replaced by i, we see that xi  - xi - 1 is a linear
combination of u1, u2, . . . , ui, i.e., it is a member \scrK i by the induction hypothesis.
Therefore,  - A(xi  - xi - 1) \in \scrK i+1, but since i\leq j  - 1, then  - A(xi  - xi - 1) \in \scrK j . The
remaining term f0 is clearly in \scrK j . Because Uj = - A - 1Qj has full column rank and
ui \in \scrK j(A,f0) for i = 1, . . . , j, Uj forms a basis of \scrK j(A,f0). This completes the
induction proof.

From (2.2), we see that in the linear case under consideration the vector \=fj is the
residual for \=xj :

\=fj = fj  - Qj\theta j = (b - Axj) - Qj\theta j = (b - Axj) +AUj\theta j = b - A(xj  - Uj\theta j) = b - A\=xj .
(2.5)

The next theorem shows that \=xj minimizes \| b  - Ax\| 2 over the affine space x0 +
\scrK j(A,f0).

Theorem 2.2. The vector \=xj generated at the jth step of AATGS(\infty ) minimizes
the residual norm \| b - Ax\| 2 over all vectors x in the affine space x0 +\scrK j(A,f0). It
also minimizes the same residual norm over the subspace xk + \scrK j(A,f0) for any k
such that 0\leq k\leq j.

Proof. Consider a vector of the form x = xj  - \delta , where \delta = Ujy is an arbitrary
member of \scrK j(A,f0). We have

b - Ax= b - A(xj  - Ujy) = fj +AUjy= fj  - Qjy.(2.6)

The minimal norm \| b - Ax\| is reached when y=Q\top 
j fj and the corresponding optimal

x is \=xj . Therefore, \=xj is the vector x of the affine space xj+\scrK j(A,f0) with the smallest
residual norm. We now write x as
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ANDERSON ACCELERATION WITH TRUNCATED GRAM--SCHMIDT 1857

x= xj  - Ujy

= x0 + (x1  - x0) + (x2  - x1) + (x3  - x2) + \cdot \cdot \cdot (xi+1  - xi) + \cdot \cdot \cdot (xj  - xj - 1) - Ujy(2.7)

= x0 +\Delta x0 +\Delta x1 + \cdot \cdot \cdot +\Delta xj - 1  - Ujy.(2.8)

We will exploit the relation obtained from the QR factorization of Algorithm 2.1,
namely \scrX j =UjSj in (2.1): If e is the vector of all ones, then \Delta x0+\Delta x1+\cdot \cdot \cdot +\Delta xj - 1 =
\scrX je=UjSje. Define tj \equiv Sje. Then, from (2.8), we obtain

x= xj  - \delta = x0  - Uj [y - tj ].(2.9)

This means that the set of all vectors of the form xj  - \delta is the same as the set of
all vectors of the form x0  - \delta \prime where \delta \prime \in \scrK j(A,f0). As a result, \=xj also minimizes
b - Ax over all vectors in the affine space x0 + \scrK j(A,f0). The proof can be easily
repeated for any k between 0 and j. The expansion (2.7)--(2.8) becomes

xj  - Ujy= xk + (xk+1  - xk) + (xk+2  - xk+1) + \cdot \cdot \cdot (xi+1  - xi) + \cdot \cdot \cdot (xj  - xj - 1) - Ujy
(2.10)

= xk +\Delta xk +\Delta xk+1 + \cdot \cdot \cdot +\Delta xj - 1  - Ujy.(2.11)

The rest of the proof is similar and straightforward.

Theorem 2.2 shows that \=xj is the jth iterate of the GMRES algorithm for solving
Ax= b with the initial guess x0 and that \=fj is the corresponding residual. The value
of \=xj is independent of the choice of \beta i for i \leq j. Now consider the residual fj+1 of
AATGS(\infty ) at step j + 1. From the relations xj+1 = \=xj + \beta j

\=fj and (2.5) we get

fj+1 = b - A[\=xj + \beta j
\=fj ] = b - A\=xj  - \beta jA \=fj = \=fj  - \beta jA \=fj = (I  - \beta jA) \=fj .(2.12)

This implies that the vector fj+1 is the residual for xj+1 obtained from xj+1 = \=xj +
\beta j

\=fj , which is a simple Richardson iteration starting from the iterate \=xj . Therefore,
xj+1 in line 15 of Algorithm 2.1 is nothing but a Richardson iteration step from this
GMRES iterate. This is stated in the following proposition.

Proposition 2.3. Assume A is invertible and f(x) = b - Ax. If Algorithm 2.1
applied for solving f(x) = 0 with m=\infty does not break at step j+1, then the residual
fj+1 of the iterate xj+1 generated at the jth step of AATGS(\infty ) is equal to (I - \beta jA) \=fj,
where \=fj = b - A\=xj minimizes the residual norm \| b - Ax\| 2 over all vectors x in the
affine space x0+\scrK j(A,f0). In other words, the (j+1)st iterate of AATGS(\infty ) can be
obtained by performing one step of a Richardson iteration applied to the jth GMRES
iterate.

A similar result has also been proved for the standard AA by Walker and Ni [30]
under slightly different assumptions.

2.3. Short-term recurrence in AATGS for linear symmetric problems.
We now show that the orthogonalization process (lines 6--10 of Algorithm 2.1) sim-
plifies in the linear symmetric case under consideration. Indeed, we will see that Sj

consists of only three nonzero diagonals in the upper triangular part when A is sym-
metric. This implies that we only need to save qj - 2, qj - 1, and uj - 2, uj - 1 in order to
generate qj and uj in the full-depth AATGS(\infty ). Before we prove this result, we first
examine the components of the vector Q\top 

j fj in line 14 of Algorithm 2.1.

Lemma 2.4. When f(x) = b  - Ax, where A is a real nonsingular symmetric
matrix, the entries of the vector \theta j =QT

j fj in Algorithm 2.1 are all zeros, except the
last two.
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1858 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

Proof. Let i\leq j  - 1. From (2.12), we have

(fj , qi) = ( \=fj - 1  - \beta j - 1A \=fj - 1, qi) = ( \=fj - 1, qi) - \beta j - 1(A \=fj - 1, qi).

The first term equals zero because (fj - 1 - Qj - 1\theta j - 1, qi)=((I - Qj - 1Q
T
j - 1)fj - 1, qi)=0.

Consider the second term:

(A \=fj - 1, qi) = ( \=fj - 1,Aqi).

Observe that since ui \in \scrK i(A,f0), then qi = - Aui belongs to the Krylov subspace
\scrK i+1(A,f0), which is the same as Span\{ Ui+1\} according to Lemma 2.1. Thus, it can
be written as Aui =Ui+1y for some y, and hence Aqi = - AUi+1y=Qi+1y, i.e., Aqi is
in the span of q1, . . . , qi+1. Therefore, recalling that \=fj - 1 \bot Span\{ Qj - 1\} , we have

( \=fj - 1,Aqi) = 0 for i\leq j  - 2.

In the end, we obtain (fj , qi) = 0 for i\leq j  - 2.

Lemma 2.4 indicates that the computation of xj+1 in line 15 of Algorithm 2.1
only depends on the two most recent qi's and ui's. The next theorem will further
show that qj and uj in line 12 can be computed based on qj - 2, qj - 1, and uj - 2, uj - 1

instead of all previous qi's and ui's.

Theorem 2.5. When f(x) = b  - Ax, where A is a real nonsingular symmetric
matrix, the upper triangular matrix Sk is banded with bandwidth 3; i.e., we have
sij = 0 for i < j  - 2.

Proof. It is notationally more convenient to consider column j + 1 of Sk, where
k > j. Denote \Delta fj = fj+1  - fj , and \Delta xj = xj+1  - xj . Consider si,j+1 = (\Delta fj , qi) for
i\leq j, and note that si,j+1 = - (A\Delta xj , qi). We note that

\Delta xj = xj+1  - xj = \=xj + \beta j
\=fj  - xj = xj  - Uj\theta j + \beta j

\=fj  - xj = - Uj\theta j + \beta j
\=fj .

We write

A\Delta xj = - AUj\theta j + \beta jA \=fj =Qj\theta j + \beta jA \=fj

= - (fj  - Qj\theta j) + fj + \beta jA \=fj

= - \=fj + fj + \beta jA \=fj ,

and hence

(A\Delta xj , qi) = - ( \=fj , qi) + (fj , qi) + \beta j(A \=fj , qi).(2.13)

The first term on the right-hand side, ( \=fj , qi), vanishes since i \leq j. According to
Lemma 2.4, the inner product (fj , qi) is zero for i\leq j  - 2. The last term (A \=fj , qi) is
equal to zero when i\leq j - 1, as shown in the proof of Lemma 2.4. This completes the
proof, as it shows that si,j+1 = 0 for i < j  - 1.

Lemma 2.4 and Theorem 2.5 show that when AATGS(\infty ) is applied to solving
linear symmetric problems, only the two most recent qj - 2, qj - 1, and uj - 2, uj - 1 are
needed to compute the next iterate xj+1, which significantly reduces both memory
and orthogonalization costs. That is, AATGS(3) is equivalent to AATGS(\infty ) in the
linear symmetric case.

Corollary 2.6. When f(x) = b - Ax, where A is nonsingular and real symmet-
ric, AATGS(3) is equivalent to AATGS(\infty ).
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ANDERSON ACCELERATION WITH TRUNCATED GRAM--SCHMIDT 1859

Staying with the linear case, the next theorem examines the convergence rate of
AATGS(\infty ) when A is symmetric positive definite.

Theorem 2.7. Assume that A is symmetric positive definite and that a constant
\beta is used in AATGS. Then we have the following error bound for the residual rAATGS

j+1

obtained at the (j + 1)st step of AATGS(\infty ):

\| rAATGS
j+1 \| 2 \leq 2\| I  - \beta A\| 2

\Biggl( \sqrt{} 
\kappa (A) - 1\sqrt{} 
\kappa (A) + 1

\Biggr) j

\| r0\| 2,(2.14)

where \kappa (A) is the 2-norm condition number of A.

Proof. Based on Proposition 2.3, we have

\| rAATGS
j+1 \| 2 = \| (I  - \beta A)rGMRES

j \| 2,

where rGMRES
j denotes the residual associated with the jth iterate from GMRES.

Since A\in \BbbR n\times n is symmetric, it admits the following eigendecomposition:

A=U\Lambda U\top , U\top U = I, \Lambda = diag(\lambda 1, . . . , \lambda n),(2.15)

where 0 < \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n. It is known that the GMRES residual vector can be
expressed as

rGMRES
j = \rho (A)r0 =U\rho (\Lambda )U\top r0, \rho \in \scrP j ,(2.16)

where \scrP j is the affine space of polynomials p of degree j such that p(0) = 1 and

\| \rho (A)r0\| 2 = min
p\in \scrP j

\| p(A)r0\| 2 \leq min
p\in \scrP j

max
i

| p(\lambda i)| \| r0\| 2(2.17)

\leq min
p\in \scrP j

max
\lambda \in [\lambda 1,\lambda n]

| p(\lambda )| \| r0\| 2(2.18)

\leq \| r0\| 2
Tj

\Bigl( 
1 + 2 \lambda 1

\lambda n - \lambda 1

\Bigr) ,(2.19)

where Tj is the Chebyshev polynomial of the first kind of degree j. The last in-
equality follows from well-known results on the optimality properties of Chebyshev
polynomials; see, e.g., [26]. Also note that since

Tj(\lambda )\geq 
1

2

\Bigl( 
\lambda +

\sqrt{} 
\lambda 2  - 1

\Bigr) j
,

we have

Tj

\biggl( 
1 + 2

\lambda 1

\lambda n  - \lambda 1

\biggr) 
\geq 1

2

\Biggl( \sqrt{} 
\kappa (A) + 1\sqrt{} 
\kappa (A) - 1

\Biggr) j

.

Thus, we obtain

\| rAATGS
j+1 \| 2 = \| (I  - \beta A)rGMRES

j \| 2
= \| (I  - \beta A)\rho (A)r0\| 2
\leq \| (I  - \beta A)\| 2\| \rho (A)r0\| 2

\leq \| (I  - \beta A)\| 2
Tj(1 + 2 \lambda 1

\lambda n - \lambda 1
)
\| r0\| 2

\leq 2\| I  - \beta A\| 2

\Biggl( \sqrt{} 
\kappa (A) - 1\sqrt{} 
\kappa (A) + 1

\Biggr) j

\| r0\| 2.

This completes the proof.
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1860 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

The convergence results can be generalized to the case where the eigenvalues of
A are distributed in two intervals, excluding the origin. This result is omitted.

Another case of interest is when A is skew-symmetric. In this situation, when the
\beta j 's are constant, it can be seen that the AATGS algorithm yields x2 = x1 after the
first iteration, and, consequently, the process breaks at line 12 due to s22 being equal
to zero. To circumvent this problem, one could adjust \beta j at each iteration. Alter-
natively, reformulating the problem f(x) itself presents another viable strategy. An
example demonstrating this approach is provided in section 4.6 for solving minimax
optimization problems. Note that there is no issue in the interesting case when A is
of the form A= I+S, where S is skew-symmetric, for which it can be shown that we
do have a simplification similar to that of the symmetric case.

2.4. Limited-depth AATGS. We now explore the limited-depth version of
AATGS(m) for a fixed m. Recall the notation jm = max\{ 0, j  - m\} . At step j,
Algorithm 2.1 orthogonalizes the latest \Delta f vector against qjm+1, . . . , qj - 1 to produce
qj . We set Uj \equiv [ujm+1, ujm+2, . . . , uj - 1, uj ] and Qj \equiv [qjm+1, qjm+2, . . . , qj - 1, qj ] in
line 13. Note that Uj and Qj have min\{ j,m\} columns, which is the same number of
columns as the block \scrF j in Anderson acceleration. As it turns out, \=xj = xj  - Uj\theta j
satisfies a similar result to that of Theorem 2.2.

Proposition 2.8. The intermediate iterate \=xj = xj  - Uj\theta j obtained at the jth
step of AATGS(m) minimizes \| b - Ax\| 2 over all vectors x of the form x = xj  - \delta ,
where \delta \in Span\{ Uj\} .

Proof. We consider a generic vector x= xj  - \delta , where \delta \in span\{ Uj\} , which we
write as \delta =Ujy. Then (2.6) in the proof of Theorem 2.2 still holds; i.e., we can write
r\equiv b - Ax= fj - Qjy. It is known that the residual norm is minimal iff r\bot Span\{ Qj\} ,
i.e., iff fj  - Qjy\bot Span\{ Qj\} , which is precisely the condition imposed to get \theta j . This
means that \=xj minimizes \| b - Ax\| 2 over all vectors x of the form x = xj  - \delta , where
\delta \in Span\{ Uj\} .

Note that this result is a little weaker than that of Theorem 2.2, which allowed the
affine spaces on which the residual norm is minimized to be of the form xk+Span\{ Uj\} 
for any k between 0 and j. Similar to the full-depth case, we may now ask whether
the vector \=xj corresponds to the result of some other classical algorithms for linear
systems. One may think that there should exist an equivalence with a similar method
such as Truncated GCR (TGCR also known as ORTHOMIN; see, e.g., [26]) or one
of the other Krylov methods that relies on truncation in the orthogonalization, e.g.,
ORTHODIR, or DQGMRES [26]. While this is possible, we did not find an obvious
result that showed such an equivalence.

3. Restarting AATGS. Lines 6--12 of Algorithm 2.1 carry out an orthonor-
malization of the vector qj versus qjm+1, . . . , qj - 1 and imposes the same operations
undergone by the sequence \{ qi\} to the sequence \{ ui\} . While the columns of Qj are
orthonormal, those of Uj are not, and they are prone to numerical instability. There-
fore, it is essential to check for the onset of instability, especially when the problem
is neither linear nor positive definite. To take advantage of the short-term recurrence
while also preserving accuracy, we introduce a lightweight strategy to determine when
a restart is deemed necessary.

Using the same notation as in Algorithm 2.1, the propagation of Uj can be ex-
pressed in the following matrix form:
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\left[     
uT
jm+2
...

uT
j - 1

uT
j

\right]     =

\left[      
0 1
...

. . .

0 1

 - sjm+1,j

sjj
 - sjm+2,j

sjj
\cdot \cdot \cdot  - sj - 1,j

sjj

\right]      
\left[     
uT
jm+1
...

uT
j - 2

uT
j - 1

\right]     +
1

sjj

\left[     
0
...
0

\Delta xT

\right]     ,(3.1)

where \Delta x := xj  - xj - 1. Note that the above system need not be formed explicitly.
We point out that (3.1) is applied elementwise to the columns of Uj . This means that
the kth component of uj can be derived by applying the operations in (3.1) to the
kth element of \Delta x and the kth row of Uj ; i.e., if v

(k) refers to the kth component of
a vector v, we have

u
(k)
j =

1

sjj
\Delta x(k)  - 

j - 1\sum 
i=jm+1

sij
sjj

u
(k)
i .(3.2)

We now analyze how the accumulation of the errors from the computation of previous
ui's affects the accuracy of the most recent uj . For this, we denote the computed
version of ui as \~ui = ui + \varepsilon i, where \varepsilon i \in \BbbR n represents the error introduced during
the computation of ui. We also denote the rounding errors introduced during the
computation of uj at step j  - 1 by \delta j , and we assume that

\| \delta j\| \infty \leq C \cdot \| \Delta x\| \infty /sjj ,(3.3)

where C is a constant.
Then the perturbed version of (3.2) becomes

\~u
(k)
j =

1

sjj
\Delta x(k)  - 

j - 1\sum 
i=jm+1

sij
sjj

\~u
(k)
i + \delta 

(k)
j .(3.4)

We then substitute \~uj = uj + \varepsilon j and \~ui = ui + \varepsilon i into (3.4) and subtract (3.2). This
leads to

\varepsilon 
(k)
j = - 

j - 1\sum 
i=jm+1

sij
sjj

\varepsilon 
(k)
i + \delta 

(k)
j .(3.5)

Therefore,

| \varepsilon (k)j | \leq 
j - 1\sum 

i=jm+1

| sij | 
sjj

| \varepsilon (k)i | + | \delta (k)j | 

\leq 
j - 1\sum 

i=jm+1

| sij | 
sjj

\| \varepsilon i\| \infty +
C

sjj
\| \Delta x\| \infty .(3.6)

This leads us to define the following scalar sequence wj to monitor the behavior of
the bound (3.6):

wj :=

j - 1\sum 
i=jm+1

| sij | 
sjj

wi +
C

sjj
\| \Delta x\| \infty .(3.7)

The sequence wj is just an upper bound for the infinity norm of the error vector \varepsilon j ,
and it can be used to monitor the growth of the rounding errors. When wj exceeds

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

8/
25

 to
 1

70
.1

40
.1

42
.2

52
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



1862 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

Algorithm 3.1. AATGS(m) with restarting.

1: Input: Function f(x), initial guess x0, window size m, threshold \eta , constant C.
2: Set f0 \equiv f(x0), x1 = x0 + \beta 0f0, f1 \equiv f(x1), w0 \equiv 0, jm = 0
3: for j = 1,2, . . . , until convergence do
4: Update jm :=max\{ jm, j  - m\} 
5: Run lines 4--16 of Algorithm 2.1

6: wj :=C \cdot \| \Delta x\| \infty /sjj +
\sum j - 1

i=jm+1(| sij | /sjj)wi

7: if wj > \eta then
8: Set jm \equiv j and Qj \equiv [ ], Uj \equiv [ ]
9: end if
10: end for

a threshold \eta > 0, we should discard all vectors in Uj and Qj and set jm \equiv j. The
next iteration then computes \Delta x and \Delta f in lines 4--5 of Algorithm 2.1 using the
latest pairs xj+1, xj along with related fj+1, fj and set wj+1 = C \cdot \| \Delta x\| \infty /sj+1,j+1

to restart monitoring the growth of the rounding errors. The auto-restart version of
Algorithm 2.1 is briefly summarized in Algorithm 3.1. In the experiments section, we
set C = 1, unless otherwise specified.

Here are some details and comments on Algorithm 3.1:
\bullet Line 2: Same as the initialization step in Algorithm 2.1. In the implemen-

tation, we can allocate a vector of length m to store wj 's.
\bullet Line 6: Note that when j  - 1< jm, i.e., in the first step after a restart, the

sum in the expression is empty and therefore equal to zero. In this case, both
Qj and Uj are empty. In this situation, wj := C\| \Delta x\| \infty /sjj , reflecting the
fact that there are no errors propagating from earlier steps.

\bullet Lines 7--9: When wj surpasses the given threshold \eta , a restart is necessary
because the stability is compromised. For a restart, we set jm \equiv j and discard
all stored vectors in Qj and Uj . We only retain the last two iterates, xj and
xj+1, as well as fj and fj+1, to continue the process when we compute \Delta x
and \Delta f in the next iteration. Algorithm 3.1 will generate mathematically
the same iterates as Algorithm 2.1 if this condition is not met.

4. Experiments. This section presents a few experiments on nonlinear problems
to compare AATGS with the standard AA. We also include the results of the fixed
point iteration in our experiments. Since it is common practice to add a fixed restart
for AA (i.e., clearing \scrX j and \scrF j every fixed number of iterations), we incorporate a
fixed restart for both AATGS (in addition to the auto-restart strategy discussed in
section 3) and AA. For AA, to restart after obtaining xj+1, we discard all vectors in
\scrX j and \scrF j . The next iteration then begins by computing \Delta xj and \Delta fj using xj+1 and
xj along with related fj+1 and fj . In the figures in this section, we use the notation
AATGS[m,d] and AA[m,d] to represent AATGS and AA with window size m and
fixed restart dimension d. When d is replaced with a `` - "", fixed restart is disabled.
Unless otherwise noted, we set the threshold parameter \eta in Algorithm 3.1 to 103.
Note that standard AA performance is highly dependent on window size m and fixed
restart dimension d. While we present results for only a few AA parameters, we
employ a grid search to select the best-performing AA configurations. In our tests,
the max number of iterations and stopping tolerance for the relative norm of f(x)
varies based on problem size, convergence rate, and the initial norm of f(x).
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Our results demonstrate that AATGS achieves performance comparable to the
standard AA method with equivalent window sizes when applied to highly nonsym-
metric and nonlinear problems. Furthermore, because of the short-term recurrence
incorporated in AATGS, it outperforms AA on problems that are close to symmetric
linear, even with a much smaller window size. These experiments illustrate the prop-
erties of AATGS shown in the previous sections. We also demonstrate the effectiveness
of the restarting strategy. Although it is possible to carefully tune the parameters and
generate competitive results using standard AA, the proposed auto-restart AATGS
has the advantage of not requiring the selection of the restart dimension.

All of the methods were implemented in MATLAB 2023a. We implemented AA
by solving the least-squares problem shown in (1.5) using the pseudoinverse with the
pinv function of MATLAB. All experiments were conducted on the Agate cluster at
the Minnesota Supercomputing Institute. The computing node features 64 GB of
memory and is equipped with two sockets, each having a 2.45 GHz AMD EPYC 7763
64-Core Processor.

4.1. Bratu problem. In our first experiment, we solve a problem with a low
degree of nonlinearity to demonstrate the benefits of the short-term recurrence in
AATGS. We consider a finite difference discretization of the following modified Bratu
problem [11] with the following Dirichlet boundary condition:

\Delta u+ \alpha ux + \lambda eu = 0 in \Omega ,

u= 0 on \partial \Omega ,(4.1)

where \Omega = [0,1]2. We use centered finite differences [3, 9, 34] to discretize the equation
on a 202\times 202 grid (including boundary points). For our boundary value problem, this
discretization results in a system of nonlinear equations with n= 200\times 200 = 40,000
unknowns of the form

f(v) =Av+ h \cdot \alpha Bv+ h2 \cdot \lambda exp(v) = 0,(4.2)

where v \in \BbbR n is the numerical solution at n interior grid points, h= 1/201 is the mesh
size, A \in \BbbR n\times n is a symmetric matrix, and B \in \BbbR n\times n is a skew-symmetric matrix.
The fixed point iteration takes the form

g(v) = v+ \beta f(v) = v+ \beta (Av+ h \cdot \alpha Bv+ h2 \cdot \lambda exp(v)).(4.3)

The parameter \lambda in the equation influences the change rate in the Jacobian of the
problem. Denoting by J(v) the Jacobian at v, we have

\| J(vj+1) - J(vj)\| \mathrm{m}\mathrm{a}\mathrm{x} \leq h2 \cdot \lambda \| exp(vj+1) - exp(vj)\| \infty ,(4.4)

where \| \cdot \| \mathrm{m}\mathrm{a}\mathrm{x} is the matrix max norm. This indicates that a larger \lambda can potentially
increase the nonlinearity of the problem. We take \lambda = 1 in all of our experiments so
that the equation is physically meaningful. In this case, the Jacobian's variation is
limited, resulting in an almost linear problem. The parameter \alpha controls the degree
of symmetry of the problem. We test both symmetric (\alpha = 0) and nonsymmetric
(\alpha \not = 0) cases.

In all our experiments on the Bratu problem, we use the zero vector as the initial
solution and set the parameter \beta = 1.0 for both AATGS and AA. For comparison, we
also include the results of fixed point iteration with \beta = 0.1.

We begin our experiments with the symmetric case where \alpha = 0. To highlight the
benefits of AATGS's short-term recurrence, we compare AATGS(3) with AA(20) and
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Fig. 2. Bratu problem with initial solution x0 = 0 and \lambda = 1. (left) AATGS and AA with no
restart for symmetric Jacobian with \alpha = 0; (middle) AATGS with no restart, a fixed restart, and
auto-restart for the nonsymmetric Jacobian case. (right) AATGS with auto-restart and AA with a
fixed restart for nonsymmetric Jacobian with \alpha = 20. x-axis is the iteration number, and y-axis is
the residual norm \| f(v)\| 2. Here [\cdot , \cdot ] indicates the window size and the restart dimension of each
method.

AA(100) and disable the restart for both AATGS and AA. The left panel of Figure 2
plots the iteration number versus the residual norm \| f(v)\| 2. We can observe from the
figure that AATGS performs better than AA in this experiment, even with a much
smaller window size. This is because when \lambda = 1, the problem is close to a symmetric
linear problem. In this case, AATGS(3) behaves similarly to AATGS(\infty ), which is
equivalent to AA(\infty ). This explains its superior performance compared to AA(20)
and AA(100), demonstrating the potential advantage of AATGS over AA in handling
nearly linear and symmetric problems.

Next, we set \alpha to 20 and solve a nonsymmetric problem, noting that it remains
nearly linear. We first study the performance of AATGS with different restart strate-
gies: no restart, fixed restart with dimension 50, and auto-restart with \eta = 103. Since
the problem is no longer symmetric, we slightly increase the window size to m= 5. We
can observe from the middle panel of Figure 2 that the AATGS(5) without restart un-
derperforms the other two options. The two restart versions have similar performance,
and the auto-restart is slightly better in this experiment. This shows the importance
of restart strategies. As restart strategies can be very useful, in the following tests,
we enable restart strategy for both AATGS and AA.

Finally, we compare the performance of AATGS and AA for the same nonsym-
metric problem with \alpha = 20. We compare AATGS(5) with auto-restart (\eta = 103)
against AA(5) and AA(20), both with a fixed restart dimension of 50. The results,
shown in the right panel of Figure 2, demonstrate that AATGS(5) outperforms AA(5)
and even shows results slightly better than AA(20). This indicates that AATGS con-
structs a more effective subspace than standard AA, even when the Jacobian is not
symmetric.

4.2. Chandrasekhar's H-equation. Next, we evaluate our method for Chan-
drasekhar's H-equation [14]. A form of the equation can be written as

H(\mu ) - 
\biggl( 
1 - \omega 

2

\int 1

0

\mu H(\nu )

\mu + \nu 
d\nu 

\biggr)  - 1

= 0,(4.5)

where \omega \in [0,1] is a parameter, and we seek a solution H \in C[0,1]. We discretize (4.5)
on a uniform grid and obtain the following discretized problem [14]:

[f(h)]i := hi  - 

\left(  1 - \omega 

2n

n\sum 
j=1

\mu ihj

\mu i + \mu j

\right)   - 1

,(4.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

8/
25

 to
 1

70
.1

40
.1

42
.2

52
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



ANDERSON ACCELERATION WITH TRUNCATED GRAM--SCHMIDT 1865

0 5 10 15 20 25 30

Iteration

10
-15

10
-10

10
-5

10
0

C
o
s
t

fixed point

AA [5,20]

AA [20,20]

AATGS [5, - ]

AATGS [20, - ]

0 5 10 15 20 25 30

Iteration

10
-15

10
-10

10
-5

10
0

C
o
s
t

fixed point

AA [5,20]

AA [20,20]

AATGS [5, - ]

AATGS [20, - ]

Fig. 3. Chandrasekhar's H-equation with dimension n = 1,000. (left) The simpler case with
\omega = 0.99; (right) The harder case with \omega = 1.0. x-axis is the iteration number, and y-axis is
the residual norm \| f(h)\| 2. Here [\cdot , \cdot ] indicates the window size and the restart dimension of each
method.

where h \in \BbbR n is the numerical solution at n grid points, \mu i =
i - 0.5

n for 1\leq i\leq n, and
the componentwise expression of the corresponding fixed-point iteration h = g(h) is
given by

[g(h)]i = hi + \beta [f(h)]i = hi + \beta 

\left[   hi  - 

\left(  1 - \omega 

2n

n\sum 
j=1

\mu ihj

\mu i + \mu j

\right)   - 1
\right]   .(4.7)

It is known that the Jacobian in this problem is nonsymmetric [15], as indicated by
its expression:

[J(h)]ik = \delta ik  - 
\omega 

2n
\cdot \mu i

\mu i + \mu k
\cdot 

\left(  1 - \omega 

2n

n\sum 
j=1

\mu ihj

\mu i + \mu j

\right)   - 2

,(4.8)

where \delta ik = 1 if i = k and 0 otherwise. The choice of \omega can have an impact on the
convergence of solution algorithms [33]. In our experiments, we set n = 1,000 and
consider cases with \omega = 0.99 and \omega = 1.0, both of which require careful timing for
restarts in AA and AATGS.

In this group of experiments, we use the vector of all ones as the initial solution
and again set the parameter \beta = 1.0 for both AATGS and AA. Since the problem size
is much smaller, we apply a smaller fixed restart dimension of 20 for AA. We compare
AATGS and AA with window sizes m = 5 and m = 20 and again include results for
fixed-point iteration with \beta = 0.1. In this problem, a larger m does not necessarily
yield faster convergence, as it is observed from Figure 3 that AA(5) consistently
outperforms AA(20). Furthermore, we can see that AA(20) stagnates before a restart
is triggered at step 20, which demonstrates the usefulness of the restarting procedure
in this problem. With auto-restart, AATGS makes a stable selection of the window
size, as shown by the identical performance of AATGS(5) and AATGS(20) in both
figures.

It is worth noting that a larger \omega leads to a more challenging problem. When
\omega = 0.5, the trajectories of AA(5), AA(20), AATGS(5), and AATGS(20) all overlap.
However, when \omega increases to 0.99, AA(20) fails to catch up with the other methods.
When \omega = 1.0, AATGS outperforms AA. This enhanced robustness of AATGS in
dealing with numerical stability issues in the sequence of xj 's can also be attributed
to the auto-restart strategy.
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4.3. Lennard-Jones problem. Next, we evaluate the performance of AATGS
when solving the unconstrained minimization problem of the form

min
x

\phi (x).(4.9)

We define f(x) = - \nabla \phi (x) and write the fixed-point iteration in the gradient descent
form

g(x) = x+ \beta f(x) = x+ \beta ( - \nabla \phi (x)).(4.10)

Specifically, we optimize the geometry of molecules to achieve a minimum total
Lennard-Jones (LJ) potential energy. The LJ potential is defined as follows:1

E(Y ) =

N\sum 
i=1

i - 1\sum 
j=1

4\epsilon 

\Biggl[ \biggl( 
\delta 

\| Yi,:  - Yj,:\| 

\biggr) 12

 - 
\biggl( 

\delta 

\| Yi,:  - Yj,:\| 

\biggr) 6
\Biggr] 
.(4.11)

In this formulation, N is the number of atoms, \epsilon represents the well depth, \delta is
the distance between two nonbonding particles, and Y \in \BbbR N\times 3 with its ith row Yi,:

representing the coordinates of atom i. We reformulate the problem by reshaping Y
into x \in \BbbR 3N , where [x3i - 2, x3i - 1, x3i] = Yi,:, and defining the loss function \phi (x) =
E(Y ). In our experiments, we set both \epsilon and \delta to 1 and simulate an Argon cluster
starting from a perturbed initial Face-Centered-Cubic (FCC) structure [18]. We took
three cells per direction, resulting in 27 unit cells. Given that each FCC cell includes
four atoms, there are N = 108 atoms in total. The challenge in this problem arises
from the high exponents in the potential.

Figure 4(left) shows an illustration of the geometry optimization in this problem,
where the initial positions of the atoms are shown as blue dots, and the red triangles
indicate the optimized final positions, which represent a local minimum around the
initial positions rather than a global optimum. We take \beta = 1.5\times 10 - 4 in our exper-
iments for both AATGS and AA. Given that this is an unconstrained optimization
problem, the Jacobian of \nabla \phi (x) is also the Hessian of \phi (x), which is always sym-
metric. Therefore, we set the window size of AATGS to m = 3. In Figure 4(right),

0 50 100 150 200
Iteration

10-10

10-5

100

E
j -

 E
m

in

fixed point
AA [3,100]
AA [3,10]
AA [20,100]
AATGS [3, - ]

Fig. 4. The Lennard-Jones problem. (left) The geometry of particles at the initial state and the
final state; (right) The results of various methods in this experiment. x-axis is the iteration number,
and y-axis is the shifted energy Ej  - E\mathrm{m}\mathrm{i}\mathrm{n}. Note that E\mathrm{m}\mathrm{i}\mathrm{n} is the minimum energy achieved by all
considered methods so that the shifted energy is always positive. [\cdot , \cdot ] indicates the window size and
the restart dimension of each method.

1We benefited from Stefan Goedecker's course site at Basel University.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

8/
25

 to
 1

70
.1

40
.1

42
.2

52
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



ANDERSON ACCELERATION WITH TRUNCATED GRAM--SCHMIDT 1867

we compare AATGS against standard AA in three configurations. We can see that
AATGS with a window size of m = 3 and an auto-restart mechanism outperforms
others. AA with m = 20 and a restart dimension of 100 performs similarly to AA
with m= 3 and restart 10, and both surpass AA with m= 3 and a restart dimension
of 100. It again demonstrates the usefulness of the auto-restart strategy in AATGS
for a nontrivial optimization problem.

4.4. Steady Navier--Stokes equations. In our next experiment, we aim to
solve a 2D lid-driven cavity problem described by the following steady Navier--Stokes
equations (NSEs):

u \cdot \nabla u+\nabla p - Re - 1\Delta u= f,

\nabla \cdot u= 0,
(4.12)

with the domain \Omega = (0,1)2 and the Dirichlet boundary condition (u,p) = (0,0) on
the sides and bottom and (1,0) on the lid. Following the settings in [20], we set the
Reynolds number Re= 10,000 and use an initial guess of all zeros.2 The discretization
results in a problem of size 190,643. Readers can refer to [20] for details of the mesh.
The fixed-point iteration used by both AATGS and AA takes the form

g(v) = v+ \beta f(v) = v+ \beta (h(v) - v),(4.13)

where v is the discretization of (u,p) on grid points, and h(v) performs one step of
Picard iteration which maps v to some specific approximate solution. Details on h(v)
can be found in [21].

The results in Figure 5 compare Picard iterations, AA with window sizes m= 5
and m = 10, and AATGS with a window size of m = 5. A restart is not necessary
in this experiment since we can observe that both AA and AATGS converge without
stagnation. We also observe that Picard iteration fails to converge, which is likely due
to the extremely large Reynolds number. Both AATGS and AA manage to converge
at a similar rate. Given the nonsymmetric and nonlinear nature of this problem,
we cannot expect significant gains from AATGS over AA in this case. Indeed, the
methods behave similarly.
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Iteration
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100
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t

Picard
AA [5, - ]
AA [10, - ]
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Fig. 5. 2D Steady NSEs with the Reynolds number Re= 10,000. (left) The streamlines of the
solution given by AATGS at step 50; (right) The results of various methods in this experiment.
x-axis is the iteration number, and y-axis is the residual norm of \| Picard(v) - v\| 2. [\cdot , \cdot ] indicates
the window size and the restart dimension of each method.

2We would like to thank Sara Pollack and Leo G. Rebholz for sharing their 2D steady Navier--
Stokes equation codes with us.
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4.5. Regularized logistic regression. Regularized logistic regression is a pow-
erful tool for binary classification tasks, particularly when dealing with datasets that
have a large number of features. In this experiment, we investigate the application
of regularized logistic regression to the Madelon dataset.3 The training set consists of
N = 2,000 samples and n= 500 features. The objective can be formulated as follows:

min
\theta 

1

N

N\sum 
i=1

log(1 + exp( - yi \cdot x\top 
i \theta )) +

\lambda 

2
\| \theta \| 22,(4.14)

where xi represents the feature vector of the ith sample (each feature is normalized to
have a mean of 0 and a standard deviation of 1 across all samples), yi represents the
label of the ith sample (either --1 or 1 for binary classification), \theta \in \BbbR n is the parameter
vector to be optimized, and \lambda is the regularization parameter that controls the balance
between fitting the training data well and preventing overfitting by penalizing large
parameter values.

Figure 6 illustrates the shifted training loss as a function of the iteration number,
with the fixed-point iteration parameter \beta = 1.0 and the regularization parameter
\lambda = 0.01. In this comparison, we focus on AATGS with a consistent fixed window
size m = 3 and varying auto-restart threshold \eta ranging from 101 to \infty . The re-
sults demonstrate the efficacy and simplicity of parameter tuning for our auto-restart
mechanism, as the training losses for \eta = 102 to 106 are closely matched. The perfor-
mance deteriorates only when \eta = 101, resulting in excessive, redundant restarts, and
when \eta = \infty leads to the absence of restarts. Through our testing across numerous
scenarios, the default setting of \eta = 103 often delivers a sufficiently accurate solution.

In Table 2, we present the number of iterations (up to 1000) required for AATGS
to achieve a relative loss smaller than 10 - 12. The regularization parameter \lambda varies
from 100 to 10 - 5, making the optimization problems from relatively simple to sig-
nificantly difficult to solve. It is important to note that our goal in these compar-
isons is not to achieve the highest accuracy but rather to elucidate the characteristics
of AATGS. With a window size of m = 3, it is observed that as the problem be-
comes more challenging (with smaller \lambda ), the number of required iterations generally
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Fig. 6. The results of various \eta 's for the regularized logistic regression on the Madelon dataset.
x-axis is the iteration number, and y-axis is the shifted training loss cj  - c\mathrm{m}\mathrm{i}\mathrm{n}. Note that c\mathrm{m}\mathrm{i}\mathrm{n} is the
minimum training loss achieved by all considered methods so that the shifted loss is always positive.
[\cdot , \cdot ] indicates the window size and the restart dimension of each method.

3https://archive.ics.uci.edu/dataset/171/madelon
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Table 2
A comparison of AATGS with a fixed window size m= 3 across various auto-restart thresholds

\eta (columns) and regularization parameters \lambda (rows) is presented. This table displays the num-
ber of iterations required for AATGS to achieve a relative loss smaller than 10 - 12. The notation
``F""indicates cases where the method fails to converge within 1000 iterations.

Number of Iterations

\lambda \eta = 101 \eta = 102 \eta = 103 \eta = 104 \eta = 105 \eta =\infty 
100 21 20 22 22 22 22

10 - 1 52 50 48 51 51 56

10 - 2 200 113 105 117 113 167
10 - 3 F F 188 173 201 418

10 - 4 F 473 251 209 228 F

10 - 5 F F 254 228 251 F

increases. However, AATGS with \eta = 102 to 105 exhibits similar performance for
\lambda >= 10 - 2. Only extremely high or low \eta 's tend to be significantly slower than other
values and fail to converge within 1000 iterations. This further confirms that \eta offers
a broad selection range.

4.6. Minimax optimization. Bilinear games are often regarded as an impor-
tant example of understanding new algorithms and techniques for solving general
minimax problems [10, 13]. In this experiment, we study the following zero-sum
bilinear games:

min
x\in \BbbR n

max
y\in \BbbR n

\phi (x, y) = xTAy+ bTx+ cT y,(4.15)

where A is a full-rank matrix. The Nash equilibrium to the above problem is given by
(x\ast , y\ast ) = ( - A - T c, - A - 1b). We use the alternating gradient descent ascent (GDA)
algorithm to solve the problem into the following form:\biggl[ 

xj+1

yj+1

\biggr] 
=

\biggl[ 
xj

yj

\biggr] 
+ \beta \cdot 

\biggl[ 
 - \nabla x\phi (xj , yj)
\nabla y\phi (xj+1, yj)

\biggr] 
=

\biggl[ 
I  - \beta A

\beta AT I  - \beta 2ATA

\biggr] \bigl[ 
xjyj

\bigr] 
 - \beta 

\biggl[ 
b

\beta AT b - c

\biggr] 
,

(4.16)

where the solution of the above fixed-point iteration is the root of the following non-
linear equation f :

f

\biggl( \biggl[ 
x
y

\biggr] \biggr) 
:=

\biggl[ 
0  - A
AT  - \beta ATA

\biggr] \biggl[ 
x
y

\biggr] 
 - 
\biggl[ 

b
\beta AT b - c

\biggr] 
.(4.17)

The coefficients of the initial problem, A \in \BbbR 100\times 100, b \in \BbbR 100, and c \in \BbbR 100, are
generated using random numbers following the distribution \scrN (0,1). Subsequently,
A undergoes normalization to ensure its 2-norm equals 1. The initial guess is also
generated using random numbers following the distribution \scrN (0,1). The cost of
this problem is defined as the relative distance to the optimal solution, i.e., cj :=
\| (xj , yj) - (x\ast , y\ast )\| 2/\| (x\ast , y\ast )\| 2, where (xj , yj) is the iteration at step j.

Note that (4.16) is referred to as the alternating GDA, since we update xj+1 and
yj+1 in an alternating manner. For the simultaneous GDA, we update xj+1 and yj+1

simultaneously. However, this leads to a skew-symmetric linear system to solve (e.g.,
consider \beta = 0 in (4.17)) which has numerical issues, as mentioned at the end of
section 2.3. Furthermore, the difference in spectra is shown in Figure 7(left), where
the eigenvalues of the coefficient matrix in simultaneous GDA are purely imaginary,
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Fig. 7. Minimax optimization on a bilinear game. (left) Spectrum of the linear systems corre-
sponding to the simultaneous GDA and alternating GDA. x-axis is the real part, and y-axis is the
imaginary part. Blue crosses represent the eigenvalues of the simultaneous GDA. Red plus signs
represent the eigenvalues of the alternating GDA; (right) The results of various methods in this ex-
periment. x-axis is the iteration number, and y-axis is the relative Euclidean distance to the optimal
solution. [\cdot , \cdot ] indicates the window size and the restart dimension of each method.

while those of the alternating GDA have small real parts. Therefore, we consider the
alternating GDA in this experiment.

In Figure 7(right), we compare AATGS with standard AA under different settings.
Since the coefficient matrix defined in function f in (4.17) is skew-symmetric plus a
symmetric perturbation, we expect a similar short-term recurrence in AATGS, and
therefore we set the window size to m = 3. In addition, we employ the auto-restart
mechanism instead of a fixed restart. For the baseline methods, we consider AA with
window sizes m = 10 and m = 20, along with a fixed restart dimension of 20. Note
that we use a smaller restart dimension because both AA options fail to converge
if we use a restart dimension of 50. Moreover, we set the fixed-point parameter to
\beta = 10 - 4 to ensure that all methods do not diverge in most cases. We observe that
after 2000 iterations, AATGS manages to converge with a relative distance of around
0.0044, while the AAs still have relative distances of 0.69 and 0.84 from the optimal
solution. This experiment illustrates the appealing behavior of AATGS in solving
linear problems that are nearly skew-symmetric.

5. Conclusion. This paper introduced what may be termed a ``symmetric ver-
sion"" of Anderson acceleration. When the fixed-point iteration handled by Anderson
acceleration is a linear iteration, then AA does not take advantage of symmetry in
the case when the iteration matrix is also symmetric. The Truncated Gram--Schmidt
variant of AA (AATGS) introduced in this paper addresses this issue. AATGS is
mathematically equivalent to AA when the depth of both algorithms is m=\infty . How-
ever, when the problem is linear and symmetric, AATGS(\infty ) simplifies, in that only
a few vectors must be saved instead of all of the previous directions generated, in
order to produce the same iterates as AA(\infty ). This can lead to substantial savings in
memory and computational requirements for large problems. From a practical point
of view, the original AATGS algorithm without any modification can suffer from nu-
merical stability issues. A careful restarting strategy was developed to restart when
deemed necessary by a simple short-term scalar recurrence designed to mimic the be-
havior of the numerical errors. Equipped with this artifice, the algorithm showed good
robustness, often outperforming the original AA at a lower cost. This was confirmed
by a few numerical experiments, with applications ranging from nonlinear partial dif-
ferential equations to challenging optimization problems. The numerical experiments
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showed that for problems whose Jacobien is nearly symmetric and for optimization
problems (Hessian is symmetric), AATGS can be vastly superior to AA, and this is
expected from theory.

In the future, we plan to explore the applicability and efficacy of AATGS when
applied to stochastic optimization problems. We will also study the exploitation of
information on the Jacobian during the iteration to improve both robustness and
efficiency, as done in [12].
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