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ABSTRACT OF THE THESIS

On the H-property for Step-graphons: Residual Case

by

Wanting Gao

Master of Science in Engineering Data Analytics and Statistics

Washington University in St. Louis, 2025

Professor Xudong Chen, Chair

We investigate the H-property for step-graphons. Specifically, we sample graphs Gn on n

nodes from a step-graphon and evaluate the probability that Gn has a Hamiltonian decom-

position in the asymptotic regime as n ↓ ↔. It has been shown in [3, 4] that for almost

all step-graphons, this probability converges to either zero or one. We focus in this paper

on the residual case where the zero-one law does not apply. We show that the limit of the

probability still exists and provide an explicit expression of it. We present a complete proof

of the result and validate it through numerical studies.
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Chapter 1

Introduction

A graphon [6] W is a symmetric, measurable function W : [0, 1]2 ↓ [0, 1] (i.e., W (s, t) =

W (t, s)). It can be used as a stochastic model to sample random graphs. The sampling

procedure will be described at the beginning of Subsection 1.1. Graphons generalize Erdős-

Rényi random graph models by introducing heterogeneous edge densities for di!erent pairs

of nodes.

The so-called H-property of a graphon W , introduced in [3, 4], is roughly speaking the

property that a graph Gn on n nodes sampled from the graphon W has a Hamiltonian de-

composition almost surely as n ↓ ↔. A precise formulation will be given shortly. The study

of the H-property stems from structural system theory, which investigates the impacts of

networks structures (represented by graphs) on control system properties. The importance

of having a Hamiltonian decomposition lies in the fact that it is necessary and su$cient

(together with some mild condition on connectivity) for a graph to sustain ensemble con-

trollability [5] and stability [2].

A step-graphonW is a special graphon such that its domain can be partitioned into rectangles

over which W is constant (see Definition 2 and Fig. 1.1 for illustration).

It has been shown in [3, 4] that the H-property is essentially a zero-one property for the class

of step-graphons. Specifically, for almost all step-graphons, the probability that the graph

Gn ↑ W has a Hamiltonian decomposition converges to either 0 or 1 as n ↓ ↔. Moreover,

whether it converges to 0 or 1 depends only on the support of W . We will review and state

the result (Theorem 1) in Subsection 1.2.

In this paper, we continue to investigate the H-property within the class of step-graphons.

We deal with what we term the “residual case”, i.e., the case where the aforementioned

probability does not converge to 0 or 1. Among others, we show in Theorem 2 that the limit

1
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Figure 1.1: (a) A step-graphon W with partition ω = (0, 0.25, 0.5, 0.75, 1), where shading
indicates values from 0 (white) to 1 (black). (b) The associated skeleton graph S. (c) An
undirected graph G sampled from W . (d) The directed graph εG obtained from G, with
cycles D1 = v1v2v4v3v1 and D2 = v5v6v5 forming a Hamiltonian decomposition of G.

of the probability still exists as n ↓ ↔. Moreover, we provide an explicit expression of the

limiting value. Our result, together with Theorem 1, exhaust all possible scenarios.

In the remainder of this section, we introduce the H-property and recall the almost zero-one

property. Next, in Chapter 2, we state the main result of this paper and then, in Chapter 3,

present the proof. In Chapter 4, we conduct numerical study to validate the main result.

This paper ends with conclusions.

1.1 The H-property

We introduce below the two-step procedure for sampling an undirected graph Gn = (V,E)

with n nodes from a graphon W :

1. Sample y1, . . . , yn ↑ Uni[0, 1] independently, where Uni[0, 1] is the uniform distribution

over the interval [0, 1]. We call yi the coordinate of node vi → V .

2



2. For any two distinct nodes vi and vj, place an edge (vi, vj) → E with probability

W (yi, yj).

Note that there is no self-loop in Gn.

Given Gn ↑ W , we denote by εGn = (V, εE) the directed version of Gn, obtained by replac-

ing each undirected edge (vi, vj) of Gn with two oppositely oriented edges vivj and vjvi.

Specifically, the edge set of εGn is given by

εE := {vivj, vjvi | (vi, vj) → E}.

With slight abuse of notation, we write εGn ↑ W . The directed graph εGn is said to have a

Hamiltonian decomposition if it contains a subgraph εG↔
n = (V, εE ↔), with the same node set,

such that εG↔
n is a disjoint union of directed cycles. For convenience, we define En to be the

event:

En := εGn ↑ W has a Hamiltonian decomposition. (1.1)

The H-property mentioned above can now be precisely defined as follows:

Definition 1 (H-property) A Graphon W has the H-property if

lim
n↑↓

P (En) = 1.

1.2 Step-graphons and the almost zero-one property

We start by introducing the step-graphons.

Definition 2 (Step-graphon and its partition) A graphon W is a step-graphon if

there exists a sequence 0 = ω0 < ω1 < · · · < ωq = 1 such that W is constant on each

rectangle [ωi, ωi+1) ↗ [ωj, ωj+1) for all 0 ↘ i, j ↘ q ≃ 1. We call ω = (ω0, ω1, . . . , ωq) a

partition for W .

We next introduce the key objects that are essential for deciding whether a step-graphon

has the H-property.

3



Definition 3 (Concentration vector) Let W be a step-graphon with partition ω =

(ω0, . . . , ωq). The associated concentration vector x
→ = (x→

1, . . . , x
→
q) has entries defined as

follows:

x
→
i := ωi ≃ ωi↗1, for all i = 1, . . . , q.

Note, in particular, that

x
→
i > 0 for all i = 1, . . . , q, and

q∑

i=1

x
→
i = 1.

Definition 4 (Skeleton graph) To a step-graphon W with a partition ω = (ω0, . . . , ωq),

we assign the undirected graph S = (U, F ) on q nodes, with U = {u1, . . . , uq} and edge set

F defined as follows: there is an edge between ui and uj if and only if W is non-zero over

[ωi↗1, ωi)↗ [ωj↗1, ωj). We call S the skeleton graph of W for the partition ω.

Note that the concentration vector x→ and the skeleton graph S combined determines com-

pletely the support of the graphon W . In the sequel, we assume that S is connected, which

is equivalent to the condition that W is not block-diagonal up to a measure-preserving map

on the interval [0, 1].

We decompose the edge set F of S as

F = F0 ⇐ F1,

where elements of F0 are self-loops, and elements of F1 are edges between distinct nodes.

We introduce the node-edge incidence matrix associated with S in the following definition.

Definition 5 (Incidence matrix) Let S = (U, F ) be a skeleton graph. Given an arbitrary

ordering of its edges and self-loops, we let Z = [zij] be the associated incidence matrix,

defined as the |U |↗ |F | matrix with entries:

zij :=
1

2






2, if fj → F0 is a loop on node ui,

1, if node ui is incident to fj → F1,

0, otherwise.

4



Note that the columns of Z are probability vectors, i.e., all entries are nonnegative and sum

to one.

The so-called edge polytope of S is defined as the convex hull of the columns of the matrix

Z. Precisely, we have

Definition 6 (Edge polytope) Let S = (U, F ) be a skeleton graph and Z be the associated

incidence matrix, with zj, for 1 ↘ j ↘ |F |, the columns of Z. The edge polytope of S,

denoted by X (S), is the finitely generated convex hull:

X (S) :=






|F |∑

j=1

cjzj |

|F |∑

j=1

cj = 1 and cj ⇒ 0 for all j




 .

The rank of the polytope X (S) is the dimension of its relative interior, which we denote by

intX (S). Since X (S) is contained in the standard (q≃1)-simplex, its rank is bounded above

by (q ≃ 1), and it can achieve full rank (q ≃ 1) if and only if the incidence matrix Z has full

(row) rank (i.e., rank q).

The following result [8] relates full rankness of X (S) to the existence of an odd cycle in S—a

cycle in S is odd if it contains an odd number of distinct nodes (a self-loop is an odd cycle).

Lemma 1 Let S be the skeleton graph of W on q nodes. Suppose that S is connected; then,

rankX (S) =





q ≃ 1 if S has an odd cycle,

q ≃ 2 otherwise.

As mentioned earlier, it has been shown in [3, 4] that the H-property is essentially a zero-one

property in a sense that the probability of the event En tends to be either 0 or 1. Precisely,

we have the following result:

Theorem 1 Let W be a step-graphon, with ω a partition. Let x→ and S be the associated

concentration vector and the skeleton graph (which is assumed to be connected), respectively.

Then, the following hold:

5



1. If S has an odd cycle and if x→
→ intX (S), then

lim
n↑↓

P(En) = 1.

2. If S does not have an odd cycle or if x→
⇑→ X (S), then

lim
n↑↓

P(En) = 0.

6



Chapter 2

Main Result for the Residual Case

In this section, we evaluate the limit of P(En) as n ↓ ↔ for the case left out by Theorem 1,

namely, the case where S has an odd cycle (so X (S) has full rank by Lemma 1) and x
→

belongs to the boundary of the edge polytope, i.e.,

x
→
→ ϑX (S) := X (S)≃ intX (S).

We need a few preliminaries to state the main result of this paper. Given a graph Gn ↑ W ,

we let ni(Gn) be the number of nodes vj of Gn whose coordinates yj → [ωi↗1, ωi). Then, the

empirical concentration vector of Gn is defined to be:

x(Gn) :=
1

n

(
n1(Gn), . . . , nq(Gn)

)
. (2.1)

It follows from the step 1 of the sampling procedure in Subsection 1.1 that nx(Gn) is a

multinomial random variable with n trials, q events, and x
→
i ’s the event probabilities.

Next, we define the random variable

ϖ(Gn) :=
⇓
n(x(Gn)≃ x

→) + x
→
, (2.2)

The following result is known [4]:

Lemma 2 The random variable ϖ(Gn) defined in (2.2) converges in distribution to the Gaus-

sian random variable

ϖ
→
↑ N(x→

,%), with % := Diag(x→)≃ x
→
x
→↘
,

where Diag(x→) is the diagonal matrix whose iith entry is x
→
i .

7



Let H0 be the hyperplane in Rq that contains the standard simplex, i.e.,

H0 :=
{
v → Rq

| v
↘1 = 1

}
.

The covariance matrix % given in Lemma 2 has rank (q ≃ 1), with the null space spanned

by the vector 1. In particular, since the mean of ϖ→ is x→, which belongs to H0, the support

of ϖ→ is H0.

We introduce below a convex subset of H0, which will play a central role in expressing the

limit of P(En). To this end, consider the polyhedral cone Co(S) generated by the zj’s, i.e.,

the column vectors of the incidence matrix Z associated with S (see Definition 5):

Co(S) :=






|F |∑

j=1

cjzj | cj ⇒ 0 for all j




 . (2.3)

It should be clear that for any vector v → Co(S), there exists a unique x → X (S) and a

unique non-negative real number c such that v = cx.

By our hypothesis, S has an odd cycle, so X (S) has rank (q≃ 1) (equivalently, the incidence

matrix Z has full rank) and hence, Co(S) has rank q.

Definition 7 A facet-defining hyperplane Hω of the polyhedral cone Co(S) is a co-

dimensional one subspace of Rq that satisfies the following two conditions:

1. There exist (q ≃ 1) linearly independent vectors zω1 , . . . , zωq→1 out of the columns of the

incidence matrix Z such that Hω is spanned by these vectors.

2. The subspace Hω is a supporting hyperplane for Co(S), i.e., there exists a vector vω → Rq

of unit length, perpendicular to Hω, such that

v
↘
ω x ⇒ 0, for all x → Co(S). (2.4)

It should be clear that if the vector vω in the above definition exists, then it is unique. We

denote by

H := {H1, . . . , Hk}

8



the collection of all facets-defining hyperplanes of Co(S) and, correspondingly, v1, . . . , vk

the associated unit vectors. One can thus use the so-called half-space representation [7] to

describe Co(S) (the description given in (2.3) is known as the vertex-representation):

Co(S) =
{
x → Rq

| v
↘
ω x ⇒ 0 for 1 ↘ ϱ ↘ k

}
. (2.5)

Given the generators z1, . . . , z|F | in (2.3), one can use, e.g., Quickhall algorithm [1] to find

all the facets-defining hyperplanes.

Using the half-space representation (2.5), we can express the edge polytope X (S) as follows:

X (S) =
{
x → H0 | v

↘
ω x ⇒ 0 for all 1 ↘ ϱ ↘ k

}
, (2.6)

and, consequently, the interior intX (S) and the boundary ϑX (S) as

intX (S) =
{
x → H0 | v

↘
ω x > 0 for all ϱ = 1, . . . , k

}
,

ϑX (S) =
{
x → H0 | v

↘
ω x = 0 for some ϱ = 1, . . . , k

}
.

Now, given the concentration vector x→, we let

H(x→) =
{
Hω → H | v

↘
ω x

→ = 0
}
. (2.7)

It should be clear that x→
→ ϑX (S) if and only if H(x→) is nonempty. Further, we let

#(x→) :=
{
ϖ → H0 | v

↘
ω ϖ > 0 for all Hω → H(x→)

}
. (2.8)

With the preliminaries above, we can now state the main result of this paper:

Theorem 2 (The residual case) Let W be a step-graphon, and let x→ and X (S) be the

associated concentration vector and the edge-polytope introduced in Definitions 3 and 6, re-

spectively. If S has an odd cycle and if x→
→ ϑX (S), then

lim
n↑↓

P(En) = P(ϖ→
→ #(x→)), (2.9)

where the event En is given in (1.1), ϖ→
↑ N(x→

,%) is the Gaussian random variable intro-

duced in Lemma 2, and #(x→) is given in (2.8).

9
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Figure 2.1: Three step-graphons shown in (a), (b), and (c) with the same skeleton graph,
but di!erent concentration vectors. The shaded region in (d) is the edge polytope X (S),
embedded in the standard simplex ”2. The red, green, and orange dots are the concen-
tration vectors x

→ for the above three step-graphons. We have that (a) x→
→ intX (S) and

limn↑↓ P(En) = 1; (b) x
→
→ ϑ(X (S)) and limn↑↓ P(En) = 0.5; and (c) x

→
/→ X (S) and

limn↑↓ P(En) = 0.

Note that if x→ belongs to only one facet-defining hyperplane, then #(x→) is reduced to an

open half-space of H0, with x
→ on the boundary of #(x→). Since the mean of ϖ→ is x

→ and

since the support of ϖ→ is the entire H0, we have that P(ϖ→
→ #(x→)) = 0.5. This statement

can be strengthened slightly as follows:

Corollary 3 Under the hypothesis of Theorem 2, we have that

lim
n↑↓

P(En) ↘ 0.5,

and the equality holds if and only if H(x→) is a singleton.

10



Chapter 3

Proof of Theorem 2

Consider the events A := {x(Gn) → intX (S)} and Bε := {x(Gn) → Bε(x→)}, where Bε(x→)

is the open ς-ball centered at x→, and A
→
ε := A ⇔ Bε. The following result can be obtained

from [3]:

Lemma 3 If S has an odd cycle, then there exists a su!ciently small ς > 0 such that

limn↑↓ P(En | A
→
ε) = 1.

To proceed, we write

P(En) = P(En ⇔A
→
ε) +P(En ⇔ ¬A

→
ε). (3.1)

We evaluate the two terms on the right hand side of (3.1).

First term: We have P(En ⇔ A
→
ε) = P(En | A

→
ε)P(A→

ε). By Lemma 3, P(En | A
→
ε) converges

to 1 as n ↓ ↔. For P(A→
ε), we note that

P(A)≃P(¬Bε) ↘ P(A→
ε) ↘ P(A).

Since x(Gn) ↓ x
→ as n ↓ ↔, P(¬Bε) ↓ 0. Using the squeeze theorem, we obtain that

P(A→
ε) ↓ P(A) as n ↓ ↔. Thus, P(En ⇔A

→
ε) converges to P(A) as n ↓ ↔.

Second term: We first use the fact that ¬A→
ε = ¬(A ⇐ Bε) to obtain that

P(En ⇔ ¬A
→
ε) ↘ P(En ⇔ ¬A) +P(En ⇔ ¬Bε). (3.2)

From [4], A is necessary for En, i.e., En ↖ A. It follows that P(En ⇔ ¬A) = 0. Using again

the fact that P(¬Bε) ↓ 0, we have that P(En⇔¬Bε) vanishes as n ↓ ↔. Thus, P(En⇔¬A
→
ε)

vanishes as n ↓ ↔.

11



Combining the arguments above, we have that P(En) ↓ P(A) as n ↓ ↔. It now su$ces to

establish

Proposition 4 Under the hypothesis of Theorem 2, it holds that

lim
n↑↓

P(x(Gn) → intX (S)) = P(ϖ→
→ #(x→)).

We establish below Proposition 4. Define an a$ne transformation Tn : Rq
↓ Rq as follows:

x → Rq
↙↓ Tn(x) :=

⇓
n(x≃ x

→) + x
→
,

which has the inverse given by

ϖ → Rq
↙↓ T

↗1
n (ϖ) :=

1
⇓
n
(ϖ ≃ x

→) + x
→
.

For each n → N, we define

#n(x
→) := {Tn(x) | x → intX (S)} . (3.3)

It should be clear from (2.2) that

x(Gn) → intX (S) ∝′ ϖ(Gn) = Tn(x(Gn)) → #n(x
→).

Using (2.6), we can characterize the set #n(x→) as follows:

Lemma 4 It holds that

#n(x
→) =

{
ϖ → H0 | v

↘
ω ϖ > ≃(

⇓
n≃ 1)v↘ω x

→ for 1 ↘ ϱ ↘ k
}
.

Proof. From its definition (3.3), we can re-write the set #n(x→) as

#n(x
→) =

{
ϖ → Rq

| T
↗1
n (ϖ) → intX (S)

}
.

12



Then, using (2.6), we have that ϖ → #n(x→) if and only if

T
↗1
n (ϖ) =

1
⇓
n
(ϖ ≃ x

→) + x
→
→ H0, (3.4)

and

v
↘
ω T

↗1
n (ϖ) > 0, for all ϱ = 1, . . . , k. (3.5)

We show that (3.4) holds if and only if ϖ → H0. Since x→
→ H0 and since H0 is a hyperplane,

we have that T↗1
n (ϖ) → H0 if and only if 1↘(ϖ≃x

→) = 0, which is equivalent to the condition

that ϖ → H0.

Next, for (3.5), we write

v
↘
ω T

↗1
n (ϖ) =

1
⇓
n
v
↘
ω ϖ +

(
1≃

1
⇓
n

)
v
↘
ω x

→
.

Thus,

v
↘
ω T

↗1
n (ϖ) > 0 ∝′ v

↘
ω ϖ > ≃(

⇓
n≃ 1)v↘ω x

→
.

This completes the proof.

We next establish the following result:

Lemma 5 There exists a constant φ > 0 such that for any n → N and for any ϖ → #(x→)≃

#n(x→),

∞ϖ∞ ⇒ (
⇓
n≃ 1)φ.

Proof. We first show that the vectors vω, for ϱ = 1, . . . , k span Rq. Suppose, to the con-

trary, that the vectors vω’s do not span Rq; then, there exists a nonzero vector x such that

v
↘
ω x = 0 for all ϱ = 1, . . . , k. But then, v↘ω (≃x) = 0 for all ϱ. It follows from the half-

space representation (2.5) of Co(S) that both x and ≃x belong to Co(S). However, using

the vertex-representation (2.3), we have that both x and ≃x can be represented as linear

combinations of the zj’s with nonnegative coe$cients. Since all the entries of the zj’s are

nonnegative, x can only be zero, which is a contradiction.

13



Next, note that by (2.7), if Hω → H(x→), then v
↘
ω x

→ = 0. Thus, by the definition (2.8) of

#(x→) and by Lemma 4, we have that

#(x→)≃ #n(x
→) =

{
ϖ → #(x→) | v↘ω ϖ ↘ ≃(

⇓
n≃ 1)v↘ω x

→ for all ϱ s.t. Hω ⇑→ H(x→)
}
.

Using the fact that the vω’s span Rq, there must exist at least one vector vω↑ such that

φ := v
↘
ω↑x

→
> 0,

which implies that Hω↑ ⇑→ H(x→). It follows that if ϖ → #(x→)≃ #n(x→), then

v
↘
ω ϖ ↘ ≃(

⇓
n≃ 1)v↘ω↑x

→ = ≃(
⇓
n≃ 1)φ.

Finally, using Cauchy-Schwarz inequality and the fact that vω↑ is a unit vector, we have that

∞ϖ∞ ⇒
|v

↘
ω↑ϖ|

∞vω↑∞
⇒ (

⇓
n≃ 1)φ.

This completes the proof.

With the lemmas above, we are now in the position to prove Proposition 4.

Proof of Proposition 4. We have that

|P(ϖ(Gn) → #n(x
→))≃P(ϖ→

→ #(x→))| ↘

|P(ϖ(Gn) → #n(x
→))≃P(ϖ(Gn) → #(x→))| (3.6)

+ |P(ϖ(Gn) → #(x→))≃P(ϖ→
→ #(x→))| (3.7)

We show below that the two terms (3.6) and (3.7) converge to 0 as n ↓ ↔.

Proof that (3.6) vanishes. First, we write that

P(ϖ(Gn) → #(x→))≃P(ϖ(Gn) → #n(x
→)) = P(ϖ(Gn) → #(x→)≃ #n(x

→)). (3.8)

By Lemma 5, if ϖ(Gn) → #(x→)≃ #n(x→), then

∞ϖ(Gn)∞ ⇒ (
⇓
n≃ 1)φ,

14



for some φ > 0 and hence, by triangle inequality, we have that

∞ϖ(Gn)≃ x
→
∞ ⇒ (

⇓
n≃ 1)φ ≃ ∞x

→
∞.

The above arguments then imply that

P(ϖ(Gn) → #(x→)≃ #n(x
→)) ↘ P(∞ϖ(Gn)≃ x

→
∞ ⇒ (

⇓
n≃ 1)φ ≃ ∞x

→
∞). (3.9)

We will now use the Chebyshev’s inequality to bound the expression on the right hand side

of (3.9). To this end, we recall that nx(Gn) is a multinomial random variable with n trials,

q events, and x
→
i ’s the event probabilities. It is well known that E[nx(Gn)] = nx

→ and,

moreover, its covariance matrix is given by

Cov(nx(Gn)) = n%,

where % is given in Lemma 2. Using (2.2), we have that

ϖ(Gn) =
1
⇓
n
(nx(Gn)≃ nx

→) + x
→
,

which implies that E[ϖn] = x
→ and

Cov(ϖ(Gn)) =
1

n
Cov(nx(Gn)) = %. (3.10)

Now, using Chebyshev’s inequality, we obtain that for any n large enough so that (
⇓
n≃1)φ >

∞x
→
∞,

P(∞ϖ(Gn)≃ x
→
∞ ⇒ (

⇓
n≃ 1)φ ≃ ∞x

→
∞) ↘

tr(%)

[(
⇓
n≃ 1)φ ≃ ∞x→∞]

2 . (3.11)

The right hand side of (3.11) vanishes as n ↓ ↔. Consequently, by (3.8), (3.9), and (3.11),

we have that (3.6) vanishes as n ↓ ↔.

Proof that (3.7) vanishes. This follow from Lemma 2; indeed, since the random vari-

able ϖ(Gn) converges in distribution to the Gaussian random variable ϖ
→, we have that

limn↑↓ P(ϖ(Gn) → #(x→)) = P(ϖ→
→ #(x→)).
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Chapter 4

Numerical Study

In this section, we conduct numerical studies for three step-graphons, presented in three

subsections. For each step-graphon Wi, for i = 1, 2, 3, we sampled graphs εGn ↑ Wi of

di!erent orders n. For each n, we sample N = 10, 000 such graphs and compute the empirical

probability that εGn has a Hamiltonian decomposition (HD).

4.1 Example 1

Consider the step-graphon W1 in Fig. 4.1a, with the concentration vector x→ = 1
3(1, 1, 1) on

the boundary of the edge polytope shown in Fig. 4.1b. The associated incidence matrix Z

is given by

Z =
1

2




1 0 0 0

0 1 2 0

1 1 0 2



 .

The extremal generators of X (S) are z1, z3, and z4 (note that z2 = (z3 + z4)/2). There are

three facet-defining hyperplanes Hω, with the corresponding unit normal vectors vω given by

H1 = span{z3, z4} v1 = (1, 0, 0),

H2 = span{z1, z3} v2 =
1
⇓
2
(≃1, 0, 1),

H3 = span{z1, z4} v3 = (0, 1, 0).

Note that v↘ω x
→ = 0 if and only if ϱ = 2. By Corollary 3, P(ϖ→

→ #(x→)) = 0.5. We validate

the result in Fig. 4.2 where we plotted the empirical probability that εGn ↑ W1 has an HD

for n → {20, 60, 100, 200, 300, 400, 500}.
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Figure 4.1: (a) The step-graphon W1. (b) The associated edge polytope X (S) with concen-
tration vector x→.
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Figure 4.2: Empirical probability that εGn ↑ W1 has an HD.

4.2 Example 2

Consider the step-graphonW2 in Fig. 4.4a with the concentration vector x→ = 1
8(2, 2, 1, 1, 1, 1).

The associated skeleton graph is given in Fig. 4.3.

The associated incidence matrix Z is given by:

Z =
1

2





1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




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u1

u2u3

u4

u5u6

Figure 4.3: Skeleton graph associated with W2 and W3

In this case, all the columns of Z are extremal generators [4]. There are six facet-defining

hyperplanes Hω (each of which is spanned by all but one zj’s), with the corresponding vω

given by
H1 = span{z1, z2, z3, z4, z5} v1 = (0, 0, 0, 0, 0, 1),

H2 = span{z1, z2, z3, z4, z6} v2 = (0, 0, 0, 0, 1, 0),

H3 = span{z1, z2, z3, z5, z6} v3 =
1
⇓
6
(≃1, 1, 1, 1,≃1,≃1),

H4 = span{z1, z2, z4, z5, z6} v4 = (0, 0, 0, 1, 0, 0),

H5 = span{z1, z3, z4, z5, z6} v5 =
1
⇓
6
(1,≃1, 1,≃1, 1,≃1),

H6 = span{z2, z3, z4, z5, z6} v6 =
1
⇓
6
(1, 1,≃1,≃1,≃1, 1).

Observe that v
↘
ω x

→ = 0 for ϱ = 3, 5. In Fig. 4.5, we plot the empirical probability of the

event εGn has an HD for n → {50, 100, 200, 300, 400, 500, 700, 1000, 1200, 2000} and compare

the results with the empirical probability of the event ϖ
→
→ #(x→) where we draw 200, 000

i.i.d. Gaussian random variables from N(x→
,%).
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Figure 4.4: (a) Step-graphon W2. (b) Step-graphon W3.
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Figure 4.5: Empirical probability that εGn ↑ W2 has an HD and empirical probability that
ϖ
→
→ #(x→) (with 200,000 samples), which is approximately 0.16699.

4.3 Example 3

Finally, we consider the step-graphon W3 shown in Fig. 4.4b with the concentration vec-

tor x
→ = 1

6(1, 1, 1, 1, 1, 1). Note that W2 and W3 share the same skeleton graph, the in-

cidence matrix Z, and the collection of facet-defining hyperplanes. However, in this case,

we have that v
↘
ω x

→ = 0 for ϱ = 3, 5, 6, so H(x→) = {H3, H5, H6} (compared to the pre-

vious case where H(x→) = {H3, H5}). Similar to what has been done for the previous

case, we plot in Fig. 4.6 the empirical probability of the event that εGn has an HD for

n → {50, 100, 200, 300, 400, 500, 700, 1000, 1500, 2000} and compare the results with the em-

pirical probability of the event ϖ→
→ #(x→).

4.4 Conclusion

In this paper, we draw random graphs εGn from a step-graphon W and investigate the

probability that εGn has a Hamiltonian decomposition as n ↓ ↔. It has been shown in the

earlier works that for almost all step-graphons W , this probability converges to either zero

or one, depending on whether the associated edge polytope X (S) is full rank and whether

the concentration vector x→ is contained in (the relative interior of) X (S) (see Theorem 1).

The case that had been left out was the one such that X (S) has full rank and x
→
→ ϑX (S),

we termed such case the residual case. A major contribution of this paper is to show that the
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Figure 4.6: Empirical probability that εGn ↑ W3 has an HD and empirical probability that
ϖ
→
→ #(x→) (with 200,000 samples), which is approximately 0.04446.

aforementioned probability still converges and to provide an explicit expression of the limit.

The main result has been formulated in Theorem 2, with the proof presented in Chapter 3

and numerical validations in Chapter 4.
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