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Abstract

The plane strain problem of an isotropic elastic matrix subjected to uniform far-field load and

containing multiple stiff prestressed arcs located on the same circle is considered. The bound-

ary conditions for the arcs are described by those of either Gurtin-Murdoch or Steigmann-

Ogden theories in which the arcs are endowed with their own elastic energies. The material

parameters for each arc can in general be different. The problem is reduced to the system

of real variables hypersingular boundary integral equations in terms of two scalar unknowns

expressed via the components of the stress tensors of the arcs. The unknowns are approxi-

mated by the series of trigonometric functions that are multiplied by the square root weight

functions to allow for automatic incorporation of the tip conditions. The coefficients in series

are found from the system of linear algebraic equations that is solved using the collocation

method. The expressions for the stress intensity factors are derived and numerical examples

are presented to illustrate the influence of governing dimensionless parameters.
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1. Introduction

In this paper, we study the plane strain problem of an isotropic elastic matrix subjected

to uniform far-field load and containing multiple stiff prestressed arcs located on the same

circle.

As it has been shown in [1], thin layers of finite thicknesses can be accurately simulated

by surfaces of vanishing thicknesses, if the elastic properties of the layers and their thickness

are properly chosen. Those authors derived the expressions for the elastic parameters of

the surfaces in terms of the properties of the layers they simulate and their thicknesses.

It was demonstrated that, for the stiff layers, the displacements are continuous across the

simulating surfaces, while the tractions undergo jumps. Later on, several authors, see review

in Section 5 of [2], demonstrated that the jump conditions of the [3, 4] and [5, 6] models

with zero surface tention coincide with those derived in [1] for the stiff layers of the so-called

membrane and shell types.

Therefore, similarly as in earlier publications, see [7–13], it is suggested that the prob-

lem under study be modeled using either Gurtin-Murdoch or Steigmann-Ogden theory of

material surfaces, if it is assumed that the arcs have vanishing thicknesses and are endowed

with their own elastic energies. Such models can be used to simulate a class of composite

materials reinforced with thin, stiff, and prestressed layers of the membrane or shell types.

Except for [13], where the plane strain problem of multiple straight thin and stiff pre-

stressed layers was studied, the rest of above mentioned earlier publications were concerned

with a problem of a single layer: layers along a straight line were considered in [7–10] and

layers along a circular arc were studied in [11, 12]. The focus of the latter two publications

was on evaluation of the local fields and comparisons (in case of vanishing surface tension)

with the solution given in [14] for the problem of a rigid circular arc. Similar problems with

one or even several rigid circular arcs were also considered in [15–17] in plane strain and

antiplane settings.
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However, it was demonstrated in [11, 12] that, unlike in the case of straight line layer, the

circular arc problems described by the Gurtin-Murdoch and Steigmann-Ogden models are

never reducible to those of a rigid arc. This is because, according to the classification of [1],

the Gurtin-Murdoch and Steigmann-Ogden models with vanishing surface tension represent

two distinct interface regimes that are different from the rigid regime. More specifically, the

Gurtin-Murdoch model represents the limiting case of the so-called membrane interphase,

while the Steigmann-Ogden model that of the inextensible shell interphase.

Here, we generalize the method suggested in [11, 12] to include the case of multiple cir-

cular arcs. In addition to evaluation of the local elastic fields, we also derive the expressions

for the stress intensity factors (SIFs) at the tips of the arcs and study the far-field signature

of the system of arcs, i.e. its imprint on the far away fields.

The paper is structured as follows. In Section 2, we formulate the problem under study.

In Section 3, we review the governing equations for the problem, present the governing system

of real variables boundary integral equations, and reformulate the system in dimensionless

settings. In Section 4, we derive the expressions for the stress intensity factors at the tips of

the arcs. In Section 5, we describe major steps of the proposed numerical algorithm. Section

6 contains several examples of numerical simulations. Concluding remarks are presented in

Section 7.

2. Problem formulation

Consider the plane strain problem of an isotropic homogeneous elastic plane subjected

to uniform far-field load σ∞ (σ∞

11, σ
∞

12, σ
∞

22) and containing multiple stiff and prestressed arcs

Lk = (ak,bk), k = 1, · · · , K. Assume that the arcs are located along the same circle of

radius R centered at the origin O of the Cartesian coordinate system, so ak = R exp (iβk
1 ),

bk = R exp (iβk
2 ), i

2 = −1, and βk
1 and βk

2 denote the angles associated with the tips of the

k-th arc as shown in Fig. 1. Additionally, the local coordinate system with the mutually
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orthogonal unit vectors n and ` is introduced and the notations “+” and “−” identify the

regions located from the left (right) of n, as shown on the figure.
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Figure 1: Problem formulation

The elastic properties of the bulk material are given by the shear modulus µ and Poisson’s

ratio ν and, as stated above, it is assumed that each arc represents a vanishing thickness

membrane or shell characterized by its own elastic properties, in accordance with either the

Gurtin-Murdoch or Steigmann-Ogden theory. According to both theories, the arc possesses

elastic stiffness, characterised by its own Lamé parameters and surface tension, e.g., for the

k-th arc they are µk
S, λ

k
S, σ

k
0 . In the Steigmann-Ogden theory, each arc also possesses bending

stiffness characterized for, e.g., k-th arc, by the parameters χk
S and ζkS. The latter theory

reduces to the Gurtin-Murdoch theory when the bending parameters vanish. We emphasize

that the elastic parameters of arcs have dimensions N/m, unlike the elastic parameters of

the bulk, whose dimensions are N/m2. The former elastic parameters are related to the

properties of a particular type stiff layer of finite thickness h by the following expressions,

see, e.g. [2] and the references therein:
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λS =
2µIλI

λI + 2µI

h, µS = µIh, membrane type

λS =
2µIλI

λI + 2µI

h, µS = µIh, (2χS + ζS) =
µI(λI + µI)

3(λI + 2µI)
h3, shell type

(1)

where the subscript I identifies the properties of the layer.

The above expressions are valid when the elastic properties of the layer and its thickness

are related as

λI

λ+ 2µ

h

H
∼ Θ(1),

µI

λ+ 2µ

h

H
∼ Θ(1), membrane type

λI

λ+ 2µ

(

h

H

)3

∼ Θ(1),
µI

λ+ 2µ

(

h

H

)3

∼ Θ(1), shell type

(2)

in which H is some characteristic length-scale of the problem.

The goals are: i) to evaluate the elastic fields at any point of the material system and

stress intensity factors at the tips of the arcs, ii) to study the imprint of the system of arcs

on the far-fields (the far-field signature).

3. Basic equations

3.1. Equations of the Gurtin-Murdoch and Steigmann-Ogden theories in plane strain

Under the assumption of isotropy, the behaviour of bulk material in the linearized versions

of both theories is governed by the standard Navier equation. Here we additionally assume

that the volume forces are zero. The arcs are treated as vanishing thickness material surfaces

and the equation for the bulk is supplemented by the conditions describing the behavior of

the elastic fields across and at these surfaces.

As the supplementary conditions of the Gurtin-Murdoch theory can be retrieved from

those of the Steigmann-Ogden theory by neglecting the bending parameters, we first describe

those conditions for the latter theory for the case of material surface L of arbitrary shape

with the tips at the points ξ = a and ξ = b.
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The conditions for the fields across L at the point ξ ∈ L (here and below we omit the

argument ξ for brevity) are, see [2, 10, 12],

u+
1 = u−

1 = u1, u+
2 = u−

2 = u2, (3)

∆σn = σ+
n − σ−

n = −σS

R
+ σ0

∂ωS

∂s
− (2χS + ζS)

∂3ωS

∂s3
, (4)

∆σ` = σ+
` − σ−

` =
∂σS

∂s
+ σ0

ωS

R
− 2χS + ζS

R

∂2ωS

∂s2
, (5)

where u1 and u2 are the displacement components of the bulk material in the global coordi-

nate system, σn and σ` are the corresponding normal and shear tractions, R = R(s) is the

radius of curvature of L, and s is its arc length. The superscripts “+”, “−” here and below

describe the limit values of the fields when L is approached from the direction of that of the

normal vector or from the opposite direction, respectively. The expressions for the surface

strain εS and for the components σS, ωS of the surface stress tensor involved in Eqs. (4)-(5)

are

εS =
un

R
+

∂u`

∂s
, (6a)

σS = σ0 + (λS + 2µS)ε
S, (6b)

ωS = −u`

R
+

∂un

∂s
, (6c)

in which un and u` are the normal and shear components of the displacements.

The conditions at the tips ξ = a and ξ = b of L are given by the following equations:

σS = 0, (7a)

(2χS + ζS)
∂ωS

∂s
= 0, (7b)

σ0ω
S − (2χS + ζS)

∂2ωS

∂s2
= 0. (7c)
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All conditions listed above can be used for each arc Lk, assuming that R is the radius of

the circle on which the arcs are located and that the corresponding elastic parameters for

each arcs are adopted. The conditions for the Steigmann-Ogden model reduce to those for

the Gurtin-Murdoch model when 2χS + ζS = 0. Thus, in the latter model, the tip condition

of Eq. (7b) is automatically satisfied and conditions Eq. (7a) and (7c) state that the only

nonzero tangential and normal components of the surface stress tensor σS and σ0ω
S are

zero at the tips, see Eq. (40) in [2]. The mechanical meaning of the tip conditions for the

Gurtin-Murdoch model is that there are no point forces acting at the surface tips, which

would have produced infinite strain energy in the bulk in the vicinity of the tips, see more

detailed explanations right after Eq. (18) in [8]. In the Steigmann-Ogden model, Eq. (7b)

states that the surface moment is zero at the tips, see Eq. (41) in [2], while Eq. (7c) states

that the sum of the normal force due to σ0 and the shearing force due to bending is zero at

each tip, as the derivative of the surface moment is equal to the shearing force.

3.2. Governing integral representations

Natural approach for solving problems involving material surfaces is based on the use of

the single layer elastic potential. In such approach, the displacements are sought in the form

of the integral over the material surface whose kernel represents the displacements due to the

unit force applied at a point on the surface (Kelvin fundamental solution, see, e.g., [18–20])

and the density function can be expressed via the jumps in tractions at that point. With

such representation, displacements are continuous across a surface but tractions undergo

jumps across it.

For two-dimensional problems, it is beneficial to use the complex variables version of the

representation, see [2, 21, 22], that for our problem has the following form:
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u (z) = u∞ (z)−
K
∑

k=1

1

4πiµ (κ+ 1)

{
∫

Lk

∆σ (τ) [2κ ln (z − τ)− κK1 (τ, z)] dτ

+

∫

Lk

∆σ (τ)K2 (τ, z) dτ

}

,

(8)

in which u = u1 + iu2, ∆σ = ∆σn + i∆σ`, κ = 3 − 4ν, z = z1 + iz2 is a complex variable

identifying the point located outside of the arcs, τ = τ1 + iτ2, a bar over a a symbol denotes

complex conjugation,

K1(τ, z) = ln

(

τ − z

τ − z

)

,

K2(τ, z) =

(

τ − z

τ − z

)

,

(9)

and

u∞(z) =
1

2µ

[

(κ− 1)
σ∞

11 + σ∞

22

4
z − σ∞

22 − σ∞

11 − 2iσ∞

12

2
z

]

. (10)

The components of the surface stress tensor can be expressed, see [2, 8, 10–12] as

σS = σk
0 + (2µk

S + λk
S)Re(u

′), (11a)

ωS = −Im(u′) (11b)

in which σk
0 , µ

k
S and λk

S are the parameters related to Lk, and

u′ =
∂u

∂z
+

∂u

∂z

dz

dz
. (12)
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Using Eqs. (8), (12) one gets

u′ (z) = [u∞(z)]′ +
K
∑

k=1

1

4πiµ (κ+ 1)

{
∫

Lk

∆σ (τ)

[

2κ
1

τ − z
+ κ

∂

∂z
K1 (τ, z)

]

dτ

−
∫

Lk

∆σ (τ)
∂

∂z
K2 (τ, z) dτ

}

,

(13)

[u∞(z)]′ =
1

2µ

[

(κ− 1)
σ∞

11 + σ∞

22

4
− σ∞

22 − σ∞

11 − 2iσ∞

12

2

dz

dz

]

. (14)

It was shown in [8] that u′(z) is continuous across each arc when z → τ0, where τ0 ∈
⋃K

k=1 L
k.

So, one can combine Eqs. (11) and (13) by using the fact that τ = Reiβ and τ0 = Reiβ0 ,

see [11, 12], to obtain the following integral equations for the components of the arc’s stress

tensor at the points on each arc:

σS(β0) = σ∗

0 + (λ∗

S + 2µ∗

S) Re [u
∞(β0)]

′ +

K
∑

k=1

κ(λk
S + 2µk

S)

4πRµ(κ+ 1)

∫ βk

2

βk

1

σS(β) cos(β − β0)

1− cos(β − β0)
dβ+

K
∑

k=1

κ(λk
S + 2µk

S)

4πRµ(κ+ 1)

∫ βk

2

βk

1

[

σk
0ω

S(β)− (2χk
S + ζkS)

∂2ωS(β)

∂s2

]

sin(β − β0)

1− cos(β − β0)
dβ+

K
∑

k=1

λk
S + 2µk

S

4πRµ(κ+ 1)

∫ βk

2

βk

1

σS(β)dβ,

(15)

−ωS(β0) = Im [u∞(β0)]
′ −

K
∑

k=1

κ

4πRµ(κ+ 1)

∫ βk

2

βk

1

[

σk
0ω

S(β)− (2χk
S + ζkS)

∂2ωS(β)

∂s2

]

cos(β − β0)

1− cos(β − β0)
dβ+

K
∑

k=1

κ

4πRµ(κ+ 1)

∫ βk

2

βk

1

σS(β) sin(β − β0)

1− cos(β − β0)
dβ+

K
∑

k=1

1

4πRµ(κ+ 1)

∫ βk

2

βk

1

[

σk
0ω

S(β)− (2χk
S + ζkS)

∂2ωS(β)

∂s2

]

dβ,

(16)

in which the superscript ∗ denotes the parameters related to the arc at which τ0 = Reiβ0 is
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located, χk
S and ζkS are the bending parameters related to Lk, and

Re [u∞(β0)]
′ =

1

2µ

[

(κ− 1)
σ∞

11 + σ∞

22

4
− 2σ∞

12 sin(2β0) + cos(2β0)(σ
∞

11 − σ∞

22)

2

]

,

Im [u∞(β0)]
′ =

1

2µ

[

σ∞

11 − σ∞

22

2
sin(2β0)− σ∞

12 cos(2β0)

]

.

(17)

3.3. Dimensionless integral equations

Introducing the following dimensionless parameters:

θk = βk
2 − βk

1 , σ̃
∞

ij =
σ∞

ij

µ
,

γk =
µRθk

2µk
S + λk

S

, σ̃S =
2σS

µRθk
, σ̃k

0 =
2σk

0

µRθk
, δ̃k =

8(2χk
S + ζkS)

µR3(θk)3
,

Σ1(τ0) =2Re [u∞(τ0)]
′ , Σ2(τ0) = Im [u∞(τ0)]

′

(18)

and the new function zS(β) given by

zS(β) = σ̃k
0ω

S(β)− (θk)2δ̃k
4

∂2ωS(β)

∂β2
, (19)

one can rewrite Eq. (15) and Eq. (16) in the dimensionless forms as

γ∗σ̃S(β0) =γ∗σ̃∗

0 + Σ1(β0)+

K
∑

k=1

κθk/2

2π(κ+ 1)

∫ βk

2

βk

1

σ̃S(β) cos(β − β0) + zS(β) sin(β − β0)

1− cos(β − β0)
dβ+

K
∑

k=1

θk/2

2π(κ+ 1)

∫ βk

2

βk

1

σ̃S(β)dβ.

(20)

ωS(β0) = −Σ2(β0)+
K
∑

k=1

κθk/2

4π(κ+ 1)

∫ βk

2

βk

1

zS(β) cos(β − β0)− σ̃S(β) sin(β − β0)

1− cos(β − β0)
dβ−

K
∑

k=1

θk/2

4π(κ+ 1)

∫ βk

2

βk

1

zS(β)dβ,

(21)
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It follows from Eqs. (7c), (18) that

zS(βk
1 ) = zS(βk

2 ) = 0. (22)

For the case of a single arc, the details of derivations of Eqs. (20) and (21) can be found

in [8, 10–12]. It was shown in [12] that explicit algebraic expression for ωS as a function of

zS can be obtained by solving differential equation (19) for three different cases (i) σk
0 > 0,

2χk
S + ζkS > 0; (ii) σk

0 < 0, 2χk
S + ζkS > 0; (iii) σk

0 = 0, 2χk
S + ζkS > 0. The results are

summarized in Appendix A.

Eqs. (20), (21) and the dimensionalized tip conditions of Eq. (7) remain valid for the

case of the Gurtin-Murdoch model, if one assumes that 2χk
S + ζkS = 0.

4. Representations for the elastic fields and stress intensity factors

4.1. Representations for the stresses

The tractions σ(z) = σn(z) + iσ`(z) on some line outside of
⋃K

k=1 L
k can be evaluated,

see [11, 12], as

σ (z) = σ∞ (z)− 1

2πi (κ+ 1)

K
∑

k=1







∫

Lk

∆σ (τ)

[

(κ− 1)
1

τ − z
+ κ

∂

∂z
K1 (τ, z)

]

dτ−

∫

Lk

∆σ (τ)
∂

∂z
K2 (τ, z) dτ







,

(23)

where

σ∞ (z) =
σ∞

11 + σ∞

22

2
+

σ∞

22 − σ∞

11 − 2iσ∞

12

2

dz

dz
. (24)

The Cauchy stresses σij can be evaluated using Eq. (23) with the set of appropriately

chosen normal vectors. For example, to calculate σ11(z) and σ12(z), one can set z = ix2

and assume that normal vector to the line on which z is located (axis Ox2) points in Ox1
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direction. Thus, σn(z) = σ11(z) and σ`(z) = σ12(z) on that line. Similarly, to obtain σ22,

one can set z = x1 and assume that the normal to the line on which z is located (axis Ox1)

points in Ox2 direction leading to σ22 = σn on that line.

Another way to analytically represent the Cauchy stresses is to use the following Kolosov-

Muskhelishvili formulas:

σ22(z) + iσ12(z) = 2ReΦ (z) + z̄Φ′(z) + Ψ(z),

σ11(z) + σ22(z) = 2
[

Φ(z) + Φ(z)
]

,
(25)

in which the potentials Φ(z) and Ψ(z) are taken, see [21, 23], as

Φ(z) =
2µu′(z) + σ(z)

κ+ 1
=

σ∞

11 + σ∞

22

4
+

1

2πi(κ+ 1)

∫

L

∆σ(τ)dτ

τ − z
,

Ψ(z) =
σ∞

22 − σ∞

11 + 2iσ∞

12

2
+

1

2πi(κ+ 1)

∫

L

[

κ∆σ(τ)dτ

τ − z
− τ̄∆σ(τ)dτ

(τ − z)2

]

,

(26)

with L =
⋃K

k=1 L
k.

4.2. Stress intensity factors and representations for the stresses near the tips

Consider the case of a material surface along arc Lk with the tips described by the

complex variables ak, bk as shown in Fig. 2.

As in, e.g., [23], introduce the local polar coordinate systems (r, θ̂) near the tips using

the formulas:

z = ak + z1e
iω−

, z = bk + z1e
iω+

, (27)

where ω− = 3π
2
+ βk

1 , ω
+ = π

2
+ βk

2 are the angles between the outward tangents at the tips

(pointing outside of the material surface) and the positive direction of the x1-axis of the

global coordinate system, and z1 = reiθ̂ is the complex coordinate of the point in the local

coordinate system for the corresponding tip, as shown on Fig. 2. The branch cut for the

square root function
√

(z − ak) (z − bk) is made along the material surface with the positive
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βk
1

βk
2

a
k

b
k

x1

x2

ω+

θ̂
z1 r

ω−

θ̂
z1

r

Lk

O

Figure 2: Material surface and local coordinate systems

side of the surface being on the left.

We define the stress intensity factors at the tips as

K±

1 − iK±

2 = lim
z1→0

2
√
2z1Φ(z1). (28)

Taking into account Eq. (28) and singular behavior of the singular integrals of Eq. (26)

near the ends of the contour of the integration (reported in, e.g., [24, 23]) we obtain

Φ(z1) =
K±

1 − iK±

2

2
√
2z1

+O(1), z1 → 0,

z̄1Φ
′(z1) + Ψ(z1) =

κ(K±

1 + iK±

2 )

2
√
2z̄1

− K±

1 − iK±

2

4
√
2z1

(

1 +
z̄1
z1

)

+O(1), z1 → 0.

(29)

Substitution of the representations of Eq. (29) into Kolosov-Muskhelishvili formulas (25)
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produces the following expressions for the stresses near the tips of the material surface:

σ22(z1) =
K±

1

4
√
2r

[

(2κ+ 3) cos
θ̂

2
− cos

5θ̂

2

]

− K±

2

4
√
2r

[

(2κ+ 3) sin
θ̂

2
− sin

5θ̂

2

]

+O(1),

σ12(z1) =
K±

1

4
√
2r

[

(2κ+ 1) sin
θ̂

2
+ sin

5θ̂

2

]

+
K±

2

4
√
2r

[

(2κ+ 1) cos
θ̂

2
+ cos

5θ̂

2

]

+O(1),

σ11(z1) =
K±

1

4
√
2r

[

−(2κ− 5) cos
θ̂

2
+ cos

5θ̂

2

]

+
K±

2

4
√
2r

[

(2κ− 5) sin
θ̂

2
− sin

5θ̂

2

]

+O(1).

(30)

Eqs. (27)-(30) can be written for each arc Lk. In fact, they will remain valid for any

sufficiently smooth arc of arbitrary shape.

The expressions for the dimensionless jumps for the Gurtin-Murdoch (G-M) and Steigman-

Ogden (S-O) models can be evaluated from Eqs. (4) and (5) as

G-M:















∆σ̃n(β) = −θk

2
σ̃S(β) + σ̃k

0

d

dβ̄
ωS(β),

∆σ̃`(β) =
d

dβ̄
σ̃S(β) +

θkσ̃k
0

2
ωS(β),

(31a)

S-O:



















∆σ̃n(β) = −θk

2
σ̃S(β) + σ̃k

0

dωS(β)

dβ̄
− δ̃k

d3ωS(β)

dβ̄3
= −θk

2
σ̃S(β) +

d

dβ̄
zS(β),

∆σ̃`(β) =
d

dβ̄
σ̃S(β) +

θkσ̃k
0

2
ωS(β)− θkδ̃k

2

d2ωS(β)

dβ̄2
=

d

dβ̄
σ̃S(β) +

θk

2
zS(β),

(31b)

in which β̄ ∈ [−1, 1] can be obtained as the result of the mapping from β ∈ [βk
1 , β

k
2 ] given

by β = θk

2
β̄ +

βk

1
+βk

2

2
.

Assuming that the combinations of the surface tensor components for the two models

can be represented for the k-th arc as

G-M: σ̃k
0ω

S(β) + iσ̃S(β) =

√

1− β̄2Hk
GM(β̄),

S-O: zS(β) + iσ̃S(β) =

√

1− β̄2Hk
SO(β̄),

(32)

in which Hk(β̄) are sufficiently smooth functions (identified for each model by the corre-
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sponding subscript), one can express the stress intensity factors at the points z = ak, bk

as

K±

1 − iK±

2 = ∓
√
Rθk

(κ+ 1)
√
2
Hk(±1). (33)

The stress intensity factors can be made dimensionless by dividing them by
√

R/2, which

leads to the following expression for the normalized stress intensity factors:

k±

1 − ik±

2 = ∓
√
θk

κ+ 1
Hk(±1). (34)

5. Major steps of the numerical technique

5.1. Approximations of the unknowns

As in [11, 12], we approximate variables σ̃S, ωS and zS on the k-th arc as follows:

σ̃S(β̄) =

√

1− β̄2 Fk(β̄)

=

√

1− β̄2

M
∑

m=0

{

Ak
m cos

[

m

(

θk

2
β̄ + bk

)]

+Bk
m sin

[

m

(

θk

2
β̄ + bk

)]}

,
(35a)

ωS(β̄) =

√

1− β̄2 Gk
GM(β̄)

=

√

1− β̄2

M
∑

m=0

{

Dk
m cos

[

m

(

θk

2
β̄ + bk

)]

+ Ek
m sin

[

m

(

θk

2
β̄ + bk

)]}

,
(35b)

zS(β̄) =

√

1− β̄2 Gk
SO(β̄)

=

√

1− β̄2

M
∑

m=0

{

F k
m cos

[

m

(

θk

2
β̄ + bk

)]

+Gk
m sin

[

m

(

θk

2
β̄ + bk

)]}

,
(35c)

where Ak
m, Bk

m, Dk
m, Ek

m in Eqs. (35a) and (35b) are the unknown m-th coefficients of

the truncated series used for the k-th arc in the case of the Gurtin-Murdoch model, while

Ak
m, B

k
m, F

k
m, G

k
m in Eqs. (35a) and (35c) are the corresponding ones in the case of the

Steigmann-Ogden model and bk =
(

βk
1 + βk

2

)

/2.
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It is clear that the use of Eqs. (35a) and (35c) allows for automatic satisfactions of the two

tip conditions given by Eqs. (7a) and (7c) for the Steigmann-Ogden model. The remaining

tip condition of Eq. (7b), can be used in order to determine the extra coefficients involved

in the algebraic relations between zS and ωS introduced in Appendix A. Eqs. (35a) and

(35b) automatically satisfy the tip conditions of Eqs. (7a) and (7c) for the Gurtin-Murdoch

case after the bending parameters are neglected.

Substituting the approximations of Eq. (35) into the system of Eqs. (20), (21) for either

the Steigmann-Ogden or the Gurtin-Murdoch model, six types of integrals on the right-

hand side of above mentioned equations can be identified. Three types of those integrals are

regular integrals, that will be evaluated by using Gaussian quadrature, while the remaining

three types are singular and hypersingular integrals and their treatment will follow that

discussed in [11, 12].

5.2. Solution of the system and evaluation of the local elastic fields

Standard collocation method is used to generate the system of linear algebraic equations

from the governing integral equations (20) and (21). If the series of Eq. (35) are truncated

for arc Lk at m = M and K circular arcs are considered, then the total number of unknown

coefficients in the series approximations for σ̃S and zS (ωS) for each and all arcs are 4(M+1)

and 4(M + 1)K respectively. Special attention should be paid to the case of σk
0 = 0 and

2χk
S + ζkS > 0 in the Steigmann-Ogden model, where an additional Eq. (A.5) for zS is

required for each arc for obtaining extra unknown coefficient Mk
4 in Eq. (A.6), resulting the

total number of the equations to be [4(M + 1) + 1]K.

To obtain the unknown coefficients, 2(M + 1) collocation points are chosen to be uni-

formly distributed on each arc Lk away from its tips. The approximations of Eq. (35) and

determination of extra unknown constant, as explained in Appendix A, automatically satisfy

the tip conditions of Eq. (7) in the case of the Steigmann-Ogend model. Approximations
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of Eq. (35) also automatically satisfy the tip conditions in the case of the Gurtin-Murdoch

model.

The linear system equations are solved by Gaussian Elimination. After the unknown

coefficients in Eq. (35) and the unknown constants of Appendix A (for the Steigmann-

Ogden model) are obtained, the values of σ̃S and zS (ωS) on each arc can be evaluated.

The normalised stress intensity factors at the tips can be obtained by substituting the

approximations of Eq. (35) to Eq. (32), evaluating Hk(β̄), and then substituting it into Eq.

(33). The final expressions for the k-th arc for both Gurtin-Murdoch and Steigmann-Ogden

models are

G-M: k±

1 − ik±

2 = ∓
√
θk

(κ+ 1)

[

σ̃k
0Gk

GM(±1) + iFk(±1)
]

i,

S-O: k±

1 − ik±

2 = ∓
√
θk

(κ+ 1)

[

Gk
SO(±1) + iFk(±1)

]

i.

(36)

6. Numerical examples

6.1. Influence of interactions

L1

L2

L3

L4

a
1

b
1

a
2

b
2

x1

x2

O

a) 4 arcs

L1

L3

L5

L7

x1

x2

O

b) 8 arcs

L1

L4

L7

L10

x1

x2

O

c) 12 arcs

L1

L5

L9

L13

x1

x2

O

d) 16 arcs

Figure 3: Four arrangements of circular arcs

We start with the case σ̃k
0 = 0 and assume that the matrix is characterized by the

parameters µ = 2 GPa, ν = 0.35. Assume also that the arcs are arranged symmetrically

as shown in Fig. 3 for the cases with K = 4, K = 8, K = 12, K = 16. The angle for

each arc is taken to be the same (θk = 20π/180, k = 1, ..., K). The interface dimensionless



6 NUMERICAL EXAMPLES 18

stiffness parameter for both (Gurtin-Murdoch and Steigmann-Ogden) models is chosen to

be γk = 0.12, and the remote loading is taken as σ̃∞

11 = 0.1. The numerical simulations

were performed with the use of the approximations of Eq. (35) truncated at M = 40; 800

Gaussian points were used for the evaluation of the regular integrals.

6.1.1. Gurtin-Murdoch model
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Figure 4: Distributions of σ̃S and ωS for K = 4, K = 8, K = 12, and K = 16; Gurtin-Murdoch model

The plots of σ̃S and ωS for considered values of K are shown in Fig. 4. Due to the

symmetry, only values inside the interval [0, π] are plotted. We can conclude from the figure

that the plots of σ̃S are symmetric with respect to angle π/2, while those of ωS are anti-

symmetric. From Figs. 4 a-d, we can also observe that the distribution of σ̃S is not affected

much by the interactions when K < 8. However, the effects of interactions become more

pronounced with the increase in value of K, which can be especially well seen for the case

K = 16. Similar conclusions can be drawn by analyzing the plots of ωS shown on Figs. 4

e-h. It can be observed that ωS 6= 0 at the tips, as the tip condition of Eq. (7c) is already
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satisfied when the bending parameters vanish and σ̃0 = 0.

The components of traction jumps across the arcs for the four arcs arrangements are

plotted on the same interval in Fig. 5. Here too, we can see that the plots of ∆σ̃n are

symmetric with respect to angle π/2, while those of ∆σ̃` are anti-symmetric. We can also

see that the effects of interactions are getting pronounced when K ≥ 12. Comparing Figs.

5 a-d with Figs. 4 a-d, we can conclude that the plots of ∆σ̃n can be obtained as the results

of linear transformations of the corresponding plots of σ̃S of Fig. 4, which directly follows

from Eq. (31a) when σ̃k
0 = 0. From Figs. 5e-h, it can be observed that the values of ∆σ̃`

increase dramatically near the tips. This can be again explained by analysing Eq. (31a) for

the case σ̃k
0 = 0 in which ∆σ̃` = dσ̃S(β)/dβ̄. The latter derivatives, that represent slops of

σ̃S, are large near the tips, as it can be seen from Figs. 4a-d.
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Figure 5: Distributions of ∆σ̃n and ∆σ̃` for K = 4, K = 8, K = 12, and K = 16; Gurtin-Murdoch model

The values of the normalised stress intensity factors at the tips of arcs Lk for the four

arrangements are presented in Table 1. Due to the symmetry, only part of the values are
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Table 1: Normalised stress intensity factors (×10−2) for the four arrangements; Gurtin-Murdoch model

L1 L2 L3 L4 L5 L6 L7 L8

k1(a) 1.0821 -2.0783
k2(a) 0.0000 0.0000
k1(b) -1.0821 2.0783

F
ig
.
3
a

k2(b) 0.0000 0.0000

k1(a) 1.0586 -0.1989 -2.1055 -0.8482
k2(a) 0.0000 0.0000 0.0000 0.0000
k1(b) -1.0586 0.8482 2.1055 0.1989

F
ig
.
3
b

k2(b) 0.0000 0.0000 0.0000 0.0000

k1(a) 1.0873 0.5811 -1.0983 -2.2691 -1.7615 -0.0837
k2(a) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
k1(b) -1.0872 0.0844 1.7616 2.2681 1.1002 -0.5804

F
ig
.
3c

k2(b) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

k1(a) 1.2984 1.1016 -0.2337 -1.9230 -2.9765 -2.7801 -1.4449 0.2443
k2(a) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
k1(b) -1.2983 -0.2444 1.4450 2.7801 2.9765 1.9230 0.2337 -1.1015

F
ig
.
3
d

k2(b) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

tabulated. It can be seen from Table 1 that k2 = 0 at all tips. One can also find from

the table that the values of k1 at the tips of L1 (the same arc in all four arrangements) do

not change much when K ≤ 12, which is additional indication that the interactions become

more pronounced only when K > 12.

6.1.2. Steigmann-Ogden model

For this model, we assume the same material and remote loading parameters as above

and additionally assume that δ̃k = 0.2.

The plots of σ̃S and ωS are shown in Fig. 6 for the four cases of K. Again, due to the

symmetry, only values inside the interval [0, π] are plotted. Comparison of Fig. 6 with Fig.

4 suggests that the plots of σ̃S for the Steigmann-Ogden and Gurtin-Murdoch models are

practically the same for the considered case of σ̃k
0 = 0. Comparison of Figs. 6 and Fig.

4 reveals significant difference in distributions of ωS for the two models, especially in the

vicinity of the tips. This is because, when σ̃k
0 = 0, the tip conditions for the Steigmann-

Ogden model require that ∂ωS/∂s = 0, Eq. (7b), and ∂2ωS/∂s2 = 0, Eq. (7c), while the tip
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Figure 6: Distributions of σ̃S and ωS for K = 4, K = 8, K = 12, and K = 16, Steigmann-Ogden model

conditions for the Gurtin-Murdoch model are automatically satisfied when σ̃k
0 = 0.
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Figure 7: Distributions of ∆σ̃n and ∆σ̃` for K = 4, K = 8, K = 12, and K = 16; Steigmann-Ogden model



6 NUMERICAL EXAMPLES 22

The components ∆σ̃n and ∆σ̃` of the traction jumps across the arcs inside the interval

[0, π] are plotted in Fig. 7. We can conclude that the plots of ∆σ̃n are symmetric with

respect to angle π/2, while those of ∆σ̃` are anti-symmetric. From the comparison of Fig.

7 and Fig. 5, it is found that the absolute values of ∆σ̃n near the tips for the Steigmann-

Ogden model are much larger than the ones for the Gurtin-Murdoch model perhaps because

∆σ̃n in the former model is also expressed via d3ω/dβ̄3, see Eq. (31b). It can be seen

that the behavior of the plots for ∆σ̃` is practically the same for the two models. This can

be explained by analysing Eq. (31b) coupled with the condition zS = 0 at the tips, from

which it follows that, as in the Gurtin-Murdoch model, the behavior of ∆σ̃` near the tips is

primarily dominated by that of dσ̃S(β)/dβ̄.

Table 2: Normalized stress intensity factors (×10−2) for the four arrangements; Steigmann-Ogden model

L1 L2 L3 L4 L5 L6 L7 L8

k1(a) 1.0816 -2.0777
k2(a) -0.1663 0.2000
k1(b) -1.0816 2.0776

F
ig
.
3
a

k2(b) -0.1666 0.2007

k1(a) 1.0579 -0.1987 -2.1048 -0.8483
k2(a) -0.1670 -0.0189 0.1999 0.0518
k1(b) -1.0580 0.8483 2.1048 0.1987

F
ig
.
3b

k2(b) -0.1675 0.0511 0.2009 -0.0181

k1(a) 1.0866 0.5813 -1.0999 -2.2686 -1.7610 -0.0851
k2(a) -0.1666 -0.1027 0.0786 0.1984 0.1358 -0.0472
k1(b) -1.0867 0.0850 1.7600 2.2669 1.0985 -0.5806

F
ig
.
3
c

k2(b) -0.1677 -0.0475 0.1375 0.1987 0.0784 -0.1027

k1(a) 1.2881 1.0959 -0.2328 -1.9206 -2.9663 -2.7750 -1.4456 0.2413
k2(a) -0.1653 -0.1246 -0.0176 0.1137 0.1931 0.1517 0.0471 -0.0871
k1(b) -1.3059 -0.2477 1.4456 2.7816 2.9832 1.9259 0.2325 -1.1022

F
ig
.
3
d

k2(b) -0.1628 -0.0824 0.0412 0.1906 0.1894 0.1100 -0.0126 -0.1634

The values of the normalized stress intensity factors at the tips of the arcs Lk for the

four arrangements are presented in Table 2. Here too, only a part of data is tabulated due

to the symmetry with respect to angle π. Comparison of Tables 1 and 2 suggests that the

values of k1 at the tips are practically identical for the two models and the main difference
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is that k2 6= 0 for the Steigmann-Ogden model. We can also conclude that the interactions

play an important role only when K > 12.

6.1.3. Comparison with the single arc results

We observed from Figs. 4 and 6 that, with increase in K, the effects of interactions

become more pronounced. To study those effects in more details, we compare the distribu-

tions of σ̃S and ωS along the arc with angle span [80π/180, 100π/180], which is present in

all four arrangements of Fig. 3. The plots of σ̃S and ωS are shown in Fig. 8, both for the

Gurtin-Murdoch and Steigmann-Ogden models, and compared with those for the single arc

(labeled as K = 1), see [11, 12].
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Figure 8: σ̃S and ωS along the arc with angle span [80π/180, 100π/180] for K = 1, K = 4, K = 8, K = 12,
and K = 16

From Figs. 8a and c, we find that the plots of σ̃S along the considered arc are practically
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the same for the Gurtin-Murdoch and Steigmann-Ogden models. It is clear from Figs. 8a, c

that, for K ≤ 8, the plots of σ̃S practically coincide with the one for the single arc (K = 1).

With K ≥ 12, the plots of σ̃S start to deviate from that for K = 1 and the interactions

manifest itself by increase in absolute values of σ̃S. From the comparison of Figs. 8b, d, it

can be concluded that the plots of ωS for the Gurtin-Murdoch and Steigmann-Ogden models

behave quite differently, perhaps due to the tip conditions of Eqs. (7b) and (7c). It can also

be seen that the interactions do not seem effect distributions of ωS as significantly as those

of σ̃S.

We also compared the values of the normalized stress intensity factors at the tips of

corresponding arcs. For the Gurtin-Murdoch model, the results from Table 1 for the corre-

sponding four arrangements are k1 = ∓0.0208, k1 = ∓0.0211, k1 = ∓0.0227, k1 = ∓0.0298

and k2 = 0. The corresponding results for the Steigmann-Ogden model from Table 2 are

k1 = ∓0.0208, k1 = ∓0.0210, k1 = ∓0.0227, k1 = ∓0.0297, which are practically the same as

k1 of the Gurtin-Murdch model, while unlike in the latter model, k2 6= 0 for the Steigmann-

Ogden model. The normalized stress intensity factors for the single arc are k1 = ∓0.0208

and k2 = 0 for the Gurtin-Murdoch model ([11]), k1 = ∓0.0208 and k2 = 0.0020 for the

Steigmann-Ogden model [12].

6.2. Influences of surface tention

Consider the arrangement of eight arcs shown in Fig. 9 in which θk = 40π/180 (k =

1, · · · , 8). The matrix is characterized by the same elastic parameters µ = 2 GPa, ν = 0.35

and the remote load is set as σ̃∞

11 = 0.1. Assume that γk = 0.12 for the two models and

consider the following cases of the remaining interfaces parameters for the Gurtin-Murdoch

model: (A) σ̃k
0 = 0.05; (B) σ̃k

0 = 0.0. The following three cases of the remaining interfaces

parameters are considered for the Stegimann-Ogden model: (A) σ̃k
0 = 0.05, δ̃k = 0.2; (B)

σ̃k
0 = 0.0, δ̃k = 0.2; (C) σ̃k

0 = −0.05, δ̃k = 0.2.
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Figure 9: The arrangement with eight arcs
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Figure 10: Distributions of σ̃S and ωS along Lk (k = 1, · · · , 4)

The plots of σ̃S and ωS along the arcs are shown in Fig. 10. Again, only values inside

the interval [0, π] are plotted from which it can be seen that σ̃S is symmetric and ωS is
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anti-symmetric with respect to andgle π/2. It can be observed from Figs. 10a, c that the

values of σ̃S decrease with decrease of σ̃k
0 in all cases considered. From Fig. 10b, we observe

that the values of ωS are not much affected by the surface tension inside most of the interval

[0, π]. However, the plots of ωS for the cases (A) and (B) of the Gurtin-Murdoch model

are significantly different inside two small intervals near the tips, perhaps because ωS does

not have to vanish at the tips for the case (B). From Fig. 10d, we can conclude that the

values of ωS are less influenced by the changes in σ̃k
0 in the three considered cases of the

Steigmann-Ogden model.
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Figure 11: Distributions of ∆σ̃n and ∆σ̃` along Lk (k = 1, · · · , 4)

The components of traction jumps across Lk (k = 1, · · · , 4) are plotted in Fig. 11, where

we find again that the values of ∆σ̃n are symmetric and ∆σ̃` are anti-symmetric with respect
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to π/2. We find from Fig. 11 that the distributions of ∆σ̃n and ∆σ̃`, for both the Gurtin-

Murdoch and Steigmann-Ogden models, are not influenced by the change in values of σ̃k
0

inside most parts of the interval [0, π], except near the arcs tips, where the components of

traction jumps decrease with a decrease of σ̃k
0 .

6.3. Far-field signature of the arcs

It is known, e.g., [2, 25], that circular inhomogeneities that are fully enclosed by the

Gurtin-Murdoch or Steigmann-Ogden material surfaces have the same signatures as equiva-

lent perfectly bonded circular inhomogeneities with appropriately chosen elastic properties.

This fact was used in [25, 26] to obtain the overall (effective) properties of the composite

materials by employing Maxwell’s homogenization scheme.

In order to investigate those signatures, the complementary tractions along some circle

of large radius r � R were represented by the following complex Fourier series:

σ̃(z)− σ̃∞(z)
︸ ︷︷ ︸

complementary

= σ̃c(z) =
∞∑

j=1

A−j(r)g
j(z) + A0(r) +

∞∑

j=1

Aj(r)g
−j(z) (37)

in which σ̃c denoted the complementary traction with the normal and tangential components

σ̃cn and σ̃c`, σ̃c(z) = σ̃cn(z) + iσ̃c`(z), σ̃
∞(z) were obtained from the normalized Eq. (24),

g(z) = r/z, and A0, A±j were the unknown complex coefficients.

For a single circular inhomogeneity surrounded by either Gurtin-Murdoch or Steigmann-

Ogden closed interface, the only meaningful coefficients in the series of Eq. (37) were A−2,

A0, A2, as the remaining coefficients were practically zero, i.e.

σ̃c(z) = A−2(r) exp (−2iβ) + A0(r) + A2(r) exp (2iβ), (38)

which meant that the complementary tractions were periodic functions with the period π.

In order to investigate the far-field signature of the circular arcs under study, we consider
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four arrangements (K = 2, K = 4, K = 6, and K = 8) of arcs separated by the constant

angle 5π/180, as shown in Fig. 12. The material parameters of the matrix were taken to be

the same as ones introduced in Section 6.2. The interface parameters were also taken to be

the same as in the latter section, i.e. cases (A) and (B) for the Gurtin-Murdoch model and

(A), (B), (C) for the Steigmann-Ogden model.
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a) 2 arcs

gap= 5ç
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b) 4 arcs
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Figure 12: Four arrangements of circular arcs for the studies of far-field signatures

The complementary tractions σ̃c for the two types of the remote load were evaluated on

the circle r/R = 4 and decomposed into the series of Eq. (37).

6.3.1. Hydrostatic load

The components of complementary tractions σ̃c along the circle r/R = 4 are plotted in

Fig. 13 for the hydrostatic remote load σ̃∞

11 = σ̃∞

22 = 0.05, σ̃∞

12 = 0. Due to the symmetry,

only results inside the interval [0, π] are plotted.

It can be observed from Fig. 13 that the normal components σ̃cn are always symmet-

ric with respect to π/2, while the tangential components σ̃c` are anti-symmetric. More

importantly, it can be concluded from Fig. 13 that, for both models, the components of

complementary tractions are periodic functions whose number of periods inside the interval

[0, 2π] is always equal to the number K of arcs in the arrangements. This suggests that, for

hydrostatic load and K ≥ 4, the far-field signatures of the arcs for both models are different

from the signatures of single circular inhomogeneities surrounded by closed material surfaces,
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Figure 13: Complementary tractions along the circle r/R = 4, hydrostatic remote load.

see, e.g., [25, 27] or from those for circular inhomogeneities with uniform interphase layers,

see, e.g., [28, 29]. Additional observation from Fig. 13 is that, for both models, the absolute

values of the complementary tractions components for case (A) with σ̃k
0 = 0.05 are always

larger than the ones for case (B) with σ̃k
0 = 0 and for case (C) of the Steigmann-Ogden

model with σ̃k
0 = −0.05.

6.3.2. Deviatoric load

Consider again the four arrangements of Fig. 12 and take the deviatoric load as σ̃∞

11 =

−σ̃∞

22 = 0.05, σ̃∞

12 = 0.

The components of the complementary tractions σ̃c along the circle r/R = 4 for that

case are shown in Fig. 14. Here too, we plot them only inside the interval [0, π] due to

the symmetry. We see again that the plots of σ̃cn are symmetric, while those of σ̃c` are

anti-symmetric on that interval.

From Figs. 14a-d, it can be concluded that, for the Gurtin-Murdoch model, the plots for
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Figure 14: Complementary tractions along the circle r/R = 4, deviatoric remote load.

all four arrangements have only one period inside the interval [0, π], which suggests that the

far-field signatures of σ̃c are independent on K and are of the type governed by Eq. (38).

To study that result further, in Table 3 we tabulated the coefficients A−2, A−1, A0, A1, and

A2 obtained using Eq. (37). From that table, we can see that the real parts of A−2 and

A2 are the dominant coefficients and the real parts of A0 for case (A) with the σ̃k
0 6= 0 are

not equal to 0, as it should be for a single perfectly bonded inhomogeneity in the case of

deviatoric load. This indicates that, for deviatoric load, far-field signatures for the multiple

circular arcs in some cases of Gurtin-Murdoch model are still not the same as those in single

inhomogeneity model or in the coated circular layer model.

Additionally, it can be observed From Figs. 14a-d that, with the increase in value of K,

the absolute values of σ̃cn and σ̃c` decrease.

From Figs. 14e-h, we conclude that, for the Steigmann-Ogden model and K ≥ 4, the

components of σ̃c do have the same number of periods as the number of arcs, similarly to

what was observed in the case of hydrostatic load. It can also be observed from the latter
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Table 3: Series coefficients for the Gurtin-Murdoch model under deviatoric loads

2 arcs 4 arcs 6 arcs 8 arcs

case A case B case A case B case A case B case A case B

A−2
Re 3.7E-4 3.7E-4 2.3E-4 2.1E-4 2.6E-4 2.5E-4 2.1E-4 2.0E-4

Im 4.0E-9 1.0E-9 1.6E-10 1.1E-11 1.4E-8 -8.9E-10 5.8E-8 1.1E-9

A−1
Re -2.0E-12 -4.0E-12 1.3E-11 -3.4E-12 1.7E-10 -2.5E-12 3.9E-10 7.0E-11

Im -5.6E-12 4.5E-12 -1.8E-12 1.1E-12 -4.0E-10 -4.2E-12 2.7E-9 -1.0E-10

A0
Re -5.5E-5 -2.2E-4 9.5E-5 -5.0E-11 6.1E-5 3.2E-10 4.2E-5 -2.1E-9

Im 8.5E-9 2.1E-9 -2.9E-10 -4.0E-12 3.2E-10 -1.8E-10 8.1E-10 -6.6E-12

A1
Re 2.3E-11 4.7E-11 3.7E-10 -2.1E-12 1.5E-8 2.4E-11 2.1E-8 -2.1E-9

Im 2.4E-10 -9.2E-12 -2.1E-10 3.5E-12 3.4E-9 9.7E-11 2.8E-8 5.0E-9

A2
Re 9.5E-4 9.4E-4 6.0E-4 5.5E-4 6.6E-4 6.3E-4 5.2E-4 5.0E-4

Im -8.4E-9 -2.4E-9 -4.0E-10 -2.3E-11 -3.6E-8 2.3E-9 -1.5E-7 -2.8E-9

figures that the values of σ̃cn and σ̃c` in case (A) (with σ̃k
0 = 0.05) are always of opposite

signs from the ones in case (C) (with σ̃k
0 = −0.05), while the same complementary traction

components in case (B) (with σ̃k
0 = 0) are zero. However, Fig. 14e for K = 2 indicates that

the plots of σ̃cn and σ̃c` do not have similar characteristics. The latter fact may be due to

the large value of θk > π/2 in case of K = 2.

7. Conclusions

In this paper, we studied the plane strain problem of an infinite isotropic elastic matrix

subjected to uniform far-field load and containing multiple stiff prestressed arcs located on

the same circle. The arcs were modeled as material surfaces described by either Gurtin-

Murdoch or Steigmann-Ogden theories. The integral representations for the elastic fields

everywhere in the material system were presented and, for the first time, the expressions

for the stress intensity factors near the arcs tips were derived. We demonstrated that the

numerical technique for solving the problems with a single arc, developed in our earlier pub-

lications, could be generalized to allow for accounting for the interactions between multiple

arcs. Using this technique, we studied the effects of interactions for various scenarios of

dimensionless parameters governing the problem. We also investigated the so-called far-
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field signatures of the arcs under various loading conditions. Unlike in the more classical

problems of circular inhomogeneities with imperfect interfaces or with uniform interphase

layers, which all have dipole signatures (thus allowing for using the concept of an equivalent

perfectly bonded inhomogeneity), the signatures of system of multiple arcs turned out to be

quite different. In the case of hydrostatic load, the number of multipoles in the multipole

expansions of the far-fields always correlated with the number of arcs on a circle, both for

the Gurtin-Murdoch and Steigmann-Ogden models. Similar conclusion was reached for the

case of deviatoric load and the Steigmann-Ogden model, which was not the case for the same

load and the Gurtin-Murdoch model. However, in the latter case, the far-field signatures for

the multiple circular arcs in some cases of Gurtin-Murdoch model were still not the same as

the classical dipole signatures mentioned above.

Finally, we note that the theoretical developments and the numerical algorithm used

in the present paper can be modified and extended to the more general case of the arcs

located on different circles and of different radii. More specifically, the relations and integral

representations of Eqs. (3)-(14) will remain the same, if one assumes that the local radius

of curvature involved in some of those equations is taken to be equal to the radius of the

corresponding circle. The changes will appear starting from Eq. (15) in which it was assumed

that the center of the circle on which the arcs are located is placed at the origin of the

Cartesian coordinate system. The analog of Eq. (15) for the case of arcs on different circles

can be obtained by assuming that the expressions for τ and τ0 on each circle will be changed

by adding the complex coordinates of the center of that circle. Such modification will

produce additional integrals containing expressions with the coordinates of the centers, but

those additional integrals will be of the same types as the ones discussed in the manuscript.
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Appendix A. Relations between ω
S and z

S in Steigmann-Ogden theory

The relations are found using standard methods for solving ordinary linear differential

equations of the second order, see [12] for the details. The final expressions for the each arc

are:

(i) The case σk
0 > 0, 2χk

S + ζkS > 0,

ωS(β∗) =
2

θk
√

σ̃k
0 δ̃

k

∫ β∗

βk

1

zS(β) sinh



2

√

σ̃k
0

δ̃k
β − β∗

θk



 dβ+

2

θk
√

σ̃k
0 δ̃

k

cosh

(

2
√

σ̃k

0

δ̃k
β∗−βk

1

θk

)

sinh

(

2
√

σ̃k

0

δ̃k

)

∫ βk

2

βk

1

zS(β) cosh



2

√

σ̃k
0

δ̃k
β − βk

2

θk



 dβ,

(A.1)

dωS(β∗)

dβ∗
= −

4

(θk)2 δ̃k

∫ β∗

βk

1

zS(β) cosh





2

θk

√

σ̃k
0

δ̃k
(β − β∗)



 dβ+

4 sinh

[

2
θk

√

σ̃k

0

δ̃k

(

β∗ − βk
1

)

]

(θk)2 δ̃k sinh

(

2
√

σ̃k

0

δ̃k

)

∫ βk

2

βk

1

zS(β) cosh





2

θk

√

σ̃k
0

δ̃k
(β − βk

2 )



 dβ,

(A.2)

in which β∗ belongs to the interval [βk
1 , β

k
2 ].

(ii) The case σk
0 < 0, 2χk

S + ζkS > 0,
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ωS(β∗) =
2

θk
√

−σ̃k
0 δ̃

k

∫ β∗

βk

1

zS(β) sin



2

√

−
σ̃k
0

δ̃k
β − β∗

θk



 dβ−

2

θk
√

−σ̃k
0 δ̃

k

cos

(

2
√

−
σ̃k

0

δ̃k
β∗−βk

1

θk

)

sin

(

2
√

−
σ̃k

0

δ̃k

)

∫ βk

2

βk

1

zS(β) cos



2

√

−
σ̃k
0

δ̃k
β − βk

2

θk



 dβ,

(A.3)

and

dωS(β∗)

dβ∗
=−

4

(θk)2 δ̃k

∫ β∗

βk

1

zS(β) cos



2

√

−
σ̃k
0

δ̃k
β − β∗

θk



 dβ+

4

(θk)2 δ̃k

sin

(

2
√

−
σ̃k

0

δ̃k
β∗−βk

1

θk

)

sin

(

2
√

−
σ̃k

0

δ̃k

)

∫ βk

2

βk

1

zS(β) cos



2

√

−
σ̃k
0

δ̃k
β − βk

2

θk



 dβ.

(A.4)

(iii) The case σk
0 = 0, 2χk

S + ζkS > 0,

∫ βk

2

βk

1

zS(β)dβ = 0. (A.5)

ωS(β∗) =
4

(θk)2 δ̃k

∫ β∗

βk

1

(β − β∗)zS(β)dβ +Mk
4 , (A.6)

in which the extra unknown constant Mk
4 , have to be determined by solving the system of

Eqs. (20) and (21).
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