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Abstract—For the cascaded planning and control modules
implemented for robot navigation, the frequency gap between
the planner and controller has received limited attention.
In this study, we introduce a novel B-spline parameterized
optimization-based planner (BSPOP) designed to address the
frequency gap challenge with limited onboard computational
power in robots. The proposed planner generates continuous-
time control inputs for low-level controllers running at arbitrary
frequencies to track. Furthermore, when considering the convex
control action sets, BSPOP uses the convex hull property to au-
tomatically constrain the continuous-time control inputs within
the convex set. Consequently, compared with the discrete-time
optimization-based planners, BSPOP reduces the number of
decision variables and inequality constraints, which improves
computational efficiency as a byproduct. Simulation results
demonstrate that our approach can achieve a comparable plan-
ning performance to the high-frequency baseline optimization-
based planners while demanding less computational power.
Both simulation and experiment results show that the proposed
method performs better in planning compared with baseline
planners in the same frequency.

I. INTRODUCTION

Autonomous robots have received significant interest in
the past few years, with many of them being tasked to
navigate in different environments autonomously. In gen-
eral, the navigation task can be fulfilled with two cascaded
components: high-level planners, which provide references
in the form of discrete paths or control inputs; and low-level
controllers, which are responsible for tracking these signals
with the actuators.

For path planning problems, several algorithms have been
proposed with the formulation of nonlinear optimization
problems [1], [2], [3], [4]. However, solving these nonlinear
optimization problems for low-level control actions requires
significant computational resources. Thus, it is common to
simplify the planners to optimize solely in the configuration
space or high-level control space, relying on low-level effi-
cient control algorithms to track the optimized variables with
actuators, [5], [6].

While significant progress has been made by both planners
and controllers in the field of autonomous robots, one of
the issues that received limited attention is the frequency
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Fig. 1: An illustration of discrete-time control inputs and B-
spline parametrized continuous-time control signal within a
convex set of control actions.

gap between low-frequency high-level planners and high-
frequency low-level controllers. When solving the nonlinear
optimization problems formed by path planning problems,
high-level planners usually provide discrete-time control
input at a relatively low frequency. On the contrary, con-
trollers can execute planned actions with considerably higher
frequency. To narrow down the frequency gap, conventional
optimization-based planners, which use the discrete-time
control inputs as decision variables, have to introduce more
decision variables into the optimization with improved fre-
quency of the planners. This can significantly increase the
computational load on the onboard computers.

In this study, we introduce a novel B-spline parameterized
optimization-based planner (BSPOP), which uses B-splines
to parameterize a continuous-time control input to address
this challenge. The proposed planner provides continuous-
time control input to address the frequency gap problem
without increasing the computational burden. The B-splines
used in the proposed planners are piecewise polynomial
functions that can be totally determined by the control
points with given time knots. In contrast to the conventional
approach that makes the discrete-time control actions the
decision variables, in our approach the decision variables are
the control points of the B-splines. When the user requires
optimal control actions at a higher frequency, the computa-
tional time of the BSPOP remains the same, since the number
of optimization variables (control points) does not increase.
By pre-computing the coefficients in the dynamic equations
and the cost functions, BSPOP can provide a reference
control signal for low-level controllers running at arbitrary
frequencies to track without significantly increasing the
computational burden. Moreover, BSPOP also reduces the
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number of inequality constraints in optimization when con-
sidering convex control action sets. As illustrated in Figure
1, by taking advantage of the convex hull property of the B-
spline, the proposed planner ensures that the continuous-time
control input remains within the convex control action set as
long as the control points are within the same set. On the
contrary, for conventional optimization-based planners, each
discrete-time control input must be constrained separately in
the optimization. Consequently, the proposed planner reduces
the number of decision variables and inequality constraints
in the optimization, which increases the computational speed
and efficiency as a byproduct.

Compared with the conventional discrete-time
optimization-based planners, BSPOP addresses the frequency
gap between planners and controllers and also decreases the
number of decision variables in the optimization process.
The proposed planner not only offers improved reference
control inputs for arbitrarily fast low-level controllers
to track but also decreases the computational demands
associated with high-level baseline planners. We summarize
our contributions as follows:

o We introduce the BSPOP that generates continuous-time
control signals that can be tracked by the lower-level
controllers running at arbitrarily higher frequencies.

e« We show that the BSPOP holds the number of the
optimization variables invariant to the number of steps
within the optimization problem’s horizon. Conse-
quently, BSPOP raises the computational speed and
efficiency by reducing the number of decision variables
and inequality constraints compared with a conventional
planner using discrete-time control inputs as optimiza-
tion variables.

o We validate that BSPOP can generate a better planning
path compared with the same frequency baseline plan-
ner in both simulation and real-world implementation.

II. RELATED RESEARCH

The B-spline curve is widely used to enhance the smooth-
ness of trajectories. In previous work [7], the authors con-
structed a B-spline curve optimization to plan fast-flight
trajectories for a quadrotor, which incorporates gradient
information from a Euclidean distance field and dynamic
constraints. The proposed method guarantees dynamical fea-
sibility by iteratively adjusting the non-uniform B-spline time
knots. In [8], the authors improve the B-spline basis with
the MINVO basis, which provides shorter flight trajectories
in multi-agent collision avoidance tasks. The authors of [9]
use the B-spline curve in the front-end search to avoid
obstacles and the MINVO basis in the back-end optimization
to limit the simplexes. The authors of [10] use the B-spline
in trajectory planning for cooperative automated vehicles.
Contrary to the previous work that uses the B-spline curves
to parameterize the configuration space, this study uses
the B-spline to parameterize continuous-time control input,
allowing low-level controllers to track the control input at a
user-chosen rate.

In general, most optimization-based planners are designed
to provide discrete-time control inputs, which are constrained
by computational power and can only provide relatively low-
frequency signals. Furthermore, when using optimization-
based planners, a user must balance the trade-off between
performance and computation time. For a fixed planning
horizon, increasing the number of discrete-time control
inputs leads to improved performance [11], [12], but it
also increases the number of optimization variables, which
will increase the computation time. To address this issue,
continuous-time optimization-based planners have attracted
the attention of both industry and researchers over the
past few decades. The authors of [13] design orthonormal
functions to parameterize the control input. In [14], the
authors design piecewise constant control inputs to reduce
the complexity of the optimization problem. However, in
the previous work, the control design does not consider
constraints on the control inputs. In the proposed work,
we use the convex hull property of the B-spline curve to
guarantee that the control inputs are constrained within the
required convex sets.

III. BACKGROUND

A. Problem Formulation of Path Planning

We consider a nonlinear control affine system defined as:

#(t) = f(z(t) + g(x@®)u(t), =(0) =z0, (1)

where x is the state of the system and w is the control input,
both being defined with appropriate dimensions. The objec-
tive is to find a control u(t) that can minimize a running cost
function J(z(t),u(t)) = fOT lz(t) — 2413 + u(t) T Ru(t)dt,
where T is the planning horizon, x, is the target state, and
R is a positive definite matrix, while keeping the state of the
system z(¢) within a safe set described by h(z(t)) > 0 for
all time ¢, and ensuring that u(¢) satisfies G(u(t)) < 0 for all
time ¢ for some known convex function G(-). In summary,
the path planning problem aims to find a feasible reference
by solving the following optimization problem:

mini(n)lize J(x(t), u(t))
u(t

subject to  z(t) = f(z(t)) + g(z(t))u(t),
z(0) = z, 2
G(u(t)) <0,
h(z(t)) > 0, t€[0,T],
where x. is the current state of the robot.

In practical robotic applications, a common approach to
solve the optimization in (2) is to employ discretization
methods to obtain approximate solutions. A conventional
optimization-based planner uses the discrete-time state xy
and control input uy to form the following optimization at
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each time step k:

N-1

minimize Z (lzr — 24|35 + up Ru)

Uk

k=0

subject to  xgy1 =z + (f(xk) + g(r)ug) At, 3)
To = Le,
G(ux) <0,
h(zg) >0, ke{0,1,--- N},

where the parameter At is the time increment to discretize
the time horizon, and N is the number of discretized time
steps in the planning horizon 7. The optimization problem
is typically solved using numerical solvers. The first optimal
control wug is then applied to the system and the process is
repeated at each time step.

Decreasing the discretization interval as much as possible
improves the ability of planners to closely approximate
the continuous optimal control problem. However, in real
robotics implementations, limited onboard computational
power is also used for sensing and other algorithms, which
prevents arbitrary high-frequency implementations for con-
ventional optimization-based planners. Instead, these plan-
ners are usually configured at a relatively low frequency,
complemented by a high-frequency, low-level controller for
reference tracking. This setup can lead to performance degra-
dation due to the frequency gap in planners and controllers.
Therefore, it is ideal to have a continuous-time optimization
method to overcome the gap between the low-frequency
high-level planner and the high-frequency low-level con-
troller. In the next section, we will show our approach
that uses B-spline curves to parameterize a continuous-time
control input, which can be tracked by arbitrarily fast low-
level controllers.

B. Basics of B-Spline

The B-spline curve is a piecewise-defined polynomial
curve that is smoothly blended between control points. The
recursive formulation for a B-spline curve of degree p with
n + 1 control points at time ¢ is given by:

C(t) =Y Nip(t)a, )
=0

where C(-) is the B-spline curve, N, ,(-) are the B-spline
basis functions, and g; is a control point in the configuration
space for index ¢ € {0,1,---,n}. The basis functions are
recursively defined as:

1 ifr <t <7
Ni,()(t):{ 3 i+

0 otherwise ’

Nip(t) = i
Tit+p — Ti Ti4+p+1 — Ti+1

These formulas define the B-spline curve in terms of the

contributions from each control point, weighted by the B-

spline basis functions. The degree p of the B-spline deter-

mines the local support of the basis functions and influences

the smoothness of the resulting curve. The time knot 7 =

T; —t
Nipor(t) + — Ny (8).

{70, 71, * ,TiyTit1, - ,Tm} defines the time instances at
which the basis functions are evaluated. Previous studies [7],
[10] used the B-spline curve within the configuration space
to create reference trajectories. In this study, we instead
use B-spline to represent continuous-time control signals to
improve the performance of planners.

IV. B-SPLINE PARAMETERIZED OPTIMIZATION-BASED
PLANNER

We formulate our BSPOP, which provides a continuous-
time control input to address the issue of frequency gap.
The continuous-time control update law can be arbitrarily
fast tracked by low-level controllers. In addition, the solution
benefits from the convex hull property of B-spline curves,
where the resulting B-spline parameterized control signal au-
tomatically falls within the convex set of control constraints
as long as the control points are within the same set.

A. B-Spline Parameterized Control Input

In the proposed method, we define the control input wu(-)
as a piecewise polynomial in time interval [0, T']. Denote the
matrix form of the control points by ¢, which is defined as:

qo
Q1

Qi
Il

&)
n
where g; € R™*1 is the control-space control point for i €
0,1,--- ,n. When the number of control points n + 1 is
greater than p, the control points determine the curves within
distinct segments. In particular, the control signal u(-) has
a total of S = n+1—p = m — 2p segments in the time
interval, where n + 1 is the number of control points, p is
the degree of the polynomial, and m + 1 is the length of
time knots. The more control points or the higher the degree
of the polynomial, the more segments must be taken into
account, leading to a more adjustable control input, but a
longer computation time. For each segment ¢ € {0,--- ,n —
p}, the control signal w;.;11(t) is expressed as follows for
te [Ti,TH_l}Z
75
qi+1

(T || ©

Jitp

7i+p

where Q! 4+p contains the control points indexed from i to
i+p, Ti(t) = %’ and M; is the basis matrix of the B-
spline curve, which is decided by the time knots of the curve
and we hide the notation p for convenience of presentation.
The shape of the B-spline curve is predetermined by the time
knots, and in BSPOP, we use uniform clamped time knots
(see more details in Remark 1) for the B-spline curves.

Remark 1 In order to design a more adjustable control
input, we employ uniform clamped time knots, which have
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the same value for the first p+ 1 and last p + 1 elements,
and the remaining elements in the middle increase uniformly
as follows:

TO:"':Tp< Tp+1<"'<7-n < Tptl == Tm,
p+1 knots uniform increasing knots p+1 knots
where in the formulation of the BSPOP, 19 = --- =7, =0

and Tp41 = - T. Uniform clamped time knots
allow the generation of a B-spline curve that begins at the
first control point qy and ends at the last control point qy.
It provides a more adjustable control input than other time
knots. Based on the conclusions in [15], we can obtain the
basis matrix M based on the uniform clamped time knots.
Note that for different segments of the control input, the basis
matrix is different. The detailed derivation of the basis matrix
is shown in the Appendix VII-A.

= Tm =

B. Reformulated Objective Function

The objective function J,; in the BSPOP comprises two
elements. The initial component J,,; focuses on reducing
the distance to the desired position 4. This cost is computed
numerically using the continuous-time state x(¢) and can be
expressed as:

T
Tyout = / lo(t) — 2, |3dt.

The second part of the objective function J,; is designed to
reduce the amount of continuous-time control effort required
to control the system. Given that the control input in (6) is
divided into S segments, where each segment ¢ lies within
the time interval knots [7;,7;41], the overall cost of the
control effort can be decomposed into independent costs

Jztﬁl , expressed as:

Ti+1
i / w(t) T Ru(t)dt

Ti+1
= [ ML, R, M T

3

(7

To simplify the expression of the cost function J%'T!, we
simply choose the positive definite matrix R to be the identity
matrix. Next, we separate the term Q! +p Qi +pT from the
time-dependent term I';(¢), which permits precomputation
of the time-integrated term in (7).

Since J%'*! is a scalar, we start by applying to the right-
hand side of (7) without changing its value as follows:

Jz 41 VEC(JZ 1+1)

ctrl ctrl
Ti41 . .
= vec (/ Li(t) M Q54 ;erTMiTI‘Z-(t)Tdt) .

Because vectorization and integration are both linear opera-
tions, we alter their order, leading to the following result:

Tit+1

i+1 _ i TarT T

Tt = [ vee (Ti0MQL,QL, M)
Ti

Since the control points Q! +p are independent of time ¢, we

use the matrix multiplication vectorization method specified

in the Appendix VII-B to rearrange the order of matrix
multiplication and separate the control points from other
terms. Consequently, we obtain the following:

Jz 141

ctrl

- / M) © ()M vee( @y, Gy, T,

i

= [ @0 © M) ) veol @i, @1, T,

(3

Adii+1

where A%*! is a 1 x p? row vector which can be pre-
computed once the time knots 7;, 7,41 and the polynomial
order p are given. We denote the elements inside A%*+! by
[A1,..., Ap2]. Following the definition of control points Q

i+
in (6), we could derive the expression of matrix Q! @it p{
= =T = =T = =T
qi9; qid; 41 qi4q;
— =T — —T — —
~i oA T qi+149;  qi+1G9;41 di+19;4p
itpCitp : : :
= =T = =T = =T
di+pq;  Gi+pdi+1 Qi+pQiyp

Now the control cost can be expressed in quadratic form of
the control points:

z i+1
ctrl Z Z >‘I)Jl+32%+]2qz+]1v

J1=1j2=1

where the cost function can be interpreted as the sum of the
inner products of all control points ¢; whose coefficients are
determined by A#+1 Thus, the total cost of control efforts
can be presented as:

n—p+1

_ 1:14+1
JCtTZ - E : ‘]ct'rl .
=0

To trade off the costs between reaching the target and
minimizing the control effort, we use the weights w; and
wy in the objective function as tuning knobs. The objective
function is then defined as:

Jobj = wljgoal + w2Jctrl~

C. Constraints

In the BSPOP, we define the following constraints: dy-

namic constraints, collision-free constraints, and control con-
straints. We assume that the dynamics and environment
are completely known and have been described by known
functions.
Dynamic Constraints: Based on the dynamic system pre-
viously defined in (1) and the control signal defined in (6),
we reformulate the dynamic function for time ¢ € [7;, 7;11]
to be:

() = f(2(t) + g(@(0)Qip M Ti() . (®)

To improve computational efficiency, we can modify the
dynamics to make it control affine with respect to the
control points Q° +p- Since g(x(t))u(t) is a column vector,
its vectorization remains unchanged. Using the matrix multi-
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plication vectorization method specified in Appendix VII-B,
we rewrite the previous dynamic equation as:

i(t) = f(2(t)) + vee (g(x(1) Q' Mi T Ti(t) ),
= f(x(t) + La(t)M;) @ g((t)) vee(Qiy, 1),
g’ (z(t))

where ¢'(x(t)) is the gain matrix associated with the vector-
ized control points vec(Qi,,"). Note that the current time
¢ determines the values of the control point 7., and the
basis matrix M in the dynamic equation.

Collision-Free Constraints: Since it is assumed that the
obstacle in the environment is completely known and can be
represented by the function h(z(t)), we use the inequality
constraint ~A(z(t)) > 0 to represent the robot within the safe
area.

Control Constraints: We aim to solve the optimization
problem while control inputs are limited within a convex set,
which is defined by the convex function G(u(t)) < 0. Using
the convex hull property of the B-spline curves, as illustrated
in Figure 1, we can ensure that the continuous-time control
input remains within the feasible convex set as long as
the control points are within the convex set. Technically, if
each control point §; € Q! +p satisfies G(g;) < 0, then the
control input also satisfies G (u;.;4+1(t)) < 0. In the proposed
method, the control constraints are specifically related to the
control points §;.

D. BSPOP Formulation

In summary, given the constraints and objective functions
explained above, our optimization-based planner is formu-
lated as follows:

minimize

qi
subject to  Z(t) = f(z(t)) + ¢ (z(t))vec( *§+p‘r)’

Jobj = wljgoal + waJeir

z(0) = z,, 9)
G(@) <0, i€{0,---,n}
h(z(t)) >0, t €10,T].

The proposed BSPOP is different from the baseline
optimization-based planner in that it seeks to optimize con-
trol points ¢;, which subsequently determines the continuous-
time control inputs u(t), instead of discrete-time control
inputs u;. Thus, the optimal control input of BSPOP can be
tracked by low-level controllers at an arbitrary rate. In con-
tent, the conventional baseline optimization-based planner
requires increased number of optimization variables to pro-
duce optimal control input u; at a higher frequency, leading
to a substantial increase in computational load and solution
time. In our method, we avoid the increase in computation
time using the B-spline curve based control input, of which
optimization variables are decoupled from the discretized
time interval At. Moreover, the convex hull property of
the B-spline also helps the BSPOP to reduce the number
of inequality constraints in optimization. As a result, the
proposed BSPOP reduces the number of decision variables
and inequality constraints and improves computational speed

and efficiency compared with the baseline optimization-
based planners. Specifically, the baseline planners require
dim(u) x (T'/At) control decision variables, where dim(u)
indicates the control input dimension. In contrast, the number
of control decision variables needed in BSPOP is dim(u) x
(n+ 1), where n + 1 represents the total number of control
points. When the frequency of the planners increases for a
fixed prediction time horizon 7T, the discrete time interval
At decreases and the baseline planners introduce additional
decision variables, while the BSPOP retains the same number
of decision variables. We will show the advantages of the
BSPOP in both simulations and real experiments in the next
section.

V. RESULTS
A. Simulation

1) Setup: We first implement the BSPOP and baseline
optimization-based planners on a unicycle model with the
following dynamics:

p'}, = |sinf O (10)

Da cosf 0 {}
0 0 1

where p,,p, are the Cartesian coordinates of the vehicle,
0 is the vehicles orientation, v is the linear velocity, w is
the angular velocity of the unicycle model. The optimization
problem aims to solve for the optimal control input v and
w. The optimization problem for planners is configured to
predict over a time horizon 7" = 1 s. The robot navigation
task involves an environment that requires the robots to stay
within the region for p, € [—2.0,1.5] and to avoid circle
obstacles defined by:

h(x(t)) = ||=(t) — %3 — ri? >0, foric {0,1,...},

where % is the center of ith circle obstacle and 7, is the
radius of the circle obstacles. The robot starts at the initial
position z; = [—4,0], while the destination is specified as
x4 = [0.5,—0.5]. The initial orientation of the robot ranges
from [—m, 7] at intervals of 0.1 radians. We use a third
degree polynomial p = 3 with n + 1 = 4 control points
to generate the B-spline curve controls. The time knots are
uniformly clamped and given as [0,0,0,0, 1,1, 1,1]. The B-
spline basis matrix can be computed using (11), as shown in
the appendix. The specific value of the matrix M; is:

1 0 0 0
-3 3 0 0
Mi=\|4 5 3 o
-1 3 -3 1

We employ CasADi [16] as a solver for the optimiza-
tion problems. We use the Runge-Kutta 4th integration
method [17] to numerically determine the future states. The
low-level controller is designed to be a PD controller with
400 Hz to track the optimal control inputs. The coefficients
wi and ws in the cost function are set to 10 and 1,
respectively. All simulations are carried out on a laptop that
is powered by an i7-12650H CPU.
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(a) BSPOP trajectories.

Fig. 2: The performance of the BSPOP and the baseline
planners under boxed control constraints.

(b) Baseline planner trajectories.

2) Different Control Constraints: We first evaluate
BSPOP and baseline optimization-based planners with boxed
control constraints, where the values of v and w are con-
strained within a boxed region defined by vy < v < Vpax
and wpiny < w < wpax. For this particular experiment, we
set the limits for velocity as Uyax = —Umin = 1.0 m/s and
for angular velocity as wpax = —wmin = 1.0 rad/s. Both
planners operate at the same frequency of 10 Hz and utilize
the same objective function. The results of the algorithms
are illustrated in Figure 2. Robots that successfully reach
the target are shown with blue paths, whereas the red curves
indicate unfinished paths where optimization problems be-
come infeasible before the robot reaches the goal.

It is evident that both the BSPOP and the baseline
optimization-based planner effectively address the naviga-
tion challenge with boxed control constraints. The BSPOP
exhibits slightly superior performance, attributed to its
continuous-time control parameterization and smooth control
signals that prevent sharp turns near the target locations. The
overall effectiveness of both planners remains comparable
when operating under boxed control constraints.

However, when considering non-trivial control constraints,
the planners will have slightly different performance. For
example, we consider a differential-wheeled robot which has
a differential drive with two wheels of radius » = 0.33 m and
distance d = 0.67 m in between. The dynamical model of the
differential-wheeled robot is the same as the unicycle robot
defined in (10). However, taking into account the geometry
and the angular velocity limit of each wheel, we can define
the following linear inequalities in the control actions v and
w, [18]:

20min” < 20 4+ wd < 2Wmax’,
2wiinT < 2v — wd < 2wy

Intuitively, these constraints restrict the vehicle from per-
forming fast turns at high linear speed. We set the maximum
angular velocity for each wheel to wyax = —wmin = 3.0
rad/s. The constraints imposed define a convex diamond-
shaped area for the control inputs v and w.

The result of both planners is shown in Figure 3. It is
noted that the feasible solutions of the BSPOP approach
remain continuous even when subjected to diamond-shaped
constraints. On the contrary, the solutions produced by the
baseline planner exhibit abrupt changes because the planner

2 2

1 Y

4 ! )M
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a1 (¥/ 7 4 (\\_/
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(a) BSPOP trajectories. (b) Baseline planner trajectories.

Fig. 3: The performance of the BSPOP and the baseline plan-
ners with control inputs under non-trivial control constraints.

provides discrete-time control input. This indicates that, at
equal frequencies of planners, the proposed method outper-
forms the conventional planners when faced with non-trivial
control constraints.

3) Different Frequencies: We compare the proposed
BSPOP running in 10 Hz and the baseline optimization-
based planner running in 10, 20, 50 Hz with the same initial
state [—4,0,1.4] and target position [0.5, —0.5]. We log the
running time of each time step and then show their mean
and standard deviation. In addition, we track the CPU usage
during the optimization process. The performance of the
planners is evaluated by the total length of the trajectories.
The results are shown in Table I. From Table I, we observe
that the proposed BSPOP requires approximately 0.093 s
for computation, enabling real-time execution at a rate of 10
Hz. The performance (trajectory length in Table I) of the
proposed BSPOP is better than that of the same frequency
(10 Hz) baseline optimization-based planner despite that
BSPOP takes slightly longer time than the baseline due to the
computation involved in generating the B-spline curve. Fur-
thermore, the proposed BSPOP uses less computation time
and achieves similar performance as the 20 Hz and 50 Hz
baseline planners, which take longer computation time. In
the CasADi optimization solver used in the simulation, the
decision variables comprise two parts, the state and control
variables. Compared with the baseline planners, BSPOP has
the same number of state variables but requires fewer control
variables, since it optimizes control points instead of discrete
control inputs. As shown in the Table I, BSPOP requires
fewer optimization variables, resulting in improved com-
putational efficiency. The trajectory of different frequency
planners is shown in Figure 4a. Additionally, we illustrate the
box plot showing the maximum and minimum running times
of the optimization process. This visualization is presented
in Figure 4b.

Therefore, the BSPOP demonstrates improved perfor-
mance over the baseline optimization-based planner with
the same frequency, and a comparable performance com-
pared with the high-frequency baseline planners while re-
quiring less computational power when implemented on a
computation-constrained computer onboard an autonomous
vehicle.
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TABLE I: Comparison between BSPOP and baseline optimization-based planners. The total number of control variables is
shown in the last column, and the total number of decision variable is shown in the bracket.

CPU Usage (%) Traj. Length (m) Variable Num.

Planners Comp. Time Mean (s) Comp. Time Std (s)
Baseline 10 Hz 0.047 0.025
Baseline 20 Hz 0.077 0.060
Baseline 50 Hz 0.232 0.240
BSPOP 10 Hz 0.093 0.058

4.6 5211 20 (53)
5.9 5.196 40 (103)
6.3 5.198 100 (253)
5.0 5.141 8 (41)
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(a) Trajectories of the robot sub-
ject to different planners.

(b) Boxplots of running time for
different frequency planners.

Fig. 4: The performance of the baseline MPC performance
when control inputs are constrained in diamond-shape area.

B. Experiments

We perform the 10 Hz BSPOP and baseline optimization-
based planner on a Polaris Gem v-2 vehicle [19] which has
an Ackermann car model defined as:

P cosf O

Dy sinf 0 {v}
) = | tan )
I == ol L

¢ 0 1

where ¢ is the steering angle and 6 is the heading angle.
The autonomous vehicle and the test area utilized in the
experiments are shown in Figure 5a. The vehicle uses a
VLP-16 LiDAR for localization in test environments. All
computation is performed onboard with an Intel Xeon E-
2278G CPU. Both BSPOP and baseline optimization-based
planners are executed at a frequency of 10 Hz onboard due to
the sensing and mapping algorithms in Autoware [20]. The
objective of the path planning problem is to move the car
from the initial position 23 = [0, 10] to the desired position
xg = [0.2,70], while the heading angle 6 is initialized at
0.5 7 and the steering angle is initialized to O degrees.
The obstacles in the environment are predetermined and are
depicted as red blocks in Figure 5b. The green and blue
curves show the car’s path when using the baseline planner
and the proposed BSPOP, respectively. The result of the
experiment is shown in Fig. 5b and the video with the fol-
lowing link: https://youtu.be/mQKIMd8BxRA?si=
TaA8FWmowUKYGgBC. We observe that the baseline plan-
ner encounters sharp turns during driving, while the pro-
posed planner avoids sharp turns. Owing to the constrained
computational resources onboard, higher frequency baseline

Rz

Goal Location

—\— Baseline Planner

(b) Trajectories of the vehi-
cle following different planners.
The vehicle is moving from bot-
tom to top.

(a) The environment setup of
the path planning problem ex-
periments. The vehicle is at the
initial position.

Fig. 5: Experiments using a Polaris Gem v-2 in a known
environment.

planners cannot be practically executed in real-time, making
it impractical to further assess them and compare them with-
out potential safety violations. The result of the experiments
indicates that the proposed BSPOP generates a better planned
path and avoids sharp turns compared with the baseline
planners on the autonomous vehicle with the same frequency
in the optimization setup.

VI. CONCLUSIONS

In this study, we introduce the BSPOP, which can generate
continuous-time control signals that can be tracked by lower-
level controllers running at arbitrarily higher frequencies.
We reformulate the objective function and constraints in
optimization, which allows the BSPOP to hold the number
of optimization variables invariant to the number of steps
within the optimization problem’s horizon. Besides, we show
the details of the precomputable coefficients in the B-spline
parameterized control input. We also analyze that BSPOP
can improve computational speed and efficiency by reducing
the number of decision variables and inequality constraints
compared with a conventional planner using discrete-time
control inputs as optimization variables. We validate that the
proposed BSPOP can provide comparable planning perfor-
mance with higher-frequency planners while not significantly
increasing the computational load in simulations. We also
show that the BSPOP has a better planned path with the
same frequency planner in both simulations and real-world
experiments. The current framework assumes convex control
constraints. However, the constraints in real robotic systems
are often more complex. To address this, we plan to employ
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learning-based approaches to learn a feasible set of control
actions, which will be reformulated into the optimization of
the proposed planner.
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APPENDIX
A. B-Spline Basis Matrix

The basis matrix M” " of the B-spline basis functions of
degree p can be obtained by a recursive equation as follows:

, M? 0
M= [ 01} Dy + {Mp] Dy, (11)

where Dy is defined as:

do,i—p+1 0
1 —doi—pt2 do,i—pt2

1 —do,i—p+1

0 1 —do;
and D; is defined as:

dii—pt1 0
—dii—pt2  dii—pt2

—d1,i—pt1

0 —d1; dig
where notions dg ; and d ; are defined as follow:

TZ'—’Tj Ti+1_Tj

ydyj = ———,

doj = 4 ,
Tj+p—1 — Tj

Titp—1—Tj
with the convention 0/0 = 0, and M = 1.

B. Vectorization Formula

We use the following vectorization formula [21]:

vec(ABC) = (CT @ A)vec(B), (12)

where the matrices A, B, and C' are in appropriate dimen-
sions, vec(-) represents the vectorization of the matrix, and
® is the Kronecker product.
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