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Abstract

The plane strain problem of an isotropic elastic matrix subjected to uniform far-field load and
containing multiple stiff prestressed arcs located on the same circle is considered. The bound-
ary conditions for the arcs are described by those of either Gurtin-Murdoch or Steigmann-
Ogden theories in which the arcs are endowed with their own elastic energies. The material
parameters for each arc can in general be different. The problem is reduced to the system
of real variables hypersingular boundary integral equations in terms of two scalar unknowns
expressed via the components of the stress tensors of the arcs. The unknowns are approxi-
mated by the series of trigonometric functions that are multiplied by the square root weight
functions to allow for automatic incorporation of the tip conditions. The coefficients in series
are found from the system of linear algebraic equations that is solved using the collocation
method. The expressions for the stress intensity factors are derived and numerical examples

are presented to illustrate the influence of governing dimensionless parameters.
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1. Introduction

In this paper, we study the plane strain problem of an isotropic elastic matrix subjected
to uniform far-field load and containing multiple stiff prestressed arcs located on the same
circle.

As it has been shown in [1], thin layers of finite thicknesses can be accurately simulated
by surfaces of vanishing thicknesses, if the elastic properties of the layers and their thickness
are properly chosen. Those authors derived the expressions for the elastic parameters of
the surfaces in terms of the properties of the layers they simulate and their thicknesses.
It was demonstrated that, for the stiff layers, the displacements are continuous across the
simulating surfaces, while the tractions undergo jumps. Later on, several authors, see review
in Section 5 of [2], demonstrated that the jump conditions of the [3, 4] and [5, 6] models
with zero surface tention coincide with those derived in [1] for the stiff layers of the so-called
membrane and shell types.

Therefore, similarly as in earlier publications, see [7-13], it is suggested that the prob-
lem under study be modeled using either Gurtin-Murdoch or Steigmann-Ogden theory of
material surfaces, if it is assumed that the arcs have vanishing thicknesses and are endowed
with their own elastic energies. Such models can be used to simulate a class of composite
materials reinforced with thin, stiff, and prestressed layers of the membrane or shell types.

Except for [13], where the plane strain problem of multiple straight thin and stiff pre-
stressed layers was studied, the rest of above mentioned earlier publications were concerned
with a problem of a single layer: layers along a straight line were considered in [7-10] and
layers along a circular arc were studied in [11, 12]. The focus of the latter two publications
was on evaluation of the local fields and comparisons (in case of vanishing surface tension)
with the solution given in [14] for the problem of a rigid circular arc. Similar problems with
one or even several rigid circular arcs were also considered in [15-17] in plane strain and

antiplane settings.
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However, it was demonstrated in [11, 12] that, unlike in the case of straight line layer, the
circular arc problems described by the Gurtin-Murdoch and Steigmann-Ogden models are
never reducible to those of a rigid arc. This is because, according to the classification of [1],
the Gurtin-Murdoch and Steigmann-Ogden models with vanishing surface tension represent
two distinct interface regimes that are different from the rigid regime. More specifically, the
Gurtin-Murdoch model represents the limiting case of the so-called membrane interphase,
while the Steigmann-Ogden model that of the inextensible shell interphase.

Here, we generalize the method suggested in [11, 12] to include the case of multiple cir-
cular arcs. In addition to evaluation of the local elastic fields, we also derive the expressions
for the stress intensity factors (SIFs) at the tips of the arcs and study the far-field signature
of the system of arcs, i.e. its imprint on the far away fields.

The paper is structured as follows. In Section 2, we formulate the problem under study.
In Section 3, we review the governing equations for the problem, present the governing system
of real variables boundary integral equations, and reformulate the system in dimensionless
settings. In Section 4, we derive the expressions for the stress intensity factors at the tips of
the arcs. In Section 5, we describe major steps of the proposed numerical algorithm. Section
6 contains several examples of numerical simulations. Concluding remarks are presented in

Section 7.

2. Problem formulation

Consider the plane strain problem of an isotropic homogeneous elastic plane subjected
to uniform far-field load o® (0§, 053, 055) and containing multiple stiff and prestressed arcs
Lk = (a*,b*), k = 1,--- | K. Assume that the arcs are located along the same circle of
radius R centered at the origin O of the Cartesian coordinate system, so a* = Rexp (i3}),
b* = Rexp (i85), i = —1, and BY and 3% denote the angles associated with the tips of the

k-th arc as shown in Fig. 1. Additionally, the local coordinate system with the mutually
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orthogonal unit vectors n and £ is introduced and the notations “4” and “—” identify the

regions located from the left (right) of n, as shown on the figure.
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Figure 1: Problem formulation

The elastic properties of the bulk material are given by the shear modulus ¢ and Poisson’s
ratio v and, as stated above, it is assumed that each arc represents a vanishing thickness
membrane or shell characterized by its own elastic properties, in accordance with either the
Gurtin-Murdoch or Steigmann-Ogden theory. According to both theories, the arc possesses
elastic stiffness, characterised by its own Lamé parameters and surface tension, e.g., for the
k-th arc they are uf, A&, of. In the Steigmann-Ogden theory, each arc also possesses bending
stiffness characterized for, e.g., k-th arc, by the parameters x% and (& The latter theory
reduces to the Gurtin-Murdoch theory when the bending parameters vanish. We emphasize
that the elastic parameters of arcs have dimensions N/m, unlike the elastic parameters of
the bulk, whose dimensions are N/m?. The former elastic parameters are related to the
properties of a particular type stiff layer of finite thickness h by the following expressions,

see, e.g. [2] and the references therein:
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201\
s = PR h, ps = prh, membrane type
)\] + 2,&[ (1)
211 s pr(Ar + pr) | 3
= h = urh 2 =—— "7} hell t
S =N 2 ps = prh,  (2xs +(s) SOy 2 shell type

where the subscript I identifies the properties of the layer.
The above expressions are valid when the elastic properties of the layer and its thickness

are related as

Ar pr  h
A+ 2uH ~ O),

VENEAY o), -t (h 3 O(1), shell type
N+ 2p \H " At2p \H ’ yp

in which H is some characteristic length-scale of the problem.

©(1), membrane type

The goals are: i) to evaluate the elastic fields at any point of the material system and
stress intensity factors at the tips of the arcs, ii) to study the imprint of the system of arcs

on the far-fields (the far-field signature).

3. Basic equations

3.1. Equations of the Gurtin-Murdoch and Steigmann-Ogden theories in plane strain

Under the assumption of isotropy, the behaviour of bulk material in the linearized versions
of both theories is governed by the standard Navier equation. Here we additionally assume
that the volume forces are zero. The arcs are treated as vanishing thickness material surfaces
and the equation for the bulk is supplemented by the conditions describing the behavior of
the elastic fields across and at these surfaces.

As the supplementary conditions of the Gurtin-Murdoch theory can be retrieved from
those of the Steigmann-Ogden theory by neglecting the bending parameters, we first describe
those conditions for the latter theory for the case of material surface L of arbitrary shape

with the tips at the points & = a and £ = b.
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The conditions for the fields across L at the point & € L (here and below we omit the

argument & for brevity) are, see [2, 10, 12],

uf =uy =y, uy =u; = uy, (3)
S o S 83 S
- +_ . -__C w d
Ao, =0, —0, = —EWLUOE—(ZXSJFCS)@, (4)
_ 00° w25 + (s 0w
GG MLl Sy =R ®)

where u; and uy are the displacement components of the bulk material in the global coordi-
nate system, o, and oy are the corresponding normal and shear tractions, R = R(s) is the
radius of curvature of L, and s is its arc length. The superscripts “+”, “—” here and below
describe the limit values of the fields when L is approached from the direction of that of the
normal vector or from the opposite direction, respectively. The expressions for the surface

strain £¥ and for the components 0, w® of the surface stress tensor involved in Eqs. (4)-(5)

are
g U, Ou
= —+ — 6
o = oo + ()\S + 2/15)65, (6b)
s ug  Ouy
w” = I + 95 (6¢)

in which u,, and u, are the normal and shear components of the displacements.

The conditions at the tips & = a and £ = b of L are given by the following equations:

0% =0, (7a)

(2xs + Cs)aa% =0, (7b)
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All conditions listed above can be used for each arc L*, assuming that R is the radius of
the circle on which the arcs are located and that the corresponding elastic parameters for
each arcs are adopted. The conditions for the Steigmann-Ogden model reduce to those for
the Gurtin-Murdoch model when 2yg + (¢ = 0. Thus, in the latter model, the tip condition
of Eq. (7b) is automatically satisfied and conditions Eq. (7a) and (7c) state that the only
nonzero tangential and normal components of the surface stress tensor o and ogw® are
zero at the tips, see Eq. (40) in [2]. The mechanical meaning of the tip conditions for the
Gurtin-Murdoch model is that there are no point forces acting at the surface tips, which
would have produced infinite strain energy in the bulk in the vicinity of the tips, see more
detailed explanations right after Eq. (18) in [8]. In the Steigmann-Ogden model, Eq. (7b)
states that the surface moment is zero at the tips, see Eq. (41) in [2], while Eq. (7¢) states

that the sum of the normal force due to oy and the shearing force due to bending is zero at

each tip, as the derivative of the surface moment is equal to the shearing force.

3.2. Governing integral representations

Natural approach for solving problems involving material surfaces is based on the use of
the single layer elastic potential. In such approach, the displacements are sought in the form
of the integral over the material surface whose kernel represents the displacements due to the
unit force applied at a point on the surface (Kelvin fundamental solution, see, e.g., [18-20])
and the density function can be expressed via the jumps in tractions at that point. With
such representation, displacements are continuous across a surface but tractions undergo
jumps across it.

For two-dimensional problems, it is beneficial to use the complex variables version of the

representation, see [2, 21, 22], that for our problem has the following form:
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K

u(z):uoo(z)—z

k=1

1
Amip (K + 1)

{ /L Ao (7) 2wl (= — 1) — KK (7, 2)] dr .

+ /L Ao (1)K, (7.2) d?} ,

in which u = u; + iug, Ao = Ao, + iAoy, kK = 3 — 4v, z = 2z + iz IS a complex variable
identifying the point located outside of the arcs, 7 = 71 + iy, a bar over a a symbol denotes

complex conjugation,

Ki(r,z) =l (f‘f) ,

T —Z

Kars) = (2=2)

and

uoo(z):ﬂ [(R_l)anl‘%z P 01; 1073 4 (10)
The components of the surface stress tensor can be expressed, see [2, 8, 10-12] as
0 = a5 + (2p¢ + NoRe (), (11a)
w¥ = —~Im(u) (11b)
in which of, & and A% are the parameters related to L*, and
Ju Oudz
) Ou  budz 12
"7 8 * 0z dz (12)
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Using Egs. (8), (12) one gets

IE R TEIES pE N N e I

k=1
— | Ac (T)QK (1,2)d
I Oz 2\ )
;1 o7l + 055 055 — o] — 205 dz
0 _ -1 _ — 1.
) = 5 e 12

(13)

(14)

It was shown in [8] that «/(z) is continuous across each arc when z — 7, where 7, € i, L*.

So, one can combine Eqgs. (11) and (13) by using the fact that 7 = Rel® and 75 =

Refo,

see [11, 12], to obtain the following integral equations for the components of the arc’s stress

tensor at the points on each arc:

o%(Bo) = o + (N5 + 2u%) Re [u™(Bo)] +

/520' (8) cos(8 — Bo)
1 — cos(f — fo)

ZK: k(NG + 208

)
— AmRp(k + 1) g+

)

)

i k(A + 2uf
p ArRu(k + 1 0s? 1 —cos(8 — Bo)
K

XS + 20 /52 s
;47TR/L(/€+1) o (B)dB,

) TRu(K k 1 —cos(8 — Bo)
S, % o5(8) sin(8 — fo)

kzz; ArRu(k + 1) /ﬁk 1 —cos(8 — Bo) df+

K 1 52 kS B 82 S(ﬁ)

; m/ [Uow (B) = (2x5 + ¢5) 52 } ds,

in which the superscript * denotes the parameters related to the arc at which 7y =

B3 2058 sin(B — By
/ [aé“w%)—(?x’éﬂé)a ) U5 _qp4

3 . * W cos(p —
24—+1>/ [“gws(ﬂ)—(zx’ngg’g)a a;w)} (B=50) 4,

(15)

RelPo ig
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located, x% and (% are the bending parameters related to L*, and

Re ()] = 1 [(R B 1>aﬁ’ + 0% 2075 sin(26) + cos(28) (0] — 033) ’
2% 4 2 an
/ 1 jofy —o05% . o
()] = 5 | g P sin(2s0) ~ o cos(zsn)|.
1 2
3.3. Dimensionless integral equations
Introducing the following dimensionless parameters:
oo Ty
62 - ka 05 = 'u] )
Vk:ﬂ o 30 2k o sbedh .
2uf + NE7 uROF 0 T UROF pR3(6k)3 7
S1(0) =2Re [u (1)), Za(70) = Im [u™(79)]'
and the new function z°() given by
s kS (ek)25k 0*w¥(8)
5(6) = otw*(8) — e, (19)
one can rewrite Eq. (15) and Eq. (16) in the dimensionless forms as
5°(B0) =705 + L1(Bo)+
i 62 /55 5°(8) cos( — o) + 2(B) sin(8 — Bo)
2 on(n 1) T cos(— o) (20)
K
9’“/2 /ﬁz s
s | o (B)dp.
K k Bs .8 =S :
g L k0" /2 / 2 27(B) cos(B — Bo) — a7 (B)sin(B — Bo) .,
w(Bo) = 2260+Z47rm+1 1 —cos(8 — Bo) dp
« (21)
Sl * 508
— (kK + 1) gk ’
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It follows from Eqs. (7c), (18) that

2°(By) = 2°(83) = 0. (22)

For the case of a single arc, the details of derivations of Egs. (20) and (21) can be found
in [8, 10-12]. It was shown in [12] that explicit algebraic expression for w® as a function of
2% can be obtained by solving differential equation (19) for three different cases (i) of > 0,
2x5 + ¢k > 0; (i) of <0, 2xE +¢E > 0; (iil) of = 0, 2x% + ¢& > 0. The results are
summarized in Appendix A.

Egs. (20), (21) and the dimensionalized tip conditions of Eq. (7) remain valid for the

case of the Gurtin-Murdoch model, if one assumes that 2% + ¢& = 0.

4. Representations for the elastic fields and stress intensity factors

4.1. Representations for the stresses

k

The tractions o(z) = 0,(2) + ioy(z) on some line outside of |Ji, L* can be evaluated,

see [11, 12], as

0
+Kk—K;(1,2)| dr—

o (2) = 0™ (2) ;i /AU(T) [(m—n

C 2mi(k+1) T—z 0z
k=1 |
(23)
[Eo Tt 0
o(1T)— T, 2)dT
aZ 2 ) 9
Lk
where
0% (2) = Jﬁ’—;—agg 055—0?;—210103 g (24)

The Cauchy stresses 0;; can be evaluated using Eq. (23) with the set of appropriately
chosen normal vectors. For example, to calculate o11(2) and o12(2), one can set z = iz

and assume that normal vector to the line on which z is located (axis Oz) points in Ox;
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direction. Thus, 0,(z) = 011(2) and 0,(z) = 012(2) on that line. Similarly, to obtain g,
one can set z = x; and assume that the normal to the line on which z is located (axis Ox)
points in Oxy direction leading to o9 = o,, on that line.
Another way to analytically represent the Cauchy stresses is to use the following Kolosov-

Muskhelishvili formulas:

022(2) +i012(2) = 2Re P (2) + z¥'(2) + U(2),

(25)
0'11(2) =+ O'QQ(Z) =2 |:<D(Z) + @(Z)} s
in which the potentials ®(z) and ¥(z) are taken, see [21, 23], as
B(z) = 2uu/(2) +o(2) o + 055 1 / Ao (T)dr
B k+1 B 4 2ri(k+1) J, T7—2 "
_— 2
¥(z) = 055 — o7y + 2i0%s n 1 / kAo(r)dr  TAo(r)dr (26)
= 2 2ri(k+1) Jp | T—2 (tr—2)% |’

with L = (Ji, L*.

4.2. Stress intensity factors and representations for the stresses near the tips

Consider the case of a material surface along arc L* with the tips described by the

complex variables a¥, b* as shown in Fig. 2.

A~

As in, e.g., [23], introduce the local polar coordinate systems (r,6) near the tips using
the formulas:

z=al 4 2% 2 =DbF 4z (27)

where w™ = 37” + Bk, wt = 5+ (5 are the angles between the outward tangents at the tips

(pointing outside of the material surface) and the positive direction of the x;-axis of the

global coordinate system, and z; = re? is the complex coordinate of the point in the local

coordinate system for the corresponding tip, as shown on Fig. 2. The branch cut for the

square root function y/(z — a*) (z — b*) is made along the material surface with the positive
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Figure 2: Material surface and local coordinate systems

side of the surface being on the left.

We define the stress intensity factors at the tips as

K —iKF = lim 2v/22,®(2). (28)

21—0

Taking into account Eq. (28) and singular behavior of the singular integrals of Eq. (26)

near the ends of the contour of the integration (reported in, e.g., [24, 23]) we obtain

K& —iKF
B(z)=—-L—"2 101 0
(21) 2\/% + ( )7 zZ1 — 9 (29)
Kf+iKy) Kf —iK+ z
50(21) + W(z) = 21\/;711 2) _ Zﬂ%? <1 + 2) +O(1), = — 0.

Substitution of the representations of Eq. (29) into Kolosov-Muskhelishvili formulas (25)
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produces the following expressions for the stresses near the tips of the material surface:

KF 0 50| Kf .0 . 50
092(21) = Wor: (26 +3) co8 5 — cos 2] BT (2 +3) sin 5 —sin — + O(1),
Kf [ 6 50|  KF 0 50
= 2 1 = — 2 1 = — 1
o12(21) Wor: (2K + )sm2+sm2 +4\/§ (2K + )cos2—i-cos2 +0(1), (30)
KE | 0 50| KF .6 . 50
= —(2Kk — = — 2K — - — — 1).
o11(21) Wor: (2K 5)cos2 + cos 5 +4\/§ (2K 5)s1n2 sin +0(1)

Egs. (27)-(30) can be written for each arc L*. In fact, they will remain valid for any
sufficiently smooth arc of arbitrary shape.
The expressions for the dimensionless jumps for the Gurtin-Murdoch (G-M) and Steigman-

Ogden (S-O) models can be evaluated from Egs. (4) and (5) as

ek
86,(9) = ~5.5%(8) + 3§ 12°(3),
G-M: | ok (31a)
851(58) = 555(8) + T52%(6).
Qk S _A43,,S Qk
2u() = -G+ A g L) - Fasi) 1 Lvis)
S0 d g . 0 o g AS(B)  d g . 6F (31b)
AG(B) = B’ (B) + —~w(B) = —— @@ ag (B) + 5 =7(B),

in which 3 € [~1,1] can be obtained as the result of the mapping from 3 € [BF, 3] given
— k k
by =G5+ A%,
Assuming that the combinations of the surface tensor components for the two models

can be represented for the k-th arc as

G-M: 6kwS(8) +165(8) = /1 — B2HEL(B),

S-0: 2°(B) +i6°(8) = \/1 — B2HE(B),

(32)

in which H*(j3) are sufficiently smooth functions (identified for each model by the corre-
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sponding subscript), one can express the stress intensity factors at the points z = a*, b*

as
RO*
(k+1)V2

The stress intensity factors can be made dimensionless by dividing them by 4/ R/2, which

Kf—iKf=+ HE(£1). (33)

leads to the following expression for the normalized stress intensity factors:

T

5. Major steps of the numerical technique

5.1. Approximations of the unknowns

As in [11, 12], we approximate variables ¢°, w® and 2° on the k-th arc as follows:

i s o (55 )] + s o (L0 Y ]}
2*(B) = /1 - 52 Gl B)
T s [ (G ) < o [ (G+)] .

where A®  BF DF E* in Eqs. (35a) and (35b) are the unknown m-th coefficients of

(35¢)

the truncated series used for the k-th arc in the case of the Gurtin-Murdoch model, while
Ak Bk FEGE in Egs. (35a) and (35c) are the corresponding ones in the case of the
Steigmann-Ogden model and b* = (8} + 85) /2.
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It is clear that the use of Egs. (35a) and (35¢) allows for automatic satisfactions of the two
tip conditions given by Eqs. (7a) and (7¢) for the Steigmann-Ogden model. The remaining
tip condition of Eq. (7b), can be used in order to determine the extra coefficients involved
in the algebraic relations between z° and w® introduced in Appendix A. Egs. (35a) and
(35b) automatically satisfy the tip conditions of Eqs. (7a) and (7c¢) for the Gurtin-Murdoch
case after the bending parameters are neglected.

Substituting the approximations of Eq. (35) into the system of Eqs. (20), (21) for either
the Steigmann-Ogden or the Gurtin-Murdoch model, six types of integrals on the right-
hand side of above mentioned equations can be identified. Three types of those integrals are
regular integrals, that will be evaluated by using Gaussian quadrature, while the remaining

three types are singular and hypersingular integrals and their treatment will follow that

discussed in [11, 12].

5.2. Solution of the system and evaluation of the local elastic fields

Standard collocation method is used to generate the system of linear algebraic equations
from the governing integral equations (20) and (21). If the series of Eq. (35) are truncated
for arc L* at m = M and K circular arcs are considered, then the total number of unknown
coefficients in the series approximations for % and 2z (w?) for each and all arcs are 4(M +1)
and 4(M + 1)K respectively. Special attention should be paid to the case of of = 0 and
2x% + ¢% > 0 in the Steigmann-Ogden model, where an additional Eq. (A.5) for 27 is
required for each arc for obtaining extra unknown coefficient M¥ in Eq. (A.6), resulting the
total number of the equations to be [4(M + 1) + 1] K.

To obtain the unknown coefficients, 2(M + 1) collocation points are chosen to be uni-
formly distributed on each arc L¥ away from its tips. The approximations of Eq. (35) and
determination of extra unknown constant, as explained in Appendix A, automatically satisfy

the tip conditions of Eq. (7) in the case of the Steigmann-Ogend model. Approximations
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of Eq. (35) also automatically satisfy the tip conditions in the case of the Gurtin-Murdoch
model.

The linear system equations are solved by Gaussian Elimination. After the unknown
coefficients in Eq. (35) and the unknown constants of Appendix A (for the Steigmann-
Ogden model) are obtained, the values of 3% and 2° (w®) on each arc can be evaluated.

The normalised stress intensity factors at the tips can be obtained by substituting the
approximations of Eq. (35) to Eq. (32), evaluating H#*(3), and then substituting it into Eq.
(33). The final expressions for the k-th arc for both Gurtin-Murdoch and Steigmann-Ogden

models are

VOF

G-M: kf —iky = F [65GEM (L) +iF"(£1)] 4,

1
6. Numerical examples
6.1. Influence of interactions
a) 4 arcs b) 8 arcs c) 12 arcs d) 16 arcs
b o a’ I3 4 )
T2 bl £ T2 T2
3 OT_}l It 5 OT_Z:I Lt L7 OT_Z,l It 9o ()T—;.l It
L4 L7 LlU Ll3

Figure 3: Four arrangements of circular arcs

We start with the case 65 = 0 and assume that the matrix is characterized by the
parameters © = 2 GPa, v = 0.35. Assume also that the arcs are arranged symmetrically
as shown in Fig. 3 for the cases with K = 4, K =8, K = 12, K = 16. The angle for

each arc is taken to be the same (6% = 207/180, k = 1, ..., K). The interface dimensionless
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stiffness parameter for both (Gurtin-Murdoch and Steigmann-Ogden) models is chosen to
be v¥ = 0.12, and the remote loading is taken as 6% = 0.1. The numerical simulations
were performed with the use of the approximations of Eq. (35) truncated at M = 40; 800

Gaussian points were used for the evaluation of the regular integrals.

6.1.1. Gurtin-Murdoch model
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Figure 4: Distributions of #° and w® for K =4, K = 8, K = 12, and K = 16; Gurtin-Murdoch model

The plots of 6° and w® for considered values of K are shown in Fig. 4. Due to the
symmetry, only values inside the interval [0, 7] are plotted. We can conclude from the figure
that the plots of &° are symmetric with respect to angle 7/2, while those of w® are anti-
symmetric. From Figs. 4 a-d, we can also observe that the distribution of &° is not affected
much by the interactions when K < 8. However, the effects of interactions become more
pronounced with the increase in value of K, which can be especially well seen for the case
K = 16. Similar conclusions can be drawn by analyzing the plots of w® shown on Figs. 4

e-h. It can be observed that w® # 0 at the tips, as the tip condition of Eq. (7c) is already
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satisfied when the bending parameters vanish and oy = 0.

The components of traction jumps across the arcs for the four arcs arrangements are
plotted on the same interval in Fig. 5. Here too, we can see that the plots of Ag, are
symmetric with respect to angle /2, while those of Ag, are anti-symmetric. We can also
see that the effects of interactions are getting pronounced when K > 12. Comparing Figs.
5 a~-d with Figs. 4 a-d, we can conclude that the plots of Ag,, can be obtained as the results
of linear transformations of the corresponding plots of ° of Fig. 4, which directly follows
from Eq. (31a) when 65 = 0. From Figs. 5e-h, it can be observed that the values of Ady
increase dramatically near the tips. This can be again explained by analysing Eq. (31a) for
the case 65 = 0 in which Ad, = d5°(8)/dS. The latter derivatives, that represent slops of

5%, are large near the tips, as it can be seen from Figs. 4a-d.
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Figure 5: Distributions of Ag,, and Ag, for K =4, K =8, K =12, and K = 16; Gurtin-Murdoch model

The values of the normalised stress intensity factors at the tips of arcs L¥ for the four

arrangements are presented in Table 1. Due to the symmetry, only part of the values are
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Table 1: Normalised stress intensity factors (x1072) for the four arrangements; Gurtin-Murdoch model

LT L? L3 LT R Lt I ¥

_ [ ki(a) [ 10821 -2.0783
* | ky(a) | 0.0000  0.0000
0 | ki(b) | -1.0821  2.0783
" | ke(b) | 0.0000 0.0000
- | Fi(a) [ 10586 -0.1989 -2.1055 -0.8482
® | ky(a) | 0.0000 0.0000 0.0000  0.0000
o0 | ky(b) | -1.0586  0.8482  2.1055  0.1989
= | ky(b) | 0.0000 0.0000 0.0000 0.0000
o | Fi(@) | 1.0873 0.5811 -1.0983 -22691 -1.7615 -0.0837
@ | ky(a) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
S| ki(b) | -1.O8T2  0.0844 17616 2.2681 11002 -0.5804

ky(b) | 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
o | Fi(@) | 12984 11016 -0.2337 -1.9230 -2.9765 -2.7801 -1.4449 0.2443
% | ky(a) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
o0 | ky(b) | -1.2983 -0.2444  1.4450 2.7801 29765 1.9230 0.2337 -1.1015
" | ky(b) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000

tabulated. It can be seen from Table 1 that k; = 0 at all tips. One can also find from
the table that the values of ki at the tips of L! (the same arc in all four arrangements) do
not change much when K < 12, which is additional indication that the interactions become

more pronounced only when K > 12.

6.1.2. Steigmann-Ogden model

For this model, we assume the same material and remote loading parameters as above
and additionally assume that o = 0.2.

The plots of 6° and w® are shown in Fig. 6 for the four cases of K. Again, due to the
symmetry, only values inside the interval [0, 7] are plotted. Comparison of Fig. 6 with Fig.
4 suggests that the plots of & for the Steigmann-Ogden and Gurtin-Murdoch models are
practically the same for the considered case of 65 = 0. Comparison of Figs. 6 and Fig.
4 reveals significant difference in distributions of w® for the two models, especially in the
vicinity of the tips. This is because, when &§ = 0, the tip conditions for the Steigmann-

Ogden model require that dw® /0s = 0, Eq. (7b), and §?w®/0s? = 0, Eq. (7c), while the tip
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Figure 6: Distributions of 5% and w® for K =4, K =8, K =12, and K = 16, Steigmann-Ogden model

conditions for the Gurtin-Murdoch model are automatically satisfied when § = 0.
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Figure 7: Distributions of Ag,, and Ady for K =4, K =8, K = 12, and K = 16; Steigmann-Ogden model
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The components Ag, and Ad, of the traction jumps across the arcs inside the interval

[0, 7] are plotted in Fig. 7. We can conclude that the plots of Ag, are symmetric with

respect to angle 7/2, while those of Ag, are anti-symmetric. From the comparison of Fig.

7 and Fig. 5, it is found that the absolute values of Ag, near the tips for the Steigmann-

Ogden model are much larger than the ones for the Gurtin-Murdoch model perhaps because

A&, in the former model is also expressed via dw/dB33, see Eq. (31b). It can be seen

that the behavior of the plots for Ay is practically the same for the two models. This can

be explained by analysing Eq. (31b) coupled with the condition 2% = 0 at the tips, from

which it follows that, as in the Gurtin-Murdoch model, the behavior of Ad, near the tips is

primarily dominated by that of d&*(3)/dB.

Table 2: Normalized stress intensity factors (x1072) for the four arrangements; Steigmann-Ogden model

Ll L2 L3 L4 L5 LG L? LS
. | ka(a) [ 1.0816 -2.0777
® | ky(a) | -0.1663  0.2000
.&b k1(b) | -1.0816  2.0776
ka(b) | -0.1666  0.2007
| ki(a) | 10579 -0.1987 -2.1048 -0.8483
® | kg(a) | -0.1670 -0.0189  0.1999  0.0518
.L%b k1(b) | -1.0580  0.8483  2.1048  0.1987
ka(b) | -0.1675  0.0511  0.2009 -0.0181
o | ki(a) | 1.0866 05813 -1.0999 -2.2686 -1.7610 -0.0851
@ | ky(a) | -0.1666 -0.1027 0.0786  0.1984  0.1358 -0.0472
.&b k1(b) | -1.0867 0.0850 1.7600 2.2669  1.0985 -0.5806
ko(b) | -0.1677 -0.0475 0.1375 0.1987  0.0784 -0.1027
~ | ki(a) | 12881 1.0959 -0.2328 -1.9206 -2.9663 -2.7750 -1.4456 0.2413
@ | ko(a) | -0.1653 -0.1246 -0.0176 0.1137 0.1931  0.1517  0.0471 -0.0871
.&b k1(b) | -1.3059 -0.2477  1.4456 2.7816  2.9832 1.9259  0.2325 -1.1022
ka(b) | -0.1628 -0.0824  0.0412  0.1906 0.1894 0.1100 -0.0126 -0.1634

The values of the normalized stress intensity factors at the tips of the arcs L* for the

four arrangements are presented in Table 2. Here too, only a part of data is tabulated due

to the symmetry with respect to angle 7. Comparison of Tables 1 and 2 suggests that the

values of k; at the tips are practically identical for the two models and the main difference
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is that ko # 0 for the Steigmann-Ogden model. We can also conclude that the interactions

play an important role only when K > 12.

6.1.3. Comparison with the single arc results

We observed from Figs. 4 and 6 that, with increase in K, the effects of interactions
become more pronounced. To study those effects in more details, we compare the distribu-
tions of 3% and w® along the arc with angle span [807/180, 1007/180], which is present in
all four arrangements of Fig. 3. The plots of 6% and w® are shown in Fig. 8, both for the
Gurtin-Murdoch and Steigmann-Ogden models, and compared with those for the single arc

(labeled as K = 1), see [11, 12].
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Figure 8: % and w® along the arc with angle span [807/180, 1007/180] for K =1, K =4, K =8, K = 12,
and K =16

From Figs. 8a and c, we find that the plots of 5 along the considered arc are practically
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the same for the Gurtin-Murdoch and Steigmann-Ogden models. It is clear from Figs. 8a, ¢
that, for K < 8, the plots of ¢° practically coincide with the one for the single arc (K = 1).
With K > 12, the plots of & start to deviate from that for K = 1 and the interactions
manifest itself by increase in absolute values of &°. From the comparison of Figs. 8b, d, it
can be concluded that the plots of w® for the Gurtin-Murdoch and Steigmann-Ogden models
behave quite differently, perhaps due to the tip conditions of Eqs. (7b) and (7¢). It can also
be seen that the interactions do not seem effect distributions of w® as significantly as those
of 5.

We also compared the values of the normalized stress intensity factors at the tips of
corresponding arcs. For the Gurtin-Murdoch model, the results from Table 1 for the corre-
sponding four arrangements are k; = F0.0208, k; = F0.0211, £k, = F0.0227, k; = F0.0298
and ko = 0. The corresponding results for the Steigmann-Ogden model from Table 2 are
k1 = F0.0208, k; = F0.0210, k; = F0.0227, k; = F0.0297, which are practically the same as
k1 of the Gurtin-Murdch model, while unlike in the latter model, ko # 0 for the Steigmann-
Ogden model. The normalized stress intensity factors for the single arc are k; = 30.0208
and ko = 0 for the Gurtin-Murdoch model ([11]), k; = F0.0208 and k; = 0.0020 for the

Steigmann-Ogden model [12].

6.2. Influences of surface tention

Consider the arrangement of eight arcs shown in Fig. 9 in which 0% = 407 /180 (k =
1,--+,8). The matrix is characterized by the same elastic parameters ;= 2 GPa, v = 0.35
and the remote load is set as 535 = 0.1. Assume that v* = 0.12 for the two models and
consider the following cases of the remaining interfaces parameters for the Gurtin-Murdoch
model: (A) 6§ = 0.05; (B) f = 0.0. The following three cases of the remaining interfaces
parameters are considered for the Stegimann-Ogden model: (A) 65 = 0.05, 6* = 0.2; (B)
Gk =0.0, 6 =0.2; (C) 65 = —0.05, * = 0.2.
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Figure 10: Distributions of &% and w® along LF (k=1,--- ,4)

The plots of 7% and w® along the arcs are shown in Fig. 10. Again, only values inside

the interval [0, 7] are plotted from which it can be seen that ¢° is symmetric and w® is
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anti-symmetric with respect to andgle /2. It can be observed from Figs. 10a, ¢ that the
values of 6° decrease with decrease of G5 in all cases considered. From Fig. 10b, we observe
that the values of w® are not much affected by the surface tension inside most of the interval
[0, ]. However, the plots of w® for the cases (A) and (B) of the Gurtin-Murdoch model
are significantly different inside two small intervals near the tips, perhaps because w® does
not have to vanish at the tips for the case (B). From Fig. 10d, we can conclude that the
values of w® are less influenced by the changes in 6§ in the three considered cases of the

Steigmann-Ogden model.
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Figure 11: Distributions of A, and A, along L* (k=1,--- ,4)
The components of traction jumps across L (k= 1,--- ,4) are plotted in Fig. 11, where

we find again that the values of Ag,, are symmetric and Ag, are anti-symmetric with respect
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to w/2. We find from Fig. 11 that the distributions of Ag,, and Ady, for both the Gurtin-
Murdoch and Steigmann-Ogden models, are not influenced by the change in values of 54
inside most parts of the interval [0, 7], except near the arcs tips, where the components of

traction jumps decrease with a decrease of G¥.

6.3. Far-field signature of the arcs

It is known, e.g., [2, 25], that circular inhomogeneities that are fully enclosed by the
Gurtin-Murdoch or Steigmann-Ogden material surfaces have the same signatures as equiva-
lent perfectly bonded circular inhomogeneities with appropriately chosen elastic properties.
This fact was used in [25, 26] to obtain the overall (effective) properties of the composite
materials by employing Maxwell’s homogenization scheme.

In order to investigate those signatures, the complementary tractions along some circle

of large radius r > R were represented by the following complex Fourier series:

5(2) = 5(2) = 5e(2) = D A;(r)g(2) + Ao(r) + Y A;(r)g 7 (2) (37)
complementary 7=l 7=1
in which ¢, denoted the complementary traction with the normal and tangential components
Oen and Gy, 04(2) = Gen(2) + 1040(2), °°(2) were obtained from the normalized Eq. (24),
g(z) =r/z, and Ay, Ay; were the unknown complex coefficients.
For a single circular inhomogeneity surrounded by either Gurtin-Murdoch or Steigmann-
Ogden closed interface, the only meaningful coefficients in the series of Eq. (37) were A_s,

Ay, Ay, as the remaining coefficients were practically zero, i.e.
Ge(z) = A_o(r) exp (—2i8) + Ao(r) + Aa(r) exp (2i5), (38)

which meant that the complementary tractions were periodic functions with the period .

In order to investigate the far-field signature of the circular arcs under study, we consider
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four arrangements (K =2, K =4, K = 6, and K = 8) of arcs separated by the constant
angle 57/180, as shown in Fig. 12. The material parameters of the matrix were taken to be
the same as ones introduced in Section 6.2. The interface parameters were also taken to be
the same as in the latter section, i.e. cases (A) and (B) for the Gurtin-Murdoch model and

(A), (B), (C) for the Steigmann-Ogden model.

a) 2arcs ... b) 4 arcs __...__ c) 6ares ... d) 8arcs ...
5~\ "" ~~‘
r T r’ﬂ\ . A r
R T2 TR T2 TR AT2 YR AT2 -
I_> 1 I_y 1 ‘I—>' ! I—» !
(0] 3 (0] 71 0O z1 0O A
gap=5 gap= 5 gap= 95 gap=5

Figure 12: Four arrangements of circular arcs for the studies of far-field signatures

The complementary tractions &, for the two types of the remote load were evaluated on

the circle r/R = 4 and decomposed into the series of Eq. (37).

6.3.1. Hydrostatic load

The components of complementary tractions &. along the circle r/R = 4 are plotted in
Fig. 13 for the hydrostatic remote load o7y = 795 = 0.05, 6735 = 0. Due to the symmetry,
only results inside the interval [0, 7] are plotted.

It can be observed from Fig. 13 that the normal components ., are always symmet-
ric with respect to 7/2, while the tangential components &., are anti-symmetric. More
importantly, it can be concluded from Fig. 13 that, for both models, the components of
complementary tractions are periodic functions whose number of periods inside the interval
0, 27] is always equal to the number K of arcs in the arrangements. This suggests that, for
hydrostatic load and K > 4, the far-field signatures of the arcs for both models are different

from the signatures of single circular inhomogeneities surrounded by closed material surfaces,
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circle 7/ R = 4, hydrostatic remote load.

see, e.g., [25, 27] or from those for circular inhomogeneities with uniform interphase layers,

see, e.g., [28, 29]. Additional observation from Fig. 13 is that, for both models, the absolute

values of the complementary tractions components for case (A) with 6§ = 0.05 are always

larger than the ones for case (B) with 65 = 0 and for case (C) of the Steigmann-Ogden

model with 65 = —0.05

6.3.2. Deviatoric load

Consider again the four arrangements of Fig. 12 and take the deviatoric load as 7y =

_5-22 - 0.057 5-103 - 0-

The components of the complementary tractions &, along the circle r/R = 4 for that

case are shown in Fig. 14. Here too, we plot them only inside the interval [0, 7] due to

the symmetry. We see again that the plots of 7., are symmetric, while those of &., are

anti-symmetric on that interval.

From Figs. 14a-d, it can be concluded that, for the Gurtin-Murdoch model, the plots for
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Figure 14: Complementary tractions along the circle r/R = 4, deviatoric remote load.

all four arrangements have only one period inside the interval [0, 7], which suggests that the
far-field signatures of . are independent on K and are of the type governed by Eq. (38).
To study that result further, in Table 3 we tabulated the coefficients A_,, A_;, Ap, Ay, and
Ay obtained using Eq. (37). From that table, we can see that the real parts of A_5 and
Ay are the dominant coefficients and the real parts of Ay for case (A) with the 65 # 0 are
not equal to 0, as it should be for a single perfectly bonded inhomogeneity in the case of
deviatoric load. This indicates that, for deviatoric load, far-field signatures for the multiple
circular arcs in some cases of Gurtin-Murdoch model are still not the same as those in single
inhomogeneity model or in the coated circular layer model.

Additionally, it can be observed From Figs. 14a-d that, with the increase in value of K,
the absolute values of ¢, and 6., decrease.

From Figs. 14e-h, we conclude that, for the Steigmann-Ogden model and K > 4, the
components of . do have the same number of periods as the number of arcs, similarly to

what was observed in the case of hydrostatic load. It can also be observed from the latter
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Table 3: Series coefficients for the Gurtin-Murdoch model under deviatoric loads

2 arcs 4 arcs 6 arcs 8 arcs
case A case B case A case B case A case B case A case B
A, Re 3.7E-4 3.7E-4 2.3E-4 2.1E-4 2.6E-4 2.5E-4 2.1E-4 2.0E-4
Im 4.0E-9 1.0E-9 1.6E-10 1.1E-11 1.4E-8 -8.9E-10 5.8E-8 1.1E-9
A Re -2.0E-12 -4.0E-12 1.3E-11 -3.4E-12 1.7E-10 -2.5E-12 3.9E-10 7.0E-11
Im -5.6E-12 4.5E-12 -1.8E-12 1.1E-12 -4.0E-10 -4.2E-12 2.7E-9 -1.0E-10
Ao Re -5.5E-5 -2.2E-4 9.5E-5 -5.0E-11 6.1E-5 3.2E-10 4.2E-5 -2.1E-9
Im 8.5E-9 2.1E-9 -29E-10 -4.0E-12 3.2E-10 -1.8E-10 &.1E-10 -6.6E-12
A Re 2.3E-11 4.7E-11 3.7E-10 -2.1E-12 1.5E-8 2.4E-11 2.1E-8 -2.1E-9
Im 2.4E-10 -9.2E-12 -2.1E-10 3.5E-12 3.4E-9 9.7E-11 2.8E-8 5.0E-9
A, Re 9.5E-4 9.4E-4 6.0E-4 5.5E-4 6.6E-4 6.3E-4  5.2E-4 5.0E-4

Im -84E-9 -24E-9 -40E-10 -2.3E-11 -3.6E-8 23E-9 -15E-7 -2.8E-9

figures that the values of 6., and G. in case (A) (with 65 = 0.05) are always of opposite
signs from the ones in case (C) (with 64 = —0.05), while the same complementary traction
components in case (B) (with 65 = 0) are zero. However, Fig. 14e for K = 2 indicates that
the plots of 7., and 7., do not have similar characteristics. The latter fact may be due to

the large value of % > 7/2 in case of K = 2.

7. Conclusions

In this paper, we studied the plane strain problem of an infinite isotropic elastic matrix
subjected to uniform far-field load and containing multiple stiff prestressed arcs located on
the same circle. The arcs were modeled as material surfaces described by either Gurtin-
Murdoch or Steigmann-Ogden theories. The integral representations for the elastic fields
everywhere in the material system were presented and, for the first time, the expressions
for the stress intensity factors near the arcs tips were derived. We demonstrated that the
numerical technique for solving the problems with a single arc, developed in our earlier pub-
lications, could be generalized to allow for accounting for the interactions between multiple
arcs. Using this technique, we studied the effects of interactions for various scenarios of

dimensionless parameters governing the problem. We also investigated the so-called far-
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field signatures of the arcs under various loading conditions. Unlike in the more classical
problems of circular inhomogeneities with imperfect interfaces or with uniform interphase
layers, which all have dipole signatures (thus allowing for using the concept of an equivalent
perfectly bonded inhomogeneity), the signatures of system of multiple arcs turned out to be
quite different. In the case of hydrostatic load, the number of multipoles in the multipole
expansions of the far-fields always correlated with the number of arcs on a circle, both for
the Gurtin-Murdoch and Steigmann-Ogden models. Similar conclusion was reached for the
case of deviatoric load and the Steigmann-Ogden model, which was not the case for the same
load and the Gurtin-Murdoch model. However, in the latter case, the far-field signatures for
the multiple circular arcs in some cases of Gurtin-Murdoch model were still not the same as
the classical dipole signatures mentioned above.

Finally, we note that the theoretical developments and the numerical algorithm used
in the present paper can be modified and extended to the more general case of the arcs
located on different circles and of different radii. More specifically, the relations and integral
representations of Eqgs. (3)-(14) will remain the same, if one assumes that the local radius
of curvature involved in some of those equations is taken to be equal to the radius of the
corresponding circle. The changes will appear starting from Eq. (15) in which it was assumed
that the center of the circle on which the arcs are located is placed at the origin of the
Cartesian coordinate system. The analog of Eq. (15) for the case of arcs on different circles
can be obtained by assuming that the expressions for 7 and 7y on each circle will be changed
by adding the complex coordinates of the center of that circle. Such modification will
produce additional integrals containing expressions with the coordinates of the centers, but

those additional integrals will be of the same types as the ones discussed in the manuscript.
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Appendix A. Relations between w® and z° in Steigmann-Ogden theory

The relations are found using standard methods for solving ordinary linear differential
equations of the second order, see [12] for the details. The final expressions for the each arc
are:

(i) The case of > 0, 2x% + C& > 0,

o5 B — B

2 F
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in which 8* belongs to the interval [3F, 85].

(ii) The case of < 0, 2x% + & > 0,
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(iii) The case of =0, 2x% + ¢& > 0,
5
/ 25(B)dp = 0. (A.5)
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in which the extra unknown constant M}, have to be determined by solving the system of

Egs. (20) and (21).
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