

number of inequality constraints in optimization when con-

sidering convex control action sets. As illustrated in Figure

1, by taking advantage of the convex hull property of the B-

spline, the proposed planner ensures that the continuous-time

control input remains within the convex control action set as

long as the control points are within the same set. On the

contrary, for conventional optimization-based planners, each

discrete-time control input must be constrained separately in

the optimization. Consequently, the proposed planner reduces

the number of decision variables and inequality constraints

in the optimization, which increases the computational speed

and efficiency as a byproduct.

Compared with the conventional discrete-time

optimization-based planners, BSPOP addresses the frequency

gap between planners and controllers and also decreases the

number of decision variables in the optimization process.

The proposed planner not only offers improved reference

control inputs for arbitrarily fast low-level controllers

to track but also decreases the computational demands

associated with high-level baseline planners. We summarize

our contributions as follows:

• We introduce the BSPOP that generates continuous-time

control signals that can be tracked by the lower-level

controllers running at arbitrarily higher frequencies.

• We show that the BSPOP holds the number of the

optimization variables invariant to the number of steps

within the optimization problem’s horizon. Conse-

quently, BSPOP raises the computational speed and

efficiency by reducing the number of decision variables

and inequality constraints compared with a conventional

planner using discrete-time control inputs as optimiza-

tion variables.

• We validate that BSPOP can generate a better planning

path compared with the same frequency baseline plan-

ner in both simulation and real-world implementation.

II. RELATED RESEARCH

The B-spline curve is widely used to enhance the smooth-

ness of trajectories. In previous work [7], the authors con-

structed a B-spline curve optimization to plan fast-flight

trajectories for a quadrotor, which incorporates gradient

information from a Euclidean distance field and dynamic

constraints. The proposed method guarantees dynamical fea-

sibility by iteratively adjusting the non-uniform B-spline time

knots. In [8], the authors improve the B-spline basis with

the MINVO basis, which provides shorter flight trajectories

in multi-agent collision avoidance tasks. The authors of [9]

use the B-spline curve in the front-end search to avoid

obstacles and the MINVO basis in the back-end optimization

to limit the simplexes. The authors of [10] use the B-spline

in trajectory planning for cooperative automated vehicles.

Contrary to the previous work that uses the B-spline curves

to parameterize the configuration space, this study uses

the B-spline to parameterize continuous-time control input,

allowing low-level controllers to track the control input at a

user-chosen rate.

In general, most optimization-based planners are designed

to provide discrete-time control inputs, which are constrained

by computational power and can only provide relatively low-

frequency signals. Furthermore, when using optimization-

based planners, a user must balance the trade-off between

performance and computation time. For a fixed planning

horizon, increasing the number of discrete-time control

inputs leads to improved performance [11], [12], but it

also increases the number of optimization variables, which

will increase the computation time. To address this issue,

continuous-time optimization-based planners have attracted

the attention of both industry and researchers over the

past few decades. The authors of [13] design orthonormal

functions to parameterize the control input. In [14], the

authors design piecewise constant control inputs to reduce

the complexity of the optimization problem. However, in

the previous work, the control design does not consider

constraints on the control inputs. In the proposed work,

we use the convex hull property of the B-spline curve to

guarantee that the control inputs are constrained within the

required convex sets.

III. BACKGROUND

A. Problem Formulation of Path Planning

We consider a nonlinear control affine system defined as:

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0, (1)

where x is the state of the system and u is the control input,

both being defined with appropriate dimensions. The objec-

tive is to find a control u(t) that can minimize a running cost

function J(x(t), u(t)) =
∫ T

0
‖x(t) − xg‖

2
2 + u(t)⊤Ru(t)dt,

where T is the planning horizon, xg is the target state, and

R is a positive definite matrix, while keeping the state of the

system x(t) within a safe set described by h(x(t)) ≥ 0 for

all time t, and ensuring that u(t) satisfies G(u(t)) ≤ 0 for all

time t for some known convex function G(·). In summary,

the path planning problem aims to find a feasible reference

by solving the following optimization problem:

minimize
u(t)

J(x(t), u(t))

subject to ẋ(t) = f(x(t)) + g(x(t))u(t),

x(0) = xc,

G(u(t)) ≤ 0,

h(x(t)) ≥ 0, t ∈ [0, T],

(2)

where xc is the current state of the robot.

In practical robotic applications, a common approach to

solve the optimization in (2) is to employ discretization

methods to obtain approximate solutions. A conventional

optimization-based planner uses the discrete-time state xk

and control input uk to form the following optimization at

3101

Authorized licensed use limited to: Seneca Polytechnic. Downloaded on August 28,2025 at 22:52:07 UTC from IEEE Xplore. Restrictions apply.

each time step k:

minimize
uk

N−1∑

k=0

(
‖xk − xg‖

2
2 + u⊤

k Ruk

)

subject to xk+1 = xk + (f(xk) + g(xk)uk)∆t,

x0 = xc,

G(uk) ≤ 0,

h(xk) ≥ 0, k ∈ {0, 1, · · · , N},

(3)

where the parameter ∆t is the time increment to discretize

the time horizon, and N is the number of discretized time

steps in the planning horizon T . The optimization problem

is typically solved using numerical solvers. The first optimal

control u0 is then applied to the system and the process is

repeated at each time step.

Decreasing the discretization interval as much as possible

improves the ability of planners to closely approximate

the continuous optimal control problem. However, in real

robotics implementations, limited onboard computational

power is also used for sensing and other algorithms, which

prevents arbitrary high-frequency implementations for con-

ventional optimization-based planners. Instead, these plan-

ners are usually configured at a relatively low frequency,

complemented by a high-frequency, low-level controller for

reference tracking. This setup can lead to performance degra-

dation due to the frequency gap in planners and controllers.

Therefore, it is ideal to have a continuous-time optimization

method to overcome the gap between the low-frequency

high-level planner and the high-frequency low-level con-

troller. In the next section, we will show our approach

that uses B-spline curves to parameterize a continuous-time

control input, which can be tracked by arbitrarily fast low-

level controllers.

B. Basics of B-Spline

The B-spline curve is a piecewise-defined polynomial

curve that is smoothly blended between control points. The

recursive formulation for a B-spline curve of degree p with

n+ 1 control points at time t is given by:

C(t) =

n∑

i=0

Ni,p(t)qi, (4)

where C(·) is the B-spline curve, Ni,p(·) are the B-spline

basis functions, and qi is a control point in the configuration

space for index i ∈ {0, 1, · · · , n}. The basis functions are

recursively defined as:

Ni,0(t) =

{

1 if τi ≤ t < τi+1

0 otherwise
,

Ni,p(t) =
t− τi

τi+p − τi
Ni,p−1(t) +

τi+p+1 − t

τi+p+1 − τi+1
Ni+1,p−1(t).

These formulas define the B-spline curve in terms of the

contributions from each control point, weighted by the B-

spline basis functions. The degree p of the B-spline deter-

mines the local support of the basis functions and influences

the smoothness of the resulting curve. The time knot τ =

{τ0, τ1, · · · , τi, τi+1, · · · , τm} defines the time instances at

which the basis functions are evaluated. Previous studies [7],

[10] used the B-spline curve within the configuration space

to create reference trajectories. In this study, we instead

use B-spline to represent continuous-time control signals to

improve the performance of planners.

IV. B-SPLINE PARAMETERIZED OPTIMIZATION-BASED

PLANNER

We formulate our BSPOP, which provides a continuous-

time control input to address the issue of frequency gap.

The continuous-time control update law can be arbitrarily

fast tracked by low-level controllers. In addition, the solution

benefits from the convex hull property of B-spline curves,

where the resulting B-spline parameterized control signal au-

tomatically falls within the convex set of control constraints

as long as the control points are within the same set.

A. B-Spline Parameterized Control Input

In the proposed method, we define the control input u(·)
as a piecewise polynomial in time interval [0, T]. Denote the

matrix form of the control points by Q̄, which is defined as:

Q̄ =








q̄0
q̄1
...

q̄n







, (5)

where q̄i ∈ R
m×1 is the control-space control point for i ∈

0, 1, · · · , n. When the number of control points n + 1 is

greater than p, the control points determine the curves within

distinct segments. In particular, the control signal u(·) has

a total of S = n + 1 − p = m − 2p segments in the time

interval, where n + 1 is the number of control points, p is

the degree of the polynomial, and m + 1 is the length of

time knots. The more control points or the higher the degree

of the polynomial, the more segments must be taken into

account, leading to a more adjustable control input, but a

longer computation time. For each segment i ∈ {0, · · · , n−
p}, the control signal ui:i+1(t) is expressed as follows for

t ∈ [τi, τi+1]:

u⊤

i:i+1(t) = [1 Ti(t) · · · (Ti(t))
p]

︸ ︷︷ ︸

Γi(t)

Mi








q̄i
q̄i+1

...

q̄i+p








︸ ︷︷ ︸

Q̄i
i+p

, (6)

where Q̄i
i+p contains the control points indexed from i to

i+ p, Ti(t) =
t−τi

τi+1−τi
, and Mi is the basis matrix of the B-

spline curve, which is decided by the time knots of the curve

and we hide the notation p for convenience of presentation.

The shape of the B-spline curve is predetermined by the time

knots, and in BSPOP, we use uniform clamped time knots

(see more details in Remark 1) for the B-spline curves.

Remark 1 In order to design a more adjustable control

input, we employ uniform clamped time knots, which have

3102

Authorized licensed use limited to: Seneca Polytechnic. Downloaded on August 28,2025 at 22:52:07 UTC from IEEE Xplore. Restrictions apply.

the same value for the first p + 1 and last p + 1 elements,

and the remaining elements in the middle increase uniformly

as follows:

τ0 = · · · = τp
︸ ︷︷ ︸

p+1 knots

< τp+1 < · · · < τn
︸ ︷︷ ︸

uniform increasing knots

< τn+1 = · · · = τm
︸ ︷︷ ︸

p+1 knots

,

where in the formulation of the BSPOP, τ0 = · · · = τp = 0
and τn+1 = · · · = τm = T . Uniform clamped time knots

allow the generation of a B-spline curve that begins at the

first control point q̄0 and ends at the last control point q̄n.

It provides a more adjustable control input than other time

knots. Based on the conclusions in [15], we can obtain the

basis matrix M based on the uniform clamped time knots.

Note that for different segments of the control input, the basis

matrix is different. The detailed derivation of the basis matrix

is shown in the Appendix VII-A.

B. Reformulated Objective Function

The objective function Jobj in the BSPOP comprises two

elements. The initial component Jgoal focuses on reducing

the distance to the desired position xg . This cost is computed

numerically using the continuous-time state x(t) and can be

expressed as:

Jgoal =

∫ T

0

‖x(t)− xg‖
2
2dt.

The second part of the objective function Jobj is designed to

reduce the amount of continuous-time control effort required

to control the system. Given that the control input in (6) is

divided into S segments, where each segment t lies within

the time interval knots [τi, τi+1], the overall cost of the

control effort can be decomposed into independent costs

J i:i+1
ctrl , expressed as:

J i:i+1
ctrl =

∫ τi+1

τi

u(t)⊤Ru(t)dt

=

∫ τi+1

τi

Γi(t)MiQ̄
i
i+pRQ̄i

i+p
⊤Mi

⊤Γi(t)
⊤dt.

(7)

To simplify the expression of the cost function J i:i+1
ctrl , we

simply choose the positive definite matrix R to be the identity

matrix. Next, we separate the term Q̄i
i+pQ̄

i
i+p

⊤ from the

time-dependent term Γi(t), which permits precomputation

of the time-integrated term in (7).

Since J i:i+1
ctrl is a scalar, we start by applying to the right-

hand side of (7) without changing its value as follows:

J i:i+1
ctrl = vec(J i:i+1

ctrl)

= vec

(∫ τi+1

τi

Γi(t)MiQ̄
i
i+pQ̄

i
i+p

⊤M⊤

i Γi(t)
⊤dt

)

.

Because vectorization and integration are both linear opera-

tions, we alter their order, leading to the following result:

J i:i+1
ctrl =

∫ τi+1

τi

vec
(
Γi(t)MiQ̄

i
i+pQ̄

i
i+p

⊤M⊤

i Γi(t)
⊤
)
dt.

Since the control points Q̄i
i+p are independent of time t, we

use the matrix multiplication vectorization method specified

in the Appendix VII-B to rearrange the order of matrix

multiplication and separate the control points from other

terms. Consequently, we obtain the following:

J i:i+1
ctrl

=

∫ τi+1

τi

(Γi(t)Mi)⊗ (Γi(t)Mi) vec(Q̄i
i+pQ̄

i
i+p

⊤)dt,

=

∫ τi+1

τi

((Γi(t)Mi)⊗ (Γi(t)Mi) dt)

︸ ︷︷ ︸

Λi:i+1

vec(Q̄i
i+pQ̄

i
i+p

⊤),

where Λi:i+1 is a 1 × p2 row vector which can be pre-

computed once the time knots τi, τi+1 and the polynomial

order p are given. We denote the elements inside Λi:i+1 by

[λ1, . . . , λp2]. Following the definition of control points Q̄i
i+p

in (6), we could derive the expression of matrix Q̄i
i+pQ̄

i
i+p

⊤:

Q̄i
i+pQ̄

i
i+p

⊤ =








q̄iq̄
⊤

i q̄iq̄
⊤

i+1 · · · q̄iq̄
⊤

i+p

q̄i+1q̄
⊤

i q̄i+1q̄
⊤

i+1 · · · q̄i+1q̄
⊤

i+p

...
...

. . .
...

q̄i+pq̄
⊤

i q̄i+pq̄
⊤

i+1 · · · q̄i+pq̄
⊤

i+p







.

Now the control cost can be expressed in quadratic form of

the control points:

J i:i+1
ctrl =

p
∑

j1=1

p
∑

j2=1

λpj1+j2 q̄i+j2 q̄
⊤

i+j1
,

where the cost function can be interpreted as the sum of the

inner products of all control points q̄i whose coefficients are

determined by Λi:i+1. Thus, the total cost of control efforts

can be presented as:

Jctrl =

n−p+1
∑

i=0

J i:i+1
ctrl .

To trade off the costs between reaching the target and

minimizing the control effort, we use the weights w1 and

w2 in the objective function as tuning knobs. The objective

function is then defined as:

Jobj = w1Jgoal + w2Jctrl.

C. Constraints

In the BSPOP, we define the following constraints: dy-

namic constraints, collision-free constraints, and control con-

straints. We assume that the dynamics and environment

are completely known and have been described by known

functions.

Dynamic Constraints: Based on the dynamic system pre-

viously defined in (1) and the control signal defined in (6),

we reformulate the dynamic function for time t ∈ [τi, τi+1]
to be:

ẋ(t) = f(x(t)) + g(x(t))Q̄i
i+p

⊤Mi
⊤Γi(t)

⊤. (8)

To improve computational efficiency, we can modify the

dynamics to make it control affine with respect to the

control points Q̄i
i+p. Since g(x(t))u(t) is a column vector,

its vectorization remains unchanged. Using the matrix multi-

3103

Authorized licensed use limited to: Seneca Polytechnic. Downloaded on August 28,2025 at 22:52:07 UTC from IEEE Xplore. Restrictions apply.

plication vectorization method specified in Appendix VII-B,

we rewrite the previous dynamic equation as:

ẋ(t) = f(x(t)) + vec
(
g(x(t))Q̄i

i+p
⊤Mi

⊤Γi(t)
⊤
)
,

= f(x(t)) + (Γi(t)Mi)⊗ g(x(t))
︸ ︷︷ ︸

g′(x(t))

vec(Q̄i
i+p

⊤),

where g′(x(t)) is the gain matrix associated with the vector-

ized control points vec(Q̄i
i+p

⊤). Note that the current time

t determines the values of the control point Q̄i
i+p and the

basis matrix M in the dynamic equation.

Collision-Free Constraints: Since it is assumed that the

obstacle in the environment is completely known and can be

represented by the function h(x(t)), we use the inequality

constraint h(x(t)) ≥ 0 to represent the robot within the safe

area.

Control Constraints: We aim to solve the optimization

problem while control inputs are limited within a convex set,

which is defined by the convex function G(u(t)) ≤ 0. Using

the convex hull property of the B-spline curves, as illustrated

in Figure 1, we can ensure that the continuous-time control

input remains within the feasible convex set as long as

the control points are within the convex set. Technically, if

each control point q̄i ∈ Q̄i
i+p satisfies G(q̄i) ≤ 0, then the

control input also satisfies G(ui:i+1(t)) ≤ 0. In the proposed

method, the control constraints are specifically related to the

control points q̄i.

D. BSPOP Formulation

In summary, given the constraints and objective functions

explained above, our optimization-based planner is formu-

lated as follows:

minimize
q̄i

Jobj = w1Jgoal + w2Jctrl

subject to ẋ(t) = f(x(t)) + g′(x(t))vec(Q̄i
i+p

⊤),

x(0) = xc,

G(q̄i) ≤ 0, i ∈ {0, · · · , n}

h(x(t)) ≥ 0, t ∈ [0, T].

(9)

The proposed BSPOP is different from the baseline

optimization-based planner in that it seeks to optimize con-

trol points q̄i, which subsequently determines the continuous-

time control inputs u(t), instead of discrete-time control

inputs ui. Thus, the optimal control input of BSPOP can be

tracked by low-level controllers at an arbitrary rate. In con-

tent, the conventional baseline optimization-based planner

requires increased number of optimization variables to pro-

duce optimal control input ui at a higher frequency, leading

to a substantial increase in computational load and solution

time. In our method, we avoid the increase in computation

time using the B-spline curve based control input, of which

optimization variables are decoupled from the discretized

time interval ∆t. Moreover, the convex hull property of

the B-spline also helps the BSPOP to reduce the number

of inequality constraints in optimization. As a result, the

proposed BSPOP reduces the number of decision variables

and inequality constraints and improves computational speed

and efficiency compared with the baseline optimization-

based planners. Specifically, the baseline planners require

dim(u) × (T/∆t) control decision variables, where dim(u)
indicates the control input dimension. In contrast, the number

of control decision variables needed in BSPOP is dim(u)×
(n+ 1), where n+ 1 represents the total number of control

points. When the frequency of the planners increases for a

fixed prediction time horizon T , the discrete time interval

∆t decreases and the baseline planners introduce additional

decision variables, while the BSPOP retains the same number

of decision variables. We will show the advantages of the

BSPOP in both simulations and real experiments in the next

section.

V. RESULTS

A. Simulation

1) Setup: We first implement the BSPOP and baseline

optimization-based planners on a unicycle model with the

following dynamics:




ṗx
ṗy
θ̇



 =





cos θ 0
sin θ 0
0 1





[
v
ω

]

, (10)

where px, py are the Cartesian coordinates of the vehicle,

θ is the vehicles orientation, v is the linear velocity, ω is

the angular velocity of the unicycle model. The optimization

problem aims to solve for the optimal control input v and

ω. The optimization problem for planners is configured to

predict over a time horizon T = 1 s. The robot navigation

task involves an environment that requires the robots to stay

within the region for py ∈ [−2.0, 1.5] and to avoid circle

obstacles defined by:

h(x(t)) = ‖x(t)− xi
c‖

2
2 − ric

2 ≥ 0, for i ∈ {0, 1, . . . },

where xi
c is the center of ith circle obstacle and rc is the

radius of the circle obstacles. The robot starts at the initial

position xs = [−4, 0], while the destination is specified as

xg = [0.5,−0.5]. The initial orientation of the robot ranges

from [−π, π] at intervals of 0.1 radians. We use a third

degree polynomial p = 3 with n + 1 = 4 control points

to generate the B-spline curve controls. The time knots are

uniformly clamped and given as [0, 0, 0, 0, 1, 1, 1, 1]. The B-

spline basis matrix can be computed using (11), as shown in

the appendix. The specific value of the matrix Mi is:

Mi =







1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1






.

We employ CasADi [16] as a solver for the optimiza-

tion problems. We use the Runge-Kutta 4th integration

method [17] to numerically determine the future states. The

low-level controller is designed to be a PD controller with

400 Hz to track the optimal control inputs. The coefficients

w1 and w2 in the cost function are set to 10 and 1,

respectively. All simulations are carried out on a laptop that

is powered by an i7-12650H CPU.

3104

Authorized licensed use limited to: Seneca Polytechnic. Downloaded on August 28,2025 at 22:52:07 UTC from IEEE Xplore. Restrictions apply.

learning-based approaches to learn a feasible set of control

actions, which will be reformulated into the optimization of

the proposed planner.

VII. ACKNOWLEDGEMENT

The authors would like to thank the Center for Autonomy

Robotics Laboratories at the University of Illinois Urbana-

Champaign for their pivotal support and resources in con-

ducting this experiment.

APPENDIX

A. B-Spline Basis Matrix

The basis matrix Mp+1
i of the B-spline basis functions of

degree p can be obtained by a recursive equation as follows:

Mp+1
i =

[
Mp

i

0

]

D0 +

[
0

Mp
i

]

D1, (11)

where D0 is defined as:







1− d0,i−p+1 d0,i−p+1 0
1− d0,i−p+2 d0,i−p+2

. . .
. . .

0 1− d0,i d0,i







,

and D1 is defined as:







−d1,i−p+1 d1,i−p+1 0
−d1,i−p+2 d1,i−p+2

. . .
. . .

0 −d1,i d1,i







,

where notions d0,j and d1,j are defined as follow:

d0,j =
τi − τj

τj+p−1 − τj
, d1,j =

τi+1 − τj
τj+p−1 − τj

,

with the convention 0/0 = 0, and M0
i = 1.

B. Vectorization Formula

We use the following vectorization formula [21]:

vec(ABC) = (C⊤ ⊗A)vec(B), (12)

where the matrices A, B, and C are in appropriate dimen-

sions, vec(·) represents the vectorization of the matrix, and

⊗ is the Kronecker product.

REFERENCES

[1] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–
348, 1989.

[2] J. Tordesillas, B. T. Lopez, M. Everett, and J. P. How, “Faster: Fast
and safe trajectory planner for navigation in unknown environments,”
IEEE Transactions on Robotics, vol. 38, no. 2, pp. 922–938, 2021.

[3] C. Tao, H. Kim, and N. Hovakimyan, “Rrt guided model predictive
path integral method,” in 2023 American Control Conference (ACC),
pp. 776–781, 2023.

[4] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1433–1440, IEEE, 2016.

[5] Z. Zhang, J. Li, and J. Wang, “Sequential convex programming for
nonlinear optimal control problems in uav path planning,” Aerospace
Science and Technology, vol. 76, pp. 280–290, 2018.

[6] D. Pardo, L. Möller, M. Neunert, A. W. Winkler, and J. Buchli,
“Evaluating direct transcription and nonlinear optimization methods
for robot motion planning,” IEEE Robotics and Automation Letters,
vol. 1, no. 2, pp. 946–953, 2016.

[7] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[8] J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent
and dynamic environments,” IEEE Transactions on Robotics, vol. 38,
no. 1, pp. 463–476, 2021.

[9] L. Wang and Y. Guo, “Speed adaptive robot trajectory generation
based on derivative property of b-spline curve,” IEEE Robotics and
Automation Letters, vol. 8, no. 4, pp. 1905–1911, 2023.

[10] R. Van Hoek, J. Ploeg, and H. Nijmeijer, “Cooperative driving of
automated vehicles using b-splines for trajectory planning,” IEEE
Transactions on Intelligent Vehicles, vol. 6, no. 3, pp. 594–604, 2021.

[11] M. Rokonuzzaman, N. Mohajer, S. Nahavandi, and S. Mohamed,
“Review and performance evaluation of path tracking controllers of
autonomous vehicles,” IET Intelligent Transport Systems, vol. 15,
no. 5, pp. 646–670, 2021.

[12] H. Peng and M. Tomizuka, “Optimal preview control for vehicle lateral
guidance,” 1991.

[13] L. Wang, “Continuous time model predictive control design using
orthonormal functions,” International Journal of Control, vol. 74,
no. 16, pp. 1588–1600, 2001.

[14] M. Faroni, M. Beschi, M. Berenguel, and A. Visioli, “Fast mpc with
staircase parametrization of the inputs: Continuous input blocking,” in
2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 1–8, IEEE, 2017.

[15] K. Qin, “General matrix representations for b-splines,” in Proceedings
Pacific Graphics’ 98. Sixth Pacific Conference on Computer Graphics
and Applications (Cat. No. 98EX208), pp. 37–43, IEEE, 1998.

[16] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[17] U. M. Ascher and L. R. Petzold, Computer methods for ordinary
differential equations and differential-algebraic equations. SIAM,
1998.

[18] R. Tao, S. Cheng, X. Wang, S. Wang, and N. Hovakimyan, “Difftune-
mpc: Closed-loop learning for model predictive control,” arXiv
preprint arXiv:2312.11384, 2023.

[19] J. Zhang, H. Cui, J. Wu, and W. R. Norris, “Simulator and trans-
plantable control architecture development for an electric autonomous
vehicle,” in 2024 IEEE International Conference on Mechatronics and
Automation, pp. 275–280, IEEE, 2024.

[20] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,”
in Proceedings of the 9th ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS), pp. 287–296, 2018.

[21] H. D. Macedo and J. N. Oliveira, “Typing linear algebra: A biproduct-
oriented approach,” Science of Computer Programming, vol. 78,
no. 11, pp. 2160–2191, 2013.

3107

Authorized licensed use limited to: Seneca Polytechnic. Downloaded on August 28,2025 at 22:52:07 UTC from IEEE Xplore. Restrictions apply.

