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A B S T R A C T

Reduced-order models allow for the simulation of blood flow in patient-specific vasculatures. They offer a
significant reduction in computational cost and wait time compared to traditional computational fluid dynamics
models. Unfortunately, due to the simplifications made in their formulations, reduced-order models can suffer
from significantly reduced accuracy. One common simplifying assumption is that of continuity of static or total
pressure over vascular bifurcations. In many cases, this assumption has been shown to introduce significant
errors in pressure predictions. We propose a model to account for this pressure difference, with the ultimate
goal of increasing the accuracy of cardiovascular reduced-order models. Our model successfully uses a structure
common in existing reduced-order models in conjunction with machine-learning techniques to predict the
pressure difference over a vascular bifurcation. We analyze the performance of our model on steady and
transient flows, testing it on three bifurcation cohorts representing three different bifurcation geometric types.
We find that our model makes significantly more accurate predictions than other models for approximating
bifurcation pressure losses commonly used in the reduced-order cardiovascular modeling community. We also
compare the efficacy of different machine-learning techniques and observe that a neural network performs
most robustly. Additionally, we consider two different model modalities: one in which the model is fit using
both steady and transient flows, and one in which it is optimized for performance in transient flows. We
discuss the trade-off between the physical interpretability associated with the first option and the improved
accuracy in transient flows associated with the latter option. We also demonstrate the model’s ability to
generalize by testing it on a combined dataset containing two different bifurcation types. This work marks a
step towards improving the accuracy of cardiovascular reduced-order models, thereby increasing their utility
for cardiovascular flow modeling.
1. Introduction

In the last 20 years, computational fluid dynamics (CFD) simula-
tions of cardiovascular flows have been established as a valuable tool
in clinical decision making, understanding mechanisms of cardiovas-
cular disease progression, and the design of medical devices [1–5].
First, they shed insight into clinical decision making for cardiovascular
disease. Cardiovascular flow simulations are used to analyze flows in
patient-specific vasculatures and the associated health outcomes. For
instance, in [6–9], CFD models were used to analyze flow through
coronary artery aneurysms of patients with Kawasaki disease, and
the analysis yielded metrics that correlated with thrombotic risk. CFD
simulations are also used to inform surgical planning. They provide
patient-specific insights into the characteristics of a diseased anatomy
that allow clinicians to customize the patient’s treatment, rather than
using a ‘‘one-size-fits-all’’ approach. Furthermore, CFD models predict
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the changes in flow behavior that would result from hypothetical sur-
gical modifications. For instance, in the context of multi-stage surgical
intervention for single-ventricle heart defects, CFD flow analysis was
used to compare two candidate stage 2 operations, the hemi-Fontan
and bidirectional Glenn procedures, study patient-specific effects of the
hemi-Fontan procedure under varying physiological states, and analyze
the effects of geometric variations in anatomies constructed by the stage
3 Fontan procedure [10–12]. Second, cardiovascular flow simulations
have contributed to our understanding of cardiovascular biomechanics
and mechanobiology by characterizing hemodynamics that are diffi-
cult to observe experimentally. For example, CFD simulations made
instrumental contributions to our understanding of the mechanisms
driving the development of pulmonary arterial hypertension by mod-
eling flows in smaller, distal vessels that are difficult to characterize
experimentally [13–16]. Third, cardiovascular flow simulations allow
for design testing in a low-cost, low-risk setting, which is invaluable in
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data mining, AI training, and similar technologies. 
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the engineering and optimization of cardiovascular medical devices and
reatments including stents [17–19], grafts [20–23], circulatory support

systems [24–27], and vascular drug delivery systems [28–30].
Traditional CFD models solve the unsteady Navier–Stokes equations

n three dimensions (3D), a computationally intensive task. While
these simulations have demonstrated clear clinical, scientific, and en-
ineering value, their computational cost is a barrier to widespread

adoption in clinical settings (especially emergency scenarios), real-time
nalysis, and multi-query applications. Reduced-order models (ROMs)

are simplified representations of cardiovascular flows that predict bulk
roperties at much lower computational cost, providing a computation-
lly tractable alternative to 3D simulations. ROMs have been used to

find boundary and initial conditions for higher-fidelity simulations [31–
36], for uncertainty quantification [37–39], and as stand-alone mod-
els [40–42]. Zero-dimensional (0D) and one-dimensional (1D) ROMs
are two of the most frequently used in the cardiovascular flow modeling
community [43–47].

In the 0D ROM formulation, a vasculature is represented by an
idealized electric circuit in which flow and pressure are analogous
to current and voltage, respectively. Vessels are represented by wires
containing circuit elements (e.g., resistors, capacitors, and inductors)
with characteristic values capturing the 3D vessel geometry. The bulk
flow and pressure values at the inlets and outlets of each branch
in the vasculature are given by the values of current and pressure
at the corresponding nodes in the analogous electric circuit [33,48–
50]. In the 1D ROM, the flow through the vasculature is modeled
using a one-dimensional partial differential equation (PDE) enforcing
conservation of mass and momentum, derived by integrating across the
vessel cross-section [43,51–56].

While ROMs are promising tools for high-speed, computationally
lightweight modeling of cardiovascular flows, they suffer from reduced
accuracy due to the simplifications in their formulations. One such
simplification occurs in the handling of bifurcations. Bifurcations gener-
ally feature flow separation and other nonlinear behaviors that cannot
be modeled with the ROMs described above. Frequently, continuity of
either static [36,44,57–59] or total [60–65] pressure is assumed over
a bifurcation. Practical experience and high-fidelity CFD simulations,
however, indicate that significant differences in both static and total
pressure between the inlets and outlets of a bifurcation can exist.
Indeed, previous work has shown that the treatment of bifurcations has
a notable effect on ROM solutions [48,66–71]. As such, there is a need
to develop and incorporate models that accurately predict pressure
differences over vascular bifurcations to improve ROM accuracy. Past
studies have proposed such models specifically for cardiovascular flows
and other flow networks featuring bifurcations [72–74]. These models
vary in complexity and are generally developed using a combination of
physics-based and empirical approaches.

In recent years, however, as computational blood flow models have
gained traction, more 3D cardiovascular CFD data has become avail-
able [75]. In parallel, significant advances have been made in data-
driven modeling techniques. Given these developments, we present
a novel, hybrid approach for modeling pressure differences over bi-
furcations in ROMs. Specifically, we propose accounting for pressure
differences by augmenting bifurcation outlet branches with a 0D bi-
furcation element comprising a serially connected resistor, quadratic
resistor, and inductor whose characteristic values are determined from
the bifurcation geometry using machine learning (ML) techniques. In
doing so, we apply ML techniques to our problem within a constrained,
physics-based framework that reduces the complexity of the regression
problem and provides interpretability.

In Section 2, Methods, we discuss the structure of our model and
how it is intended to integrate into existing ROM schemata. Next, we
describe the procedure used to generate training data for the machine
learning components of our model. In Section 3, Results, we show that
our hybrid physics-based data-driven model structure can accurately

predict the pressure difference over bifurcations with previously unseen

2 
geometries for three different cohorts of geometries in both steady
and transient flow settings. We also consider several ML regression
techniques and compare their effectiveness for our task. We identify
the major takeaways of this study and relate them to the broader field
of cardiovascular ROMs in Section 4, Discussion. Finally, in Section 5,
Limitations and Future Work, we discuss the contributions of our model
towards reduced-order cardiovascular modeling, summarize its current
limitations, and propose future work to develop the model further and
deploy it in existing ROMs.

2. Methods

In most ROM solvers, and in this work, pressure drops are com-
puted between the inlet and each outlet individually. We indicate the
bifurcation inlet with the subscript ‘‘inlet’’, the outlet over which we
are currently computing the pressure difference with the subscript
‘‘outlet,1’’, and the second outlet of the bifurcation, over which we
are not currently computing the pressure difference, with the subscript
‘‘outlet,2’’. In most ROMs, a pressure difference over a vascular junction
is prescribed by the inclusion of an equation relating the pressure at the
inlet branch to the pressure, 𝑃 at each outlet branch. In the context of
Fig. 1, this corresponds to setting the quantity 𝑃outlet,1 − 𝑃inlet, which
we hereafter refer to as 𝛥𝑃 , to some value. It is common to enforce
conservation of static pressure so that

𝛥𝑃static pressure = 0. (1)

Similarly, the equation

𝛥𝑃total pressure = 1
2
𝜌(𝑢2inlet − 𝑢2outlet,1), (2)

where 𝜌 is the density of blood, enforces continuity of total pressure.
Aside from continuity of total and static pressure, the most com-

only used model for pressure differences over vascular bifurcations
s the Unified0D+ model, proposed in 2015 [68,74,76–78]. It predicts
he pressure difference over bifurcations as follows,

𝛥𝑃Unified0D+ =
(

1 − 𝑢inlet
𝑢outlet,1

cos
[3
4
(𝜋 − 𝜃)

]

)

𝜌𝑢2outlet,1, (3)

where 𝑢outlet is the outlet velocity, 𝑢inlet is the velocity in the inlet
branch, and 𝜃 is the angle between the outlet and inlet branch. The Uni-
fied0D+ model incorporates physical principles such as conservation of
mass, momentum, and energy along with empirically fitted corrections,
but the absence of a term involving the time derivative of the flow
limits the Unified0D+ model’s ability to make accurate predictions on
transient flow. A major contribution of [74] was the introduction of
 pseudodatum branch. The pseudodatum is a modified inlet whose
roperties capture the effective behavior of multiple inlets and account
or energy exchange between branches. Although not needed for the
ifurcations considered in this work, the ability to accommodate junc-
ions with arbitrary numbers of inlets and outlets is a major advantage
f the Unified0D+ model. In Section 5, we discuss a potential extension
o our proposed model to handle these more complex junction types.

The Unified0D+ model predicts the pressure drop at the point
t which the centerline bifurcates. In contrast, our model predicts
he pressure loss between the inlet and outlet of a bifurcation, some
istance upstream and downstream of the bifurcation point. We are
nterested in 𝛥𝑃 between the inlet and outlet as it encompasses the
ffects of the entire junction region, and it is the quantity needed in
ost ROM solvers. To compare the Unified 0D+ model to ours, we

herefore add the pressure differences expected in the vessel segment
etween the inlet and bifurcation point and between the bifurcation
oint and outlet to the pressure difference predicted by the Unified0D+
odel. The pressure differences in the inlet and outlet vessels are

alculated assuming Poiseuille resistance as follows

𝛥𝑃 = 𝛥𝑃Unified0D+ + 𝛥𝑃Poiseuille adjustment −
8𝜇 𝐿inlet𝑄inlet

4
𝜋 𝑟inlet
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Fig. 1. 3D vascular bifurcation (left) and its representation in a ROM (center) including the proposed RRI bifurcation block, featuring a linear resistor, quadratic resistor, and
nductor (right).
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𝜋 𝑟4outlet
, (4)

where 𝜇 is the viscosity of blood and 𝐿 is the length of the vessel.
𝛥𝑃Poiseuille adjustment is a correction given in [74] to be used when
combining the Unified0D+ model with the Poiseuille equation-based
vessel pressure difference model in this manner. This system is similar
to the approach taken in [79].

2.1. Resistor–resistor–inductor model

We propose to model the pressure difference between the inlet and
outlet of a bifurcation as a linear combination of the outlet flow, 𝑄, the
square of the outlet flow 𝑄2, and the time derivative of the flow 𝑄̇ as
follows

𝛥𝑃RRI = 𝑅lin()𝑄 + 𝑅quad()𝑄2 + 𝐿()𝑄̇. (5)

In the context of the circuit analogy, this formulation is equivalent to
inserting a 0D block consisting of a serially connected resistor with re-
sistance 𝑅lin, quadratic resistor with resistance 𝑅quad, and inductor with
inductance 𝐿 between the inlet and each outlet of a bifurcation. For this
eason, we hereafter refer to it as the Resistor–Resistor–Inductor (RRI)
odel. As discussed above, this model structure is well-established in

he cardiovascular ROM community for modeling blood vessels [48,
0]. In blood vessel modeling, the characteristic values, 𝑅quad, 𝑅lin,

and 𝐿, can be determined from the vessel geometry using formulas
based on simplifications of the Navier–Stokes equations. However, due
to the more complex and irregular nature of bifurcating flows, no such
formulas are readily apparent for bifurcation geometries [50,80]. A key
contribution of this work is the use of data-driven methods to predict
the characteristic values in the absence of physics-based relations.

In the RRI model, the linear resistor captures pressure losses pro-
portional to the flow rate—generally associated with viscous energy
losses in steady, laminar flow. The quadratic resistor captures energy
losses associated with flow separation and nonlinear effects, which
are generally observed at the expansion of the bifurcation. Quadratic
resistors are similarly used to represent stenosed vessels, which feature
similar separation at the expansion [49,81,82]. Lastly, the inductor
describes pressure differences proportional to the change in flow over
time, induced by changes in the flow’s inertia. In steady analyses, we
refer to the Resistor–Resistor (RR) model where there is no inductance
(𝐿 = 0). The RRI formulation assumes no wall compliance, although
he model may be extended to account for wall compliance by the
nclusion of a capacitor. Preliminary studies showed that the flow-
ressure difference profile over a wide range of junctions resembled
hose shown in Figs. 6 and 7 and that the RRI model form closely
eplicated the relationship between the flow and pressure difference
ver a wide range of bifurcation geometries in both steady and transient
lows (as is shown in these figures).

We determined the coefficients, 𝑅quad, 𝑅lin, and 𝐿, from the bifur-

ation’s geometry  using data-driven models. The geometric features e

3 
Fig. 2. Geometric parameters characterizing bifurcations and used to predict the
coefficients 𝑅quad, 𝑅lin, and 𝐿 which in turn govern the relationship between 𝑄, 𝑄2,
nd 𝑄̇ and 𝛥𝑃 in the RRI model.

nclude 1 = [𝑟inlet, 𝑟outlet,1, 𝑟outlet,2, 𝜃1, 𝜃2, 𝑙1, 𝑙2]. These are shown in
ig. 2 and refer to the inlet radius, outlet radius, auxiliary outlet radius,
utlet angle, auxiliary outlet angle, outlet length, and auxiliary outlet
ength, respectively. The auxiliary outlet is the bifurcation outlet for
hich we are not computing the pressure difference and is indicated
ith the subscript ‘‘2’’.

To train and validate the machine learning models, we generated
ynthetic bifurcation geometries and ran simulations for a series of flow
onditions in each geometry to find the ground truth values of 𝑅quad,
lin, and 𝐿 associated with that geometry.

.2. Data generation

We generated three cohorts of idealized synthetic bifurcations repre-
enting: an isoradial cohort, a pulmonary cohort, and a brachiocephalic
ohort. The isoradial cohort is representative of bifurcations analyzed
n the work that led to the Unified0D+ model (although it should
e noted that this study considered a wide range of outlet radii and
ffset angles) [74]. The pulmonary cohort is representative of distal
ifurcations in the pulmonary tree. The brachiocephalic cohort is rep-
esentative of the bifurcation of the brachiocephalic trunk into the
ight subclavian artery and the right common carotid artery. These
natomies are shown in Fig. 4. We consider the pulmonary and bra-
hiocephalic cohorts to be the main benchmarks for our model, as they
re based on bifurcations observed in the native vasculature. Both the
ulmonary and brachiocephalic cohorts represent anatomies for which
unction pressure modeling is crucial—the brachiocephalic bifurcation
an exhibit large magnitude pressure differences, and in pulmonary
natomies, many bifurcations are often chained together, so neglecting
ifurcation pressure differences can result in significant cumulative

rror.
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Fig. 3. Overview of the computation of a pressure difference over a vascular junction using the RRI model.
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Fig. 4. Examples of pulmonary and brachiocephalic bifurcations in their surrounding
vasculatures (top) and nominal idealized bifurcations from the isoradial, pulmonary,
nd brachiocephalic cohorts (bottom).

.2.1. Geometry generation
The parameters defining the automated generation of the bifurca-

tion geometries were the inlet radius, the inlet and outlet radii, and
he offset angles between the inlets and outlets. For bifurcations in
he isoradial bifurcation cohort, these values were chosen randomly
rom a uniform distribution varying ±20% of the parameter value for a
ominal isoradial bifurcation. The characteristic geometric parameter
alues for bifurcations in the pulmonary and brachiocephalic cohorts
ere chosen randomly from uniform distributions spanning the 40th

o 60th percentile of the range of parameter values observed in dis-
al pulmonary and brachiocephalic bifurcations found in a publicly
vailable database of patient-specific cardiovascular flow models, the
ascular Model Repository (VMR) [75].1 The ranges for the char-
cteristic bifurcation dimensions can be found in Appendix B, and
heir average values are reported in Fig. 4. These distributions were
hosen as a proof of concept demonstrating the effectiveness of the RRI
odel. While we hypothesize that the RRI model would achieve similar

esults on wider distributions, we predict that this would require more
training data, as discussed in Sections 4 and 5. This is illustrated by a
upplementary study we conducted using a combined dataset made up

of the brachiocephalic and pulmonary bifurcations (Section 3.3).
We used SimVascular, an open-source software suite for cardio-

ascular modeling and simulation [83],2 to create a set of idealized
bifurcation solid models and simulate the flow fields associated with
ifferent boundary conditions. In particular, we used the SimVascular
ython API3 to generate the geometries with automated scripts as

follows. First, we specified a series of points that define the centerlines
of the vessels and identify the vessel lumen at each point. Then,

1 http://www.vascularmodel.com (2022).
2 https://simvascular.github.io/ (May 2023).
3 https://simvascular.github.io/documentation/python_interface.html(May

2023).
 𝑅

4 
we lofted the vessels into solid models and merged them to form a
single geometry using Boolean operations. A tetrahedral mesh was then
generated from each geometry. The mesh size was chosen to be the
largest at which an accurate solution was attained, as determined by
the mesh convergence studies shown in Appendix A. The mesh was
refined in the boundary layer as well as in a sphere surrounding the
center of the junction to better resolve the complex flow behaviors in
hose locations.

.2.2. Simulation
Flows through the bifurcations were simulated using the stabilized

inite element solver svSolver, provided with SimVascular, to solve
he three-dimensional Navier Stokes equations. A parabolic velocity
rofile with varying magnitude was prescribed at the inlet. The inlet
elocities for the isoradial cohort were sampled from a uniform dis-
ribution varying ±20% of a nominal inlet velocity considered in [74]
hile the inlet velocities applied to the pulmonary and brachiocephalic

ohort were sampled from a uniform distribution ranging from 40th
o 60th percentile of the inlet velocity values seen in pulmonary and
rachiocephalic bifurcations in the VMR. The inlet velocity ranges for
ach cohort are listed in Appendix B. Resistance boundary conditions
ere applied at the outlets with a fixed resistance value of 100 cm2 sg−1

and distal pressure of 0 mmHg [50].
After the simulations were completed, we reduced the flow and

pressure results to a 1D format by projection onto the model centerline.
o achieve this, at each point along the centerline we integrated the
elocity field from the 3D flow results over the surface defined by the
ntersection of the 3D vessel with a plane normal to the centerline tan-
ent vector and containing the centerline point. Similarly, the pressure
esults were computed by calculating the average of the pressure field
ver the cross-section of the vessel normal to the centerline tangent.
he flow at the outlets and change in pressure with respect to the

nlet were extracted from the 1D representation. We defined inlet and
utlet point locations to be about 4 inlet diameters upstream and 10
nlet diameters downstream of the bifurcation point, respectively. This
istance was heuristically chosen, based on analysis of 3D flow in a
ange of bifurcations and flow conditions, to be large enough that we
ould assume the flow to be free of entrance effects and behave as fully-
eveloped flow. In this way, we ensured that all effects of the flow
ehaviors caused by the bifurcation will be analyzed and accounted
or in our model.

.2.3. Characteristic value extraction
For each geometry, two types of simulations were run—steady and

ransient. First, two steady simulations were run at 50% and 100%
f the sampled inlet flow rate. A simulation was considered to have
eached a steady state when the difference between the quantities of
nterest (outlet flow and pressure change) at the last time step and 100
ime steps before the last time step was less than 1% with a time step
ize of 0.001 s. Second, a transient flow simulation was run in which
he flow at the inlet was varied in time following the sinusoidal profile
hown in Fig. 5, where the maximum inlet flow rate was the sampled
low rate. From the simulation data, we found the coefficients 𝑅lin,

quad, and 𝐿 for each bifurcation geometry inlet–outlet pair.

http://www.vascularmodel.com
https://simvascular.github.io/
https://simvascular.github.io/documentation/python_interface.html
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Fig. 5. Overview of data generation pipeline. First, we generated a bifurcation geometry based on a set of geometric features. Then, two steady simulations were run from which
he coefficients 𝑅lin and 𝑅quad were determined by solving a simple system of equations containing the steady simulation results. Finally, a transient simulation was run from
hich the coefficient 𝐿 was determined using least squares. In the TO method, all three coefficients, 𝑅lin, 𝑅quad, and 𝐿 were determined from the transient simulation.
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First, we fit the coefficients 𝑅lin and 𝑅quad to the results of the steady
simulations by solving the system of equations
[

𝛥𝑃50%
𝛥𝑃100%

]

=
[

𝑄50% 𝑄2
50%

𝑄100% 𝑄2
100%

] [
𝑅lin
𝑅quad

]

, (6)

where the subscripts 50% and 100% refer to the steady simulations
run at 50% and 100% of the peak inlet flow, respectively. We also
experimented with running four steady simulations (adding 𝑄25% and
𝑄75%) and fitting 𝑅lin and 𝑅quad using least squares. We found that
his did not result in significantly different values for 𝑅lin and 𝑅quad,
o to avoid the added computational cost, we proceeded with the
wo-simulation fitting method described in (6).

To determine the coefficients for the transient model, we used least
quares on an over-defined system of equations containing the results of
he transient simulations. Each simulation timestep contributed a linear
quation to the system of linear equations as follows

𝑃𝑖 = 𝑅lin𝑄𝑖 + 𝑅quad𝑄
2
𝑖 + 𝐿𝑄̇𝑖 ∀𝑖 = 0, 1,… , 𝑛timesteps. (7)

or transient flows, we considered two methods of fitting the coeffi-
ients. In the first method, we substituted the values of 𝑅lin and 𝑅quad
ound from steady data corresponding to the same geometry into Eq. (7)
nd only fit 𝐿 from the transient data. In the second method, we
it all three coefficients, 𝑅lin, 𝑅quad, and 𝐿 from the transient data.

e refer to the coefficients generated using the second method as
ransient-optimized (TO).

.3. Machine learning models

Having built a dataset of bifurcations, we next created ML models
hat take the bifurcation geometry as input and output the coeffi-

ients 𝑅lin, 𝑅quad, and 𝐿 that govern the relationship between 𝑄,

5 
2, and 𝑄̇ and 𝛥𝑃 . In particular, the ML models took as input a
ector containing the geometric features of the bifurcation, 1 =
𝑟inlet, 𝑟outlet,1, 𝑟outlet,2, 𝜃1, 𝜃2, 𝑙1, 𝑙2], and produced as output the vector
ontaining the relevant coefficients. In the standard modality, one
odel trained on resistance values fit to steady data outputted 𝑅lin,

𝑅quad, and a second model trained transient data outputted 𝐿. In the
TO method, a single ML model trained on coefficients fitted from
transient data outputted all three coefficients, 𝑅lin, 𝑅quad, and 𝐿. For
each dataset, 80% of the geometries were allocated to training the
ML models and 20% to testing them. The training datasets included
149, 98, and 88 geometries, and the test sets included 38, 25, and 22
geometries for the isoradial, pulmonary, and brachiocephalic datasets,
respectively.

We tested several different ML model types, including K-Nearest
Neighbors (KNN), Decision Trees (DT), Linear Regression (LR), Support
Vector Regression (SVR), Gaussian Process Regression (GPR), and a
Neural Network (NN) [84–89]. Except for the Neural Network, each
regression model was trained to minimize the squared difference be-
tween the coefficients predicted by the model and the coefficients
extracted from the simulation data. The NN was trained to minimize
the squared difference between the pressure difference predicted by
the coefficients given by the model and the pressure drop observed
rom simulation data. This type of training objective was implemented
nly for the NN because the backpropagation method of training an NN
asily accommodates a customizable loss function. Such an approach
ould have been much more difficult to implement for the other model

ypes. Hyperparameter optimization for all models was conducted on
he steady data from the brachiocephalic dataset using Ray Tune [90],

and the optimal parameters found are reported in Appendix C.
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3. Results

3.1. Steady flows

In the first phase of our study, we analyzed steady flow through
bifurcations. In this case, 𝑄̇ = 0, so there is no need to consider the in-
ductance coefficient 𝐿. We refer to the steady, inductance-free model as
the RR model. We found overall that GPR and NN had the most success
predicting the steady coefficients 𝑅lin and 𝑅quad. The accuracies of the
Unified0D+ model and our model using different regression techniques
are compared in Table 1 for all three cohorts of bifurcations. In Fig. 6,
we compare steady 𝛥𝑃 -𝑄 profiles predicted by 3D simulation, the RR

odel, and the Unified0D+ model for the three bifurcation types. For
ach bifurcation type, we show three geometries, which differ only
n the radius of the outlet vessel over which we are predicting the

pressure difference. For all cohorts, we see that the ground-truth 3D
simulation predicts a lower pressure at the outlet than at the inlet
nd that decreasing the outlet radius increases the magnitude of the
ressure drop between the outlet and inlet, as expected.

We started by analyzing isoradial bifurcations similar to those con-
idered in the original Unified 0D+ study. We observed the 𝛥𝑃 -𝑄
elationships predicted by the Unified0D+ model, our approach, and
he CFD simulation results. The simulated 𝛥𝑃 -𝑄 relationships follow

expected physical trends. In isoradial bifurcations, the total outlet area
is about double that of the inlet, so flow velocity decreases in the
outlets. This deceleration causes a diminished dynamic pressure in the
outlets, which contributes to elevated static pressure, resulting in a
larger (less negative) 𝛥𝑃 . This effect is heightened at higher flows,
which cause more significant changes in dynamic pressure. This is
illustrated in the tendency of the 𝛥𝑃 -𝑄 profiles to curve upwards. The
curve is more pronounced for larger outlet radii, which experience
more significant changes in dynamic pressure. While our model predicts
the results of the CFD simulation quite closely, the Unified0D+ model
consistently under-predicts the pressure drop. The difference between
the Unified0D+ model prediction and the CFD solution is more extreme
at higher flow rates.

Next, we performed a similar analysis on the pulmonary and bra-
hiocephalic cohorts. Unlike the isoradial bifurcations, these bifurca-
ions have outlets with smaller radii than the inlet. Since the total
utlet area in these bifurcations is smaller than the inlet area, the flow
ccelerates upon entering the outlets, contributing to a decreased static

pressure at the outlets. This effect is more intense at higher flows and
accounts for the concave-down shape of the 𝛥𝑃 -𝑄 profiles. Predictably,
we see a more dramatic downward curve in the profiles for smaller
outlet radius geometries. The pulmonary bifurcations experienced flow
rates similar to those of the isoradial cohort, but because the radii in
the pulmonary cohort are much smaller, the pulmonary cohort exhibits
higher velocities and larger pressure drops. The brachiocephalic bi-
furcations were exposed to even higher velocity flows than the other
cohorts, and as expected, the magnitude of the pressure changes over
these bifurcations is also larger. Again, our model closely matches
the CFD simulation results, but the Unified0D+ model significantly
underestimates the magnitude of the pressure drop.

3.2. Transient flows

Next, we tested the performance of our RRI model on transient
flows, which exhibit drastically different 𝛥𝑃 -𝑄 profiles from steady-
state flows (Fig. 7). For the same flow rate 𝑄, the pressure difference
over the bifurcation, 𝛥𝑃 , can be radically different, depending on the
derivative of the flow rate 𝑄. The inductor component of our model,
𝐿𝑄̇ successfully captures this effect. It is clear that without taking into
account the time derivative of the flow, it is impossible to predict the
pressure difference over the bifurcation with an acceptable accuracy.
To illustrate this, we include the inductance-free RR model in the

visualization of our results.

6 
Fig. 6. Steady state 𝛥𝑃 vs. 𝑄 profiles for isoradial, pulmonary, and brachiocephalic
type bifurcations. Solid lines show the RR model prediction, dashed lines show the

nified0D+ model prediction, and stars show simulation results. The different colors
ndicate different geometries, identical except for the outlet radius of one outlet vessel.

In the standard RRI model, the coefficients 𝑅lin and 𝑅quad are fit
o match the steady simulation data, and 𝐿 is fit to the transient
imulation data. We also tested the transient optimized (TO) model
here all three coefficients, 𝑅lin, 𝑅quad, and 𝐿 were fit to match the

ransient simulation data. Notably, the TO optimized fitting method
roduced different coefficients from those produced by the standard
itting method. We show the root mean squared relative difference
RMSRD) for 𝑅lin, 𝑅quad, 𝑅lin𝑄max + 𝑅quad𝑄2

max in Table 2. 𝑅lin𝑄max +
quad𝑄2

max corresponds to the steady component of the 𝛥𝑃 predicted
y the RRI model under a flow 𝑄𝑚𝑎𝑥, the largest steady flow simulated
or each bifurcation. We define RMSRD as
√

√

√

√

√

1
𝑁

𝑁
∑

𝑖

(

𝑅steady,i − 𝑅TO,i

𝑅steady,i

)2

,

where N is the number of bifurcation geometries in the dataset.
As expected, the RRI TO model outperforms the standard RRI model.

gain, we tested multiple regression techniques in our RRI model. In
the transient case, we found that, overall, the NN best predicted the
coefficients 𝐿, 𝑅lin, and 𝑅quad (Table 3).

3.3. Combined dataset

As a final experiment, we tested the performance of the RRI model
sing the neural network on a combined dataset containing both the
rachiocephalic and pulmonary bifurcations, as shown in Table 4. In
teady flows, the combined dataset model performed worse than both
he brachiocephalic and pulmonary models by about one order of
agnitude. However, in transient flows, the combined dataset model

chieved accuracies comparable to those of the isolated brachiocephalic
nd pulmonary models. We note that although the combined dataset
odel achieves a lower error than the brachiocephalic-specific model in

some cases, this is likely because pulmonary bifurcations, with smaller
total pressure differences, and therefore smaller errors, are included in
he calculation of RMSE. As such, the lower error should not suggest
hat the combined model predicts brachiocephalic pressure differences
ore accurately than the brachiocephalic-specific model.

. Discussion

We observe excellent performance of the RRI model on both steady
and transient flows. In steady flows, the proposed model outperforms
the Unified0D+ model on all three bifurcation cohorts. It is not surpris-
ing that the RRI model has higher accuracy than the Unified0D+ model
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Table 1
Train and test root-mean-squared error in 𝛥𝑃 (𝑄) for steady flows in isoradial, pulmonary, and brachiocephalic type bifurcations using the steady
RR model with different regression techniques.

Model type: RR Unified0D+

ML model type: KNN DT LS SVR GPR NN

Isoradial
Train RMSE (mmHg) 0.016 0.014 0.022 0.0071 0.00074 0.0061
Test RMSE (mmHg) 0.022 0.018 0.020 0.012 0.013 0.012 0.10

Pulmonary
Train RMSE (mmHg) 0.63 0.47 0.93 0.95 0.018 0.41
Test RMSE (mmHg) 0.76 0.54 0.81 0.92 0.51 0.39 1.7

Brachiocephalic
Train RMSE (mmHg) 1.3 0.87 1.3 0.28 0.056 0.16
Test RMSE (mmHg) 1.5 1.07 1.3 0.78 0.33 0.34 4.9
Table 2
Root mean squared relative differences in 𝑅quad, 𝑅lin, and 𝑅quad𝑄2

max + 𝑅lin𝑄max (the
steady component of 𝛥𝑃 predicted by the RRI model) between coefficients fit using
the standard and TO methods.

RMSRD: 𝑅lin 𝑅quad 𝑅lin𝑄max + 𝑅quad𝑄2
max

Brachiocephalic 23% 47% 13%
Pulmonary 14% 55% 13%

Table 3
Train and test root-mean-squared error in 𝛥𝑃 (𝑄) for transient flows in pulmonary-type
nd brachiocephalic-type bifurcations using the RRI model (standard and TO methods)
ith different regression techniques.
ML model type: KNN DT LS SVR GPR NN

Standard RRI model
Pulmonary
RRI Train RMSE (mmHg) 2.7 3.0 3.1 2.6 2.7 2.7
RRI Test RMSE (mmHg) 2.6 2.9 2.8 2.5 3.0 2.6

Brachiocephalic
RRI Train RMSE (mmHg) 4.0 4.3 4.5 3.8 3.8 4.0
RRI Test RMSE (mmHg) 4.3 5.3 5.2 4.5 4.5 4.6

Transient Optimized (TO) RRI model
Pulmonary
RRI Train RMSE (mmHg) 1.4 1.3 1.6 1.7 0.27 1.2
RRI Test RMSE (mmHg) 1.5 1.2 1.3 1.6 4.0 1.2

Brachiocephalic
RRI Train RMSE (mmHg) 2.8 2.3 2.4 1.2 0.80 1.3
RRI Test RMSE (mmHg) 3.5 3.1 3.1 2.4 2.6 2.2

Table 4
Train and test root-mean-squared error in 𝛥𝑃 (𝑄) for transient flows in pulmonary-type
nd brachiocephalic-type bifurcations using the RRI model (standard and TO methods)
ith different regression techniques.
Combined Steady Transient (standard) Transient (TO)

dataset Train Test Train Test Train Test

Train RMSE
(mmHg)

1.8 1.5 3.8 3.4 1.6 1.5

on pulmonary and brachiocephalic bifurcations because these bifur-
cations have significantly different geometric features and experience
much higher velocity flows than those considered in the development
of the Unified0D+ model. Furthermore, analysis of the 3D simulation
results indicated that some of the assumptions used in the formulation
of the Unified0D+ model, namely those about the velocity profile and
distribution of total energy in the bifurcation may not be satisfied.
Our model also accurately predicts pressure differences over vascular
junctions in transient flows. Inductors are traditionally used to capture
inertial effects in the 0D electric circuit model, so it is expected that
the inclusion of an inductor in the RRI model enables improved pre-
diction of transient behavior that is impossible to account for without
considering the time derivative of the flow [50].

As expected, the TO model outperforms the standard RRI model,
but the difference is slight. This indicates that bifurcation pressure
7 
Fig. 7. Transient 𝛥𝑃 vs. 𝑄 profiles for test junctions from the pulmonary (left) and
brachiocephalic (right) bifurcation cohorts. The sinusoidal flow profile shown in Fig. 5
was applied, where 𝑄 starts at 0, increases, and then decreases, as indicated by the
arrow in the top left panel. The geometries shown are those with the lowest, 25th
percentile, median, 75th percentile, and highest RMSE for the standard RRI model out
of the test set, from top to bottom. We show a comparison between our RRI model
(standard and TO), the inductance-free RR model, and 3D simulation results.

differences can be cleanly split into a steady and transient component
as in the standard RRI model. While marginally less accurate than the
RRI TO model, the standard RRI model is more physically interpretable
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because 𝑅lin and 𝑅quad are found solely from steady data, which is
consistent with the physical definition of resistors as circuit elements
containing no time-dependent physics. Furthermore, while the standard
RRI model is guaranteed to recover the steady-optimized coefficients,

lin and 𝑅quad when 𝑄̇ = 0, the TO model resistances were shown
o differ from the steady-optimized (standard) resistances, indicating
iminished adherence to the physical definition of the circuit elements.
otably, although the two different fitting methods sometimes yield
uite different coefficients, they predict similar steady contributions
o 𝛥𝑃 , allowing them both to achieve relatively good accuracy. The
tandard and TO model may each be preferable for different use
ases, depending on the relative importance of interpretability versus
ccuracy. Overall, we see the highest accuracy from the NN, GPR, and
VR regression techniques. We consider the NN to be most favorable
ecause it demonstrated consistently high accuracy, its structure inte-
rates smoothly into a standard model framework, and it can be easily
eneralized to handle more complex geometries in the future (Sections
.2, 5).

Our approach leverages physical knowledge to apply data-driven
techniques in a constrained and judicious manner, providing an in-
terpretable, robust, and practical method for predicting pressure dif-
erences over bifurcations. First, formulating the bifurcation pressure
oss model as a linear resistor, quadratic resistor, and inductor is phys-
cally intuitive and consistent with commonly used cardiovascular ROM
pproaches. As such, it can be easily adopted by the community and
mplemented in existing ROM solvers. Second, our formulation takes
dvantage of modern machine-learning techniques but mitigates the
isk of unexpected behavior generally associated with ‘‘black-box’’ data-
riven models. Our model allows for ‘‘sanity checks’’ on the coefficients
lin, 𝑅quad, and 𝐿 (for instance, we expect 𝐿 to be negative). This

ype of interpretability is important for high-stakes applications like
ardiovascular flow modeling. Third, the proposed hybrid physics-ML
ormulation leverages a physics-based structure (instead of attempting
o predict pressure differences directly from the bifurcation geometry
nd flow rate) which reduces the amount of data needed to train our
odels without overfitting. Since generating training data is expensive

n this application, this is a major advantage.
The study of the combined dataset illustrates the generalizability

nd modest data demands of the RRI model structure. In combining
he pulmonary and brachiocephalic datasets we roughly doubled the
arameter ranges for all eight input features. To handle an input
pace of such increased size, one might expect that substantially more
raining data would be needed. However, we approximately doubled
he amount of training data supplied to the ML model and achieved sat-
sfactory accuracy. While additional data would likely have improved
he performance of the combined model (especially at steady-state),
his finding highlights the capability of the RRI model to handle a wide
ange of bifurcations using relatively little additional training data.

Finally, the structure of our model makes it straightforward to
ncorporate into existing ROM solvers. When a vasculature containing
 junction is represented as a ROM, the ML model is evaluated once
o predict the 𝑅quad, 𝑅lin, and 𝐿 from the junction geometry. Since
hese coefficients are only functions of the geometry, they remain fixed
hroughout the ROM simulation while the solution variables of 𝑃 , 𝑄,
nd 𝑄̇ vary as the solver converges to a solution that satisfies the system
f equations governing the flow, as in Fig. 3. Computationally, this is
dvantageous from both an implementation and efficiency perspective.
otably, the ML model only has to be evaluated once as a preprocessing

tage, not at every solver iteration. Furthermore, the derivative of the
esidual contribution from (5) with respect to the solution variables is
omputationally cheap to evaluate.

. Limitations and future work

While this work takes significant steps towards improving ROMs by
ccounting for the pressure differences over vascular bifurcations, there
8 
re challenges to be overcome before the proposed model can be widely
deployed. These include expansion of the model to cover a wider range
of junctions and incorporation of the model into ROM solvers.

To be most useful, our model should be able to predict the 𝛥𝑃 -
𝑄 relationship over any vascular junction it encounters. In this work,
we analyzed two idealized, limited cohorts of bifurcations that do not
represent the full range of native vascular bifurcations. To broaden our
model’s applicability, future work should consider larger datasets with
parameter ranges that reflect the full ranges observed in the native
natomy. Moreover, future studies should consider datasets that cap-

ture observed variability in realistic bifurcation geometries, including
geometric complexities such as curvature, stenoses, and aneurysms.
Furthermore, a junction pressure loss model may need to handle junc-
tion geometries more complex than simple bifurcations. For instance,
a vessel may split into more than two daughter branches or blood may
flow from multiple inlets into one or more outlets (e.g., in backflow).
There are several approaches to handle this; for instance, future work
ould generalize our NN regressor, which predicts the coefficients that
overn the 𝛥𝑃 -𝑄 relationship between the inlet and outlet of a junction
o a graph neural network (GNN) [91]. Thanks to its flexible structure,
 GNN will be capable of handling junctions with any number of inlets
nd outlets. Having seen in this work that NNs are capable of capturing
he behavior of flow in a bifurcation; we predict that a GNN will be able

to predict the 𝛥𝑃 -𝑄 relationship on a junction with an arbitrary number
of inlets and outlets with similar accuracy. Finally, while the simplicity
f the RRI model form provides interpretability and generalizability,
t could limit accuracy in some cases. Some complex flows may not
e adequately captured by the RRI form, for instance non-Newtonian
low through capillary bifurcations. In such cases, additional terms may
eed to be added to the model, or a different model forms may be
onsidered. It should be noted however that the bifurcations considered
n this work, which represent a wide range of the geometries and flow
onditions observed in the body, were well-modeled by the RRI form.
urthermore, in the context of reduced order modeling, the benefits of

a simpler model form could outweigh associated decrease in accuracy,
which may be negligible compared to the errors inherently introduced
by the simplifications in reduced-order models [31].

A second challenge will be the incorporation of our RRI model
into current ROMs. In most cases, this will require only minimal
changes to the code. For instance, in SimVascular’s 0D solver, the
only necessary change will be to replace the equations enforcing equal
pressure between junction outlets and inlets with equations enforcing
he pressure difference predicted by our model. The greater difficulty
ill be the standardization of the definition of a junction. This is a
eneral challenge encountered when translating 3D vasculatures into
educed-order systems because there is no straightforward definition
f the boundary between a junction and a vessel. In this work, we
efined the vessel-bifurcation boundaries heuristically, based on where
he flow exhibits fully developed Poiseuille behavior, free of splitting
ffects caused by the bifurcation. This system worked for our study
ecause we had a standardized geometry-generation method and an

understanding of the flow-splitting behavior, but it would not work for
generic use where there is no a priori general knowledge of the flow.

he inaccuracies introduced by uncertainty in junction definition may
e somewhat mitigated by the inclusion of the junction length in the
eature set supplied to the ML model, but complicate the problem and
ay present difficulties when the RRI model encounters alternatively
efined junctions. These challenges should be addressed in future stud-
es that demonstrate improved performance of ROM solvers with the
RI model added.

6. Conclusions

We presented an RRI model that represents the pressure difference
between a bifurcation inlet and outlet as the voltage difference over
 serially connected linear resistor, quadratic resistor, and inductor.
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Fig. 8. Mesh refinement on isoradial bifurcation, pulmonary and brachiocephalic bifurcations.
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he model uses ML to predict the resistances and inductance from
he bifurcation geometry. To generate data on which to train and
alidate our model, we developed an automated pipeline to generate
nd simulate flow through bifurcations. We studied three types of
ifurcations representing the nominal isoradial bifurcation considered
n [74], the brachiocephalic bifurcation, and pulmonary bifurcations.

The RRI model performed well on various geometry types in both
teady and transient flows. In the analysis of steady flows, we saw that
he RRI model outperformed both the constant pressure assumption and
he Unified0D+ model on all three bifurcation types considered. The
tudy of transient flows again demonstrated the RRI model’s strong per-
ormance and highlighted the importance of the flow time-derivative
‘inductor’’ term, which is absent from most other bifurcation pres-
ure loss models. Comparison of different candidate machine learning
echniques for fitting the RRI model coefficients indicated that the
eural network produced the most accurate results most consistently.
e observed that fitting the RRI coefficients using only transient data

ed to a slight improvement in accuracy for transient flows, compared
o using both steady and transient data, but we noted that this approach
ompromises the physical interpretability of the RRI model. Finally, we
ound that the RRI model performed surprisingly well on a dataset with
uch larger feature ranges and comparatively little additional training
ata, indicating its ability to generalize well.

The RRI model presents a viable method to account for bifurcation
ressure differences in cardiovascular ROMs, thus overcoming a major
imitation of their accuracy. More accurate ROMs will add significant
alue to the cardiovascular flow modeling community, both in support
f 3D CFD simulations as surrogate models for many-query applications
e.g., uncertainty quantification and boundary condition tuning) and
n their own right as stand-alone models for real-time applications.
n addition to contributing to more accessible and accurate patient-
pecific cardiovascular flow analysis, this work highlights opportunities
or synergy between 3D CFD, physics-based reduced-order modeling,
nd data-driven techniques in medical research.

RediT authorship contribution statement

Natalia L. Rubio: Writing – review & editing, Writing – origi-
al draft, Visualization, Validation, Software, Methodology, Investiga-
ion, Conceptualization. Luca Pegolotti: Writing – review & editing,
upervision, Software, Methodology, Investigation, Conceptualization.
artin R. Pfaller: Writing – review & editing, Supervision, Software,
ethodology, Investigation, Conceptualization. Eric F. Darve: Writ-

ng – review & editing, Supervision, Methodology, Investigation, Con-
eptualization. Alison L. Marsden: Writing – review & editing, Su-
ervision, Software, Resources, Project administration, Methodology,
nvestigation, Funding acquisition, Conceptualization.
 f

9 
eclaration of competing interest

None Declared.

cknowledgments

This work was funded by the Stanford Graduate Fellowship and the
ational Science Foundation Graduate Research Fellowship Program.
dditional support was provided by NIH Grants R01LM01312003,
01EB02936204, R01HL16751601, and K99HL161313, and the Stan-

ord Maternal and Child Health Research Institute. The authors also
hank Dr. Karthik Menon and Zachary Sexton for their helpful insight
nd discussions.

ppendix A. Mesh convergence

Fig. 8 shows convergence studies of steady flow simulations for
decreasing mesh size for each bifurcation type. These studies guided
our choice of mesh size.

Appendix B. Parameter ranges

The geometric parameters characterizing the isoradial and bra-
chiocephalic cohorts of bifurcations were uniformly sampled from the
ranges shown in Table 5. The isoradial ranges were found by vary-
ing the nominal parameters used in [74] ±20%. The pulmonary and
brachiocephalic ranges were the 40th to 60th percentiles of the range
of parameter values observed in distal pulmonary and brachiocephalic
bifurcations, respectively, found in the VMR [75]. Note: for the pul-
monary and brachiocephalic cohorts, the outlet radii were not sampled,
but were computed as the product of the inlet radius and outlet–inlet
radius ratio, both of which were sampled.

ppendix C. Hyperparameter optimization

The hyperparameters for the candidate ML models, shown in Table 6
ere chosen using Ray Tune [90]. The objective minimized in the
ay Tune optimization was the error on the test set of steady flows

hrough brachiocephalic junctions, and the resulting hyperparameters
ere used for all 3 cohorts for steady and transient models. Note: for

he NN trained on the isoradial cohort, a hidden layer size of 70 was
ound (manually) to be optimal.
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Table 5
Ranges for parameters in isoradial, pulmonary, and brachiocephalic bifurcation datasets.
Parameter: Inlet radius (cm) Outlet radius (cm) Outlet angle (◦) Inlet velocity (cm/s)

Isoradial 0.44–0.66 0.44–0.66 36–54 49–74
Pulmonary 0.28–0.37 0.16–0.27 13–19 95–140
Brachiocephalic 0.46–0.59 0.28–0.43 16–24 127–180
Table 6
Values found using Ray Tune for hyperparameter optimization of candidate ML

odels.
Parameter Value

K nearest neighbors
Number of neighbors 7

Decision Tree
Maximum depth 4
Minimum samples per leaf 8

Support vector regression
𝐶 (L2 regularization parameter) 1.4
𝜖 (no-penalty margin) 0.029

Gaussian process regression
𝛼 (regularization parameter) 0.0020
Radial basis function kernel length scale 1.6

Neural network
Hidden layer size 48
Number of hidden layers 2
Learning rate 0.018
Learning rate decay 0.031
Batch size 24
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