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Comparing parameter-reduction methods on a biophysical model of an auditory hair cell
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Biophysical models describing complex cellular phenomena typically include systems of nonlinear differen-
tial equations with many free parameters. While experimental measurements can fix some parameters, those
describing internal cellular processes frequently remain inaccessible. Hence, a proliferation of free parameters
risks overfitting the data, limiting the model’s predictive power. In this study, we develop systematic methods,
applying statistical analysis and dynamical-systems theory, to reduce parameter count in a biophysical model.
We demonstrate our techniques on a five-variable computational model designed to describe active, mechanical
motility of auditory hair cells. Specifically, we use two statistical measures, the total-effect and PAWN indices,
to rank each free parameter by its influence on selected, core properties of the model. With the resulting ranking,
we fix most of the less influential parameters, yielding a five-parameter model with refined predictive power. We
validate the theoretical model with experimental recordings of active hair-bundle motility, specifically by using
Akaike and Bayesian information criteria after obtaining maximum-likelihood fits. As a result, we determine the
system’s most influential parameters, which illuminate the key biophysical elements of the cell’s overall features.
Even though we demonstrate with a concrete example, our techniques provide a general framework, applicable

to other biophysical systems.
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I. INTRODUCTION

The auditory system provides humans and other animals
with crucial information about the external world. Auditory
cues enable communication with conspecifics, detection of
prey, avoidance of predators, and they enhance an animal’s
spatial awareness. Hearing research has accrued extensive
progress over the past decades, with many of its biophysical
mechanisms, molecular components, and cellular processes
now fairly well established [1-3]. A number of phenomena,
nonetheless, still remain elusive and as subjects of ongoing
research.

Specifically, the remarkable sensitivity of hearing is not
yet fully explained. This sensitivity is controlled by hair
cells—sensory cells that transduce mechanical deflections
from incoming sound waves into electrical signals. These
signals subsequently propagate down innervating neurons. In
the presence of comparable (or stronger) levels of ambient
noise, these neurons detect subnanometer movements of hair
cells.

Models have been developed to describe hair-cell dy-
namics. They consist of varying numbers of parameters and
varying numbers of variables. They have reproduced all of
the main experimental findings [4—7]. However, with each re-
finement, they introduced additional differential equations to
describe internal cellular mechanisms. The models, hence,
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suffer from a proliferation of parameters. While measure-
ments can constrain or approximate some of these parameters,
many are experimentally inaccessible and must, justly, be
treated as free parameters. At best, we can assert a range over
which they reside.

In the current work, we apply some standard as well as
recent techniques from the field of dynamical systems model-
ing, to assess and rank the importance of various parameters
on hair-cell dynamics. We use these techniques to reduce the
space of free parameters [8—11], while ensuring that the model
adequately reproduces experimental measurements. We de-
velop and test this reduced model by comparing it to empirical
data. While we demonstrate these methods on a concrete
example, we emphasize that our techniques generalize readily
to other biological systems.

Parameter reduction produces many desirable outcomes.
Firstly, by simplifying a model, we diminish its computational
demands during simulation. Secondly, by using well-tuned
techniques to fix a subset of the parameters, we both alleviate
the risk of overfitting and limit the occurrence of underfitting
[12]. Finally, by reducing the parameter count, we illuminate
the biophysical processes that constitute cellular dynamics.
For each model parameter, there exists a corresponding mech-
anism (e.g., binding or dissociation of an ion, motion of
a molecular motor, unfolding of a protein). Hence, by de-
termining which parameters most strongly influence overall
dynamics, we illuminate which internal processes shape the
cellular response.

Others have executed similar methods to simplify nu-
merical models, particularly in biological research, where
parameter-abundant systems often arise. For example, a model
for the JAK/STAT (i.e., Janus kinase/signal transducer and
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activator of transcription) signal pathway was reduced from
about 60 parameters down to 33 influential ones [13], and
a model for voltage fluctuations across the AMPA (i.e.,
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) re-
ceptor was reduced from 24 to seven parameters [14]. These
examples comprise only a small portion of the models bene-
fiting from this methodology.

Specifically within auditory research, other approaches
have yielded reduced hair-cell models. One example includes
the normal form equation of the Hopf bifurcation, a simple
nonlinear differential equation that explains the compressive
nonlinearity, active amplification, and frequency selectivity of
the cell response [15,16]. As another example, an empirical
study unfolded the attractor characterizing innate, hair-bundle
oscillations, concluding that roughly three to six degrees of
freedom describe the measured oscillator sufficiently [17].
However, while these general mathematical frameworks pro-
vide insight into the global features of the auditory system,
they do not illuminate the specific biophysical mechanisms
underlying the signal detection. For direct comparison to
experimental data, desirable models reflect specific internal
processes.

In this paper, we construct a reduced, biophysically
motivated model for hair-bundle motion. We start with a
comprehensive theoretical model of hair-cell dynamics, gar-
nered from prior literature, to describe the hair cell’s internal
processes. Next, we simplify it algebraically to produce a
nondimensional version of the full biophysical model. We
select several key features of the simulation and rank the
full set of parameters by their influence on these. Because
this ranking provides a quantitative assessment of relative
influence, justified by well-studied statistical analyses, we fix
the less influential ones. Finally, we compare the resulting
reduced model to experimental measurements, demonstrating
the effectiveness of this technique.

II. METHODS

A. Materials and experimental techniques

As our biological model system, we used the North Ameri-
can bullfrog (Rana catesbeiana). The amphibian sacculus, i.e.,
an end organ specializing in vestibular and low-frequency au-
ditory detection, has been used extensively for experiments on
hair-bundle mechanics, as it provides a robust, optically acces-
sible preparation [18,19]. We imaged hair cells from dissected
sacculi ex vivo, in semi-intact preparations that maintained
their physiological integrity. We then used optical imaging to
track the motion of the hair bundle, i.e., an organelle com-
prised of 30-50 stereocilia protruding from the apical surface
of each cell [20]. These measurements yielded traces of active,
hair-bundle oscillations, allowing direct comparison to the
numerical simulations.

1. Biological preparation

Frogs of either gender were anesthetized (pentobarbi-
tal: 150 mlkg™"), pithed, and decapitated following protocols
approved by the University of California, Los Angeles
Chancellor’s Animals Research Committee. We excised sac-
culi from the frog inner ears and placed them in oxygenated
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FIG. 1. Schematic diagram of the experimental recordings. Hair
cells (not drawn to scale), embedded in the supporting tissue of the
sensory epithelium, are mounted in a two-compartment chamber,
allowing for a separation of fluids on the apical and basal sides of
the sacculus. The artificial solutions mimic ionic concentrations of
the sacculus’s natural fluid environment. Immersed in artificial per-
ilymph (bottom compartment) are cell bodies, supporting cells, and
innervating neurons; immersed in artificial endolymph (top compart-
ment) are hair bundles protruding from the apical side. Comprising
the bundle, stereocilia oscillate horizontally as shown by the arrow,
with deflection toward the tallest stereocilium defined as the positive
direction.

artificial perilymph solution (in mM as follows: 110 Na™,
2 K*, 1.5 Ca®*, 113 CI7, 3 D-(+)-glucose, 1 Na*t pyru-
vate, 1 creatine, 5 HEPES). We mounted the epithelium in
a two-compartment chamber, emulating the fluid partitioning
of the ex vivo physiological conditions. In this arrangement,
we bathed apical surfaces in artificial endolymph (in mM
as follows: 2 Na™, 118 K*, 0.25 Ca’*, 118 CI~, 3 D-(+)-
glucose, 5 HEPES) and basolateral membranes in perilymph
[5] (as depicted in Fig. 1). We carefully removed the otolithic
membrane from the epithelium after an 8 min enzymatic dis-
sociation with 15 gmL~! collagenase IV (Sigma-Aldrich).

2. Optical recordings

We collected recordings using an upright optical micro-
scope (Olympus BX51WI) with a water-immersion objective
(Olympus LUMPlanFL. N 60X, NA:1.00), mounted on an
optical table (Technical Manufacturing). We placed the setup
inside an acoustically isolated chamber (Industrial Acous-
tics), so as to avoid introducing external perturbations to the
highly sensitive hair cells. We obtained 16-bit TIFF images
at a resolution of 108.3nm px~!, with a high-speed camera
(ORCA-Flash4.0 CMOS) at 1000 frames per second (fps).
We observed innate bundle motion, verifying integrity of the
biological preparation.

We processed the collected differential interference con-
trast (DIC) images, each accounting for 1ms of exposure,
using custom-developed MATLAB scripts. Specifically, for
each frame of the recording, we determined the mean bundle
position weighted by pixel intensity along a line of pixels.
Plots of hair-bundle position over time then provided traces
of its motion [see Fig. 4(a)]. Typical measurements obtained
with this procedure yielded noise floors on the order of 3 to
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FIG. 2. General procedure used for model reduction. The ellipse
and curved parallelogram indicate starting nodes, and the pill shape
indicates an ending node. A rectangle node indicates an action to
perform. A parallelogram node indicates an output from the pre-
ceding action and an input for the proceeding action. A rhombus
or circle node indicate a decision and logical operator, respectively.
For relevant input and action nodes, the top-right corner displays the
relevant section number in this paper.

5 nm. This noise mostly stems from thermal [21,22] and con-
centration fluctuations [6,23]. To account for the biological
preparation’s gradual sag, we calculated a wide-size (selected
manually by visual inspection), Hann-window moving aver-
age of each trace and subtracted this long-term drift in bundle
position from the corresponding raw trace.

B. General procedure for model reduction

We outline our general procedure to reduce a model, which
quantifies the impact of its free parameters (see Fig. 2 for
a diagram of the overall procedure). The approach consists
of three primary components: model derivation, sensitivity
analysis, and model selection.

We first derived a model for spontaneous hair-bundle mo-
tion, based on prior literature (see Sec. S1 of Supplemental
Material [24]). The model manifested as a five-variable sys-

tem of ordinary differential equations (ODEs), which we
formulated into a nondimensional form. This mathematical
manipulation reduced the number of parameters from 27 to
15, yielding a simpler version, more conducive to our model-
selection process.

We next conducted a sensitivity analysis (see Sec. IV)
on our model to rank its parameters by importance. We de-
termined the “influence” of a parameter by how much the
parameter affected five properties. These properties character-
ized simulated hair-bundle motion (see Sec. IV A). We applied
two definitions to quantify parameter influence, namely total-
effect (TE; see Sec. IV B) and PAWN (see Sec. IV C) indices.
We deemed parameters with larger indices as more influential.

We applied quantitative metrics to select the best model
for a particular dataset. We used two metrics, namely, Akaike
(see Sec. V C 2) and Bayesian (see Sec. V C 3) information
criteria, each of which balance the risk of underfitting and
overfitting. A minimum information criterion means that a
model poises itself desirably between underfitting and over-
fitting, yielding an optimal fit and extrapolating outside of
the dataset. Hence, we deem models with lesser information
criteria (see Sec. V C) as superior.

We analyzed our full 15-parameter system of ODEs, start-
ing with Markov chain Monte Carlo (MCMC) to find the
maximum-likelihood (ML) parameter set. Then, we fixed the
least influential parameter and found the ML parameter set
for the 14-parameter system of ODEs. We iteratively fixed the
remaining least influential parameter until the ML probability
decreased sufficiently to yield a poor match to the dataset (il-
lustrated in Fig. 4). We acquired fits for three distinct datasets,
each obtained from a different hair cell, in parallel. After
fitting these datasets separately, we fixed each parameter for
all three datasets. We determined the best models from these
ML parameter sets by comparing their information criteria.
Finally, we validated the accuracy of reduced model on a new,
fourth dataset.

Our methods do require significant compute power to ac-
quire reliable fits, especially for stiff and/or large systems.
The majority of our computing time stemmed from solving
our system of ODEs, an expected expense for large models.
After obtaining the solutions, we computed all five model
properties, typically feasible within a few hours, and obtained
parameter rankings from PAWN or TE indices within min-
utes. However, with our moderate-sized, nonstiff system, an
Intel 19-13900K processor took about two months of running
time, parallelized across 30 threads, to perform MCMC (~50
times in total). This expensive cost stems primarily from the
large number of simulations, necessary to find reliable fits.
We could partially alleviate this cost by easing our fitting
threshold (see Sec. V A), concomitantly reducing the quality
of the fits.

III. DERIVATION OF A NONDIMENSIONAL MODEL
FOR HAIR-BUNDLE DYNAMICS

Hair cells of the inner ear are comprised of a cell body and
a bundle of stereocilia. Stereocilia are actin-filled, columnar
structures, arranged in rows of increasing height and intercon-
nected by tip links, i.e., polymers that reach upward from the
tip of a shorter stereocilium to the side of a taller neighboring
one. They protrude from the apical surface of the hair cell.
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TABLE 1. Variables and functions in the nondimensional model. For each quantity, the “Significance” column indicates its physical
significance, and the “Equation” column shows its defining equation. The dot derivative indicates a derivative with respect to nondimensional

time 7.

Quantity Significance Equation Type
Xnp Hair-bundle position 'fhﬁ;,;,N: :(1:} + Xip) . Variable
X Myosin-motor position Xa = SmaxS (Fys — X)) — (1 = Sinax)C

DPm Ca”—binding probability for motor TuPm = Cupr(1 = pu) — Pm

Des Ca**-binding probability for gating spring TosDos = Cospr (1 — Pgs) — Do

pr Open probability for transduction channel Trpr = pr(o0) — pr

Egs Gating-spring stiftness Eg& =1—pg(l — ’l;gg_mi") Function
Fes Effective stretch distance for force Xos = XnoXonb — XaXa + X

Fy Effective force (gating/extent springs, pivot) Fy = kgs (X — pr)

g Climbing rate for motor g = ’l —pn(1 — Cm,iﬂ)

S Slipping rate for motor S = Smin — Pm(1 = Smin) _

pr(0c0) Steady-state probability for transduction channel [1 4 exp(Ugs max (AE? — kgs (R — %)))]’1

Stereocilia, along with other linkers between them, maintain
the integrity of a hair bundle, ensuring that it moves as one
object [25-27].

Mechanically-sensitive ion channels are embedded in
stereociliary tips and connected to tip links. When incoming
sound waves deflect the stereocilia, tip-link tension increases,
opening channels. These open channels subsequently generate
an influx of ionic current [28] between the stereocilia and
their environment. This influx of ions adjusts the voltage
across the cell membrane, a process known as mechanoelec-
trical transduction (MET; [29]), starting the process of sound
detection.

Mechanoelectrical transduction [30-32] and myosin-
mediated adaptation [33—-37] comprise two primary processes
that provoke spontaneous hair-bundle motility. Coupled to the
transduction channels and internal to the stereocilia, myosin
motors climb and slip along the actin strands. This energy-
consuming process allows active tuning of tip-link tension
by the hair bundle, a process known as (myosin-mediated)
adaptation, modulating the channel’s open probability and
again altering the influx of ions. This interaction between
transduction and adaptation originates stable oscillations.

However, other internal processes affect the characteris-
tics of active bundle motion. These include calcium-feedback
effects, which modulate the rates of myosin motor ac-
tivity, and mechanical compliance by internal components
[38—41]. Please see Sec. S1 of Supplemental Material [24] for
additional details on the numerical model for hair-bundle os-
cillation. Our model incorporates various biophysical features
gleaned from previous theoretical studies [5,6,23], aiming for
a comprehensive description. Prior work has demonstrated
that the full biophysical model yields predictions that appear
consistent with the experimental observations.

To simplify our parameter-reduction approach, we first
algebraically convert the full system of dimensional ODEs
into nondimensional form. Apart from reducing the number
of free parameters, this simplified form also clearly elucidates
the main dynamics underlying the time evolution of different
observables. To distinguish the two models, we signify all
nondimensional quantities with a tilde ~. The nondimensional
system of equations (see Sec. S1 of Supplemental Material
[24] for its derivation) is given in Table I.

IV. APPLICATION OF SENSITIVITY ANALYSIS TO RANK
THE INFLUENCE OF FREE PARAMETERS

In this section, we ranked the importance of each free
parameter in the model, quantified by its influence on the sim-
ulations. We began with the nondimensional model (shown in
Table 1), which produces time-dependent traces of bundle po-
sition Xy, We selected five prominent features, characterizing
our limit cycles, to assess the influence of each parame-
ter (Sec. IV A). We then ranked each free parameter by its
influence on bundle dynamics, using statistical techniques
from sensitivity analysis. We utilized two distinct sensitivity
indices, namely TE (Sec. IV B; [8]) and PAWN (Sec. IV C;
[11]), so as to check our ranking through two independent
approaches. From these rankings, we chose one final repre-
sentative (Sec. IV D).

A. Properties of the numerical model

We characterized time-dependent traces of hair-bundle
motion with five properties: (1) a Boolean quantity, which
indicates whether a trace oscillates, (2)—(4) mean, amplitude,
and frequency, which characterize the oscillation’s size, and
(5) skewness, which characterizes the oscillation’s shape.

1. Presence of active oscillations

We define a quantity
. 1, xis oscillatory
Slap - — {O, x is nonoscillatory * 1)

The average of this quantity over a given set of traces yields
the proportion of traces that exhibit limit cycles. We used
8{Xnp} to quantify whether each simulation produced oscil-
latory behavior. For our numerical approximation of this
quantity, refer to Sec. S2 A of Supplemental Material [24].

2. Mean

We define the mean [E[x] of a variable x as its arithmetic
mean over time t. We used E[X);] as the mean for each
simulation.
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3. Amplitude

We define the amplitude of a time-dependent variable x(z)
as half of its peak-to-peak value,

Afx} = %(mtaX{X(t)} — min{x(t)}). @

We used A{X;,} as the amplitude for each time-dependent
trace produced by our model. For comparisons to other ampli-
tude definitions, refer to Sec. S2 B of Supplemental Material
[24].

4. Frequency

To define the frequency of a time-dependent variable x(z),
we compute its analytic function,

Sa{x}(@) = Ax(t) + iH{Ax()}
Ax(t) = x(t) — E[x], 3)

where 7 denotes the Hilbert transform [42]. The analytic
signal displays an instantaneous frequency id%[arg(Sa{x})],
where arg(x) indicates the complex phase of x. From this
expression, we define the frequency of a variable x as the mean

instantaneous frequency of S,{x},

1 [d
fxt = EE [a[arg(Sa{X})]]- )

We used f{X»} as the frequency characterizing each specific
model [43]. For comparisons to other frequency definitions,
refer to Sec. S2 C of Supplemental Material [24].

5. Skewness

We define the skewness of a variable x as the third stan-
dardized moment of x,
El(x — E[x])’]

Ske = 5

wix] Va2 &)

Skewness measures the degree of asymmetric shape in one

of x(¢)’s oscillations. In our subsequent analysis, we used
Skew[X7,5] as the skewness for each simulation.

B. Total-effect index

We used the TE index to rank all 15 parameters in the
nondimensional model. TE index is defined mathematically
as [8,10]

S — Ex,[Vary [Y X1
I Var[Y]

where Y represents a random variable corresponding to one
property, X; represents a random variable corresponding to
one parameter indexed by i, and X~; represents a vector of
random variables corresponding to the set of parameters not
indexed by i. The vertical line | denotes a conditional, e.g.,
Y |X~; denotes Y conditioned on a specific parameter set X~; €
X..;. Here, Ex_, [x] denotes the arithmetic mean of x taken over
all parameter sets Xx; € X~;, and Vary,[x] denotes the variance
of x taken over all parameter values x; € X;. Conceptually,
this index indicates the average variance of one property x
produced by varying one parameter indexed by i. This index
is normalized between 0 and 1, inclusively, where a greater in-
dex indicates a parameter with greater influence. An index of 0

: (©)

indicates that the parameter produces no variance for a given
property of the model, whereas an index of 1 indicates that
the parameter produces all of the total variance. We ranked
parameters as most to least influential using greatest to least
TE index, respectively.

We found the TE index for each combination of 15 param-
eters and five properties (shown in Fig. S2 of Supplemental
Material [24]). For each parameter, we set the maximum out
of these five TE indices as the final TE index for ranking
(shown in Figs. 3 and S3 of Supplemental Material [24]).
To calculate these indices, we simulated ~500 000 instances
of the model at a uniform, independent collection of random
parameter samples (based on the algorithm in Ref. [10]). From
this full collection of simulations (i.e., including both oscilla-
tory and nonoscillatory behavior), we found the TE indices.

C. PAWN Index

We next analyzed the PAWN index, a measure following
from the Kolmogorov-Smirnov statistic, to rank all 15 param-
eters in the nondimensional model.

The Kolmogorov-Smirnov statistic (KS) is defined mathe-
matically as [44-46]

KS(x;) = max 15 () — Frixi=x (DI, O]

where Fy(y) indicates the cumulative distribution func-
tion (CDF) of a random variable Y, evaluated at y € Y.
Conceptually, KS gives the maximum distance between
two CDFs. It is normalized between 0 and 1, inclu-
sively, where a greater KS indicates that two CDFs reside
farther apart.

The PAWN index is defined mathematically as [11]

T, = sta;(tKS(x,-), 3

X €Xi

where stat represents any statistic functional (e.g., mean, me-
dian, maximum). For the remainder of this study, we chose
stat = max. Conceptually, this index measures the influence
of a parameter on a single model output. It is normalized
between 0 and 1, inclusively, where a greater index indicates a
parameter with greater influence on the simulation. An index
of 0 indicates that the parameter produces no influence for
some model property. We ranked parameters as most to least
influential from greatest to least PAWN index, respectively.
We found the PAWN index for each combination of 15
parameters and five model properties (shown in Fig. S2 of
Supplemental Material [24]). For each parameter, we set
the maximum out of these five PAWN indices as the final
PAWN index for the ranking (shown in Figs. 3 and S3 of
Supplemental Material [24]). We found ten KS statistics for
each parameter, obtained by binning each parameter into
ten distinct values. To calculate these indices, we simulated
~500 000 instances of the model at a uniform, independent
collection of random parameter samples (same dataset as in
Sec. IV B). Except for §, we obtained PAWN indices only
from the subset of oscillatory simulations. To calculate §, we
included both oscillatory and nonoscillatory simulations.
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Parameter Rankings by Maximum Index

_ .S max FIG. 3. Sensitivity indices (described
oM in Secs. IV B and IV C) for each of the 15
AE? free parameters (shown in Table II). For
o each parameter, the maximum PAWN and
TE indices out of the original five prop-
erties (described in Sec. IV A) are shown.
The x axis shows decreasing PAWN in-
~ ~ e min dex from left to right; y axis, decreasing
.kgs,min .Ugsvm‘“f TE index from top to bottom. From top to
o%C bottom, parameters become less influential
Cn according to the TE index. From left to
~ right, they become less influential accord-

ing to the PAWN index.

Total Effect Index

~ ami n
T °
° hb ~

Tgs T
.9; T

PAWN Index

TABLE II. Parameters in the nondimensional model, ranked from least to most influential (top to bottom). The N, column shows the
number of remaining free parameters in the model (derived in Sec. III), after fixing the adjacent parameter at the corresponding fixed value.
Parameters were fixed cumulatively such that all in the above rows remained fixed. The “Value” column shows the attempted fixed value for
the corresponding parameter. When fixed at their corresponding values, unfixed parameters produced simulations with a lower-quality fit (see
Fig. 4). The “Significance” column indicates the physical significance for each parameter. For fixed parameters, it indicates the significance
of fixing the parameter at its corresponding fixed value. For unfixed parameters, it indicates the corresponding biophysical mechanism of the
parameter.

N, Parameter Value Significance Type
15 — — All mechanisms included Fixed
14 5,,,,-,1 1 Constant climbing rate

13 Tr 0 Steady-state transduction-channel dynamics

12 ’isf 1 Moderate calcium-feedback time constant for gating spring

11 Cn 1 Moderate calcium-feedback strength at motors

10 X, 0 Null gating-spring offset

9 Xy 1 Moderate coupling from stereocilia on gating-spring force

8 §mi,, 0 Maximal variability for slipping rate

7 51@. 1000 Strong calcium-feedback strength on gating spring

6 Thp 1 Moderate stereocilia time constant

5 S 0.5 Equal effective slipping and climbing rates

4 ljgsymax 10 Elastic potential energy of gating spring Unfixed
3 Xa 1 Coupling from motors on gating-spring force

2 ng,min 1 Variability of gating-spring stiffness

1 Ton 10 Calcium-feedback time constant for motor

0 AE? 1 Free energy of transduction-channel opening
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Model Selection Using Information Criteria
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FIG. 4. Quality of fit of the reduced model to an experimental dataset. (a) One-second recording of bundle position (black line with gray
error bars) over time. (b) Comparison of best-fit models (described in Tables I and II) relative to a portion data corresponding to one cycle,
between inset bounding box around full trace [shown in (a)]. Best fits are shown for models with N,, = 6 parameters (blue line), N, = 5 (green
line), and N, = 4 (orange line) along with truncated dataset (black points with gray error bars). Extensions of these fits are shown in (a).
Notice that the models with N, = 5 and N, = 6 barely deviate from each other in this bound region. (c) Bayesian [BIC; defined in Eq. (12)]
and Akaike [AIC; defined in Eq. (11)] information criteria along with — In(L) (defined in Sec. V C). These three quantities are reported relative
to their corresponding best-possible value. The dashed green line [labeled min(IC)] indicates N, = 5 parameters with minimum information

criteria.

D. Final ranking of the parameters

Before ranking our parameters, we estimated a minimum
number of required simulations. We used over 500 000
simulations to determine the TE and PAWN indices. In
our study, ~500000 simulations produced similar indices
when compared to only ~100000 simulations, indicating
saturation. Thus, we deemed ~500000 simulations as suf-
ficient. A different number of simulations may be required
by other studies, depending on their target models. Higher-
parameter models generally require more simulations for
accurate ranking. The required number of simulations for TE
[10] and PAWN [11] indices have been estimated by external
studies.

After finding parameter rankings for both TE and PAWN
indices, we compared their results. These two ordered lists
were ~99.5% similar (according to the Spearman footrule
distribution, see Sec. S3 of Supplemental Material [24]), es-
tablishing the robustness of these two rankings. We see this
similarity in Fig. 3 as a roughly monotonic function be-
tween the PAWN and TE indices. Hence, we could reasonably
choose either of the indices, with minor changes to the rank-
ing.

We chose the final parameter ranking that minimizes the
average correlation between the model properties. TE indices
experienced very high correlation across the five properties
(~0.8), while PAWN indices experienced only moderate cor-
relation (~0.5) across the five properties (shown in Fig. S5

of Supplemental Material [24]). Thus, we chose the PAWN
indices for our final ranking.

V. EXTRACTION OF A REDUCED MODEL LIMITED
BY EXPERIMENTAL DATA

In this section, we reduced parameter count in our
full 15-parameter model, while preserving the model’s
predictive accuracy. We first used MCMC to fit a collection of
nondimensional models to an experimental dataset (Sec. V A),
including steps to rescale amplitude and frequency of the
model (Sec. V B). We then incorporated Akaike and Bayesian
information criteria (Sec. V C) to choose the most predictive
model (Sec. V D). We further validated this model with a new
dataset (Sec. VE).

A. Using Markov chain Monte Carlo method
to fit a numerical model to data

We used the MCMC method to determine the maximum-
likelihood (ML) parameter set of a model, given an exper-
imental dataset. MCMC optimization yielded collections of
parameters that accurately modeled the dataset (see Fig. 4).

We give only a brief overview on MCMC here, as it has
received abundant use in prior literature [47-49] especially in
astronomy [50-53]. MCMC relies on a collection of random
walkers to converge toward the ML estimator (MLE) [54].
Each walker performs its own fit to the model, attempting to
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converge toward the MLE, analogous to performing multiple
gradient-descent fits simultaneously. However, unlike in gra-
dient descent, these walkers stochastically “gravitate” toward
each other, according to a predefined set of moves, making
them mutually dependent.

MCMC seeks to maximize posterior probability P (X|D),
where X generally represents a parameter set, and D rep-
resents a collection of empirical data points. For our full
nondimensional model, X is a 15-parameter vector (denoted in
Table II), and D is a collection of positions over time [shown
in Fig. 4(a)]. To start the MCMC algorithm, it requires a set
of guesses for X. For these guesses, we supplied uniformly
distributed parameter sets over ranges given in Table S3 of
Supplemental Material [24].

We calculated the posterior probability for each parameter
set, given an empirical dataset. To do so, we first estimated the
prior and the likelihood probabilities. To estimate the prior
probability, we assumed a uniform prior over a constrained
region for each parameter (bounds shown in Table S3 of
Supplemental Material [24]). To estimate the likelihood prob-
ability, we treated the dataset as a collection of independent,
normally distributed observations. For the mean and standard
deviation of each distribution, we used the mean and error
from the corresponding observation. After finding the prior
and likelihood probabilities, we estimated the parameter set
at maximum-posterior probability for each dataset. Finally,
this maximum-posterior set served as an approximation for
the ML parameter set [12,55].

We performed MCMC starting with the full nondimen-
sional model. We subsequently fixed the least influential
parameter. We iterated this procedure by fixing the least
influential parameter among the remaining, unfixed parame-
ters, until the MLE failed to reproduce the data sufficiently
(illustrated in Fig. S7 of Supplemental Material [24]). For nu-
merical details about our MCMC fits, please refer to Sec. S4 B
of Supplemental Material [24].

B. Rescaling the nondimensional model

We rescaled from Xy, to Xy, (i.e., nondimensional to dimen-
sional hair-bundle position) by numerically fitting four values
Xnbs Xnps Ty, I such that

t+7
T

Xip(t) = Xpp X (1) — Fpp), 1= , )
where X, and ¥y, represent multiplicative scaling and con-
stant offset, respectively, of Y (); while T and 7 represent
multiplicative scaling and constant offset, respectively, of 7’
[defined in Eq. (S24) and Table S2 of Supplemental Material
[24]]. We performed this rescaling operation as the last step
in our MCMC fitting procedure, after the MCMC algorithm
chose a 15-parameter set.

C. Evaluating an information criterion

Information criteria (ICs) estimate the model prediction
error relative to a dataset [12]. They penalize large numbers of
degrees of freedom v, thus favoring fewer free parameters and
reducing the chances of overfitting, and they favor large max-
imum likelihood L, thus lessening the chances of underfitting.
A smaller IC indicates that a model has smaller prediction

error; hence, models with lesser ICs yield preferable fits to
experimental results.

As we sought only a relative comparison of model perfor-
mance, we required only relative ICs. Relative performance
peaks at the greatest possible £, which occurs when a model
exactly matches the most probable values for all independent
observations. Equivalently, this greatest likelihood corre-
sponds to the least IC. Accordingly, we report likelihoods
and ICs relative to this greatest likelihood (shown in Figs. 4
and S7 of Supplemental Material [24]).

1. Degrees of freedom in the model

To calculate ICs, we count the total number of degrees
of freedom for the model fits. Each nondimensional model
parameter (up to 15 in our system) added one degree of free-
dom. We next consider which rescaling variables [described
in Eq. (9)] add degrees of freedom. Three rescaling variables
each added one degree of freedom, i.e., Xy, Xnp, T The
fourth rescaling variable 7 did not add a degree of freedom,
as the model is invariant to shifts in initial time. In total, our
model has

v=N,+3 (10)

degrees of freedom, where N, represents the number of free
parameters in the model.

2. Akaike information criterion

We applied the Akaike information criterion (AIC; [56]) as
a measure of model prediction error. AIC is defined mathe-
matically as

.2 !
AIC = 2v — 21n(iy + 22D (11)
Ny —v— 1

where N, represents the number of observations in a dataset.
Notice that AIC increases monotonically as v increases, pe-
nalizing large numbers of degrees of freedom.

3. Bayesian information criterion

As an independent test, we applied the Bayesian informa-
tion criterion (BIC; [57]) as a measure of model prediction
error. BIC is defined mathematically as

BIC = vIn(N,) — 2In(L). (12)

Notice that BIC increases monotonically as v or N; increase,
likewise penalizing large numbers of degrees of freedom,
especially for large datasets.

D. Reducing the model based on fits to experimental data

We found the models with least AIC and BIC for each
dataset. Near (five of the six) minima, we fixed ten parameters
at specified values, while five parameters (along with three
other degrees of freedom discussed in Sec. V C 1) varied.
Values for the ten fixed parameters are given in Table II,
alongside a list of the five remaining free parameters. For
comparison, this table also shows specific fixed values for
the remaining five parameters, which however yielded poorer
ICs. This five-parameter model minimizes both information
criteria for two of the three datasets, and it minimizes BIC for
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the third dataset (shown in Figs. 4 and S7 of Supplemental
Material [24]). For this remaining dataset, AIC is minimized
by the six-parameter model. Our reduction procedure there-
fore captures the variability inherent in biological datasets.

We describe a few trends for parameter values obtained
through MCMC fits (shown in Fig. S6 of Supplemental Mate-
rial [24]). For N, < 4 (i.e., underfitting models), fit parameter
values remained roughly constant. For N, > 5, convergence
behavior varied by parameter. In this regime, some parameters
(e.g., Tj,») remained roughly constant, whereas some (e.g., T,
Smin) increased or decreased stochastically, while others (e.g.,
Xa> Cgs) flickered between two values. Overall, each of the
influential fit parameters converged.

AIC and BIC, when used in conjunction, have been
demonstrated to reduce numerical models reliably [58—60].
They have been used in a plethora of fields such as astron-
omy [61,62], ecology [63-66], physiology [67—09], finance
[70-72], and machine learning [73,74].

E. Validating the reduced model

Using the reduced models, we fit five new datasets. To
do so, we repeated the previous fit procedure (described in
Sec. V A); however, we restricted free parameter count from
N, =3 to 8. These new fits are shown in Fig. S7 of Supple-
mental Material [24].

The reduced models describe the validation datasets. For
four of five validation datasets, a reduced model with five (or
fewer) parameters suffices. For the remaining dataset, a seven-
parameter model provides more predictive power than lower-
parameter models. To describe all five validation datasets, at
most seven free parameters are needed.

VI. DISCUSSION

We applied quantitative methods to assess and rank the
importance of free parameters, permitting us to fix the less
influential ones. To demonstrate our methods on a concrete
example, we modeled active, innate motility, observed in
inner-ear hair cells. We commenced with a 27-parameter,
biophysical model, finally reducing it to only five. This
reduced model reproduced recordings of spontaneous hair-
bundle oscillations, as demonstrated by fits to experimental
measurements (shown in Fig. 4).

A. Balancing fits

Our methods reduce the risk of overfitting and underfit-
ting a computational model to an experimental dataset. We
illustrate the occurrence of underfitting and overfitting in
Fig. 4(a). Our model with N, = 4 underfits the experimen-
tal dataset; N, = 6 overfits the dataset. Our N, =5 model
appears visually indistinguishable from the dataset, while
yielding minimum ICs. Thus our N, =5 model shows no
clear indication for either underfitting or overfitting.

Over time, the simulations decorrelate with the dataset.
This occurs because the simulations ignore stochastic effects,
whereas the dataset includes innate biological fluctuations.
The simulations, however, capture the shape of the oscillation.

B. Inferring from our nondimensional model

We derived a nondimensional model to aid fitting param-
eters to a dataset. This nondimensional version of the model
limits parameter redundancies, retaining only parameters in-
trinsic to the model. For example, some parameter sets occur
only as ratios or products of each other. Hence, redundant
groups of parameters cannot be fit independently.

For our model, the mapping between dimensional and
nondimensional (or characteristic) parameters is shown in
Tables S2 and S3 of Supplemental Material [24]. This map
outputs not one set of dimensional parameter values, but
instead a space of dimensional parameter sets. To obtain a
single dimensional parameter set, one must assert additional
constraints on parameters, perhaps by experiment.

Besides improving the computational reliability of the fit-
ting procedure, our parameter-reduction methods yield insight
into the model’s internal cellular processes. Each biophysical
process and element corresponds to a set of model parameters
and explains some observable behavior. Therefore, by identi-
fying the most influential parameters, we can determine which
internal elements most impact the observed bundle movement.

For example, we found that AE? exerts a strong influ-
ence on the mean bundle position. This finding implies that
mechanisms affecting this parameter value (i.e., free energy of
transduction-channel opening, maximum gating-spring stiff-
ness, and gating swing) determine, in large part, the mean
bundle offset. Future experiments could test this prediction by
altering some of these mechanisms and measuring their effect
on mean position.

Next, our fits indicate that hair cells exhibit variable-
stiffness gating springs. Variability of gating-spring stiffness
is encapsulated by the parameter ng,min, where ’I;gs,min = 0and
kags,min = 1 indicate maximum variability and constant stiff-
ness, respectively. In our datasets, this parameter ranged from
kgs,min &~ 0.2-0.9 (see Fig. S6 of Supplemental Material [24]).
The existence of stiffness-modulating, calcium feedback on
the gating spring has been supported by prior experimental
studies [5,75]. These studies analyzed interconnected behav-
ior such as bursting dynamics in bundle motility and cellular
response to electrical stimulation. Here, we demonstrated that
this internal element strongly influences even unperturbed,
regular oscillations.

The influential parameters therefore clarify which cellu-
lar mechanisms most shape the bundle’s active motility. For
spontaneous hair-bundle oscillations, the dominant parame-
ters were those describing gating springs, myosin motors, and
their interaction thereof. For more details on these specific
parameters, see the unfixed parameters in Table II.

Similarly, the non-influential parameters yield biophysical
insight. To demonstrate, we examine two of these param-
eters, specifically Tr and T,. These parameters, though
non-influential, quantify the appropriate timescales for cellu-
lar processes near the transduction channels and gating spring,
respectively.

While assuming steady-state dynamics for transduction
channels (i.e., 77 = 0), our model reliably reproduces exper-
imental results. This finding is consistent with previous nu-
merical simulations that assumed steady-state dynamics [5,6].
Other models, which assumed fast-channel dynamics [23,76],
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likewise reproduced the results and were corroborated by
experiments. The same study, however, demonstrated that ad-
justing other free parameters could compensate for the effects
of assuming steady-state dynamics, specifically by asserting a
stronger effective viscous drag on the bundle. In our model,
we simultaneously fit at least five parameters, which compen-
sated for steady-state channel dynamics sufficiently, yielding
consistent results.

When assuming fast calcium-feedback rates for the gat-
ing spring (i.e., To; = 0), our model continues to reproduce
the empirical dataset. Some of the less influential parame-
ters may be fixed at different values from those applied in
this paper (shown in Table II), with negligible effects. For
example, our analysis fixed T, = 1, but letting To; = 0 also
described the dataset. While this would reduce the variable
count by one (i.e., by letting p,, be in steady state), it greatly
increases computational time due to necessary numerical root
finding. The optimal balance between analytic simplicity and
computing time depends on the desired interpretability of
the equations and the specific demands of the numerical
simulation.

C. Extending our model

This study focuses on the effects from model parameters
only on spontaneous hair-bundle oscillations. Further, the
oscillation mean, amplitude, frequency, and skewness consti-
tuted the only properties of the assessed, oscillatory traces.
Numerical models aimed to describe other phenomena (e.g.,
phase-locking dynamics or the cell’s response to an external
drive) would need to select different properties, likely result-
ing in a new ranking.

Applying the same methods, our model readily extends
itself to include additional elements, assessing their effects
on various model properties. Future work will entail explor-
ing the crucial mechanisms underlying stimulated bundles
(e.g., mechanical or electrophysiological drives and/or noise),
including phenomena such as bundle entrainment to the stim-
ulus as well as its rapid mechanical response to step stimuli
[20,39,77-79]. Furthermore, our model can make novel pre-
dictions reliably, motivating future experimental studies.

A prior theoretical analysis examined the effects of noise
in a similar model. It found that the mean-field limit cycle
for the stochastic system can differ significantly from that of
the deterministic version [80]. This implies that noise strength
greatly influences limit-cycle properties. Consequently, af-
ter introducing sufficiently strong noise into our model, we
expect that we could fix at least as many low-influence pa-
rameters as in our deterministic model.

D. Modifying our methods

Complementary to those presented here, other parameter-
reduction methods have been explored. As an example,
sloppiness analysis seeks to identify redundant parameters.
This analysis considers some model property (e.g., mean
position over time) evaluated at a specific parameter set. A
“sloppy” parameter, while varying simultaneously with an-
other parameter near the evaluated parameter set, keeps the
chosen model property roughly constant over a large range.
A “stiff” parameter, when varied within a short range near

the evaluated parameter set, drastically changes the selected
property. Hence, fixing sloppy parameters reduces parame-
ter count, especially for high-parameter models, while only
marginally varying the model’s possible outputs. In several
studies, all examined models exhibited a spectrum of parame-
ter sloppiness [81-83]. These established sloppiness analysis
as an applicable framework to fix redundant parameters in
many models.

We note that machine-learning techniques can reduce pa-
rameter count, but obscure the physical meaning of a model.
Examples of machine learning include fitting a multi-variable
polynomial ODE to a dataset [84] or applying other com-
mon machine-learning algorithms (e.g. decision trees, neural
network [85]). Machine-learning methods, while discovering
a small-size, fast-computing model, reveal features generally
with dubious scientific interpretations. Like machine-learning
approaches, our parameter-reduction methods yield efficient
models, but unlike them, also provide physical insight into the
systems (described in Table II).

We next discuss how to adapt our parameter-reduction
methods properly. Our methods’ effectiveness is influenced
by the model’s form (e.g., system of ODEs, Markov chain,
recurrence relation), not by the model’s field (e.g., physics,
biology, economics). For a few common forms of models, we
suggest ways to adjust our methods accordingly.

The methods delineated here will work efficiently in
systems similar to our system of ODEs. Specifically, our
five-variable model exhibits roughly periodic motion, with
approximately constant amplitude over time. For similar mod-
els, our methods, applied as presented, will identify and fix
low-influence parameters, reducing parameter count.

In contrast, these techniques will require adjustments to
reduce the parameter count in more complicated models.
Some models in this category include (1) those with abundant
numbers of parameters and/or variables and (2) those with
chaotic or nontrivial behavior.

For models with abundant parameters/variables, sim-
plifying the model (before fixing parameters) will ease
computational demands. First, deriving a nondimensional ver-
sion of the model immediately reduces the parameter count
by eliminating redundant parameters [86]. If an abundance of
parameters still remains, fixing groups of sloppy parameters
quickens computing time. For the remaining free parameters,
our methods, incorporating sensitivity indices and information
criteria, may be implemented.

For models with nontrivial behavior or form, alternative
model properties and/or fitted quantities can produce quality
fits. After devising these alternatives, our parameter-reduction
methods can be applied as presented. For a chaotic system
(e.g., Lorenz attractor or logistic map [87]), the Lyapunov
exponent would constitute an appropriate model property for
reducing parameter count. For a non-oscillatory system, any
statistic averaged over time (e.g., mean or variance) can serve
as the model property. For a discrete model, efficacious prop-
erties and fitting quantities depend heavily on the specific
form of the model. As an example, we consider Markov chain
models [88,89], a common form of discrete model especially
prevalent in protein-folding molecular dynamics [90-93]. Any
individual steady-state probability can represent a property,
and the average deviation from steady-state probabilities can
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act as a fitting quantity. For stochastic models, such as our
model with added thermal noise, the position over time will
not suffice for the MCMC fitting. The fit could instead be
performed over the distribution of positions. Overall, models
with nontrivial behavior require selecting new model proper-
ties and/or a new fit quantities, both of which should capture
the key characteristics of the particular system.

In general, any collection of model properties can be vec-
torized into a single model property. For example, a weighted
average, taken over a few normalized properties, acted as a
single model property in a prior study [94]. Any statistic taken
over other model properties can serve as a property.

Similarly, any collection of indices can be vectorized to
obtain a single parameter ranking. As an example, we exam-
ine our final indices used for ranking. Instead of selecting
only one of our five properties (described in Sec. IV A) for
ranking, we incorporated information from all five. We used
the maximum index, taken over all five indices, for our final
ranking (illustrated in Fig. S2 of Supplemental Material [24]).
To summarize, a statistic taken over other indices can establish
a holistic ranking.

While we selected the TE and PAWN indices, other sen-
sitivity indices can be chosen. These two indices [11,95],
and others [96,97], have been compared in prior studies. We
chose TE and PAWN indices, specifically, because they are
variance-based and moment-independent, respectively. Thus,
these indices provide a fruitful contrast when comparing their
corresponding parameter rankings.

We outline two ways to reduce computational expenses for
this and forthcoming studies. First, fixing a few low-influence
parameters upfront will decrease the required number of
fits. Second, fixing multiple parameters after each fit, in-
stead of only one parameter at a time (see Sec. V A), will
further decrease the required number of fits. We do not
foresee any restrictions on variable or parameter count, re-
garding the effectiveness of our methods. However, models
with abundant parameters/variables typically demand longer
computing time, thus introducing practical constraints. Under
these circumstances, feasible adjustments can reduce comput-
ing time, at the cost of fitting precision.

VII. CONCLUSION

While we performed this study on a specific biophysical
system, namely that of active hair-cell mechanics, we reiterate
that our methods generalize to other models. Many biological
systems include numerous interacting processes and cou-
pled elements. Furthermore, due to this intricate machinery
involved, experiments cannot directly access or fix many pa-
rameters. We therefore have provided a fruitful framework,
one which prudently fixes parameters in a plethora of numer-
ical models.

We developed comprehensive statistical and computational
methods to reduce the number of free parameters in a model
(Fig. 2). We first derived a 15-parameter, nondimensional,
biophysical model (Table I). We then established five rep-
resentative model properties (Sec. IV A). On each property,
we quantified parameter influences by computing their TE
(Sec. IV B) and PAWN (Sec. IV C) indices (Fig. S3 of Sup-
plemental Material [24]). Using the maximum PAWN index
(Fig. 3) from all five properties, we designated our final
parameter ranking. Finally, we iteratively fixed the least in-
fluential parameters (at values shown in Table II), until we
minimized the Akaike (described in Sec. V C 2) and Bayesian
(Sec. V C 3) information criteria, obtaining an accurate and
predictive fit (shown in Fig. 4). As a final result, we acquired
an accurate five-parameter model for our biophysical system.
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