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Abstract—The terahertz (THz) spectrum holds immense po-
tential for advanced wireless communication systems due to
abundant available bandwidth and high data rates. However,
a major challenge in deploying THz systems is susceptibility
to blockage, which can greatly impair signal propagation and
negatively affect the reliability of the communication link. This
paper focuses on applying self-accelerated beams for blockage
mitigation at THz frequencies. These beams can follow curved
trajectories as they propagate in free space. Trajectories can be
engineered to overcome physical obstacles present in the beam
path. As we show through extensive simulations, self-accelerated
beams perform better than conventional Gaussian beams in terms
of received power when obstacles are present. This approach
offers new possibilities for reliable THz communications in
practical deployment scenarios.

Index Terms—THz spectrum, 6G, Beyond-6G, near-field com-
munications, Airy beams, caustic beams, trajectory engineering.

I. INTRODUCTION

The adoption of high-frequency terahertz (THz, 300 GHz–

3 THz) bands is widely regarded as a key enabling technol-

ogy for future wireless communications systems employed

in sixth-generation (6G) networks and beyond [1]–[3]. Cur-

rent experimental sub-THz testbeds have successfully demon-

strated data transmission rates of several hundreds of Gbps [4]

with a recent milestone achieving 1.44 Tbps [5]. The latter

value already exceeds one terabit-per-second aim tentatively

set as a target peak data rate for 6G [6].

Despite these promising advancements, many challenges

remain and impede the widespread deployment of THz-based

wireless communication systems. The reliability of wireless

THz links is one of the major concerns. As free-space path loss

(assuming omnidirectional antennas on both sides) increases

quadratically with frequency, it becomes a critical limitation in

the THz band. For example, a 1-meter link at 300 GHz may

experience as much as 80 dB of losses. Hence, prospective

THz links will rarely utilize omnidirectional (or even quasi-

omni) in next-generation wireless networks. A standard strat-

egy to counter these high losses is to use highly directional

“pencil-like” beams generated by high-gain antennas [7]. The

antenna gains can counterbalance the spreading losses: when

antenna gains and transmit powers are carefully selected,

multi-kilometer-long THz links can become a reality [8].

Hence, the use of highly-directional antennas becomes de-

facto mandatory for prospective THz communications in 6G

and beyond-6G networks.

The use of highly-directional THz antennas however brings

its own challenges. First, besides the complexity and asso-

ciated costs, these high-gain antennas also make THz com-

munication system even more vulnerable to possible beam

blockage, as most of the transmitted energy gets concentrated

over a unique narrow path [9], [10]. As most common ob-

jects, including human bodies (i.e., other people around the

user), significantly attenuate THz signals, blockage mitigation

becomes one of the essential challenges to address in THz

systems [11], [12].

Second, high-gain antennas typically feature large electrical

apertures. As the aperture size D increases, so does the extent

of the near-field region, delimited by the Fraunhofer distance:

2D2/λ [13]. Given the submillimeter wavelengths at THz

frequencies, the near-field region can extend surprisingly far,

even with cm-scale physical apertures. For instance, a 15-cm

aperture at 300 GHz has a near-field region of up to 45 meters.

This raises the real possibility that users in a wireless area

network can be predominantly located in the near-field region

of a THz access point.

This realization has sparked extensive research into the

effects of operating in the near-field region at THz frequencies

[14]–[20]. While challenges such as non-planar wavefronts

and near-field beam squint exist [21], numerous advantages

can be exploited. We have recently pointed out the possibility

of engineering exotic optics-inspired wavefronts that have

no equivalent in the far-field [15]. These wavefronts include

focused beams that can locally increase the energy at specific

locations, as well as Bessel beams capable of reconstructing

themselves after blockage (“self-healing”) [22].

Furthermore, we introduced the class of self-accelerated

beams for near-field communications at THz frequencies [23].

This class includes Airy and caustic beams which possess the

intriguing property of following curved trajectories as they

propagate in the near-field. In particular, we experimentally

showed that these beams can evade obstacles in the line-of-

sight, making them a promising solution to blockage [24].

Given the vast possibilities offered by near-field wavefront

engineering and self-accelerated beams specifically, it is cru-

cial to develop numerical techniques for effective benchmark-

ing. One fundamental aspect to consider is to ensure that

sufficient power is delivered to the receiver. While in typical

far-field scenarios, the Friis equation is used to establish link

budgets, there is no direct equivalent of the notion of antenna

2025 IEEE 22nd Consumer Communications & Networking Conference (CCNC)

979-8-3315-0805-0/25/$31.00 ©2025 IEEE

20
25

 IE
EE

 2
2n

d 
Co

ns
um

er
 C

om
m

un
ica

tio
ns

 &
 N

et
w

or
ki

ng
 C

on
fe

re
nc

e 
(C

CN
C)

 |
 9

79
-8

-3
31

5-
08

05
-0

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
 D

OI
: 1

0.
11

09
/C

CN
C5

47
25

.2
02

5.
10

97
59

73

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on August 28,2025 at 20:10:48 UTC from IEEE Xplore.  Restrictions apply. 





III. NEAR-FIELD LINK BUDGET CALCULATION

In standard far-field situations, link budgets are calculated

with the Friis equation, an equation that describes the amount

of power received relative to the transmit power. This equation

reads:

PRx

PTx
= GTx(θ,φ)GRx(θ,φ)

(

λ

4πd

)2

(4)

Here, d is the distance between the transmitter and the

receiver antennas. It is interesting to note that the gains of the

receiver and transmitter are typically expressed using only the

angular spherical coordinates θ and φ, while the radial coor-

dinate is assumed to be part of the free-space path loss term:

(λ/4πd)2. Indeed, in far-field situations and under the Friis

equation, waves decrease in power with the distance following

1/d2. While the Friis equation provides an elegant method

for computing link budgets using intrinsic characteristics of

antennas independent of distance (i.e., antenna gains), this

equation is not applicable in the near-field since 1) there is

no direct equivalent of antenna gains in the near-field, and 2)

powers do not necessarily drop monotonically with distance.

This last point can be fairly understood when considering

focused beams in which powers increase (at the focal plane)

before decreasing.

Therefore, to compute link budgets in the near-field, one has

to resort to computing the electric field at the receiver location.

In this work, we use the finite element method to numerically

obtain the field emitted from a transmitter aperture, at any

position in space. This method has the advantage of allowing

us to also simulate the presence of obstacles.

From the fields obtained from the numerical simulations, we

can compute the transmitted and received powers. In general,

the power traversing an aperture S (in free space) is calculated

from the radiated electric field at the aperture location E(x,y)
as [27]:

P =
1

2Z0

∫∫
S
|E(x,y)|2dS (5)

where Z0 = 377 Ω is the free-space impedance. Using (5), we

first compute the power at the receiver aperture PTx. This will

serve as the normalization factor PRx/PTx in the link budget.

As for the power on the receiver aperture (PRx), it can be

computed as:

PRx =
η

2Z0

∫∫
S
|E(x,y)|2dS (6)

Equation (6) is similar to (5), with the addition of the power

coupling efficiency η. This factor (a number between 0 and

1) describes how much energy is effectively coupled into the

receiver. To compute the coupling efficiency, we can use a

mode coupling approach [28]:

η =

∫∫
S E(x,y,z) ·ERxdS

√∫∫
S |E(x,y)|2dS

√∫∫
S |ERx(x,y)|2dS

(7)

where all the integrals are evaluated over the receiver aperture.

Here, ERx is the receiver’s radiated field when operated as a

transmitter. By the antenna reciprocity principle, the coupling

efficiency is maximized (i.e., η → 1) when the transmitter

field is geometrically superimposed (in amplitude, phase and

polarization) to the receiver antenna field.

IV. NUMERICAL RESULTS

Using the methodology described above, we now present

numerical results comparing the performance of caustic beams

to conventional highly directional Gaussian beams. Subsec-

tion IV-A provides a detailed example of a calculation based

on our methodology, while showcasing the superior perfor-

mance of caustic beams when an obstacle is placed in the

beam path. In subsection IV-B, we extend the analysis and

perform a comparative statistical study for randomly placed

obstacles to identify the conditions under which caustic beams

perform better.

A. Evasion capabilities of caustic beams

Our illustrative scenario considers a 30-cm transmitter aper-

ture positioned in the z = 0 plane. The receiver, located 3

meters away, has a 60 mm aperture spanning from x = 0.32 m

to x = 0.38 m (depicted by a red line in Fig. 3a and b). A

circular metallic obstacle, 90 mm in diameter, is placed 50

cm from the input aperture (white circle in Fig. 3a and b).

Figs. 3a and b show the simulated 300-GHz radiated electric

field for the caustic and Gaussian beam respectively. Here,

the Gaussian beam is steered towards the receiver at a 3.8-

degree angle, corresponding to the axis between the centers of

the transmitter and receiver apertures. In contrast, the caustic

beam is designed to circumvent the obstacle, by following

the analytical trajectory g(z) = 0.19
√

z, where g(z) and z are

expressed in meters. Using (2), we numerically find the phase

distribution at the input aperture capable of reproducing this

trajectory.

As can be seen, the presence of the obstacle greatly blocks

the Gaussian beam’s electric field, whereas the caustic beam

easily propagates around it. This is further confirmed in Fig. 3c

where the electric field distribution on the z = 3 m plane is

shown. There, the two vertical dashed lines correspond to

the receiver aperture. For comparison, we also reproduced

simulations without the obstacle, depicted as dotted lines in

Fig. 3c. The results show that the caustic beam’s electric field

at the receiver position remains virtually unaffected by the

obstacle’s presence, whereas the Gaussian beams’s amplitude

is substantially reduced.

From these electric field distributions, we can compute

the power at the receiver aperture using the integrals shown

in (5) and (6), assuming a normalized transmitter output of

0 dBm. Without any obstacle, we observe that the caustic

beam captures -2.05 dBm of power, while the Gaussian beam

collects -6.82 dBm of power. The difference between the

two highlights the focusing effect of caustic beams. When

an obstacle is introduced, the received power for the caustic

beam experiences a minimal change (-2.06 dBm), however,
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