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Abstract— In this study, we address the problem of safe
control in systems subject to state and input constraints
by integrating the Control Barrier Function (CBF) into the
Model Predictive Control (MPC) formulation. While CBF offers
a conservative policy and traditional MPC lacks the safety
guarantee beyond the finite horizon, the proposed scheme takes
advantage of both MPC and CBF approaches to provide a
guaranteed safe control policy with reduced conservatism and
a shortened horizon. The proposed methodology leverages the
sum-of-square (SOS) technique to construct CBFs that make
forward invariant safe sets in the state space that are then
used as a terminal constraint on the last predicted state.
CBF invariant sets cover the state space around system fixed
points. These islands of forward invariant CBF sets will be
connected to each other using MPC. To do this, we proposed a
technique to handle the MPC optimization problem subject to
the combination of intersections and union of constraints. Our
approach, termed Model Predictive Control Barrier Functions
(MPCBF), is validated using numerical examples to demon-
strate its efficacy, showing improved performance compared to
classical MPC and CBF.

I. INTRODUCTION

In recent years, Model Predictive Control (MPC) and
Control Barrier Function (CBF) have been widely adopted
for robotic control subject to safety constraints. MPC is a
control policy in which the current control action is ob-
tained by solving a finite horizon constrained optimal control
problem at each time-step [1]. Although MPC provides a
straightforward way for formulating state/input constraints, it
lacks the safety guarantee beyond the finite and short horizon
due to inaccurate approximation of terminal cost function and
the absence of an invariant set as the terminal constraint.
One solution for this problem is to use a longer horizon,
which will increase complexity and the computational cost
in the optimization [2]. CBFs, on the other hand, are strong
mathematical tools that reactively map the constraints defined
over the states directly onto control constraints [3]. The idea
of safe control using CBFs was first introduced by [4] which
was further inspired by the barrier certificates presented by
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Fig. 1. Model Predictive Control Barrier Functions (MPCBF). The white
polygon (X ⊆ Rn) indicates the feasible state space for the system (1). The
purple area (Xs ⊆ X) is the set of safe states. And, green zones (Cj ) show
the created forward-invariant sets using the concept of CBF. The solid and
dashed curves demonstrate the real and predicted trajectory of the system,
respectively. In each time step, the MPCBF forces the predicted state at the
last step (xN|k) to enter one of the forward-invariant sets while the states
at preceding steps can still remain outside any of the invariant sets to reduce
the conservativeness.

[5], [6]. Many studies have recently emerged addressing the
safe control issues by CBFs in miscellaneous applications:
Autonomous Cars and Mobile Robots [7], [8], [9], [10];
Multi-robot Systems [11], [12]; Quadrotors [13], [14]; and
Legged Robots [15], [16].

Despite the widespread utilization of CBFs on safety-
critical systems, the validation through mathematical proof
of the CBF that has been put into practical use remains an
unresolved matter in numerous research investigations. In
recent years, few systematic methods based on SOS opti-
mization have been suggested for the creation of valid CBFs
[17], [18]. CBFs restrain the system states to always stay in
an invariant set that is generally a subset of the safety set,
which is quite conservative. Even though one could possibly
increase the invariant set with new methods, however, the
restriction of the system states to always stay in the invariant
set is a fundamental limit and still causes conservatism.
Consequently, despite verifying and enforcing the safety
properties that CBF can offer, it is still a challenging issue
to find a less conservative invariant set.

A. Contribution

To address the deficiencies of the CBF and MPC, this
paper puts forth a systematic methodology to provide ana-
lytical safety assurance for the safety-critical systems subject
to input and state constraints. In particular, our proposed
technique leverages the SOS-based Process introduced in
our previous work [17] to synthesize CBFs that produce
analytically valid yet conservative forward invariant safe sets.
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These safe sets are considered as a terminal constraint in
Model Predictive Control formulation. We generate the safe
sets offline based on the fixed points of the system. Since
the CBF provides a forward invariant safe set for the states
beyond the horizon, the safety of the system will be assured
even in a short-horizon MPC. To reduce conservatism and
connect these islands of forward invariant sets, a Model
Predictive Controller is employed to provide safe trajectories
out of invariant sets. Consequently, the introduced control
methodology (MPCBF) generates a non-conservative as well
as safety-guaranteed trajectory in the state space.

B. Related Works

In recent years, CBF has been incorporated into MPC in
several studies. In [19] the barrier functions are incorporated
into the cost function of the model predictive controller to
convert the constrained MPC framework to an unconstrained
one. In their proposed method, the drawbacks of MPC
still exist if there is a finite horizon with an inaccurate
approximation of terminal cost and lack of an invariant set
as the terminal constraint.
There exist efforts to implement the idea of incorporating
CBF into MPC for different nonlinear systems in [2], [20],
[21], and [22] where CBF is appended as a safety constraint
for all predicted states in MPC. In the methodology they
have introduced, however, one can discern the inherent
disadvantages of MPC, as MPC inherently ensures safety
within a finite horizon, while the pivotal aspect of ensuring
safety is for trajectories beyond the horizon.
In [23] the MPC and CBF are utilized separately in two
different levels of control architecture. While MPC is utilized
as a planner to enforce high-level safety and tracking, the
CBF is employed to enforce low-level safety and tracking.
A novel approach named predictive safety filter is proposed
in [24] where the concept of MPC-CBF is employed to filter
the nominal control input based on safety concerns. In this
work, the predicted states at the last step are forced to enter
the invariant set defined by a single CBF. The idea of the
predictive safety filter was first proposed in [25] in which
MPC exclusively has been utilized for safety guarantee. This
idea was implemented on a real-world car-like robot in [26].

C. Organization of the Paper

The paper is organized as follows: In section II, we
provide a review of Model Predictive Control (MPC),
Control Barrier Function (CBF), and SOS-based technique
for synthesizing CBFs and invariant sets. Then, in section
III, we discussed our control methodology MPCBF. The
proposed safe control scheme has been validated, and the
numerical results are discussed in section IV. Finally, section
V concludes the paper.

D. Definition and Notation

Definition 1: A control system xk+1 = f(xk,uk) is
considered safe if xk ∈ Xs ⊆ X, and uk ∈ U, ∀k ∈ Z≥0.
Where X and Xs denote the sets of all feasible states and

safe states, respectively. Furthermore, the U represents the
allowable set of control inputs.

Definition 2: An arbitrary set A ⊆ Rn is called a forward
or positively invariant set for a continuous dynamic system
ẋ = f(x(t)) if for any x(0) ∈ A, it satisfies x(t) ∈ A,
∀t ≥ 0. Furthermore, the set A is called a controlled
invariant set for the system ẋ = f(x(t),u(t)) if there exists
a continuous feedback control law u(t) that assures the
existence and uniqueness of the solution on t ∈ R+ such
that A is positively invariant for the closed-loop system [27].

Definition 3: A continuous function α(·) : [0, a) →
[0,∞), a > 0 is a class κ function if it is strictly increasing
and α(0) = 0. The function α(·) is also a class κ∞
function if it belongs to class κ as well as a = ∞ and
limr→∞ α(r) = ∞. Moreover, a continuous function
β(·) : R → R is said to belong to extended class κ∞ if it is
strictly increasing and β(0) = 0.

Definition 4: A function f : D ⊆ Rn → Rm is locally
Lipschitz continuous in D if there exists a constant M > 0
such that for all x ∈ D, the Lipschitz condition holds:
∥f(x)− f(x′)∥ ≤ M∥x− x′∥ holds.

Definition 5: The common notation Lξη(x) is utilized
for the Lie derivative of η(x) along the vector field ξ(x) i.e.
Lξη(x) =

∂η(x)
∂x ξ(x).

II. PRELIMINARIES AND BACKGROUND

Considering an affine nonlinear control system and its
discretized version as below:

ẋ = fc(x(t)) + gc(x(t))u(t) (1a)

xk+1 = fd(xk) + gd(xk)uk (1b)

where x(t) ∈ X ⊆ Rn (equivalently for discrete-time
system: xk ∈ X ⊆ Rn) is state vector, u(t) ∈ U ⊆ Rm

(uk ∈ U ⊆ Rm) denotes the control input at the t ∈ R+

(k ∈ Z≥0). Also, fc, gc, fd, and gd are locally Lipschitz
continuous functions.

A. Model Predictive Control (MPC)

Consider a discrete-time control system (1), where we
omit the subscript d for simplicity in the rest of the paper.
Providing that the system is full-state observable, the finite-
time optimal control problem can be formulated as (2). In
this formulation, xi|k and ui|k are the ith predicted state
and control input given the system information at time-step
k, respectively. The optimization problem solution at each
horizon provides us with the optimal control sequence
u∗
0:N−1|k. Based on the principle concept of the receding

horizon scheme, the first element of the computed u∗
0:N−1|k

is applied to the system as the control command.
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u∗
0:N−1|k = argmin

u0:N−1

N−1∑
i=0

J(xi|k,ui|k) + JN (xN |k) (2a)

s.t. ∀ i ∈ {0, . . . , N − 1} :

xi+1|k = f(xi|k) + g(xi|k)ui|k, (2b)
x0|k = xk, (2c)
xi|k ∈ Xs, (2d)
ui|k ∈ U. (2e)

where J(xi|k,ui|k) denotes the stage cost function and
JN (xN |k) represents the terminal cost function as an ap-
proximation of cost for the rest of the prediction beyond the
finite horizon. The dynamic model of the system is inserted
as the constraint (2b). The state condition at i = 0 in each
time-step k is the current measured/observed states (2c). All
the predicted states and control inputs are constrained to be
in the defined allowable domain of the system (2d),(2e).

B. Control Barrier Function (CBF)

Let C ⊆ Xs be zero-superlevel set of a smooth and
continuously differentiable function h(x) : X → R that
satisfies the following conditions:

C = {x ∈ X|h(x) ≥ 0} (3a)

∂C = {x ∈ X|h(x) = 0} (3b)

Int(C) = {x ∈ X|h(x) > 0} (3c)

where ∂C is the set boundary, and Int(C) is interior of
set C. To guarantee that a continuous control system will
remain safe for all time, we should make the set C a forward
invariant set.
It can be mathematically proven that the function h(x) is a
valid CBF if there exists an extended class κ∞ function α(·)
such that for the control system [3]:

sup
u∈U

[Lfch(x) + Lgch(x)u] ≥ −α(h(x)) (4)

where ḣ(x,u) = Lfch(x)+Lgch(x)u and Lfc , Lgc denote
Lie derivatives. Therefore, satisfying this condition will
make the set C a forward invariant set; thus, for all x0 ∈ C,
trajectories will remain inside C.

C. CBF Synthesis Using SOS-based Technique

Based on [17], a continuous control system can be written
in a state-dependent linear-like representation as below:

ẋ = A(x)z (x) +B(x)u (5)

where A(x) ∈ Rn×Nz is a polynomial matrix, and z (x) ∈
RNz is a vector of monomials such that z (x) = 0 iff x = 0.
Assume that the control system 5 is subject to state and input
constraints approximated by:

x(t) ∈ Xs ≜ {x ∈ Rn : |Ci(x)z (x)| ≤ 1, i = 1, ..., p}
(6a)

u(t) ∈ U ≜ {u ∈ Rm : |Dju| ≤ 1, j = 1, ..., q} (6b)

It can be mathematically demonstrated that under Assump-
tion 2 in [17], the following optimization problem provides a
valid CBF, corresponding positive-invariant set, and a control
law that keeps the state inside the invariant set for all time
[17].

max
X ∈ SN [x̃], Y ∈ Rm×N [x], X0 > 0
l0, l1, l2 ∈ Σ[x, v],

li3 ∈ Σ[x, v, w] ∀i ∈ [p] = {1, ..., p} ,

lj4 ∈ Σ[x, v, w] ∀j ∈ [q] = {1, ..., q}

log det(X0) (7a)

s.t. :

vTF1(x)v − l0h0(x) ∈ Σ[x,v], (7b)

vT (X(x̃)−X0)v − l1h0(x) ∈ Σ[x,v], (7c)

vT (P0 −X(x̃))v − l2h0(x) ∈ Σ[x,v], (7d)[
v
w

]T [
1 CiX(x̃)
∗ X(x̃)

][
v
w

]
− li3h0(x) ∈ Σ[x,v, w], ∀i ∈ [p],

(7e)[
v
w

]T [
1 DjY (x)
∗ X(x̃)

][
v
w

]
− lj4h0(x) ∈ Σ[x,v, w], ∀j ∈ [q].

(7f)
where x̃ = (xj1 , xj2 , ..., xjm) in which ji denote the row
indices of B(x) whose corresponding row is equal to zero.
SN [x̃] and Rm×N [x] denote the sets of N × N real sym-
metric polynomial matrices and of m × N real matrices
whose entries are polynomials of x̃ and x, respectively.
Furthermore, lk represents a polynomial, and v ∈ RN as
well as w ∈ R are for SOS constraint formulation. Finally,
h0(x) is a compact algebraic set defined as: h0(x) ≜ 1 −
zT (x)P−1

0 z(x).
The CBF can be synthesized as below:

h(x) = 1− zT (x)X−1(x̃)z(x) (8)

The corresponding positive invariant set can be represented
by h(x) ≥ 0.

III. CONTROL METHODOLOGY

In this section, we aim to formulate a control policy
based on MPC and CBF, which mathematically guarantees
the safety of a control system despite the limitations of
MPC and CBF. We call the system (1) safe if: (i) states
of the dynamic system never reach the unsafe region; (ii)
control inputs never violate the physical constraints of the
system.
Given a model of the system (1), we are able to the
establishment of a standard MPC scheme. Assume that this
implementation encompasses a finite and relatively short
prediction horizon, alongside an imperfect approximation
of the terminal cost function. In addition, assume that the
available CBF is too conservative rendering it suitable
primarily as a backup controller.
Subject to the stipulated assumptions, safety assurance of
the system (1), over a substantial subset of the state space
through the classical MPC or CBF schemes theoretically
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is not attainable. In this case, let’s insert the terminal
constraint xN |k ∈ Xf into the MPC standard formula,
where xN |k indicates the predicted state at the end of the
horizon (terminal state), and Xf is a forward-invariant set
for the system (1) as the terminal set.

Theorem 1: The standard MPC (2) with the terminal
constraint (xN |k ∈ Xf ) has a feasible solution forever if
it is feasible at the initial time.

Proof: Since the terminal set Xf is an invariant set,
therefore, there should exist a local control law K(xk), which
guarantees the remaining of all trajectories starting inside Xf

in that set forever, while simultaneously satisfying the state
and input constraints (i.e., xk ∈ Xs and K(xk) ∈ U). This
technique derived from MPC literature [24] guarantees the
recursive feasibility of the MPC. Assume that (2) is feasible
at the initial state xk with the associated optimal sequence
of control inputs u∗

0:N−1|k = {u∗
0|k,u

∗
1|k, ...,u

∗
N−1|k}. At

the next time step (k + 1), the feasibility of the input
sequence u∗

0:N−1|k+1 = {u∗
1|k,u

∗
2|k, ...,u

∗
N−1|k,K(x∗

N )} is
also attainable based on the assumption that Xf is a forward-
invariant set.
Thus, the MPC has recursive feasibility (i.e., if the trajectory
starts at an initial state xk with a feasible solution u∗

0:N−1|k,
then the MPC problem will have feasible solution forever).

Despite the theoretical feasibility guarantee that the afore-
mentioned technique can provide, it is still a challenging
issue to synthesize the terminal forward invariant set Xf .
In what follows, we will provide a technique that connects
the small synthesized islands of invariant sets using an MPC
framework to enable the system to escape from conservative
invariant sets.

A. Forward Invariant Set Synthesis

Employing the SOS-based technique introduced in II-C,
using the concept of CBF, a control-invariant safe set
denoted as C, centered at the origin, will be synthesized as
a zero-superlevel set of the function h(x). Additionally, the
corresponding control policy denoted as K(x) will ensure
the remaining of all trajectories inside C when initiated
therein.

Statement 1: The aforementioned technique can be
extended to any other fixed points of the system 5 by simply
a coordinate shift corresponding to the pair of {x̃j , ũj},
where x̃j and ũj denote the jth state and input fixed point.
In this case, the generated control-invariant safe sets, and
their corresponding CBFs and control laws can be denoted
as Cj , hj(x) and Kj(x), respectively.

Theorem 2: The union of the generated Cj sets (C = C1∪
C2 ∪ ... ∪ CNcbf

) is a control-invariant set.
Proof: Assume that a trajectory starts at the initial state

x(0) ∈ Cj . Applying the control policy Kj(x(t)), we can
guarantee that x(t) ∈ Cj , ∀t ≥ 0. Since Cj ⊆ C, simply we
can conclude that x(t) ∈ C, ∀t ≥ 0.

B. Model Predictive Control Barrier Functions (MPCBF)

Having the invariant set C, we can formulate our
MPCBF control logic by inserting the terminal constraint
xN |k ∈ C into standard MPC constrained, and finite-horizon
optimization problem (2).

Remark 1: The utilization of the synthesized invariant set
within a continuous system remains applicable in the context
of a discrete-time framework, wherein we implement an
MPC methodology. To do this, we start with a continuous
model to create the invariant sets and then discretize the
model for the MPC framework.

Referring to the definition of the CBF in (3c), the fulfillment
of hj(xN |k) > 0 will guarantee the xN |k ∈ Cj . Thus,
the constraint of the xN |k ∈ C (or equivalently xN |k ∈
C1 ∪ C2 ∪ ... ∪ CNcbf

) can be replaced by h1(xN |k) >
0 ∨ h2(xN |k) > 0 ∨ ... ∨ hNcbf

(xN |k) > 0.
To formulate the aforementioned condition in a standard,
constrained optimization problem, we define the following
lemma.

Lemma 1: The condition h1(xN |k) > 0 ∨ h2(xN |k) >
0 ∨ ... ∨ hNcbf

(xN |k) > 0 will be met if
λ1h1(xN |k) + λ2h2(xN |k) + ... + λNcbf

hNcbf
(xN |k) > 0

for λ1, λ2, . . . , λNcbf
with 0 ≤ λj ≤ 1, and

λ1 + λ2 + ...+ λNcbf
= 1.

Proof: Let’s assume that hj(xN |k) < 0, ∀ j ∈
{0, . . . , Ncbf}. Given that 0 ≤ λj ≤ 1, it is impossible
for the inequality of λ1h1(xN |k) + λ2h2(xN |k) + ... +
λNcbf

hNcbf
(xN |k) > 0 to hold true. Consequently, there

must exist at least one hj(xN |k) that is positive. Equiv-
alently, to hold h1(xN |k) > 0 ∨ h2(xN |k) > 0 ∨ ... ∨
hNcbf

(xN |k) > 0, the condition λ1h1(xN |k)+λ2h2(xN |k)+
... + λNcbf

hNcbf
(xN |k) > 0 must be satisfied. The extra

constraint of λ1 + λ2 + ... + λNcbf
= 1 will cause to avoid

the obvious solution of λj ≈ 0.

In accordance with the visual representation presented
in Figure 1, the MPCBF formulation is presented in the
following manner:

u∗
0:N−1|k = argmin

u0:N−1,λj

N−1∑
i=0

J(xi|k,ui|k) + JN (xN |k) (9a)

s.t. ∀ i ∈ {0, . . . , N − 1} :

xi+1|k = f(xi|k) + g(xi|k)ui|k, (9b)

x0|k = xk, (9c)

xi|k ∈ Xs, (9d)

ui|k ∈ U, (9e)

λ1h1(xN |k) + λ2h2(xN |k) + ...+ λNcbf
hNcbf

(xN |k) > 0,
(9f)

0 ≤ λj ≤ 1 ∀ j ∈ {1, . . . , Ncbf}, (9g)

λ1 + λ2 + ...+ λNcbf
= 1. (9h)
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Fig. 2. Predicted trajectories by MPCBF scheme in each time step for three
different initial states. The zoom box illustrates that the predicted state at
the terminal time step xN|k converges to one of the positively invariant
sets, whereas the states at prior time steps may persistently reside outside
these sets.

C. MPCBF Safety Filter

The MPCBF also can be employed as the concept of
a safety filter. In this case, a performance controller like
learning-based policies or user command serves as a stabi-
lizer to create reference control signal uref and the MPCBF
ensures the safety requirements by modifying the uref .

u∗
0:N−1|k = argmin

u0:N−1

||u0|k − uref ||2 (10a)

s.t. ∀ i ∈ {0, . . . , N − 1} :

xi+1|k = f(xi|k) + g(xi|k)ui|k, (10b)

x0|k = xk, (10c)

xi|k ∈ Xs, (10d)

ui|k ∈ U, (10e)

λ1h1(xN |k) + λ2h2(xN |k) + ...+ λNcbf
hNcbf

(xN |k) > 0,
(10f)

0 ≤ λj ≤ 1 ∀ j ∈ {1, . . . , Ncbf}, (10g)

λ1 + λ2 + ...+ λNcbf
= 1. (10h)

IV. VALIDATION AND DISCUSSION

In this section, we illustrate the proposed model predictive
control barrier functions algorithm using a small-scale linear
system as below:

[
xk+1

yk+1

]
=

[
−1.5 0.5
1 −2

] [
xk

yk

]
+

[
0
1

]
uk (11)

Fig. 3. Real trajectories of the system 11 for three different initial states,
running by MPCBF. The zoom box demonstrates that the real trajectory can
remain outside any of the invariant sets to reduce conservativeness.

As shown in Figure 2 and 3, the system
11 starts from three different initial states
{(−0.2,−0.5), (0.2,−0.75), (0.75,−0.25)} to reach
the goal state (0.2, 0.6). The safe set of states of the
system 11, Xs, is defined as states that are inside the unit
circle and outside of two red circles with radii of 0.4 and
0.2 located in (−0.4, 0.4) and (0.3,−0.3), respectively.
Furthermore, the system is subject to the input constraint of
u ∈ U ≜ {u ∈ R : |u| ≤ 1}.
It can be easily demonstrated that a single MPC with a
short horizon, roughly less than N = 100 and the time-step
δt = 0.01s, cannot predict the trajectories that reach the
goal state. In this case, the traditional MPC is unable to
assure safety beyond the horizon.
To implement MPCBF, we synthesized the controlled
invariant sets offline on three fixed points of the system
{(−0.2,−0.6), (0, 0), (0.2, 0.6)} using SOS-based technique
described in II-C. For the implementation of our proposed
scheme, we used a relatively short number of horizon
N = 10 with the time-step δt = 0.01s. The stage cost,
in this case study, is defined as the weighted summation
of control efforts, changes of control inputs, and errors to
goal. Besides, the terminal cost function is approximated
as the error between the last predicted state and the goal
point. Moreover, we utilized the CasADi [28] framework
for automatic differentiation together with the nonlinear
optimization solver IPOPT.
As illustrated in Figure 2, the predicted states at the terminal
time step xN |k enter one of the positively invariant sets to
guarantee the safety beyond the horizon, whereas the states
at preceding may reside outside these sets. Figure 3 displays
the actual trajectories of the system 11 running by MPCBF.
It is demonstrated that the real trajectories are able to stay
outside of the invariant sets to reduce conservativeness.
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V. CONCLUSION

This paper has addressed the problems of traditional MPC
and CBF. In this study, we have taken steps to mitigate the
drawbacks inherent in typical MPC and CBF approaches.
This was achieved through the development of a novel frame-
work MPCBF, wherein we combined these methods into a
standard constrained optimization problem structure. This
formulation offers a straightforward and practical tool for
implementation in real-world applications. The introduced
methodology mathematically guarantees the state and input
safety requirements while a standard MPC with a finite
horizon lacks such a benefit. Moreover, providing a long-
horizon MPC is not computationally efficient, and obtaining
an accurate approximation of the terminal cost is generally a
challenging task. Furthermore, CBF restricts the trajectories
to remain inside a forward-invariant set in a conservative
fashion, while our MPCBF algorithm permits the system
to explore beyond this invariant set, yet ensuring the safety
criteria.
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