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ABSTRACT

Tuning tensor program generation involves searching for various

possible program transformation combinations for a given program

on target hardware to optimize the tensor program execution. It is

already a complex process because of the massive search space, and

exponential combinations of transformations make auto-tuning

tensor program generation more challenging, especially when we

have a heterogeneous target. In this research, we attempt to address

these problems by learning the joint neural network and hardware

features and transferring them to the new target hardware. We

extensively study the existing state-of-the-art dataset, TenSet, per-

form comparative analysis on the test split strategies and propose

methodologies to prune the dataset. We adopt an attention-inspired

approach for tuning the tensor programs enabling them to embed

neural network and hardware-speci�c features. Our approach could

prune the dataset up to 45% of the baseline without compromising

the Pairwise Comparison Accuracy (PCA). Further, the proposed

methodology can achieve on-par or improved mean inference time

with 25%-40% of the baseline tuning time across di�erent networks

and target hardware.
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1 INTRODUCTION

Deep neural networks (DNN) applications are ubiquitous across

multiple arti�cial intelligence domains, including industrial and

scienti�c disciplines. They form the backbone of many existing

and emerging applications. The DNN development is rapidly ad-

vancing due to the the capabilities of computing hardware and

domain-speci�c accelerators that make the execution of tensor

programs e�cient by providing hand-tuned deep learning (DL)

libraries. These libraries are often not scalable. Tensor compilers

such as XLA [13], TVM [3], and Glow [11] facilitate �ne-grained

hardware-independent (high-level) and dependent (low-level) op-

timizations to the input computation graphs. A tensor compiler

analyzes the computation graphs and applies various optimizations

at di�erent stages. Additionally, it inputs subgraphs or mathemati-

cal expressions and selects the optimized low-level implementation

generating a tensor program. Tensor program generation refers to

automatically generating code for tensor programs.

The deep neural architecture has evolved manifolds from simple

neural networks to convoluted ones, followed by recurrent ones to

massively large models.Advancements in hardware such as GPUs

and domain-speci�c accelerators and DL frameworks like Tensor-

Flow and PyTorch o�er optimized kernel support facilitating DL

innovations. With advances in DNN architectures and backend

hardware, the search space of compiler optimizations has grown

manifold. The vast search space consisting of loop optimizations like

tiling, vectorization, etc., limits the use of data-driven approaches

to auto-tune the tensor compilers and generate e�cient tensor

programs. With automatic tuning of tensor compilers to generate

performant kernel plans becoming prevalent, proposed methodolo-

gies based on data-driven cost modeling and intelligent techniques

require signi�cant amounts of hardware data to learn cost models.

Often, these datasets are speci�c to the nature of the experiments in

the HPC domain. These resource-intensive techniques are hindered

by the large number of kernels required upon introducing new

hardware. In such a scenario, the cost model or a tuner requires

retraining from scratch.

Additionally, almost all of these cost models [4, 12] are based on

the train and test data drawn from identical probability distribu-

tions, while the source and target compute hardware are the same.

However, with the advancement in heterogeneous hardware sys-

tems, such as di�erent generations of CPUs and GPUs, it may not be

practical to have this assumption. For example, a tuner trained for a
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Section 3.2 elaborates on the proposed optimizations and opportu-

nities for e�cient heterogeneous transfer learning with less dataset,

and Section 3.3 explains the adaptive auto-tuner architecture.

3.1 An Overview

Figure 1 provides an end-to-end �ow of our framework. We used

TVM v0.8dev0 as a base to present the heterogeneous transfer

learning. The user leverages the TVM API to 1 provide the com-

putation framework in the supported format (TensorFlow, PyTorch,

etc.). It further 2 undergoes high-level optimization and sub-

graph partitioning to generate subgraphs of a smaller order. The

induced subgraphs form the search space for the feature extractions.

Additionally, as a feature set, 3 domain-speci�c information is

extracted from these subgraphs, like kernel dimensions, tensor op-

erations, etc. For each data-point entry or kernel, 4 we store the

hardware information like hardware architecture, maximum num-

ber of threads, registers and threads per block, and shared memory.

This forms part of the static hardware dataset. We perform a prob-

abilistic and exploratory study on this feature set to identify the

features of high importance. The hardware characterization assists

in mapping the features from source to target in case of a di�erent

hardware than the source. We 5 train auto-tuner on this dataset

by extending a one-shot tuner [12]. Once the auto-tuner is trained,

it can be used to perform auto-generation of tensor programs on

the target device with or without re-training. If the user wants to

�ne-tune the auto tuner, we provide a capability to 6 �ne-tune the

auto tuner using online hardware features. We have experimented

with selective tasks retraining, and are still working on a method-

ology for selective feature training. The non-parametric approach

reduces the retraining time and size of the dataset required. Also,

we used attention heads to support memory-augmented �ne-tuning

using bidirectional LSTM. Since the training strategy is based on

the one-shot paradigm, the baseline auto-tuner model undergoes a

one-time complete training phase alleviating the large data require-

ment on the target device for full retraining. Hence 7 proposed

tensor programs are 8 deployed on the target hardware and their

performance is evaluated.

We used the TenSet dataset [22] for the baseline measurements.

As per authors claims, the dataset can be leveraged for generating

the tensor programs using transfer learning. The basis is diversity

in the dataset leading to generalization and multi-platform perfor-

mance data points (measured on CPUs of Intel, AMD and ARM

and NVIDIA GPUs). Section 3.3 discusses the applicability of these

bases for e�cient transfer learning using the proposed auto-tuner.

For more information on the dataset, one can refer to [22]. Table 1

summarizes the hardware and associated characteristics that we

have considered in our study.

3.2 Hardware-Aware Kernel Sampling

We have extensively studied and conducted an experimental exam-

ination of the TenSet dataset to understand the neural network and

hardware features that can in�uence the metrics like �ops, through-

put, and latency. The dataset consists of over 13,000 tasks from

120 networks measured on six hardware platforms for the metrics

like throughput and latency under di�erent neural network and

Table 1: Compute Hardware Description

Hardware Platform Processor Remarks

Intel Platinum 8272CL @ 2.60GHz CPU 16 cores, AVX-512

AMD EPYC 7452 @ 2.35GHz CPU 4 cores, AVX-2

ARM Graviton2 CPU 16 cores, Neon

NVIDIA Tesla T4 GPU Turing Architecture

NVIDIA GeForce RTX 2080 GPU Turing Architecture

NVIDIA A100 GPU Ampere Architecture

NVIDIA A40 GPU Ampere Architecture

Intel Gold 5115 @ 2.40GHz CPU 40 cores, Xeon

hardware parameters resulting in over 52 million measurements. As

shown in Table 1, we have considered the �rst four platforms from

the dataset to learn the task, schedules applied to them, and associ-

ated performance along with the hardware parameters. The latter

half of the hardware is used to evaluate and establish the usefulness

of cross-device or transfer learning. In addition to the neural net-

work information like tensor operation and input and output shape,

we have also considered hardware parameters, as shown in Table 2.

Here, we have presented hardware features only for CPU and GPU

but it can be extended to other heterogeneous devices. Analyzing

the dataset, we identi�ed that most high-performant kernels are

associated with speci�c hardware parameters. Such probabilistic

sampling also mitigates skewed kernel selection, avoiding kernels

that can lead to lower FLOPs or invalid computation graphs. We

removed the measurements and kernels which were invalid or low-

performing. In the existing cost modeling, it is observed that the

large search space selected via random sampling of kernels causes

performance regression.

Table 2: Hardware Parameters Considered While Training

Hardware Parameter De�nition Hardware Class Value (bytes)

cache_line_bytes chunks of memory handled by the cache CPU; GPU 64

max_local_memory_per_block maximum local memory per block in bytes GPU 2147483647

max_shared_memory_per_block maximum shared memory per block in bytes GPU 49152

max_threads_per_block maximum number of threads per block GPU 1024

max_vthread_extent maximum extent of virtual threading GPU 8

num_cores number of cores in the compute hardware CPU 24

vector_unit_bytes width of vector units in bytes CPU; GPU 64; 16

warp_size thread numbers of a warp GPU 32

We pruned the vast search space for the tensor program genera-

tion. The search task based on random sampled kernels’ measure-

ments is unreliable when the search space is not rich. We observed

that speci�c hardware parameters, like the number of cores, are

less valuable features than �op count regarding latency. It is mainly

because of the need for diversi�ed kernel combinations and hard-

ware features in the considered dataset. Hence, we evaluated the

combination of FLOPs count, kernel shape, and execution time on a

given hardware for various tensor operations. As shown in Table 3,

we observed that the CPU and GPU behave similarly when select-

ing the best shape for a kernel. Although, the execution time di�ers

signi�cantly based on the compute hardware. Hence, we sampled

the kernels based on joint exploration of tensor operations, kernel

shapes, and hardware parameters based on the FLOPs count and

execution time. The extracted initial kernels are from six diversi�ed
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Table 3: Neural-Network And Hardware Features Characterization

Sampled Kernels
#Kernel_Shapes Max GFLOPs

Tensor Shape
Mean Execution Time (ms)

CPU GPU CPU GPU EPYC-7452 Graviton2 Platinum-8272 T4

T_add 229 388 8.59 8.59 [4, 256, 1024] 180.97 81.25 92.86 4.31

Conv2dOutput 60 27 1.20 1.07 [4, 64, 64, 32] 40.94 14.21 19.11 2.07

T_divide 24 69 0.003 0.003 [8, 1, 1, 960] 0.07 0.05 0.11 0.10

T_fast_tanh 9 9 0.008 0.008 [4, 1024] 0.43 0.43 0.53 0.97

T_multiply 105 150 8.92 8.92 [4, 256, 4096] 320.74 48.08 95.65 0.55

T_relu 300 1257 73.46 73.46 [4, 144, 72, 8, 64] 0.52 5.70 0.72 0.23

T_softmax_norm 27 27 0.016 0.016 [4, 16, 256, 256] 1.01 2.78 4.08 0.19

T_tanh 9 9 0.905 0.629 [8, 96, 96, 3] 5.55 33.48 50.55 0.16

conv2d_winograd 0 33 NA 0.868 NA NA NA NA 0.93

*CPU: EPYC-7452, Graviton2, Platinum-8272; *GPU: T4; *NA: operator is not present in the considered CPU dataset **Measured on Nvidia GeForce RTX 2080

neural networks to encompass prominent classes. Still, it will be an

ever-growing list, and we are working on an intelligent algorithm

to achieve the same whenever introducing a new network class.

Experimenting with rmse and ranking loss, we established that

rmse performs better based on inference time. Hence, we chose

rmse for our tuner’s performance evaluation. We learned from the

measurement records’ costs of the selected kernels that it contains

local minima. To avoid local minima, we leveraged simulated an-

nealing implemented in TVM. But it is computationally heavy and

takes signi�cant time to �nd global optima. We aim to optimize it

in our future work.

3.3 Auto-tuner Architecture

We have extended the one-shot tuner to experiment with a joint

neural network and hardware features as part of the task. Our tuner

consists of bidirectional LSTM and attention head to learn from

the sequential data. After testing multiple con�gurations, we chose

the near-optimal values based on empirical evaluation, including a

batch size of 16, 200 epochs, and other hyperparameters listed in

Table 4.

Table 4: Auto-Tuner’s Hyperparameters

Hyperparameter Value

Batch 1, 4, 16, 64, 256
Epoch 100, 200, 400
Learning Rate 1e-3
#Bidirectional LSTM Layers 3
Attention Head (�ne tuning) 2
#Unrolling Steps for Attention Head 2
Optimizer Adam

4 EVALUATION

4.1 Experimental Setup

Platform: We used heterogeneous architectures like Nvidia GPUs-

RTX 2080, A100, A40, and Intel Xeon CPU for our study experiment.

We chose di�erent generations of NVIDIAGPUs to study the impact

of architectural di�erences.

Dataset and Model: This work use TVM v0.8dev0 and PyTorch for

implementations. We used XGBoost (XGB), multi-layer perception

(MLP), and LightGBM (LGBM) based tuners as a baseline.

Baseline: For the baseline, we used the TenSet dataset, commit

35774ed. Based on the previous work [22], we have considered 800

tasks with 400 measurements as the baseline. We used Platinum-

8272 for the CPU dataset and Nvidia Tesla T4 for the GPU dataset.

4.2 Dataset Sampling

As discussed in Section 3.2, we have sampled the dataset. By employ-

ing the data sampling strategies based on the feature’s importance

in terms of FLOPs count, we could reduce the GPU dataset by 43%

and the CPU dataset by 47%. As shown in Table 5, we could gain

the training time overall.

While sampling the dataset, it is essential to ensure the accuracy

of the resultant cost model or tuner trained over the sampled dataset.

Hence, we compared the top-1 and top-5 accuracy with the pairwise

comparison accuracy (PCA). To explain brie�y, if ~ and ~̂ are actual

and predicted labels, then we calculate the number of correct pairs,

�% , by performing elementwise G>A , followed by elementwise =>C

on ~ and ~̂. Further, we take the sum of the upper triangular matrix

of the resultant matrix. The PCA is calculated then using equation 1.

%�� = �%/(= ∗ (= − 1)/2);= = ;4=(~̂) (1)

The cost models trained on the baseline and sampled dataset per-

formed on par.

To have a fair comparison we have trained XGB, MLP, and LGBM

tuners on the baseline and sampled data using three split strategies

as explained here:

• within_task: the dataset is partitioned into train and test

based on the measurement record. Once the features are ex-

tracted for each task, it is shu�ed and randomly partitioned.

• by_task: a learning task is used to partition the dataset ran-

domly based on the features of the learning task.

• by_target: partitioning is performed based on the hardware

parameters

To avoid skewed sampling, tasks with too few measurements were

excluded. Further, we have considered the tasks based on the FLOPs

of tensor operations occurrence probability as shown in Table3. The

latency and throughput of these tasks are recorded by executing

them on the computing hardware. Table 5 presents the gain in
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Table 5: Reduction In Dataset Size And Train-time (by split strategies)

Target Hardware Dataset Size
XGBoost (train-time (sec)) MLP (train-time (sec)) LightGBM (train-time (sec))

within_task by_task by_target within_task by_task by_target within_task by_task by_target

GPU
Baseline 16G 1504 1440 454 3000 2434 3150 1574 780 4680

Sampled 9G 1406 1169 339 1968 1655 2464 1175 595 3637

CPU
Baseline 11G 1490 1265 428 3143 2623 2043 1131 636 3946

Sampled 6.8G 905 780 354 2091 1672 1270 489 387 2435

time-to-train for the sampled dataset. It can be seen that in the case

of CPUs, the gain is up to 56% for LGBM while using within_task

split strategy during training. GPUs also have shown an increase

of up to 32%.

4.3 Tensor Program Tuning

Here, we discuss metrics to show the e�ectiveness of our proposed

approach over the baseline.

Table 6: Pairwise Comparison Accuracy

Hardware Dataset
Split Scheme

By Target Within Task By Task

NVIDIA A100 GPU
Baseline 0.8476 0.8931 0.8565

Sampled 0.844 0.8953 0.8534

Intel Xeon CPU
Baseline 0.8477 0.8506 0.8651

Sampled 0.8434 0.8456 0.861

Table 6 shows the Pairwise Comparison Accuracy(PCA) earlier

discussed in Equation 1 for each split scheme for our sampled

dataset with baseline dataset for NVIDIAA100 GPU and Intel Xenon

CPU. We observe that accuracy hardly changes with the sampled

dataset. We also observe a similar trend for other architectures used

in this study.

Table 7: Inference Time Comparison (Seconds)

Target Hardware
Baseline Dataset Sampled Dataset

W/o Transfer Tuning W/ Transfer Tuning W/o Transfer Tuning W/ Transfer Tuning

A100 GPU 578 391 585 400

A40 GPU 627 416 599 175

RTX2020 GPU 18.67 27.68 17.37 841.74

Xeon CPU 91.34 282.2 85.22 189.25

Table 7 shows the inference times for baseline and sampled

datasets with and without transfer tuning for NVIDIA A100, A40,

RTX 2020 GPUs, and Intel Xeon CPU. We observe signi�cant ad-

vantages with the sampled dataset as the inference times are much

lower than the baseline dataset. The numbers discussed here are for

the XGBoost tuner. Please refer to our GitHub1 for inference num-

bers using multi-layer perception (MLP) and LightGBM (LGBM)

based tuners as well inference numbers for various batch sizes

(1,2,4,8) and detailed logs for di�erent architectures used in this

study. We observe similar trends advantageous to the sampled

dataset.

1https://github.com/xintin/TransferLearn_HetFeat_TenProgGen

4.4 Evaluation of Heterogeneous Transfer
Learning

Di�erent transformations can be applied for a given compute graph

consisting of tensor operation and input and output tensor shapes,

varying their performance on target hardware. For example, in a

conv2D tensor operation, tiling is dictated by whether the target is

GPU or CPU because of grid and block size bound in GPUs. A large

tiling size that may be valid in CPUmay be invalid in GPU. Also, not

all combinations are performant. We learned the joint-optimized

schedules for a kernel and hardware using the TVM auto-scheduler.

Then, we applied it to similar untuned kernels using the attention

mechanism. To make it e�cient, we sort the kernels as per their

occurrences and total contribution to the FLOPs count. Then we

tune the selected few signi�cant tensor operations.

We have evaluated our methodology using three architecturally

di�erent networks on CPU and GPU. Contrasting to the baseline,

where the tasks are fetched randomly tuned, we select the tasks

contributing more to the FLOPs. As shown in Table 8, we could

achieve the on-par mean inference time with signi�cantly reduced

tuning time. On CPU, for ResNet_50, we could achieve 30%, Mo-

bileNet_50 70%, and Inception_v3 90% reduction in time on CPU.

ResNet_50 su�ered performance regression due to a lack of match-

ing kernel shapes in the trained dataset for the given hardware.

Whereas on GPU, we could achieve 80%-90% across all the networks.

Here, we used the trainer tuned on features from neural networks

and hardware.

Table 8: Evaluation Of Proposed Tuner

Target Hardware Network
W/o Transfer Tuning W/ Transfer Tuning

Time-to-Tune Mean Inf. Time Time-to-Tune Mean Inf. Time

CPU

ResNet_50 128 11.93 86 12.12

MobileNet_v3 236 5.48 71 5.57

Incpetion_v3 614 75.27 61 73.80

GPU

ResNet_50 817 3.79 226 3.78

MobileNet_v3 1092 1.72 136 1.75

Incpetion_v3 2510 28.72 191 28.73

*CPU: Intel Xeon; *GPU: A100; *w/o: without; w/: with; tune time (sec); inf time (ms)

We have also compared the tuners for the epochs required to

converge on the baseline and sampled data. As per the design of

TVM’s auto-scheduler, if they are executed for a large number of

trials, evidently, the tuners, like XGB and MLP, will converge. To

have a fair comparison, we have compared them by epochs. As

shown in Figure 2, there is not much di�erence for XGB, MLP, and

LGBM tuners on either dataset. On the other hand, our attention-

inspired tuner performed much better by converging in a similar

number of epochs but achieving twice the better error loss. The
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