2304.05430v2 [cs.PL] 26 Dec 2023

arxiv

Transfer Learning Across Heterogeneous Features For Efficient
Tensor Program Generation

Gaurav Verma
Stony Brook University
Stony Brook, New York, USA
gaurav.verma@stonybrook.edu

Abid M. Malik
Brookhaven National Laboratory
Upton, New York, USA
amalik@bnl.gov

ABSTRACT

Tuning tensor program generation involves searching for various
possible program transformation combinations for a given program
on target hardware to optimize the tensor program execution. It is
already a complex process because of the massive search space, and
exponential combinations of transformations make auto-tuning
tensor program generation more challenging, especially when we
have a heterogeneous target. In this research, we attempt to address
these problems by learning the joint neural network and hardware
features and transferring them to the new target hardware. We
extensively study the existing state-of-the-art dataset, TenSet, per-
form comparative analysis on the test split strategies and propose
methodologies to prune the dataset. We adopt an attention-inspired
approach for tuning the tensor programs enabling them to embed
neural network and hardware-specific features. Our approach could
prune the dataset up to 45% of the baseline without compromising
the Pairwise Comparison Accuracy (PCA). Further, the proposed
methodology can achieve on-par or improved mean inference time
with 25%-40% of the baseline tuning time across different networks
and target hardware.

CCS CONCEPTS

« Software and its engineering — Compilers; - Computing
methodologies — Machine Learning; Artificial intelligence.

KEYWORDS

auto-tuning, deep learning compilers, heterogeneous transfer learn-
ing, tensor program generation

ACM Reference Format:

Gaurav Verma, Siddhisanket Raskar, Zhen Xie, Abid M. Malik, Murali Emani,
and Barbara Chapman. 2023. Transfer Learning Across Heterogeneous
Features For Efficient Tensor Program Generation. In Venue, TBD. ACM,
New York, NY, USA, 7 pages. https://doi.org/xx.xxxx/x.y

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

ExHet 23, February 25th, 2023, Montreal, Canada

© 2023 Association for Computing Machinery.

ACM ISBN xxx-x-xxxx-xxxx-dd/yy/mm...$15.00

https://doi.org/xx xxxx/x.y

Siddhisanket Raskar
Argonne National Laboratory
Lemont, Illinois, USA
sraskari@anl.gov

Murali Emani
Argonne National Laboratory
Lemont, Illinois, USA
memani@anl.gov

Zhen Xie
Argonne National Laboratory
Lemont, Illinois, USA
zhen xie@anl.gov

Barbara Chapman
Stony Brook University
Stony Brook, New York, USA
barbara.chapman@stonybrook.edu

1 INTRODUCTION

Deep neural networks (DNN) applications are ubiquitous across
multiple artificial intelligence domains, including industrial and
scientific disciplines. They form the backbone of many existing
and emerging applications. The DNN development is rapidly ad-
vancing due to the the capabilities of computing hardware and
domain-specific accelerators that make the execution of tensor
programs efficient by providing hand-tuned deep learning (DL)
libraries. These libraries are often not scalable. Tensor compilers
such as XLA [13], TVM [3], and Glow [11] facilitate fine-grained
hardware-independent (high-level) and dependent (low-level) op-
timizations to the input computation graphs. A tensor compiler
analyzes the computation graphs and applies various optimizations
at different stages. Additionally, it inputs subgraphs or mathemati-
cal expressions and selects the optimized low-level implementation
generating a tensor program. Tensor program generation refers to
automatically generating code for tensor programs.

The deep neural architecture has evolved manifolds from simple
neural networks to convoluted ones, followed by recurrent ones to
massively large models.Advancements in hardware such as GPUs
and domain-specific accelerators and DL frameworks like Tensor-
Flow and PyTorch offer optimized kernel support facilitating DL
innovations. With advances in DNN architectures and backend
hardware, the search space of compiler optimizations has grown
manifold. The vast search space consisting of loop optimizations like
tiling, vectorization, etc., limits the use of data-driven approaches
to auto-tune the tensor compilers and generate efficient tensor
programs. With automatic tuning of tensor compilers to generate
performant kernel plans becoming prevalent, proposed methodolo-
gies based on data-driven cost modeling and intelligent techniques
require significant amounts of hardware data to learn cost models.
Often, these datasets are specific to the nature of the experiments in
the HPC domain. These resource-intensive techniques are hindered
by the large number of kernels required upon introducing new
hardware. In such a scenario, the cost model or a tuner requires
retraining from scratch.

Additionally, almost all of these cost models [4, 12] are based on
the train and test data drawn from identical probability distribu-
tions, while the source and target compute hardware are the same.
However, with the advancement in heterogeneous hardware sys-
tems, such as different generations of CPUs and GPUs, it may not be
practical to have this assumption. For example, a tuner trained for a

ExHet’23, February 25th, 2023, Montreal, Canada

DL workload on a CPU may not generate efficient tensor programs
on GPUs. Transfer learning has been advantageous in mitigating
these limitations. It can learn the context from the neural network
tasks and apply them to the new context.

Hence, the need for a transfer learning-based methodology re-
quiring lesser data and quick adaptability to the new hardware is
paramount. The cost models trained on limited hardware or neural
network tasks lack transfer learning capabilities. Consequently,
it is efficient to map the heterogeneous feature space across de-
vices and fine-tune only the required features applicable instead
of retraining from scratch. Where hand-tuned libraries fall short
of providing optimized support to new hardware and operators,
auto tuners requiring lesser data to learn can reduce the tuning
time and the time required for online device measurement by fo-
cusing on learning high-performance kernels. Recent works have
proposed transfer learning methods for the same source and target
hardware [6, 12, 22]. We suggest heterogeneous transfer learning
by mapping the kernel as a feature space in a new context.

This paper analyzes the current methods used to generate tensor
programs using transfer learning for CPU and GPU-based systems.
We conduct probabilistic and exploratory analyses to achieve com-
parable results using less data than the baseline across various split
strategies. We propose a transfer learning approach to generate
efficient tensor programs with less tuning time and fewer kernel
measurements across heterogeneous hardware. The significant con-
tributions of this paper are as follows:

o perform extensive study on the existing work to extract and
learn from the joint significant neural network and hardware
features

o define the proposed methodology based on fewer kernels
measurements and efficient transfer learning

e implement an optimized tuner based on the key points above
and present results for heterogeneous transfer learning. We
could achieve on-par or better mean inference time with
3x-5x improved tuning time and up to 47% reduced dataset.

The remainder of the paper is organized as follows: Section
2 gives the requisite background to understand the problem and
presents the related work in this area. Section 3 describes the pro-
posed methodology used in the study. Sections 4 and 5 discuss
experimentation and results, respectively. Section 6 provides a con-
clusion and potential future steps.

2 BACKGROUND AND RELATED WORK

2.1 Cross-device Learning

The search space in cross-device learning is enormous, ranging
from the orders of millions (CPU) to billions (GPU). It leads to
ample search space and incurs high costs in terms of search time.
Transferring auto-schedule knowledge from pre-tuned kernels to
untuned kernels can play a significant role. As discussed here, re-
searchers have proposed solutions to address various aspects of
transfer learning [6]. In [6, 17], authors have classified tasks into
classes to have a better selection of optimizations. [8] uses a hierar-
chical LSTM-based approach to predict throughput based on the
opcodes and operands of instructions in a basic block. The authors
propose a solution that is easily portable across various proces-
sor micro-architectures. Other research uses a cost model query

Verma, et al.

optimizer to improve resource utilization and lower operational
costs [14]. In [20], the authors propose an end-to-end pipeline to
optimize synchronization strategies given model structures and re-
source specifications, lowering the bar for data-parallel distributed
ML across devices. Another work [1] employs reinforcement learn-
ing to develop an adaptive sampling algorithm to alleviate costly
hardware measurement. Our work proposes efficient pruning of
datasets to learn joint kernel and hardware features. It enables
efficient tuning by considering prominent kernels.

2.2 Machine Learning-based Auto Tuners

ML-based approach to automatically optimize tensor programs is a
heavily researched area [4, 5, 7] focusing on tensor compilers and
DL workloads [18]. [21] is a framework to generate tensor programs
for the DL workloads. It explores optimization combinations by
sampling programs from a hierarchical search space representation
and optimizes multiple sub-graphs using a task scheduler. [15]
employs LSTM to formulate the scheduling process as a sequence
of optimization choices. Furthermore, [19] described an approach
for automatically generating and optimizing numerical software for
processors with deep memory hierarchies and pipelined functional
units. Such an approach makes its adoption across server and mobile
platforms feasible.

Additionally, authors have employed reinforcement learning
(RL) in various works. In [9], the authors explore the feasibility of
formulating the integer linear programming solver into a graph neu-
ral network-based policy to auto-generate a vectorization scheme.
Further, domain-specific compilers like COMET [10], JAX [2], and
NWChem [16] are actively researched to optimize the underly-
ing program’s execution. [10] performs domain-specific, hardware-
agnostic optimizations that rely on high-level semantic information
and are applied at high-level IRs. Lately, in [12], authors have pro-
posed a one-shot tuner for the tensor compilers. Its limitation is
that it considers only task-specific information, which prevents it
from being applied for transfer learning. On the other hand, we
employ neural network and hardware platform information so that
the auto-tuner can learn better.

3 DESIGN AND IMPLEMENTATION

@ @ G
p— Feature
=
Extractions
< > —] Schedule Search
@ g s
” 2 § (Offline) - : Fine Tuning
< 5 3 @ A Engine ¢ |@-----, .
g |8 % |s ;
0]] H g Adaptive Auto A J
5 £ = & 4 Tuner Runtime
S g =
b5 g Eemait-ding £ Hardware
3 [=) E Features H
=3 2 8 = A
= 3 2 2 Offline o
3 = & J e () Proposed Tensor Programs
2 — o Y
T S 2
S 2
=)
8
S
L)

v Depl t
3 ‘ eployment v
Features L
Update |- P D @ . Compute Devices ﬁ ‘ﬁ’

(Online)

Figure 1: Overview of the Proposed Framework

This section unfolds our methodology as follows: Section 3.1
provides an overview of the entire flow and individual components,

Transfer Learning Across Heterogeneous Features For Efficient Tensor Program Generation

Section 3.2 elaborates on the proposed optimizations and opportu-
nities for efficient heterogeneous transfer learning with less dataset,
and Section 3.3 explains the adaptive auto-tuner architecture.

3.1 An Overview

Figure 1 provides an end-to-end flow of our framework. We used
TVM v0.8devod as a base to present the heterogeneous transfer
learning. The user leverages the TVM API to @ provide the com-
putation framework in the supported format (TensorFlow, PyTorch,
etc.). It further @ undergoes high-level optimization and sub-
graph partitioning to generate subgraphs of a smaller order. The
induced subgraphs form the search space for the feature extractions.
Additionally, as a feature set, @ domain-specific information is
extracted from these subgraphs, like kernel dimensions, tensor op-
erations, etc. For each data-point entry or kernel, @ we store the
hardware information like hardware architecture, maximum num-
ber of threads, registers and threads per block, and shared memory.
This forms part of the static hardware dataset. We perform a prob-
abilistic and exploratory study on this feature set to identify the
features of high importance. The hardware characterization assists
in mapping the features from source to target in case of a different
hardware than the source. We @ train auto-tuner on this dataset
by extending a one-shot tuner [12]. Once the auto-tuner is trained,
it can be used to perform auto-generation of tensor programs on
the target device with or without re-training. If the user wants to
fine-tune the auto tuner, we provide a capability to @ fine-tune the
auto tuner using online hardware features. We have experimented
with selective tasks retraining, and are still working on a method-
ology for selective feature training. The non-parametric approach
reduces the retraining time and size of the dataset required. Also,
we used attention heads to support memory-augmented fine-tuning
using bidirectional LSTM. Since the training strategy is based on
the one-shot paradigm, the baseline auto-tuner model undergoes a
one-time complete training phase alleviating the large data require-

ment on the target device for full retraining. Hence proposed

tensor programs are @ deployed on the target hardware and their
performance is evaluated.

We used the TenSet dataset [22] for the baseline measurements.
As per authors claims, the dataset can be leveraged for generating
the tensor programs using transfer learning. The basis is diversity
in the dataset leading to generalization and multi-platform perfor-
mance data points (measured on CPUs of Intel, AMD and ARM
and NVIDIA GPUs). Section 3.3 discusses the applicability of these
bases for efficient transfer learning using the proposed auto-tuner.
For more information on the dataset, one can refer to [22]. Table 1
summarizes the hardware and associated characteristics that we
have considered in our study.

3.2 Hardware-Aware Kernel Sampling

We have extensively studied and conducted an experimental exam-
ination of the TenSet dataset to understand the neural network and
hardware features that can influence the metrics like flops, through-
put, and latency. The dataset consists of over 13,000 tasks from
120 networks measured on six hardware platforms for the metrics
like throughput and latency under different neural network and

ExHet’23, February 25th, 2023, Montreal, Canada

Table 1: Compute Hardware Description

Hardware Platform ‘ Processor ‘ Remarks

Intel Platinum 8272CL @ 2.60GHz CPU 16 cores, AVX-512
AMD EPYC 7452 @ 2.35GHz CPU 4 cores, AVX-2
ARM Graviton2 CPU 16 cores, Neon
NVIDIA Tesla T4 GPU Turing Architecture
NVIDIA GeForce RTX 2080 GPU Turing Architecture
NVIDIA A100 GPU Ampere Architecture
NVIDIA A40 GPU Ampere Architecture
Intel Gold 5115 @ 2.40GHz CPU 40 cores, Xeon

hardware parameters resulting in over 52 million measurements. As
shown in Table 1, we have considered the first four platforms from
the dataset to learn the task, schedules applied to them, and associ-
ated performance along with the hardware parameters. The latter
half of the hardware is used to evaluate and establish the usefulness
of cross-device or transfer learning. In addition to the neural net-
work information like tensor operation and input and output shape,
we have also considered hardware parameters, as shown in Table 2.
Here, we have presented hardware features only for CPU and GPU
but it can be extended to other heterogeneous devices. Analyzing
the dataset, we identified that most high-performant kernels are
associated with specific hardware parameters. Such probabilistic
sampling also mitigates skewed kernel selection, avoiding kernels
that can lead to lower FLOPs or invalid computation graphs. We
removed the measurements and kernels which were invalid or low-
performing. In the existing cost modeling, it is observed that the
large search space selected via random sampling of kernels causes
performance regression.

Table 2: Hardware Parameters Considered While Training

Hardware Parameter Definition Hardware Class | Value (bytes)
cache_line_bytes chunks of memory handled by the cache CPU; GPU 64
max_local_memory_per block | maximum local memory per block in bytes GPU 2147483647
max_shared_memory_per_block | maximum shared memory per block in bytes GPU 49152
max_threads_per_block maximum number of threads per block GPU 1024
max_vthread_extent maximum extent of virtual threading GPU 8
num_cores number of cores in the compute hardware CPU 2
vector_unit_bytes width of vector units in bytes CPU; GPU 64 16
warp_size thread numbers of a warp GPU 32

We pruned the vast search space for the tensor program genera-
tion. The search task based on random sampled kernels’ measure-
ments is unreliable when the search space is not rich. We observed
that specific hardware parameters, like the number of cores, are
less valuable features than flop count regarding latency. It is mainly
because of the need for diversified kernel combinations and hard-
ware features in the considered dataset. Hence, we evaluated the
combination of FLOPs count, kernel shape, and execution time on a
given hardware for various tensor operations. As shown in Table 3,
we observed that the CPU and GPU behave similarly when select-
ing the best shape for a kernel. Although, the execution time differs
significantly based on the compute hardware. Hence, we sampled
the kernels based on joint exploration of tensor operations, kernel
shapes, and hardware parameters based on the FLOPs count and
execution time. The extracted initial kernels are from six diversified

ExHet’23, February 25th, 2023, Montreal, Canada

Verma, et al.

Table 3: Neural-Network And Hardware Features Characterization

Sampled Kernels #Kernel_Shapes | Max GFLOPs Tensor Shape Mean Execution Time (ms)

CPU| GPU | CPU [GPU EPYC-7452 | Graviton2 | Platinum-8272 | T4
T _add 229 388 8.59 8.59 [4, 256, 1024] 180.97 81.25 92.86 4.31
Conv2dOutput 60 27 1.20 1.07 [4, 64, 64, 32] 40.94 14.21 19.11 2.07
T_divide 24 69 0.003 | 0.003 [8, 1, 1, 960] 0.07 0.05 0.11 0.10
T_fast_tanh 9 9 0.008 | 0.008 [4, 1024] 0.43 0.43 0.53 0.97
T_multiply 105 150 8.92 8.92 [4, 256, 4096] 320.74 48.08 95.65 0.55
T _relu 300 1257 73.46 | 73.46 | [4, 144,72, 8, 64] 0.52 5.70 0.72 0.23
T_softmax_norm 27 27 0.016 | 0.016 | [4, 16, 256, 256] 1.01 2.78 4.08 0.19
T_tanh 9 9 0.905 | 0.629 [8, 96, 96, 3] 5.55 33.48 50.55 0.16
conv2d_winograd 0 33 NA | 0.868 NA NA NA NA 0.93

*CPU: EPYC-7452, Graviton2, Platinum-8272; *GPU: T4; *NA: operator is not present in the considered CPU dataset “*Measured on Nvidia GeForce RTX 2080

neural networks to encompass prominent classes. Still, it will be an
ever-growing list, and we are working on an intelligent algorithm
to achieve the same whenever introducing a new network class.
Experimenting with rmse and ranking loss, we established that
rmse performs better based on inference time. Hence, we chose
rmse for our tuner’s performance evaluation. We learned from the
measurement records’ costs of the selected kernels that it contains
local minima. To avoid local minima, we leveraged simulated an-
nealing implemented in TVM. But it is computationally heavy and
takes significant time to find global optima. We aim to optimize it
in our future work.

3.3 Auto-tuner Architecture

We have extended the one-shot tuner to experiment with a joint
neural network and hardware features as part of the task. Our tuner
consists of bidirectional LSTM and attention head to learn from
the sequential data. After testing multiple configurations, we chose
the near-optimal values based on empirical evaluation, including a
batch size of 16, 200 epochs, and other hyperparameters listed in
Table 4.

Table 4: Auto-Tuner’s Hyperparameters

| Hyperparameter | Value |
Batch 1, 4, 16, 64, 256
Epoch 100, 200, 400
Learning Rate le-3
#Bidirectional LSTM Layers 3
Attention Head (fine tuning) 2
#Unrolling Steps for Attention Head 2
Optimizer Adam

4 EVALUATION
4.1 Experimental Setup

Platform: We used heterogeneous architectures like Nvidia GPUs-
RTX 2080, A100, A40, and Intel Xeon CPU for our study experiment.
We chose different generations of NVIDIA GPUs to study the impact
of architectural differences.

Dataset and Model: This work use TVM v0.8dev0 and PyTorch for

implementations. We used XGBoost (XGB), multi-layer perception
(MLP), and LightGBM (LGBM) based tuners as a baseline.

Baseline: For the baseline, we used the TenSet dataset, commit
35774ed. Based on the previous work [22], we have considered 800
tasks with 400 measurements as the baseline. We used Platinum-
8272 for the CPU dataset and Nvidia Tesla T4 for the GPU dataset.

4.2 Dataset Sampling

As discussed in Section 3.2, we have sampled the dataset. By employ-
ing the data sampling strategies based on the feature’s importance
in terms of FLOPs count, we could reduce the GPU dataset by 43%
and the CPU dataset by 47%. As shown in Table 5, we could gain
the training time overall.

While sampling the dataset, it is essential to ensure the accuracy
of the resultant cost model or tuner trained over the sampled dataset.
Hence, we compared the top-1 and top-5 accuracy with the pairwise
comparison accuracy (PCA). To explain briefly, if y and 7 are actual
and predicted labels, then we calculate the number of correct pairs,
CP, by performing elementwise xor, followed by elementwise not
on y and §. Further, we take the sum of the upper triangular matrix
of the resultant matrix. The PCA is calculated then using equation 1.

PCA=CP[(nx(n—-1)/2);n=len(y) 1)

The cost models trained on the baseline and sampled dataset per-
formed on par.

To have a fair comparison we have trained XGB, MLP, and LGBM
tuners on the baseline and sampled data using three split strategies
as explained here:

e within_task: the dataset is partitioned into train and test
based on the measurement record. Once the features are ex-
tracted for each task, it is shuffled and randomly partitioned.

e by task: alearning task is used to partition the dataset ran-
domly based on the features of the learning task.

e by target: partitioning is performed based on the hardware
parameters

To avoid skewed sampling, tasks with too few measurements were
excluded. Further, we have considered the tasks based on the FLOPs
of tensor operations occurrence probability as shown in Table3. The
latency and throughput of these tasks are recorded by executing
them on the computing hardware. Table 5 presents the gain in

Transfer Learning Across Heterogeneous Features For Efficient Tensor Program Generation

ExHet’23, February 25th, 2023, Montreal, Canada

Table 5: Reduction In Dataset Size And Train-time (by split strategies)

XGBoost (train-time (sec))

Target Hardware | Dataset | Size

MLP (train-time (sec)) LightGBM (train-time (sec))

within_task ‘ by_task ‘ by_target

within_task ‘ by_task ‘ by_target | within_task ‘ by_task ‘ by_target

GPU Baseline | 16G 1504 1440 454 3000 2434 3150 1574 780 4680
Sampled | 9G 1406 1169 339 1968 1655 2464 1175 595 3637
CPU Baseline | 11G 1490 1265 428 3143 2623 2043 1131 636 3946
Sampled | 6.8G 905 780 354 2091 1672 1270 489 387 2435

time-to-train for the sampled dataset. It can be seen that in the case
of CPUs, the gain is up to 56% for LGBM while using within_task
split strategy during training. GPUs also have shown an increase
of up to 32%.

4.3 Tensor Program Tuning

Here, we discuss metrics to show the effectiveness of our proposed
approach over the baseline.

Table 6: Pairwise Comparison Accuracy

lit Sch
Hardware Dataset Sp l_t SF eme
By Target | Within Task | By Task
NVIDIA A100 GPU Baseline 0.8476 0.8931 0.8565
Sampled 0.844 0.8953 0.8534
Intel Xeon CPU Baseline 0.8477 0.8506 0.8651
Sampled 0.8434 0.8456 0.861

Table 6 shows the Pairwise Comparison Accuracy(PCA) earlier
discussed in Equation 1 for each split scheme for our sampled
dataset with baseline dataset for NVIDIA A100 GPU and Intel Xenon
CPU. We observe that accuracy hardly changes with the sampled
dataset. We also observe a similar trend for other architectures used
in this study.

Table 7: Inference Time Comparison (Seconds)

Baseline Dataset Sampled Dataset

Target Hardware

W/o Transfer Tuning ‘ W/ Transfer Tuning | W/o Transfer Tuning ‘ W/ Transfer Tuning

A100 GPU 578 391 585 400
A40 GPU 627 416 599 175
RTX2020 GPU 18.67 27.68 17.37 841.74
Xeon CPU 91.34 282.2 85.22 189.25

Table 7 shows the inference times for baseline and sampled
datasets with and without transfer tuning for NVIDIA A100, A40,
RTX 2020 GPUs, and Intel Xeon CPU. We observe significant ad-
vantages with the sampled dataset as the inference times are much
lower than the baseline dataset. The numbers discussed here are for
the XGBoost tuner. Please refer to our GitHub! for inference num-
bers using multi-layer perception (MLP) and LightGBM (LGBM)
based tuners as well inference numbers for various batch sizes
(1,2,4,8) and detailed logs for different architectures used in this
study. We observe similar trends advantageous to the sampled
dataset.

Uhttps://github.com/xintin/TransferLearn_HetFeat_TenProgGen

4.4 Evaluation of Heterogeneous Transfer
Learning

Different transformations can be applied for a given compute graph
consisting of tensor operation and input and output tensor shapes,
varying their performance on target hardware. For example, in a
conv2D tensor operation, tiling is dictated by whether the target is
GPU or CPU because of grid and block size bound in GPUs. A large
tiling size that may be valid in CPU may be invalid in GPU. Also, not
all combinations are performant. We learned the joint-optimized
schedules for a kernel and hardware using the TVM auto-scheduler.
Then, we applied it to similar untuned kernels using the attention
mechanism. To make it efficient, we sort the kernels as per their
occurrences and total contribution to the FLOPs count. Then we
tune the selected few significant tensor operations.

We have evaluated our methodology using three architecturally
different networks on CPU and GPU. Contrasting to the baseline,
where the tasks are fetched randomly tuned, we select the tasks
contributing more to the FLOPs. As shown in Table 8, we could
achieve the on-par mean inference time with significantly reduced
tuning time. On CPU, for ResNet_50, we could achieve 30%, Mo-
bileNet_50 70%, and Inception_v3 90% reduction in time on CPU.
ResNet_50 suffered performance regression due to a lack of match-
ing kernel shapes in the trained dataset for the given hardware.
Whereas on GPU, we could achieve 80%-90% across all the networks.
Here, we used the trainer tuned on features from neural networks
and hardware.

Table 8: Evaluation Of Proposed Tuner

Target Hardware Network W/o Transfer Tuning W/ Transfer Tuning
Time-to-Tune ‘ Mean Inf. Time | Time-to-Tune ‘ Mean Inf. Time

ResNet_50 128 11.93 86 12.12

CPU MobileNet_v3 236 5.48 71 5.57
Incpetion_v3 614 75.27 61 73.80

ResNet_50 817 3.79 226 3.78

GPU MobileNet_v3 1092 1.72 136 175
Incpetion_v3 2510 28.72 191 28.73

*CPU: Intel Xeon; *GPU: A100; *w/o: without; w/: with; tune time (sec); inf time (ms)

We have also compared the tuners for the epochs required to
converge on the baseline and sampled data. As per the design of
TVM'’s auto-scheduler, if they are executed for a large number of
trials, evidently, the tuners, like XGB and MLP, will converge. To
have a fair comparison, we have compared them by epochs. As
shown in Figure 2, there is not much difference for XGB, MLP, and
LGBM tuners on either dataset. On the other hand, our attention-
inspired tuner performed much better by converging in a similar
number of epochs but achieving twice the better error loss. The

ExHet’23, February 25th, 2023, Montreal, Canada Verma, et al.
== Baseline == Sampled == Baseline == Sampled == Baseline == Sampled == Sampled

3 0.8 0 5 3 0.8 05

E 06 3 4 £ 06 g 04

£ = 3 = S 03

8 04 3 2 04 > 02

2 o2 S : 3 £ o

2 2 1 o £ o1

s 00 < 0 S 00 = 00

= 0 50 100 150 200 250 = 0 10 20 30 40 = 0 50 100 150 200 250 50 100 150

Epochs Epochs Epochs Epochs
(a) XGBoost (b) MLP (c) LightGBM (d) Our Optimized Tuner

*experimented on Nvidia RTX 2080

Figure 2: Comparing Training Convergence of Tuners

rmse for our optimized tuner is 0.04 after 200 epochs compared
to 0.08 and 0.09 of XGB and LGBM, respectively. However, we are
addressing an offline training overhead involved here as part of
our next steps. Additionally, this is our first step, and we are also
researching the instability of the tuners.

5 CONCLUSION AND FUTURE DIRECTIONS

In this research, we have demonstrated the effectiveness of the
neural network and hardware parameters-aware sampling in au-
tomating tensor program generation for search-based tensor com-
pilers. We showed the impact of various split strategies on the
end-to-end optimization duration and early convergence. Mapping
tensor operators to specific hardware may be crucial in a heteroge-
neous environment. Here, we have integrated hardware features
into the evolutionary search procedure for efficient tensor program
generation. We concluded that a heterogeneous features-aware
training strategy could reduce training overhead regarding dataset
requirements and yield effective transfer learning with fewer online
measurements. After presenting our preliminary results, we intend
to research selective feature training during transfer learning. Our
future work includes improving the efficiency of cross-device and
inter-subgraph learning with an evaluation of a scientific applica-
tion.

ACKNOWLEDGMENTS

This research was supported in part by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration. This material is also based upon work
supported by the National Science Foundation under grant no. CCF-2113996. This
research used resources of the Argonne Leadership Computing Facility (ALCF), which
is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357

REFERENCES

[1] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Es-
maeilzadeh. 2020. Chameleon: Adaptive code optimization for expedited deep
neural network compilation. arXiv preprint arXiv:2001.08743 (2020).

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated {End-to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
578-594.

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to optimize
tensor programs. Advances in Neural Information Processing Systems 31 (2018).

(2]

[10

[11

[12

[13
[14

[s

l16

=
=

[18

[19

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017.
End-to-end deep learning of optimization heuristics. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE,
219-232.

Perry Gibson and José Cano. 2022. Transfer-Tuning: Reusing Auto-Schedules for
Efficient Tensor Program Code Generation. In 31st International Conference on
Parallel Architectures and Compilation Techniques (PACT). Chicago.

Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip
Roy, Amit Sabne, and Mike Burrows. 2021. A learned performance model for
tensor processing units. Proceedings of Machine Learning and Systems 3 (2021),
387-400.

Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. 2019.
Ithemal: Accurate, portable and fast basic block throughput estimation using
deep neural networks. In International Conference on machine learning. PMLR,
4505-4515.

Charith Mendis, Cambridge Yang, Yewen Pu, Dr Amarasinghe, Michael Carbin,
et al. 2019. Compiler auto-vectorization with imitation learning. Advances in
Neural Information Processing Systems 32 (2019).

Erdal Mutlu, Ruigin Tian, Bin Ren, Sriram Krishnamoorthy, Roberto Gioiosa,
Jacques Pienaar, and Gokcen Kestor. 2022. Comet: A domain-specific compilation
of high-performance computational chemistry. In Languages and Compilers for
Parallel Computing: 33rd International Workshop, LCPC 2020, Virtual Event, October
14-16, 2020, Revised Selected Papers. Springer, 87-103.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Leven-
stein, et al. 2018. Glow: Graph lowering compiler techniques for neural networks.
arXiv preprint arXiv:1805.00907 (2018).

Jaehun Ryu, Eunhyeok Park, and Hyojin Sung. 2022. One-shot tuner for deep
learning compilers. In Proceedings of the 31st ACM SIGPLAN International Confer-
ence on Compiler Construction. 89-103.

Amit Sabne. 2020. XLA : Compiling Machine Learning for Peak Performance.
Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost models for big data query processing: Learning, retrofitting, and our findings.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 99-113.

Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. 2021. Value
learning for throughput optimization of deep learning workloads. Proceedings of
Machine Learning and Systems 3 (2021), 323-334.

Marat Valiev, Eric] Bylaska, Niranjan Govind, Karol Kowalski, Tjerk P Straatsma,
Hubertus Johannes Jacobus Van Dam, Dunyou Wang, Jarek Nieplocha, Edoardo
Apra, Theresa L Windus, et al. 2010. NWChem: A comprehensive and scalable
open-source solution for large scale molecular simulations. Computer Physics
Communications 181, 9 (2010), 1477-1489.

Gaurav Verma, Swetang Finviya, Abid M Malik, Murali Emani, and Barbara
Chapman. 2022. Towards neural architecture-aware exploration of compiler
optimizations in a deep learning {graph} compiler. In Proceedings of the 19th
ACM International Conference on Computing Frontiers. 244-250.

Gaurav Verma, Yashi Gupta, Abid M Malik, and Barbara Chapman. 2021. Per-
formance evaluation of deep learning compilers for edge inference. In 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 858-865.

R Clinton Whaley and Jack] Dongarra. 1998. Automatically tuned linear algebra
software. In SC’98: Proceedings of the 1998 ACM/IEEE conference on Supercomput-
ing. IEEE, 38-38.

Hao Zhang, Yuan Li, Zhijie Deng, Xiaodan Liang, Lawrence Carin, and Eric
Xing. 2020. Autosync: Learning to synchronize for data-parallel distributed deep
learning. Advances in Neural Information Processing Systems 33 (2020), 906—917.
Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. 2020. Ansor:
Generating {High-Performance} Tensor Programs for Deep Learning. In 14th
USENIX symposium on operating systems design and implementation (OSDI 20).
863-879.

Transfer Learning Across Heterogeneous Features For Efficient Tensor Program Generation ExHet’23, February 25th, 2023, Montreal, Canada

[22] Lianmin Zheng, Ruochen Liu, Junru Shao, Tianqi Chen, Joseph E Gonzalez, Ion dataset for learned tensor compilers. In Thirty-fifth Conference on Neural Infor-
Stoica, and Ameer Haj Ali. 2021. Tenset: A large-scale program performance mation Processing Systems Datasets and Benchmarks Track (Round 1).

	Abstract
	1 Introduction
	2 BACKGROUND AND RELATED WORK
	2.1 Cross-device Learning
	2.2 Machine Learning-based Auto Tuners

	3 Design And Implementation
	3.1 An Overview
	3.2 Hardware-Aware Kernel Sampling
	3.3 Auto-tuner Architecture

	4 Evaluation
	4.1 Experimental Setup
	4.2 Dataset Sampling
	4.3 Tensor Program Tuning
	4.4 Evaluation of Heterogeneous Transfer Learning

	5 Conclusion and Future Directions
	Acknowledgments
	References

