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ABSTRACT OF THE THESIS
On the H-property for Step-graphons: Residual Case
by
Wanting Gao
Master of Science in Engineering Data Analytics and Statistics
Washington University in St. Louis, 2025

Professor Xudong Chen, Chair

We investigate the H-property for step-graphons. Specifically, we sample graphs G, on n
nodes from a step-graphon and evaluate the probability that G,, has a Hamiltonian decom-
position in the asymptotic regime as n — oo. It has been shown in [3, 4] that for almost
all step-graphons, this probability converges to either zero or one. We focus in this paper
on the residual case where the zero-one law does not apply. We show that the limit of the
probability still exists and provide an explicit expression of it. We present a complete proof

of the result and validate it through numerical studies.



Chapter 1

Introduction

A graphon [6] W is a symmetric, measurable function W : [0,1]*> — [0,1] (i.e., W (s,t) =
W (t,s)). It can be used as a stochastic model to sample random graphs. The sampling
procedure will be described at the beginning of Subsection 1.1. Graphons generalize Erdos-
Rényi random graph models by introducing heterogeneous edge densities for different pairs

of nodes.

The so-called H-property of a graphon W, introduced in [3, 4], is roughly speaking the
property that a graph G,, on n nodes sampled from the graphon W has a Hamiltonian de-
composition almost surely as n — co. A precise formulation will be given shortly. The study
of the H-property stems from structural system theory, which investigates the impacts of
networks structures (represented by graphs) on control system properties. The importance
of having a Hamiltonian decomposition lies in the fact that it is necessary and sufficient
(together with some mild condition on connectivity) for a graph to sustain ensemble con-
trollability [5] and stability [2].

A step-graphon W is a special graphon such that its domain can be partitioned into rectangles

over which W is constant (see Definition 2 and Fig. 1.1 for illustration).

It has been shown in [3, 4] that the H-property is essentially a zero-one property for the class
of step-graphons. Specifically, for almost all step-graphons, the probability that the graph
G, ~ W has a Hamiltonian decomposition converges to either 0 or 1 as n — oo. Moreover,
whether it converges to 0 or 1 depends only on the support of W. We will review and state
the result (Theorem 1) in Subsection 1.2.

In this paper, we continue to investigate the H-property within the class of step-graphons.
We deal with what we term the “residual case”, i.e., the case where the aforementioned

probability does not converge to 0 or 1. Among others, we show in Theorem 2 that the limit
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Figure 1.1: (a) A step-graphon W with partition o = (0,0.25,0.5,0.75,1), where shading
indicates values from 0 (white) to 1 (black). (b) The associated skeleton graph S. (c¢) An
undirected graph G sampled from W. (d) The directed graph G obtained from G, with
cycles Dy = vyv9vav3v1 and Dy = v5vgvs forming a Hamiltonian decomposition of G.

of the probability still exists as n — co. Moreover, we provide an explicit expression of the

limiting value. Our result, together with Theorem 1, exhaust all possible scenarios.

In the remainder of this section, we introduce the H-property and recall the almost zero-one
property. Next, in Chapter 2, we state the main result of this paper and then, in Chapter 3,
present the proof. In Chapter 4, we conduct numerical study to validate the main result.

This paper ends with conclusions.

1.1 The H-property

We introduce below the two-step procedure for sampling an undirected graph G,, = (V, E)

with n nodes from a graphon W:

1. Sample y1, ..., y, ~ Uni[0, 1] independently, where Uni|0, 1] is the uniform distribution

over the interval [0, 1]. We call y; the coordinate of node v; € V.



2. For any two distinct nodes v; and v;, place an edge (v;,v;) € E with probability
W (i, y5)-

Note that there is no self-loop in G,,.

Given G,, ~ W, we denote by G, = (V, E) the directed version of G, obtained by replac-
ing each undirected edge (v;,v;) of G, with two oppositely oriented edges v;v; and v,v;.

Specifically, the edge set of G, is given by
E = {Uﬂ)j,’l}jvi ‘ (’Ui,’Uj) € E}

With slight abuse of notation, we write G, ~ W. The directed graph G, is said to have a
Hamiltonian decomposition if it contains a subgraph G/, = (V, E’), with the same node set,
such that C:'”n is a disjoint union of directed cycles. For convenience, we define &, to be the
event:

&, := G, ~ W has a Hamiltonian decomposition. (1.1)

The H-property mentioned above can now be precisely defined as follows:

Definition 1 (H-property) A Graphon W has the H-property if

lim P (&,) = 1.

n—oo

1.2 Step-graphons and the almost zero-one property

We start by introducing the step-graphons.

Definition 2 (Step-graphon and its partition) A graphon W is a step-graphon if
there exists a sequence 0 = oy < 01 < -+ < 0, = 1 such that W is constant on each
rectangle [0;,0,41) X [0j,0511) for all 0 < 1,7 < ¢ —1. We call 0 = (09,01,...,04) a

partition for W.

We next introduce the key objects that are essential for deciding whether a step-graphon

has the H-property.



Definition 3 (Concentration vector) Let W be a step-graphon with partition o =
(00,...,04). The associated concentration vector z* = (z7,...,2;) has entries defined as
follows:

*

x; =0, —0,_1, foralli=1,...,q.

Note, in particular, that

q
x; >0 foralli=1,...,¢q, and mezl.
i=1

Definition 4 (Skeleton graph) To a step-graphon W with a partition o = (oy,...,0,),
we assign the undirected graph S = (U, F') on q nodes, with U = {uy,...,u,} and edge set
F defined as follows: there is an edge between u; and u; if and only if W is non-zero over

(0i—1,0;) X [0j_1,0;). We call S the skeleton graph of W for the partition o.

Note that the concentration vector z* and the skeleton graph S combined determines com-
pletely the support of the graphon W. In the sequel, we assume that S is connected, which
is equivalent to the condition that W is not block-diagonal up to a measure-preserving map

on the interval [0, 1].

We decompose the edge set F' of S as
F - FO U F1>

where elements of F{, are self-loops, and elements of F; are edges between distinct nodes.

We introduce the node-edge incidence matrix associated with .S in the following definition.

Definition 5 (Incidence matrix) Let S = (U, F') be a skeleton graph. Given an arbitrary
ordering of its edges and self-loops, we let Z = [z;;] be the associated incidence matrix,

defined as the |U| x |F| matriz with entries:

2, if f; € Fy is a loop on node u;,
Zij = 5 8 1, if node u; is incident to f; € Fi,

0, otherwise.



Note that the columns of Z are probability vectors, i.e., all entries are nonnegative and sum

to one.

The so-called edge polytope of S is defined as the convex hull of the columns of the matrix

7. Precisely, we have

Definition 6 (Edge polytope) Let S = (U, F) be a skeleton graph and Z be the associated
incidence matriz, with z;, for 1 < j < |F|, the columns of Z. The edge polytope of S,
denoted by X(S), is the finitely generated conver hull:

|F| |F|
X(S) = chzj | ch =1 andc; >0 forall j
j=1

J=1

The rank of the polytope X(S) is the dimension of its relative interior, which we denote by
int X(.S). Since X'(S) is contained in the standard (¢ —1)-simplex, its rank is bounded above
by (¢ — 1), and it can achieve full rank (¢ — 1) if and only if the incidence matrix Z has full

(row) rank (i.e., rank gq).

The following result [8] relates full rankness of X'(.S) to the existence of an odd cycle in S—a

cycle in S is odd if it contains an odd number of distinct nodes (a self-loop is an odd cycle).

Lemma 1 Let S be the skeleton graph of W on g nodes. Suppose that S is connected; then,

—1 of S has an odd cycle,
rank X (S) = K / Y

q—2 otherwise.

As mentioned earlier, it has been shown in [3, 4] that the H-property is essentially a zero-one
property in a sense that the probability of the event &, tends to be either 0 or 1. Precisely,

we have the following result:

Theorem 1 Let W be a step-graphon, with o a partition. Let x* and S be the associated
concentration vector and the skeleton graph (which is assumed to be connected), respectively.

Then, the following hold:



1. If S has an odd cycle and if x* € int X'(S), then

lim P(&,) = 1.

n—oo

2. If S does not have an odd cycle or if z* ¢ X(S), then

lim P(&,) = 0.

n—oo



Chapter 2

Main Result for the Residual Case

In this section, we evaluate the limit of P(&,) as n — oo for the case left out by Theorem 1,
namely, the case where S has an odd cycle (so X'(S) has full rank by Lemma 1) and z*
belongs to the boundary of the edge polytope, i.e.,

2t € 9X(S) = X(S) — int X(S).

We need a few preliminaries to state the main result of this paper. Given a graph G,, ~ W,
we let n;(G),) be the number of nodes v; of G,, whose coordinates y; € [0;_1,0;). Then, the

empirical concentration vector of GG, is defined to be:

2(G) = %(nl(Gn), e ng(G)). 2.1)

It follows from the step 1 of the sampling procedure in Subsection 1.1 that nz(G,) is a

multinomial random variable with n trials, ¢ events, and x}’s the event probabilities.

Next, we define the random variable

The following result is known [4]:

Lemma 2 The random variable w(G,,) defined in (2.2) converges in distribution to the Gaus-

stan random variable
w* ~ N(z*,%), with ¥ := Diag(z*) — z*z* ",

where Diag(z*) is the diagonal matriz whose iith entry is x.



Let Hy be the hyperplane in R? that contains the standard simplex, i.e.,
Ho:={veR!|v'1=1}.

The covariance matrix ¥ given in Lemma 2 has rank (¢ — 1), with the null space spanned
by the vector 1. In particular, since the mean of w* is z*, which belongs to Hy, the support

of w* is Hy.

We introduce below a convex subset of Hy, which will play a central role in expressing the
limit of P(&,). To this end, consider the polyhedral cone Co(S) generated by the z;’s, i.e.,

the column vectors of the incidence matrix Z associated with S (see Definition 5):

|F|
Co(S) := chzj |c; >0forallyjp. (2.3)

J=1

It should be clear that for any vector v € Co(S), there exists a unique z € X(S) and a

unique non-negative real number ¢ such that v = cx.

By our hypothesis, S has an odd cycle, so X'(.S) has rank (¢ — 1) (equivalently, the incidence
matrix Z has full rank) and hence, Co(S) has rank g¢.

Definition 7 A facet-defining hyperplane H, of the polyhedral cone Co(S) is a co-

dimensional one subspace of R? that satisfies the following two conditions:

1. There exist (¢ — 1) linearly independent vectors zy,, ..., zy,_, out of the columns of the

q—1

incidence matriz Z such that H, is spanned by these vectors.

2. The subspace Hy is a supporting hyperplane for Co(S), i.e., there exists a vector v, € R?
of unit length, perpendicular to Hy, such that

v/ x>0, forall x € Co(S). (2.4)

It should be clear that if the vector v, in the above definition exists, then it is unique. We

denote by
H = {Hla---ka}



the collection of all facets-defining hyperplanes of Co(S) and, correspondingly, vy, ..., v
the associated unit vectors. One can thus use the so-called half-space representation [7] to

describe Co(S) (the description given in (2.3) is known as the vertez-representation):
Co(S)={zeR?|v/a>0for1 <¢<k}. (2.5)

Given the generators zi,. .., zp in (2.3), one can use, e.g., Quickhall algorithm [1] to find

all the facets-defining hyperplanes.
Using the half-space representation (2.5), we can express the edge polytope X (S) as follows:
X(S)={xeHy|v/x>0forall<(<k}, (2.6)
and, consequently, the interior int X'(S) and the boundary 0X(S) as
int X¥(S)={z € Hy|v/jz>0forall{=1,... .k},

0X(S)={x € Hy|v/z=0forsome { =1,...,k}.

Now, given the concentration vector x*, we let
H(z*)={H, e H|v/a*=0}. (2.7)
It should be clear that z* € dX'(S) if and only if H(z*) is nonempty. Further, we let

Q(z*) == {w € Hy | v/w > 0 for all H, € H(z*)}. (2.8)

With the preliminaries above, we can now state the main result of this paper:

Theorem 2 (The residual case) Let W be a step-graphon, and let z* and X(S) be the
associated concentration vector and the edge-polytope introduced in Definitions 3 and 6, re-
spectively. If S has an odd cycle and if x* € 0X(S), then

lim P(&,) = P(w" € Q(z")), (2.9)

n—00

where the event &, is given in (1.1), w* ~ N(z*,X) is the Gaussian random variable intro-

duced in Lemma 2, and Q(z*) is given in (2.8).

9
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Figure 2.1: Three step-graphons shown in (a), (b), and (¢) with the same skeleton graph,
but different concentration vectors. The shaded region in (d) is the edge polytope X'(S),
embedded in the standard simplex A% The red, green, and orange dots are the concen-
tration vectors z* for the above three step-graphons. We have that (a) z* € int X'(S5) and
lim, . P(&,) = 1; (b) 2* € 9(X(S)) and lim,,_, P(&,) = 0.5; and (c) z* ¢ X(S) and
lim, o, P(&,) = 0.

Note that if 2* belongs to only one facet-defining hyperplane, then Q(z*) is reduced to an
open half-space of Hy, with z* on the boundary of Q(z*). Since the mean of w* is z* and
since the support of w* is the entire Hy, we have that P(w* € ©(z*)) = 0.5. This statement
can be strengthened slightly as follows:

Corollary 3 Under the hypothesis of Theorem 2, we have that
lim P(&,) < 0.5,

n—o0

and the equality holds if and only if H(x*) is a singleton.

10



Chapter 3

Proof of Theorem 2

Consider the events A := {z(G,) € int X(5)} and B, := {z(G,) € B.(z*)}, where B.(z*)
is the open e-ball centered at z*, and A} := AN B.. The following result can be obtained
from [3]:

Lemma 3 If S has an odd cycle, then there exists a sufficiently small € > 0 such that
lim, o P(&, | AY) = 1.

To proceed, we write
P&, =PE. NA)+PE, N-AL). (3.1)

We evaluate the two terms on the right hand side of (3.1).

First term: We have P(&, N Af) = P(&, | Af)P(AZ). By Lemma 3, P(E, | Af) converges
to 1 as n — oco. For P(A%¥), we note that

P(A) = P(-B.) < P(AD) < P(A).

Since z(G,) — x* as n — oo, P(—=B.) — 0. Using the squeeze theorem, we obtain that
P(Af) — P(A) as n — oo. Thus, P(&, N AZ) converges to P(A) as n — oo.

Second term: We first use the fact that —.A* = —(.A U B.) to obtain that

P(E, N -A%) < P(E, N —A) + P(E, N-B.). (3.2)

From [4], A is necessary for &,, i.e., &, C A. It follows that P(&, N —.A4) = 0. Using again
the fact that P(—=B.) — 0, we have that P (&, N—B;) vanishes as n — co. Thus, P(&,N—.A%)

vanishes as n — oo.

11



Combining the arguments above, we have that P(€,) — P(A) as n — oco. It now suffices to
establish

Proposition 4 Under the hypothesis of Theorem 2, it holds that

lim P(z(G,) € int X(5)) = P(w* € Q(z7)).

n—oo

We establish below Proposition 4. Define an affine transformation 7;, : R? — R? as follows:
r € R T,(z) = vn(z —2*) + 2*,
which has the inverse given by

wERI T Hw) = (w—2a2") + 2"

Si-

For each n € N, we define
Q(z") =A{T(z) | z € int X(5)}. (3.3)
It should be clear from (2.2) that
2(Gp) € it X(9) <= w(G,) =T, (x(Gy)) € Q,(x7).

Using (2.6), we can characterize the set Q,(x*) as follows:

Lemma 4 It holds that

Qu(z*) ={we Hy |v/w>—(v/n—1)v/a* for 1 <L < k}.

Proof. From its definition (3.3), we can re-write the set Q,,(z*) as

Qu(z*) = {w e R | T (w) € int X(5)} .

12



Then, using (2.6), we have that w € §,,(2*) if and only if

T (w) = %(w _ o)+ 2 € Hy, (3.4)

and

v, T (w) >0, foralll=1,... k. (3.5)

We show that (3.4) holds if and only if w € Hy. Since x* € Hy and since Hy is a hyperplane,
we have that 77} (w) € Hy if and only if 17 (w —2*) = 0, which is equivalent to the condition
that w € H,.

Next, for (3.5), we write

Thus,

This completes the proof.

We next establish the following result:

Lemma 5 There exists a constant 6 > 0 such that for any n € N and for any w € Q(x*) —
O, (z%),
lwll > (Vn —1)d.

Proof. We first show that the vectors v,, for £ = 1,... k span R?. Suppose, to the con-
trary, that the vectors v,’s do not span R?; then, there exists a nonzero vector x such that
vjx = 0 for all £ = 1,... k. But then, v/ (—z) = 0 for all £. It follows from the half-
space representation (2.5) of Co(S) that both z and —xz belong to Co(S). However, using
the vertex-representation (2.3), we have that both = and —xz can be represented as linear
combinations of the z;’s with nonnegative coefficients. Since all the entries of the z;’s are

nonnegative, z can only be zero, which is a contradiction.

13



Next, note that by (2.7), if H, € H(z*), then v/ z* = 0. Thus, by the definition (2.8) of
Q(x*) and by Lemma 4, we have that

Qz*) — Q) = {w € Qx*) | v/ w < —(v/n — L)v/ 2" for all £ s.t. Hy & H(z")}.
Using the fact that the v,’s span RY, there must exist at least one vector vy« such that
§:=uvia* >0,
which implies that Hy & H(z*). It follows that if w € Q(z*) — Q,,(z*), then

vy w < —(vn — Dotz = —(v/n — 1)6.

Finally, using Cauchy-Schwarz inequality and the fact that vy« is a unit vector, we have that

-]

[|ve- ]

lwl] =

> (vn —1)d.

This completes the proof.

With the lemmas above, we are now in the position to prove Proposition 4.
Proof of Proposition 4. We have that

[P(w(Gy) € Qu(27)) — P(w™ € Q(2"))] <
IP(w(Gy) € Qn(27)) — P(w(Gn) € Qz"))| (3.6)
+ |P(w(G,) € Q")) — P(w* € Q(z"))| (3.7)

We show below that the two terms (3.6) and (3.7) converge to 0 as n — oc.
Proof that (3.6) vanishes. First, we write that

P(w(G,) € Q(z")) — P(w(G,) € Q(2%)) = P(w(G,) € Q(z*) — Q,(z7)). (3.8)
By Lemma 5, if w(G,,) € Q(z*) — Q,(z*), then

lw(Gn)ll = (vn = 1)6,

14



for some d > 0 and hence, by triangle inequality, we have that
lw(Gn) = 2*[| = (Vn = 1)3 — [|="]].
The above arguments then imply that

P(w(Gn) € Qz") = Qu(27)) < P([lw(Gn) — 27| = (VR —1)d — [|l2"[]). (3.9)

We will now use the Chebyshev’s inequality to bound the expression on the right hand side
of (3.9). To this end, we recall that nz(G,,) is a multinomial random variable with n trials,
q events, and x}’s the event probabilities. It is well known that E[nxz(G,)|] = nz* and,

moreover, its covariance matrix is given by
Cov(nz(G,)) = nd,
where 3 is given in Lemma 2. Using (2.2), we have that

w(Gp) = (nx(Gy) —nx*) + z*,

1
Vvn
which implies that E[w,] = 2* and

Cov(w(Gy)) = %Cov(nx(Gn)) =2. (3.10)

Now, using Chebyshev’s inequality, we obtain that for any n large enough so that (y/n—1)0 >

1],
tr(X)

5.
[(v/n = 1)8 — [l~]]
The right hand side of (3.11) vanishes as n — oo. Consequently, by (3.8), (3.9), and (3.11),

we have that (3.6) vanishes as n — oo.

P(|lw(Gn) — 2™ = (Vn = 1)0 — [|l2"])) < (3.11)

Proof that (3.7) vanishes. This follow from Lemma 2; indeed, since the random vari-

able w(G,,) converges in distribution to the Gaussian random variable w*, we have that

lim, 0 P(w(G,) € Qz%)) = P(w* € Q(z%)).

15



Chapter 4
Numerical Study

In this section, we conduct numerical studies for three step-graphons, presented in three
subsections. For each step-graphon W;, for ¢ = 1,2,3, we sampled graphs én ~ W; of
different orders n. For each n, we sample N = 10, 000 such graphs and compute the empirical

probability that G, has a Hamiltonian decomposition (HD).

4.1 Example 1

Consider the step-graphon W in Fig. 4.1a, with the concentration vector z* = %(1, 1,1) on
the boundary of the edge polytope shown in Fig. 4.1b. The associated incidence matrix Z

is given by

1
Z ==
2

== =
[
o NN O
N O O

The extremal generators of X'(S) are zi, z3, and z4 (note that zo = (23 + 24)/2). There are

three facet-defining hyperplanes H,, with the corresponding unit normal vectors v, given by

Hl = Span{zfia 24} U1 = (17 070)7

1
H2 = Span{zla 23} Vg = _<_170a 1)a

V2
Hj3 =span{zy, z4} w3 =(0,1,0).

Note that v/ z* = 0 if and only if £ = 2. By Corollary 3, P(w* € Q(z*)) = 0.5. We validate
the result in Fig. 4.2 where we plotted the empirical probability that G, ~ Wi has an HD
for n € {20, 60, 100, 200, 300, 400, 500}.
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Figure 4.1: (a) The step-graphon Wj. (b) The associated edge polytope X (S) with concen-
tration vector z*.
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Figure 4.2: Empirical probability that G, ~ Wi has an HD.

4.2 Example 2

Consider the step-graphon W5 in Fig. 4.4a with the concentration vector 2* = £(2,2,1,1,1,1).

)Y ) Ty

The associated skeleton graph is given in Fig. 4.3.

The associated incidence matrix Z is given by:

(11100 0
100110
S, L0101 001
21001000
000010
00000 1
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Figure 4.3: Skeleton graph associated with W5 and W3

In this case, all the columns of Z are extremal generators [4]. There are six facet-defining

hyperplanes H, (each of which is spanned by all but one z,’s), with the corresponding v,

given by
Hl = Spa’n{zh 29y R34y R4, 25}

H, = span{21, 22, %3, #4, ZG}
H3 = Span{Zh 227 Z37 257 26}
Hy = span{zy, 29, 24, 25, 26 }

H5 - Spa’n{zh 23y %44 25, ZG}

H6 = Spa’n{'zQ? 23, R4, 25, 26}

v = (0,0,0,0,0,1),
V2 = (070707()’]-70)7

1
vy = %(—1,1,171,—1,—1),
Vy = (0707071a070)7
1
vy = %(1,—1,17—1,1,—1),
1
Ve = 1,—1,-1,-1,1).

Vs

Observe that v) 2* = 0 for £ = 3,5. In Fig. 4.5, we plot the empirical probability of the
event én has an HD for n € {50, 100, 200, 300, 400, 500, 700, 1000, 1200, 2000} and compare
the results with the empirical probability of the event w* € Q(z*) where we draw 200, 000

i.i.d. Gaussian random variables from N(z*, X).

e[ N)

[e I

oot

o]}

(e
L

2/8

4/8
5/8
6/8
7/8

s¥

(a)

4/6
5/6

s¥

(b)

Figure 4.4: (a) Step-graphon Wj. (b) Step-graphon Wij.
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Figure 4.5: Empirical probability that G, ~ W, has an HD and empirical probability that
w* € Q(z*) (with 200,000 samples), which is approximately 0.16699.

4.3 Example 3

Finally, we consider the step-graphon W3 shown in Fig. 4.4b with the concentration vec-
tor z* = é(l, 1,1,1,1,1). Note that W5 and W3 share the same skeleton graph, the in-
cidence matrix Z, and the collection of facet-defining hyperplanes. However, in this case,
we have that v/ 2* = 0 for £ = 3,5,6, so H(x*) = {Hs, Hs, Hs} (compared to the pre-
vious case where H(z*) = {Hs, H5}). Similar to what has been done for the previous
case, we plot in Fig. 4.6 the empirical probability of the event that G, has an HD for
n € {50,100, 200, 300, 400, 500, 700, 1000, 1500, 2000} and compare the results with the em-
pirical probability of the event w* € Q(z*).

4.4 Conclusion

In this paper, we draw random graphs én from a step-graphon W and investigate the
probability that én has a Hamiltonian decomposition as n — oo. It has been shown in the
earlier works that for almost all step-graphons W, this probability converges to either zero
or one, depending on whether the associated edge polytope X'(S) is full rank and whether
the concentration vector z* is contained in (the relative interior of) X'(S) (see Theorem 1).
The case that had been left out was the one such that X'(S) has full rank and z* € 0X'(5),

we termed such case the residual case. A major contribution of this paper is to show that the
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Figure 4.6: Empirical probability that G, ~ W3 has an HD and empirical probability that
w* € Q(z*) (with 200,000 samples), which is approximately 0.04446.

aforementioned probability still converges and to provide an explicit expression of the limit.
The main result has been formulated in Theorem 2, with the proof presented in Chapter 3

and numerical validations in Chapter 4.
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