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In Part 1 (Wienkers, Thomas & Taylor, J. Fluid Mech., vol. 926, 2021, A6), we described
the theory for linear growth and weakly nonlinear saturation of symmetric instability
(SI) in the Eady model representing a broad frontal zone. There, we found that both
the fraction of the balanced thermal wind mixed down by SI and the primary source of
energy are strongly dependent on the front strength, defined as the ratio of the horizontal
buoyancy gradient to the square of the Coriolis frequency. Strong fronts with steep
isopycnals develop a flavour of SI we call ‘slantwise inertial instability’ by extracting
kinetic energy from the background flow and rapidly mixing down the thermal wind
profile. In contrast, weak fronts extract more potential energy from the background density
profile, which results in ‘slantwise convection.’ Here, we extend the theory from Part 1
using nonlinear numerical simulations to focus on the adjustment of the front following
saturation of SI. We find that the details of adjustment and amplitude of the induced inertial
oscillations depend on the front strength. While weak fronts develop narrow frontlets
and excite small-amplitude vertically sheared inertial oscillations, stronger fronts generate
large inertial oscillations and produce bore-like gravity currents that propagate along the
top and bottom boundaries. The turbulent dissipation rate in these strong fronts is large,
highly intermittent and intensifies during periods of weak stratification. We describe each
of these mechanisms and energy pathways as the front evolves towards the final adjusted
state, and in particular focus on the effect of varying the dimensionless front strength.
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1. Introduction
Fronts, or regions with large horizontal density gradients, are common features of the
ocean surface mixed layer. The strength of a front is measured by the horizontal analogue
to the buoyancy frequency, M2 ≡ |∇hb̄|, where b̄ ≡ −gρ̄/ρ0 is the background buoyancy
field, ∇h is the lateral gradient operator, g is the acceleration due to gravity and ρ0 is
a reference density. In frontal regions stable to both gravitational and inertial instability,
symmetric instability (SI) can still grow if the magnitude of the isopycnal slope, M2/N2

(for N2 ≡ ∂zb̄), exceeds a certain threshold. Specifically, a front is unstable to SI when the
Ertel potential vorticity (PV)

q ≡ ( f ẑ + ∇ × u) · ∇b, (1.1)

(defined with the full velocity, u, and with ẑ the vertical unit vector) is of the opposite
sign to the Coriolis parameter, f (Hoskins 1974). The growing SI modes resemble slanted
convection cells and are independent of the along-front direction (i.e. perpendicular to the
horizontal buoyancy gradient) (Stone 1966).

In Part 1 (Wienkers, Thomas & Taylor 2021, hereafter referred to as Part 1) we
described the dependence of SI growth and saturation on the front strength parameterised
by Γ ≡ M2/f 2. There, we considered the linear growth and weakly nonlinear saturation
of SI in the idealised problem consisting of a broad frontal zone with a uniform horizontal
buoyancy gradient in thermal wind balance and bounded by flat no-stress horizontal
surfaces. We found that, depending on Γ and Ri ≡ N2f 2/M4, the front can extract energy
primarily from either the kinetic energy of the balanced thermal wind or from the potential
energy of the background density profile. Strong fronts are dominated by geostrophic shear
production, Pg, and we distinguished this SI as ‘slantwise inertial instability.’ In contrast,
fronts with small Γ or Ri ! 0.5 see SI energised more by buoyancy production, B, and we
called this flavour of SI ‘slantwise convection.’

Subsequent to extracting energy from the balanced thermal wind, we found that SI can
induce vertically sheared inertial oscillations with varying amplitude depending on Γ . We
hypothesised that the fraction of the thermal wind mixed down by SI and the ensuing
turbulence can be related to the amplitude of the subsequent inertial oscillations by using
the theory of Tandon & Garrett (1994). We computed their parameter s,

s ≡ f
M2

∂ v̄

∂z

∣∣∣∣
t=τc

, (1.2)

(using the horizontally averaged along-front velocity, v̄) to quantify the degree of
imbalance after the saturation of SI at τc (cf. figure 8(b) in Part 1). We then concluded
that, because a higher fraction of the thermal wind is mixed, stronger fronts will exhibit
larger-amplitude inertial oscillations following destabilisation by SI. Finally, we calculated
the SI momentum transport time scale, τmix (cf. figure 8a in Part 1), needed to homogenise
the thermal wind. We found that τmix > f −1 for Γ < 8, which suggests that weak fronts
should exhibit a slow quasi-balanced evolution to equilibrium. In contrast, strong fronts
are expected to rapidly mix the thermal wind and undergo geostrophic adjustment.

This theoretical handling of the SI induced equilibration of balanced fronts has left a
number of questions unanswered. Specifically, the nonlinear consequences of these results
from Part 1 – of the energy sources and thermal wind mixing rate, which were shown to
strongly depend on Γ – are expected to influence the later evolution of the front beyond
the initial saturation of SI. We use the framework of Tandon & Garrett (1994) to shed
light on the effects of dissipation and a finite mixing time on the adjustment and resulting
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The influence of front strength on SI

inertial oscillations. They considered the geostrophic evolution of an instantaneously
mixed unstratified front. However, particularly in weak fronts, this τmix may be longer
than the inertial period, and so the resulting adjustment may instead resemble a turbulent
thermal wind balance (Gula, Molemaker & McWilliams 2014). In the opposite limit of
strong fronts, the excited inertial oscillations can modulate the growth rate of residual SI.
This leads to periods of explosive growth and turbulence corresponding with times when
the front is weakly stratified (Thomas et al. 2016).

Other numerical process studies of SI have investigated the nonlinear evolution
in varying configurations, but most have focused only on a single value of the
non-dimensional horizontal buoyancy gradient (Thomas & Lee 2005; Taylor & Ferrari
2009, 2010; Thomas & Taylor 2010; Stamper & Taylor 2016). In this paper, we extend
the theory developed in Part 1 which described the effect of varying the front strength
on the growth and saturation of SI. We use a set of two-dimensional (2-D) numerical
simulations spanning a large range of Γ to understand the extent to which the geostrophic
momentum mixing induced by SI and turbulence either directly or indirectly prompts a
response similar to that of Tandon & Garrett (1994).

We begin in § 2 by briefly describing the physical problem set-up, which matches
that used in Part 1, but here for the special case of a front which is initially vertically
unstratified. We detail the numerical model and set of simulations in § 3, and provide an
overview of the general evolution of these fronts. In § 4, we show how each front is forced
out of thermal wind balance and suggest how the rate of adjustment influences the inertial
oscillations considered in § 5. There, we examine the vertical structure and evolution of
these inertial oscillations as well as their damping and contribution to the equilibration
of the front. Finally, in § 6 we consider the feedbacks of the front generating late-time SI
and modulating the turbulence. We further describe how these persistent SI modes can
generate frontlets and bore-like gravity currents, and consider how this behaviour scales
with front strength.

2. Problem set-up
We consider the same configuration of the Eady model as studied in Part 1 (Eady 1949).
In this context, the Eady model can be viewed as an idealised mixed layer front where
the bottom of the mixed layer is replaced by a flat, rigid boundary. Explicitly, this set-up
comprises an incompressible flow in thermal wind balance with a uniform horizontal
buoyancy gradient, and bounded between two rigid, stress-free horizontal surfaces.

We choose the dimensionless units of this problem such that the balanced thermal
wind shear (M2/f ) and the vertical domain size (H) are both unity. This results in four
dimensionless parameters, shown here with the values used to reduce the parameter space

Γ ≡ M2

f 2 ; Re ≡ H2M2

f ν
= 105; Ri0 ≡

N2
0 f 2

M4 = 0; Pr ≡ ν

κ
= 1, (2.1a–d)

where the subscript 0 indicates the initial value of an evolving quantity. Here, ν is the
kinematic viscosity and κ is the diffusivity of buoyancy, but we take Pr = 1 to match the
theory presented in Part 1. We further reduce the parameter space by considering initial
conditions with no stratification (N2

0 = 0). This choice was made because unstratified
fronts were found to have the most varied behaviour across Γ from the theory in Part 1.
Finally, it should be noted that the Rossby number is not an independent parameter but can
be related to the Richardson number for motions with a given aspect ratio (Stone 1966).
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We solve the Boussinesq equations on an f -plane and neglect the non-traditional
Coriolis terms. These non-dimensionalised governing equations are

Du∗

Dt∗
= −∇∗Π∗ − 1

Γ
ẑ × u∗ + 1

Re
∇∗2u∗ + b∗ẑ (2.2a)

Db∗

Dt∗
= 1

Re
∇∗2b∗ (2.2b)

0 = ∇∗ · u∗, (2.2c)

where the dimensionless (∗) variables are

u∗ ≡ u
f

HM2 ; b∗ ≡ b
f 2

HM4 ; t∗ ≡ t
M2

f
; x∗ ≡ x

1
H

; ∇∗ ≡ H∇. (2.3a–e)

The dimensionless pressure head acceleration, ∇∗Π∗, absorbs the hydrostatic pressure
gradient, but otherwise acts only as a Lagrange multiplier to satisfy the incompressibility
constraint (2.2c). Because we focus on inertial times after the critical (SI saturation) point,
τc, we will often use the dimensionless inertial time variable

t∗f ≡ (t − τc)f = (t∗ − τ ∗
c )Γ −1, (2.4)

with corresponding frequency, (∗
f ≡ (/f , which is also non-dimensionalised by the

inertial frequency, f .
The initial condition is a balanced thermal wind (vg) in the invariant along-front (ŷ)

direction, which balances the baroclinic torque of the uniform buoyancy gradient in the
across-front (x̂) direction

v∗
0 = z∗ − 1/2

b∗
0 = Γ −1x∗

}

. (2.5)

Finally, the boundary conditions at z∗ = 0 and 1 are taken to be insulating and stress free.
In what follows we will omit the appended asterisks for notational simplicity. All variables
are dimensionless unless the units are explicitly stated (as in some figures).

3. Numerical simulations
We used the non-hydrostatic hydrodynamics code, DIABLO, to integrate the fully nonlinear
Boussinesq equations (2.2) (Taylor 2008). DIABLO uses second-order finite differences
in the vertical and a collocated pseudo-spectral method in the horizontal periodic
directions, along with a third-order accurate implicit-explicit time-stepping algorithm
using Crank–Nicolson and Runge–Kutta with an adaptive step size.

These simulations are run in a 2-D (x–z) domain oriented across the front, while still
retaining all three components of the velocity vector. This choice allows us to focus on the
evolution of the symmetric (i.e. y-invariant) modes. It should be noted that the thermal
wind shear in this particular setup would be susceptible to Kelvin Helmholtz instability
(KHI) along the front in a 3-D simulation, but this is not considered for the purpose of this
study. Still, we present the results of short 3-D large-eddy simulations in Appendix A to
confirm that the following results for SI are robust in three dimensions.

Each of the 2-D simulations with Γ = {1, 10, 100} were run until time 100Γ , except
for the Γ = 100 case which was only run until t = 40Γ . The computational cost scales
as Γ 2 due to the requirement for a shorter time step and a larger domain. But the large
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The influence of front strength on SI

Γ Lx Ly Nx Ny Nz λSI )SI (1 − s) τmix τc

1 4 — 2048 1 512 0.23 0.77 0.07 9.2 14.0
10 32 — 8192 1 512 0.43 0.31 0.22 7.4 23.3
100 64 — 16384 1 512 0.61 0.10 0.40 13 49.0
1 4 0.25 512 32 256 0.23 0.77 0.07 9.2 14.0
10 16 0.25 2048 32 256 0.43 0.31 0.22 7.4 23.3

Table 1. Summary of the details of each numerical simulation along with a few specific values from the theory
presented in Part 1. All quantities are dimensionless. The physical dimensions of the domain, (Lx, Ly, 1), along
with the corresponding number of Fourier modes or grid points, (Nx, Ny, Nz). The wavelength, λSI , and growth
rate, )SI , of the fastest growing linear SI mode corresponding to (2.5). The SI thermal wind mixing fraction,
(1 − s), and dimensionless mixing time scale, τmix, predicted in Part 1, and which imply the inertial oscillation
amplitude. The critical time, τc, when SI breaks down via KHI in each simulation.

1.0

1.0

1.0

0.5

0.5

0.5

0 1 2 3 0 1 2 3 4

0 1 2 3 0 1 2 3 4

0 1 2 3 0 1 2 3 4

–10 –5 –5 0 50
ωy(t = τc)/M

x/H

z/H

Γ
  =

 1
0

Γ
  =

 1
00

Γ
  =

 1

x/H

ωy(t = t2)/M
5 10

(b)

(a)

(c)

Figure 1. Slices across each front show the along-front vorticity, (y ≡ (∂zu − ∂xw), along with buoyancy
contours (black lines), for Γ = 1 (top), 10 (centre), and 100 (bottom). Two time snapshots are shown: at t = τc
(left) when secondary KHI first begins to break the coherent energy of the SI modes into small-scale turbulence,
and at a later time t2 (right) when SI again develops and subsequently rolls up into Kelvin–Helmholtz instability
while the vertically sheared inertial oscillation de-stratifies the front. (Here, t2 corresponds to times when
tf /(2π) = 10, 5 and 2, respectively for Γ = 1, 10, and 100.) Note that the vorticity is normalised by M, which
keeps the amplitude similar across the range of Γ . The vorticity normalised by f can be obtained by multiplying
the values shown here by Γ −1/2. Note that only a subset of the horizontal domain is shown for both Γ = 10
and 100.

aspect ratio of the domain (having across-front length, Lx ∼ Γ ) means that the additional
computation is not conducive to parallelisation. Each simulation was initialised as an
unstratified balanced front (2.5) with Ri0 = 0. White noise was added to the velocity
with a (dimensionless) amplitude of 10−4. We do not vary the Reynolds number across
experiments, which is Re = 105. Many of the other parameters and details of the runs are
summarised in table 1.

The nonlinear simulations help to paint a picture of this frontal dynamics – from SI
and KHI-generated turbulence, through adjustment and inertial oscillations, as well as
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103
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0 0.5 0 50
tf ( f –1)
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〈û
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〉 (
H

2 M
4 /
f2

)

σ ( f )
100

n = 1

n = 32

150 10–8

10–6

10–4

10–2

Figure 2. Time series of the across-front wavenumber, kx (right), extracted from the 2-D Γ = 1 simulation
are compared alongside the linear growth rates (left) for each of the vertical modes n = {1, 2, 4, 8, 16, 32}.
Wavenumbers of peak linear growth are indicated with horizontal white bars and emphasise the weak
wavenumber and vertical mode selection during the linear phase. Remnants of late-time SI with larger
wavelengths are modulated by the inertial oscillations and is apparent once the front has re-stratified and after
tf ≈ 50. Subinertial oscillations around kx = 8 are also visible.

(b)

(a)
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SI(τc)∂ t
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(×10–2)

(×10–2)

Figure 3. The horizontally averaged x- and y-momentum budget (4.1) at z = 3/4 for Γ = 10. The red shaded
region highlights the period when the dominant balance is described by SI-induced Reynolds stresses (red
line) accelerating the mean along-front y-momentum (blue line). The linear SI mode transport at saturation
is also shown. Following this ageostrophic perturbation, the front begins inertially oscillating. Grey shaded
regions indicate periods when the Reynolds stress divergence damps the inertial oscillations (i.e. when ūa > 0
coincident with −∂zu′w′ < 0).

late-time SI and further shear instabilities taking the front to equilibrium. While the
specific details vary depending on Γ , three distinct phases are seen in each simulation:

(i) Linear SI energises a broad wavenumber spectrum (apparent before the critical time
of turbulent transition, τc, in figure 2) due to the weak scale and vertical mode (n)
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The influence of front strength on SI

dependence of SI growing from the initial white noise perturbations. This means
that a range of SI scales are represented and combine to contribute to the SI transport
and dynamics. Nonetheless, the predictions from linear theory (based on the fastest
growing mode) still appear to be remarkably consistent. For example, symbols in
figure 3(b) from Part 1 show the growth rate and turbulent kinetic energy (TKE)
budget terms extracted from the simulations in the linear SI phase.

(ii) As the SI modes reach a critical amplitude, Uc, secondary shear instability converts
much of this coherent energy into small-scale turbulence (left column of figure 1).
The SI and turbulence remove energy from the background geostrophic shear flow
and induce vertically sheared inertial oscillations.

(iii) In the late stages of each simulation, larger-scale SI modes grow and periodically
exhibit KHI at times when the vertically sheared inertial oscillation de-stratifies
the front (e.g. right column of figure 1). These late-time SI modes inject positive
PV from the boundaries into the domain interior which permits the ageostrophic
circulation to re-stratify the front, eventually to Ri = 1. Once the mean fq ! 0, SI is
neutralised but the inertial oscillations may still remain.

4. Loss of geostrophic balance
The effect of turbulent stresses on the mean circulation is described by the horizontally
(x, y) averaged ageostrophic momentum equations,

∂tūa + ∂zu′w′ = Γ −1v̄a, (4.1a)

∂tv̄a + ∂zv′w′ = −Γ −1ūa, (4.1b)

where the primed variables represent local fluctuations from the horizontally averaged
fields denoted by an overbar: ξ ′ ≡ ξ − ξ̄ . We showed in Part 1 that SI influences the
larger-scale, horizontally averaged evolution of the front through these turbulent Reynolds
stresses on the left side.

4.1. Exchange of dominant balance
For Γ ! 1 and Ri " 0.5 the linear theory indicates that the mean ageostrophic
y-momentum is generated before ageostrophic x-momentum. As a result, the dominant
balance of (4.1) is initially

∂tv̄a ≈ −∂zv′w′. (4.2)

We can test this by computing the turbulent momentum budget described by (4.1) on a
particular horizontal plane, z = 3/4, away from boundary effects and off of the mid-plane
(where ūa ≈ 0). This initial dominant balance (4.2) is responsible for destabilising
the front and demonstrates how inertial oscillations are driven during the Γ = 10
simulation (figure 3). More specifically, the Reynolds stress divergence accelerates the
mean ageostrophic y-momentum through the first half of the inertial period (highlighted
by the red shaded region in panel b). At the same time, the mean across-front x-momentum
(panel a) is primarily influenced by SI only through the Coriolis term (yellow line)
coupling to v̄a, even during the first inertial period.
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On the (inertial) time scale, Γ (i.e. when v̄a is large enough), the dominant balance
returns to

∂tūa ≈ −Γ −1ẑ × ūa. (4.3)

However, the ageostrophic perturbations generated by SI mean that ūa /= 0. Thus this
balance now describes the undamped inertial oscillations which we will focus on in § 5.
These two phases of adjustment are most distinct when SI acts to quickly (on a time scale
much faster than Γ ) influence the balanced thermal wind. This will be quantified in § 4.3
below.

4.2. Adjustment energetics
Both potential energy and geostrophic kinetic energy associated with the balanced front
can be extracted by SI. The vertically sheared inertial oscillations that develop in response
to SI add another component to the system: mean ageostrophic kinetic energy. Here, we
investigate the energetics as SI saturates and the front adjusts to the loss of thermal wind
balance.

In our dimensionless units, the mean kinetic energy (MKE) of the geostrophic flow is
EK ,g = 1/24. Although the equilibrated front (also in thermal wind balance) has the same
MKE, imperfect mixing of the thermal wind shear by fraction (1 − s), taking it to an
intermediate state, v̄s = sv̄g, can temporarily release an amount of kinetic energy equal to

∆EK = 1
2

∫ 1

0
(v̄2

g − v̄2
s ) dz

= 1
24(1 − s2). (4.4)

Meanwhile, the uniform background buoyancy gradient, ∂xb̄, represents a reservoir
of potential energy. It is useful to define the mean potential energy (MPE) as
EP ≡ −〈z(b̄ − b̄f )〉, where 〈·〉 indicates a volume average over the entire domain. This
MPE is defined relative to the final state, b̄f , with q = 0 (equivalently Ri = 1) which is
the lowest potential energy before SI shuts down. If we assume a linear mean buoyancy
profile, b̄ + z, such that ∂zb̄ = 1 when Ri = 1, then the MPE can be approximated as

EP ≈
∫ 1

0
−z2(∂zb̄ − 1) dz = 1

3(1 − Ri). (4.5)

Thus our choice of Ri0 = 0 gives the maximum potential energy available to SI through
equilibration: ∆EP = 1/3 (in geostrophic units). The distance, Ld, that the front will
ultimately slump to reach this state of 0 ‘SI-available’ potential energy is Ld = Γ .

Now that we have quantified the size of these energy reservoirs, we gain further insight
into the evolution and equilibration of the front by considering the transfers between
them. We summarise the energetics of the Γ = 10 simulation in figure 4, which shows
qualitatively similar features to the other fronts even though the relative importance of
each term varies. At the start of the simulation, geostrophic shear production, Pg, energises
SI by extracting energy from the MKE of the thermal wind and converting it into TKE,
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(b)

(a)
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tf ( f –1)

Pa
Pg

εt
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–EK,a
EK–EP/4

d t
E 
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6 /
f3

)
E 

(H
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4 /
f2

)
(×10–3)

(×10–2)

Figure 4. A summary of the energy transfers (top) and reservoirs (bottom) co-evolving for the Γ = 10 front.
In this front, SI and turbulence is primarily energised by Pg which transfers energy from MKE into TKE.
At the same time, the ageostrophic shear production (Pa) is negative in the first half of the inertial period
(highlighted by the blue region) suggesting that inertial oscillations are being energised. Because we show just
the ageostrophic MKE here, these inertial oscillations which continually exchange MKE and MPE can only
be inferred from the MPE. This energy in the mean ageostrophic motions is also converted back into TKE
when Pa > 0. This primarily occurs as the vertically sheared inertial oscillation steepens isopycnals (i.e. when
d/dt(EP) > 0, highlighted in grey).

EK ≡ 1
2 〈u′

iu
′
i〉, which evolves as

∂EK

∂t
= −

〈
v′w′ ∂ v̄g

∂z

〉

︸ ︷︷ ︸
Pg

+−
〈
u′w′ ∂ ū

∂z
− v′w′ ∂ v̄a

∂z

〉

︸ ︷︷ ︸
Pa

+ 〈w′b′〉︸ ︷︷ ︸
B

− 1
Re

〈
∂u′

i
∂xj

∂u′
i

∂xj

〉

︸ ︷︷ ︸
εt

. (4.6)

While some of this energy is immediately dissipated (εt), part of it is subsequently
converted (via Pa < 0) to ageostrophic MKE, EK ,a ≡ 1

2 〈ūi,aūi,a〉, which for this system
evolves as

∂EK ,a

∂t
= − 1

Re
(v̄a|z=1

z=0)
︸ ︷︷ ︸

Surface stress

+
〈
u′w′ ∂ ū

∂z
+ v′w′ ∂ v̄a

∂z

〉

︸ ︷︷ ︸
−Pa

− 1
Re

〈(
∂ ū
∂z

)2
+

(
∂ v̄a

∂z

)2
〉

︸ ︷︷ ︸
εm,a

. (4.7)

The negative ageostrophic shear production, Pa, (particularly during the highlighted blue
region in figure 4) implies an energy transfer into ageostrophic MKE and reflects the
excitation of inertial oscillations.

While it is not shown in the energy transfers of figure 4(a), the inertial oscillations
involve continual exchange of ageostrophic MKE and MPE. This exchange occurs via
the mean advection of the horizontal buoyancy gradient, which modifies the vertical
stratification, and in the process converts energy from the MPE at a rate of

∂xb̄〈ūz〉. (4.8)

Energy in the mean inertial oscillation ultimately can be converted back into TKE via the
ageostrophic shear production when Pa > 0. This occurs here at times when the inertial
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Figure 5. (a) Hodographs of each front evolving in the rectified mean velocity phase space, 〈|ū|〉–〈|v̄|〉 (4.9),
representing the bulk shear. The first 5 inertial periods are plotted, each for increasing front strength: Γ = 1
(left), Γ = 10 (centre) and Γ = 100 (right). The trajectories are coloured with the time rate of change of the
mean flow speed, and correspond inversely with the thermal wind shear mixing time scale, τmix, predicted for
linear SI in Part 1 (reproduced in table 1). The predicted oscillation amplitude, (1 − s), is also indicated with
dotted circles. (b) The mean ageostrophic velocity as a function of z over one inertial period. Colour shading
indicates the phase beginning at tf = 6π.

oscillations steepen isopycnals as in Thomas et al. (2016) (and d/dt(EP) > 0 as highlighted
by the grey regions in figure 4). During these times the ageostrophic MKE decreases as
seen in the integrated energy in the bottom panel. The last source of TKE in (4.6) is from
buoyancy production, B. However, particularly for this Γ = 10 front (and stronger fronts)
this source of energy does not have a significant influence on the front.

4.3. Rate of adjustment
We will now analyse the time scales involved in the onset of inertial oscillations and find
two limiting behaviours depending on the front strength. We can visualise these differences
in the speed of adjustment by considering hodographs of this measure of the mean bulk
shear

〈|ū|〉 = 2

[∫ 1

1/2
ū(z) dz −

∫ 1/2

0
ū(z) dz

]

. (4.9)
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Perfect inertial oscillations in this 〈|ū|〉–〈|v̄|〉 phase space therefore trace circles. This
metric is also less contaminated by the boundary layers as would be if simply computing
〈∂zū〉. We show these hodographs of 〈|ū|〉 in figure 5(a) for each simulation with increasing
Γ from left to right, and can see how this metric (4.9) corresponds to the full structure of
a typical inertial period as shown in figure 5(b). The axes are in units of the thermal
wind so that the initial balanced state is 〈|ū|〉 = (0, 1). Starting at t = 0 (designated with
a black dot) each front departs from the geostrophic balance and begins tracing inertial
trajectories. Perhaps the most obvious difference is in the radius of these inertial circles.
A front that is instantaneously vertically mixed by a fraction (1 − s) will trace circles with
radius (1 − s). We find the amplitude of these oscillations to be in general agreement with
the linear SI transport theory to compute (1 − s) as presented in Part 1, and reproduced
in table 1. Note that our weakly nonlinear theory does not capture additional turbulent
momentum transport after the SI modes undergo a secondary instability, and this might
account for the consistent underestimate in the amplitude of the inertial oscillations seen
in figure 5(a).

In addition to the amplitude of these inertial circles varying with front strength the
rates of mixing and adjustment also vary. The degree to which this appears as a purely
geostrophic adjustment process is indicated by the angle of departure from the balanced
states in figure 5(a). When the vertical fluxes rapidly (relative to an inertial period) mix
down the thermal wind shear before inertial effects can influence the mean dynamics, the
response can be viewed as a form of geostrophic adjustment. This occurs when Γ = 100
(figure 5(a), right panel). In contrast, weak fronts remain quasi-balanced throughout
adjustment (as for Γ = 1 in the left panel) because inertial adjustments occur faster than
SI growth and mixing. The resulting evolution of the front as it slowly slumps is evident in
the left hodograph as 〈|v̄|〉 remains nearly geostrophically balanced on the line 〈|v̄|〉 = 1
while 〈ū〉 is driven by the Reynolds stresses from SI and turbulence. The rate of mixing
is also indicated by the line colour in the hodographs, given in units of thermal wind per
inertial period. The line colour and the initial trajectories broadly agree with the thermal
wind shear mixing time scale, τmix (cf. figure 8(b) in Part 1). For Γ > 8 the time required
to fully mix down the thermal wind shear is less than the inertial time scale (Γ ), indicating
a more abrupt geostrophic adjustment.

5. Vertically sheared inertial oscillations
Each of the above discussed factors affecting the initial adjustment – the momentum
transport, energetics and rate of mixing – also affect the details of the resulting inertial
oscillations.

5.1. Vertical structure
Tandon & Garrett (1994) modelled the geostrophic adjustment of an unstratified and
vertically unbounded layer following an impulsive mixing event which reduces the vertical
shear by a fraction (1 − s) such that ∂zv̄|t=0 = s∂zv̄g. Solving the inviscid hydrostatic
equations, they found the geostrophic adjustment to result in vertically sheared inertial
oscillations with a linear depth dependence

ūi(z, t) = −(1 − s)(z − 1/2) sin tf (5.1a)
v̄i(z, t) = s(z − 1/2) + (1 − s)(z − 1/2)(1 − cos tf ). (5.1b)
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Viscosity and the presence of the boundaries mean that the inertial oscillations in the
model we consider no longer have this linear structure in z, except sufficiently far from the
boundaries.

We model the influence of the boundaries and turbulent viscous effects on the inertial
oscillations by solving the horizontally averaged ageostrophic momentum equations,

∂ūa

∂t
= − 1

Γ
ẑ × ūa + 1

Ret

∂2ūa

∂z2 , (5.2)

with an enhanced turbulent viscosity, νt, described by Ret. This turbulent Reynolds number
accounts for the Reynolds stresses transporting momentum which appeared on the left side
of (4.1). We solve these equations with a stress-free boundary at z = 0, and a prescribed
vertically sheared inertial oscillation (5.1) in the far field. This oscillatory shear Ekman
solution resembles a modified version of the classic Stokes second problem, and has a
nonlinear vertical structure

ūe(z, t) = −(1 − s)(z − 1/2) sin tf

+ (1 − s)
Le

2
e−z/Le

[
cos

(
tf − z

Le

)
− sin

(
tf − z

Le

)]

+ Le

2
e−z/Le

[
cos

z
Le

+ sin
z
Le

]
. (5.3)

The last term is the familiar constant Ekman layer solution. The turbulent Ekman depth
describing this layer,

Le ≡

√
2Γ

Ret
= 1

H

√
2νt

f
, (5.4)

is also the characteristic depth of the oscillatory modes.
We compare the time-dependent component of this oscillatory shear Ekman solution

with the spectrally filtered inertial oscillations present in the Γ = 1 and 10 simulations.
The z > 1/2 lines in figure 6 show realisations of this filtered signal at phase increments
of π/4. The analytic solution shown in the bottom half of the domain uses Le = 0.1
which corresponds to a turbulent viscosity 50 times larger than molecular. These analytic
solutions exhibit a phase shift near the boundary which is consistent with the phase lead
found in the filtered inertial oscillations of the Γ = 10 front (and Γ = 100, not shown).
The Γ = 1 simulation in panel (a) deviates from this predicted structure because the
small-amplitude inertial oscillations mean that the far-field shear is quite nonlinear due
to fluctuations of comparable amplitude. The relative magnitude of these fluctuations
compared with the vertically sheared inertial oscillation is evident in figure 5(b) which
shows the vertical structure of the unfiltered velocity in an inertial period.

This analytic solution is instructive but clearly too simplified to capture the behaviour
across the range of Γ . Notably, the vertical shear is larger near the boundaries in the
simulations than in the analytical solution in (5.3). This may be caused by spatio-temporal
variations in the turbulence-enhanced viscosity (peaking during periods of de-stratification
and decreasing near the boundaries). Together, these factors would modulate the constant
Ekman flow, and combined with impinging SI modes on the boundary may explain these
large boundary gradients. We will return to this near-boundary dynamics when discussing
the acceleration of bore-like gravity currents from frontlets in § 6.3.
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ϕ > π/2
ϕ = π/2
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Figure 6. The vertical structure of the across-front velocity component of the inertial oscillation for (a) Γ = 1
and (b) Γ = 10. The mean velocity is spectrally filtered over 8 periods starting at tf = 4π. Realisations of
the filtered signal are shown for z > 1/2 and at evenly spaced phase increments of π/4 starting at , = 0
corresponding to the point of maximum de-stratification. The analytic oscillatory shear Ekman solution for ūe
(5.3) is plotted in the bottom half of the domain with Le = 0.1. Note the phase lead near the boundaries in both
the simulation and the analytic solution. The solutions are compared by a double reflection about z = 1/2 and
ū = 0. The vertical structure of an unfiltered inertial circle is also shown in figure 5(b).

5.2. Re-stratification and equilibration
These vertically sheared inertial oscillations modulate the background stratification by
differentially advecting the mean buoyancy profile across the front. Assuming the PV
remains constant, Tandon & Garrett (1994) showed that the stratification resulting from
this oscillation evolves as

∂zb̄i = (1 − s)(1 − cos tf ). (5.5)

The gradient Richardson number then also oscillates

Rig,i ≡ ∂zb̄
(∂zū)2 + (∂zv̄)2 =

(1 − s)(1 − cos tf )
s2 + 2(1 − s)(1 − cos tf )

, (5.6)

but with a constant PV dictated solely by the initial condition, the front can only re-stratify
to Ri = 1 − s. For s > 0, this resulting state is still unstable to SI. This results in poor
agreement with the nonlinear simulations which capture both SI and PV dynamics
(figure 7(b) for Γ = 10). Thus while this theory appears to connect the initial mixing
fraction with the amplitude of the resulting inertial oscillations, the simple model clearly
does not capture the long-term evolution and re-stratification. To go further, we need to
consider how the PV co-evolves with the front during equilibration.

Conservation of PV regulates the secular re-stratification (that is, slumping) of the front.
The flux of positive PV is enhanced by SI-generated turbulence (Taylor & Ferrari 2009),
but at the same time as forcing 〈q〉 → 0 these fluxes also contribute to stabilising SI
(Thorpe & Rotunno 1989). In our computational domain with an imposed background
horizontal density gradient, equilibration of SI occurs via boundary PV fluxes and
redistribution of the resulting positive PV through the interior of the domain. Thus SI will
ultimately drive each front to Ri = 1, or equivalently 〈q〉 = 0 (see figure 7a). However, the
details of how the front reaches this equilibrium may differ.

PV is materially conserved in a frictionless, adiabatic flow, such as the idealised
vertically sheared inertial oscillations (5.1). Considering the non-dimensionalised PV
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Figure 7. (a) The evolution of the domain-integrated PV and vertical stratification, showing the connection of
the PV flux into the domain in relaxing the mean stratification to a state where 〈∂zb̄〉 = 1 (i.e. Ri = 1). Colours
correspond to each simulation as indicated in the legend at right. (b) Gradient Richardson number for each of
the three runs (in colour) shows increasingly fast re-stratification for stronger fronts. The Tandon & Garrett
(1994) constant PV solution (5.6) is also shown in black for Γ = 10.

averaged in our closed domain,

〈q〉 = Γ −1(〈∂zb̄〉 − 1 − 〈∂zv̄a〉), (5.7)

makes clear how the vertical stratification (∂zb̄) is compensated for during inertial
oscillations by the baroclinic PV term due to the ageostrophic across-front vorticity.
This suggests two useful diagnostics: first, the difference between the compensating
terms, Γ 〈q〉 + 1, is a good measure for the equilibration progress by dissipative and
diabatic processes. This can be directly compared with the vertical stratification, 〈∂zb̄〉
(non-dimensionally equivalent to the balanced Richardson number), as a metric for the
inertial oscillations. These two quantities are shown in figure 7(a) for each of the three
simulations. When the front is balanced, Γ 〈q〉 + 1 and 〈∂zb̄〉 lie on top of each other, as
they do initially. Likewise, at very late times when the inertial oscillations have decayed,
these two curves again coincide. The quasi-balanced evolution for the weakest (Γ = 1)
front as pointed out in § 4.3 is also apparent looking at these metrics, because throughout
the equilibration Γ 〈q〉 + 1 and 〈∂zb̄〉 never greatly differ.

The mechanisms driving PV increase can be diagnosed using the domain-averaged PV
equation,

∂〈q〉
∂t

= − 1
Re

〈
∂

∂z
[−∇2b((z + Γ −1) + (∇b × ∇2u) · ẑ]

〉
, (5.8)

where we have relied on horizontal periodicity to eliminate the horizontal PV flux
divergence. Thus the domain-integrated PV can only be changed by diabatic processes
at the boundaries, and which are enhanced by turbulence. It is apparent from figure 7 that
the periods of rapid increase in PV are typically associated with weak stratification (and
intense turbulence).

At early times, the net boundary PV fluxes (measured by the rate of increase in PV)
scales with the front strength. However, the relatively quiescent phases associated with
the inertial oscillations for the strong fronts mean that the period-averaged PV flux is
nearly independent of front strength. This implies that the dimensional PV flux increases
with the lateral stratification and is proportional to M8/( f 4H). Note the particularly

926 A7-14

2�
��

��
  

.8
��8

:1
 �

��
��

�	
 40

6
��

��
��

�

��


 
��

��
2/

.�
87

��7
/�

�"
��

�6
�:

�.
1/

��
7�

!/
:�

��"
�


:/
��

https://doi.org/10.1017/jfm.2021.684


The influence of front strength on SI

strong dependence on the horizontal buoyancy gradient. The relative independence of the
non-dimensional PV flux on frontal strength might be associated with a self-regulating
feedback between SI-driven small-scale turbulence which increases the PV flux and hence
acts to stabilise SI. Empirically, we find that this increase in the non-dimensional PV seen
in figure 7(a) has a characteristic time scale of τq ≈ 5.5Γ .

While the front may become stabilised to SI (q ≈ 0) after a few inertial periods, still
inertial oscillations may persist (apparent in the 〈∂zb̄〉 signal in figure 7a). Returning
to the mean ageostrophic momentum budget gives insight into how these inertial
oscillations are damped. Specifically, the Reynolds stress divergence term, −∂zu′w′, in
the ageostrophic x-momentum (4.1a) preferentially damps the inertial oscillation when
the vertical stratification is decreasing. These periods of ∂zūa > 0 are highlighted in
figure 3(a), and during which −∂zu′w′ is also generally negative. Together, this implies
a decrease in |ua| during these times. The product of these two terms is equivalent to the
across-front component of Pa in (4.7). This quantity explicitly shows that the mean inertial
energy is converted back into TKE (and eventually dissipated) when Pa > 0 (in figure 4).
We now turn focus toward the mechanisms controlling the energy pathways associated
with the inertial oscillations.

6. Late-time dynamics
The inertial oscillations following adjustment of the front manifest as oscillations of the
shear and stratification. These in turn influence turbulence, large-scale SI modes, and other
late-time dynamics such as frontlets and bore-like gravity currents that can be excited
following the initial adjustment period. We address each of these behaviours in turn.

6.1. Modulation of turbulence by inertial shear
Both the oscillatory shear and vertical stratification associated with the inertial oscillations
modulate the generation and damping of turbulence. Because the amplitude of the inertial
oscillations depends on the front strength, so too does their influence on the TKE budget.

Figure 8 shows the evolution of the TKE and the time-integrated source and sink terms
in the TKE budget for the three simulations with Γ = 1 (blue), Γ = 10 (red), and Γ = 100
(gold). Recall from figure 3(b) in Part 1 that SI is primarily energised by the geostrophic
shear production for Ri = 0 and Γ ! 2. This informed our non-dimensionalisation,
where the geostrophic kinetic energy scales with H2M4/f 2. While the time-integrated
geostrophic shear production and dissipation rate generally appear to follow this scaling,
the integrated ageostrophic shear production and buoyancy production do not. In the
simulation with Γ = 1, the buoyancy production is a positive contributor to the TKE,
while it is small and negative in the other cases with Γ > 1. The time-integrated
ageostrophic shear production is much smaller in the simulation with Γ = 1 compared
with Γ = 100. At early times, when Ri ≈ 0, the relative sizes of the buoyancy production
and geostrophic shear production are consistent with the linear stability analysis (not
shown). Specifically, the linear stability analysis and the nonlinear simulations have
B/(B + Pg) ≈ 0.5 for Γ = 1, while this ratio is close to zero for the stronger fronts.

Transient and ‘bursty’ turbulence occurs when Γ = 10 and Γ = 100. The turbulence
peaks during phases of de-stratification and is followed by a more quiescent phase
as the front re-stratifies. These quiescent periods in the interim appear to limit the
total dissipation and result in more persistent and coherent inertial oscillations. We can
understand this intermittency by considering the scaling of the turbulence production and
the damping time scales relative to an inertial period. Note from figure 8 that the periodic
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Figure 8. Comparison of the evolution of the TKE budget terms for various front strengths. From top left,
the domain-averaged TKE, the cumulative production components (P), the cumulative sink of energy by
turbulent dissipation (εt) and the cumulative contribution of buoyancy production (B). Dimensionless units
of the geostrophic MKE are used to collapse dependence on the geostrophic shear production.

increase in TKE is associated with an increase in time-integrated geostrophic shear
production. The time scale associated with the geostrophic shear production evaluated
at the time of minimum stratification in an inertial oscillation can be defined as

τp ∼
EK ,g

Pg
∼ 1

∂zv̄
. (6.1)

At the time of minimum stratification, the shear is weaker by a factor s (as in § 5.1) such
that ∂zv̄ = s∂zv̄g. Hence the shear production time scale can be written as

τp ∼ s−1. (6.2)

Note that in units of f −1, this time scale is (s Γ )−1. This gives an estimate of the time
for the turbulence to be excited within each burst. The periods of TKE growth and
de-stratification are contrasted with the enhanced stratification in the opposite phase of
the inertial oscillation which acts to dampen vertical fluctuations (w′). If the stratification
is strong enough it can shut down the geostrophic shear production by decreasing v′w′.
How quickly this occurs depends on the maximum stratification. We can estimate an upper
limit for the peak stratification of the inertial oscillations by assuming PV has become 0,
but that the amplitude of the inertial oscillations has not been damped. This maximum
stratification then increases with front strength as

∂ b̄
∂z max

= 2 − s, (6.3)

because the thermal wind mixing ratio, (1 − s), predicted in Part 1 increases with front
strength (see table 1 for specific values). The consequence of these two scalings are
broadly consistent with the three simulations shown in figure 8. For Γ = 100, the change
in stratification is very large and in addition τp - Γ , which implies that the front will
quickly (relative to an inertial period) become turbulent as it de-stratifies. In the opposite
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phase, very strong stable stratification will suppress turbulence, leaving the rest of the
period nearly laminar until the next turbulent burst. In contrast, for the weakest (Γ = 1)
front, τp ! Γ and the change in stratification is relatively weak such that the turbulence
remains more uniform throughout the inertial cycle. The intermittency of turbulence in
the strong fronts reduces the net energy (relative to EK ,g) that can be converted from the
mean profile into TKE and ultimately dissipated as shown in figure 8. Therefore the inertial
oscillations in these strong fronts are more persistent, and the relatively quiescent periods
of the oscillation also permit more coherent and larger amplitude late-time SI modes to
grow as will be considered in the following section.

6.2. Late-time SI
Following the breakdown of the primary SI modes to turbulence, Griffiths (2003) (in
the atmosphere) and Taylor & Ferrari (2009) (in the ocean mixed layer) both found
that if the new state remained unstable, an SI mode with a longer wavelength emerged
which is consistent with using an effective turbulent viscosity much larger than the
molecular viscosity. We observe similar large-scale SI modes at late times and which are
nearly parallel to the slumped isopycnals. These late-time SI modes lead to intermittent
small-scale turbulence if their growth rate is sufficiently fast compared with the inertial
period (Thomas et al. 2016). Their break down via KHI – either partially (for Γ = 10)
or catastrophically (for Γ = 100) – during periods of minimum stratification results in
the periodic bursts of turbulence described above in § 6.1 and shown in the right column
of figure 1. We also find that these SI cells can efficiently inject positive PV from the
boundaries into the domain interior and encourage the front to continue slumping beyond
the initial adjustment.

The scale of the late-time SI modes is constrained by the vertical domain size to have
a minimum vertical wavenumber of kz ≈ 2π. Thus for Ri ≈ 1 (valid after the first few
inertial periods, cf. figure 7a), these modes have a maximum horizontal wavelength of

λSI,max ≈ N2/M2 = RiM2/f 2 ≈ Γ . (6.4)

This can also be thought of in terms of the maximum horizontal displacement of fluid
parcels within any SI mode which is of the order of the deformation radius, Ld = Γ , and
gives an equivalent scaling to (6.4).

The enhanced turbulent viscosity also contributes to late-time SI scale selection. The
Γ = 1 front evolves with a consistently large TKE (see figure 8) implying a larger effective
turbulent viscosity. This encourages the late-time SI modes to select the largest scale able
to vertically fit in the layer (λSI ≈ λSI, max) as in figure 2. In contrast, we find that the
Γ = 10 front selects a smaller-scale late-time SI mode (λSI < λSI,max) suggesting that
confinement effects had a stronger influence on the scale selection compared with the
relatively weak turbulent viscous effect. Based on the wavenumber–frequency diagram in
figure 9 (averaged over the first 12 inertial periods) this dominant stationary (SI) mode
((f = 0) has λSI = λSI,max/4 = 2.5, or kx = 2π/2.5 . 2.51.

We gain further insight into the interactions of these stationary modes and oscillations
which affect the late-time dynamics by considering where energy is concentrated in
wavenumber–frequency space (figure 9). As the front equilibrates and Ri → 1, the growth
rate of SI decreases and the dispersion relation ((2.7) in Part 1) shows that inertia–gravity
oscillations are supported with an increasing range of subinertial frequencies (the
numerical solution to this dispersion relation is also detailed in Part 1). The two
now-familiar limits of this dispersion curve plotted in figure 9 are the horizontally
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Figure 9. Wavenumber–frequency diagram for Γ = 10 highlighting the concentration of subinertial energy
at later times. The spectral energy has been domain and time averaged over the first 12 inertial periods.
The bounded linear dispersion relation at Ri = 1 is overlaid in black for n = 1 (solid) and n = 2 (dashed)
modes, computed by numerically solving the coupled eigenvalue problem from Part 1. The bounded Ri = 0.98
dispersion curve is also plotted in white to suggest the sustainment of the stationary SI signal at kx = 4kSI,min
where kSI,min = 2π/Γ . Two peaks in energy identify the SI modes (at (f = 0) and the inertial oscillations
(at kx = 0). A range of energetic subinertial motions also appear at intermediate scales. For contrast, two
unbounded wave solutions for constant kz are plotted in grey.

invariant inertial oscillation ((f = 1) and the dominant late-time SI mode ((f = 0). In
the process of regulating the amplitude of these late-time SI modes, KHI and wave–wave
interactions generate a broad energy spectrum which fills out the subinertial branch
of the dispersion curve. In particular, parametric subharmonic instability – the special
case of triadic resonance which creates child waves both with frequency half that of
the progenitor – transfers energy (in this case) from the (f = 1 inertial oscillation into
(f = 1/2 (Thomas & Taylor 2014). The spatial structure of this child wave at (f = 1/2
is shown in figure 10(b), highlighting the shallower mode slope relative to isopycnals (in
black).

Another triadic exchange of energy from the inertial oscillation and the stationary SI
mode can sustain inertial waves with (f = 1 and kx = kSI . Compared with the bounded
dispersion relation (solid black curve in figure 9) which contains only a single inertial
wave solution, the unbounded dispersion relation (grey curves, for constant kz) supports
many waves at (f = 1 with various kx (Stone 1966). The particular inertial wave excited
by this triadic interaction between the inertial oscillation and SI has a slope 2 times the
isopycnal slope (compare with the grey lines in figure 10a). Grisouard & Thomas (2015)
found that these (f = 1 waves critically reflect at horizontal boundaries and can encourage
the formation of bores, as we will explore next.

6.3. Frontlets and bore-like gravity currents
The mean horizontal buoyancy gradient is initially uniform, but it does not need to remain
that way. Indeed, the late-time SI modes modify the lateral structure of the background
buoyancy field (for example, see the isopycnal contours in figure 11b). Frontlets, or
persistent regions of locally enhanced lateral buoyancy gradients, appear as a cross-front
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Figure 10. Frequency band-pass filtered across-front velocity, ũ, at tf = 20.4. Each panel corresponds to the
spectral peaks in figure 9, (a) at (f = 1 capturing the vertically sheared inertial oscillation and the inertial
waves, and (b) at (f = 1/2 showing the subinertial oscillation. Mean isopycnals (using the laterally averaged
buoyancy, b̄) are plotted with black lines. Grey lines in panel (a) additionally indicate a slope 2 times the
isopycnal slope. We have used a filter with band width δ(f = 0.1.

stair-step profile in buoyancy. Frontlets form as convergent and divergent regions between
neighbouring SI cells squeeze and stretch the lateral buoyancy gradients. These features
therefore have an imprint of the late-time SI modes and are laterally separated by λSI .
High shear associated with the late-time SI modes occurs between frontlets and may be
susceptible to KHI which further encourages homogenisation of the frontolytic sections.
In contrast, the most prominent frontogenetic regions occur at the boundaries, as first
described by Ou (1984) for an isolated front undergoing geostrophic adjustment. We
also found that the impingement of late-time SI modes onto the boundaries further
intensifies near-boundary frontogenesis. As noted in § 6.2, SI exhibits periodic explosive
growth when modulated by the inertial oscillations. This enhanced growth appears to help
maintain the strength of these frontlets.

Frontlets appear shortly after the initial adjustment in each of the three simulations
presented. We visualise the evolution of these frontlets in figure 11(a), which shows a
Hovmöller diagram of the buoyancy at the boundary, where the signature is strongest.
Three sharp buoyancy jumps are visible in each plot, and are separated by nearly uniform
buoyancy regions. Weak, narrow frontlets occur in the Γ = 1 simulation, whereas wider
and sharper frontlets persist for the two stronger fronts (not shown for Γ = 100), which
is consistent with the scaling argument (6.4) for λSI . We find that these frontlets in the
Γ = 10 simulation advect with the mean bulk inertial oscillation, 〈|ū|〉, plotted with black
lines. This is in contrast to the Γ = 1 front which has less coherent and small-amplitude
inertial oscillations of comparable magnitude to the turbulent fluctuations. In this weak
front, the motion of the density steps at the boundary appears to be influenced more
by these fluctuations than by the mean inertial oscillation. In each case, the frontlets are
observed to persist until SI is ultimately stabilised when f 〈q〉 > 0.

The sharp horizontal buoyancy gradients defining these frontlets are often in near
thermal wind balance. However, this balance can be intermittently broken, for example by
a localised mixing event. The resulting unbalanced buoyancy gradient is associated with an
unbalanced pressure gradient which drives a gravity current along the horizontal boundary.
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Figure 11. (a) Hovmöller diagram of the total buoyancy at the bottom boundary evolving with time, shown
for the Γ = 1 (left) and Γ = 10 (right) simulations. The interaction of the edges of the sharp frontlets with the
horizontal boundary can result in a bore-like gravity current which is both advected by the inertial oscillation
and propagates with speed c far ahead of the mean flow. Lines with slope 〈|ū|〉 are plotted in black, and
correspond to the bulk mean across-front velocity of the inertial oscillation as shown in figure 5(a). In the
Γ = 10 simulation (right panel), propagating bores are observed at tf = 18 as well as at tf = 25 and travel with
a phase speed of c ≈ 0.15 (plotted with a red dashed line). (b) A slice across each front showing the across-front
velocity, u, near the point of maximum de-stratification and as a bore begins to form: tf = 20.5 (Γ = 1, left)
and at tf = 18 (Γ = 10, right). Bores are clearly evident in the Γ = 10 simulation, for example near x = 0.4 at
the top and bottom boundaries. Isopycnal contour lines highlight both the accentuated convergence/divergence
along the boundaries in addition to the vertical isopycnals designating the head of the bore. The approximated
bore height from the boundaries, h ≈ 5/3c2, is also shown with grey dashed lines.

Such a gravity current appears 3 inertial periods after the initial adjustment of the Γ = 10
front (indicated by the grey dashed line in figure 11a) and subsequently propagates
off to the right. Thus, compared with frontlets which are persistent, quasi-balanced,
and vertically span the domain, these bore-like gravity currents are localised near the
boundaries and only intermittently form when the sharp lateral buoyancy gradients become
unbalanced.

One possible explanation for the formation of these bore-like gravity currents from
frontlets is by rapid localised mixing. Indeed such periodic turbulent bursts as described in
§ 6.1 may be responsible for this intermittent mixing. These bursts peak during phases of
weak stratification, which coincide with the first appearance of bore-like gravity currents.
Gravity currents may also be encouraged by the further steepening of isopycnals near
to the boundaries – a consequence of the oscillatory shear Ekman solution (5.3). The
salient feature of this solution is the phase lead in velocity near the boundaries (apparent
in figure 6). This enhances the differential advection near the boundaries which further
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steepens isopycnals beyond that of the bulk vertically sheared inertial oscillation. These
weakly stratified near-boundary regions can subsequently generate localised mixing via
KHI or gravitational instability, and thereby locally destroy the balanced thermal wind.
Such a mechanism for isopycnal steepening may contribute to the particular bore-like
shape evident at the origination of the gravity current near x = 0.4 and z = 1 shown in
the across-front slice on the right side of figure 11(b). This snapshot corresponds to a time
when the front is still de-stratifying, and yet the near-boundary profile may already be
fully unstratified due to the phase lead. A very prominent bolus was also observed in the
Γ = 100 simulation (bottom right panel of figure 1) and has a similar shape and vortex
core structure to those studied by Venayagamoorthy & Fringer (2012).

Grisouard & Thomas (2015) also found that critical reflections at the boundaries can
result in wave amplification and generate bores. The inertial waves identified in figure 9
(and shown in figure 10a) could critically reflect at the boundaries. If so, this convergence
of wave energy could contribute to rapidly sharpening the frontlets and prompt a bore-like
gravity current to break out and propagate.

Pham & Sarkar (2018) found bores in all of the finite-width fronts they studied, each of
which had Γ = 492 and Rossby number Ro ≡ M2H/( f 2L) = 9.8 but with varying Ri0.
Our results appear to extend this mechanism for broad frontal regions by first generating
frontlets. However, bore-like gravity currents are not a generic feature of late-time SI.
Although the stair-step frontlet profile in density is visible even in the weakest front (left
side of figure 11a), we only see propagating gravity currents for Γ ! 10. It appears this is
because both of the above identified influences on gravity current formation become more
prominent in stronger fronts. Stronger fronts produce larger and more coherent late-time
SI which increases impingement/convergence near the boundaries and results in sharper
frontlets. At the same time, the turbulent bursts and near-boundary de-stratification scale
with the amplitude of the inertial oscillations, which we know to increase for larger Γ .
Finally, with increasingly energetic spectral peaks for SI and the inertial oscillation (e.g.
in figure 9) the triadic interaction energising the critically reflecting inertial waves should
also become stronger.

We can show that these features are indeed propagating along the boundaries as gravity
currents by measuring their typical speed and height. We compare these with the advection
speed of the average across-front component of the bulk mean inertial oscillation, 〈|ū|〉,
and plotted there with black lines. In the initial adjustment period, any buoyancy anomalies
are advected with the speed of the mean oscillation. However, as frontlets begin to form,
so too can gravity currents, which subsequently propagate ahead of the inertial oscillation
with speed c. The effective bore height corresponding to this propagation speed is h =
c2/∆b. This lateral jump in buoyancy, ∆b across each frontlet (for example as shown in
figure 11a) is,

∆b = δF∂xb̄ = Ro−1
F , (6.5)

where δF is the spacing between frontlets. RoF ≡ Γ /δF is defined as the frontlet Rossby
number, and should be O(1) according to (6.4) because λSI ≈ δF. In other words,
horizontal motions can only homogenise buoyancy within a region between frontlets of
extent Ld. Based on the frontlets as they first appear in each simulation (e.g. figure 11a)
RoF ≈ 5/3, which gradually increases over time (due to decreasing turbulent viscosity and
therefore frontlet spacing) and is consistent with the results of § 6.2. Finally we fit lines to
the buoyancy steps in the Γ = 10 front near tf = 18 and 25 (indicated by grey dashed lines
in figure 11a), and find that these bores propagate ahead of the frontlet at a speed c ≈ 0.15.
The corresponding expected bore height is then h = RoFc2 ≈ 0.035, shown plotted on the
corresponding across-front slice with grey dashed lines, and reasonably agrees with the
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height of the three bores recently formed there. In contrast, for the weak Γ = 1 front
shown on the left side of figure 11, there is not a clear propagation speed associated with
these density steps. Considering the sharp density step formed at tf = 20.5 (indicated by a
grey dashed line) c ≈ 0.08 and so h ≈ 0.009. This inferred gravity current height does not
seem to describe well the boundary features seen in the corresponding across-front slice at
the bottom of the figure, suggesting that these are not gravity currents in the weakest front.

7. Conclusions
In this two-part series, we explored how the equilibration of fronts by SI depends on
the strength of the horizontal stratification, parameterised by Γ ≡ M2/f 2. We studied
an idealised broad frontal zone described by the Eady model, which consists of a
uniform horizontal buoyancy gradient in thermal wind balance and bounded by stress-free
horizontal surfaces. In Part 1, we developed the linear and weakly nonlinear theory to
describe the cumulative impacts of SI on this balanced front. Expanding on the work of
Stone (1966) and Weber (1980), we chose to include both viscous and non-hydrostatic
physics to accurately capture the linear scale selection. We then extended our analysis in
the present paper using 2-D numerical simulations to look at the nonlinear consequences
of SI as the front continues to adjust. In both the earlier theoretical work and this numerical
work, we considered fronts with strengths ranging from Γ = 1 to 100, which encompasses
a broad range of fronts found in the upper ocean – from the strong persistent western
boundary currents, down to transient strain-generated frontal features in the open ocean.

We found that SI is capable of mixing a significant fraction of the balanced thermal wind
shear before saturating via a secondary shear instability. This SI-induced mixing breaks the
balance of the front and can result in large-scale vertically sheared inertial oscillations. The
thermal wind mixing ratio, (1 − s), is related to the amplitude of the subsequent inertial
oscillations by using the theory of Tandon & Garrett (1994). By computing this mixing
fraction using our weakly nonlinear analysis, we predicted that stronger fronts are more
thoroughly mixed and will therefore exhibit larger-amplitude inertial oscillations following
destabilisation by SI. We then determined the corresponding SI momentum transport time
scale, τmix, required to fully homogenise the thermal wind. For strong fronts (Γ > 8) the
mixing time is faster than the inertial time scale, suggesting a geostrophic adjustment
response.

We then considered the dominant sources energising SI growth across this range of
Γ and Ri. SI has been generally thought to only extract significant energy from the
kinetic energy associated with the balanced thermal wind. We showed that this is the
case for strong fronts, but for fronts with small Γ or Ri ! 0.5 the larger contribution
energising SI growth comes from the potential energy of the background density profile.
We characterised the two limiting behaviours of SI distinguished by the dominant
energy source: ‘slantwise convection’ extracts energy via buoyancy fluxes and the modes
parallel absolute momentum surfaces, while ‘slantwise inertial instability’ is energised by
geostrophic shear production and has more upright modes aligned with isopycnals.

We tested the consequences of these theoretical predictions in the present paper, looking
beyond the saturation point of SI by using a set of nonlinear numerical simulations. We
found that weak fronts exhibiting slantwise convection (i.e. buoyancy driven) have a very
weak influence on the balanced thermal wind. By considering the dominant momentum
balance, we found that the Γ = 1 front remains quasi-balanced throughout adjustment to
the equilibrated state of Ri = 1. However, because there is no clear SI saturation point
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or separation of time scales, the resulting inertial oscillations were even smaller than
predicted.

This quasi-balanced adjustment is contrasted with the evolution of the two stronger
fronts considered (Γ = 10 and 100). These fronts exhibiting slantwise inertial instability
generated rapid and thorough mixing of the thermal wind shear. The resulting inertial
oscillations were well predicted by the mixing fraction, (1 − s), computed in Part 1, and
were largest for the strongest front. We found that the linear vertical structure of these
inertial oscillations is modified close to the boundaries, and corresponds more closely with
the oscillating shear Ekman solution. These larger-amplitude inertial oscillations were also
found to excite a number of additional dynamics as the fronts evolve towards the final
adjusted state.

Vertically sheared inertial oscillations periodically re-stratify the front by differentially
advecting the horizontal buoyancy gradient and modulate the growth rate of SI and
turbulence following the initial adjustment. This explained the bursty turbulence which is
most pronounced for Γ = 10 and 100. Explosive SI growth during weakly stratified phases
(Thomas et al. 2016) is followed by phases of enhanced damping of vertical fluctuations
as the front re-stratifies. Despite these differences in the energetic inertial oscillations and
the initial adjustment time scales, it was interesting to find that the equilibration e-folding
time to a q ≈ 0 state via turbulence-enhanced boundary PV fluxes is remarkably similar
(≈ 5.5/f ) across the three fronts simulated.

Finally, we found step-like frontlets forming in each of our simulations. These frontlets
form by frontogenesis from neighbouring late-time SI cells generating local regions of
convergence and which are separated by laterally well-mixed regions. Weak fronts produce
weak frontlets, but in strong fronts these sharp frontlets generate bore-like gravity currents
which are intermittently launched and propagate along the boundaries.

Future work will extend these results to explore the effect of finite width on the
equilibration of fronts with varying strength. Many of these results of the mixing fraction
and adjustment time scale are transferable to finite-width fronts, given that they are
not enhanced by inertial instability (on the anticyclonic side of the front) for Ro ! 2.5.
However, compared with this frontal region model with constant Γ , the equilibration
of finite-width fronts have a time-evolving Ro as the width increases and the front
strength consequently decreases. The equilibration of SI will also no longer be fully
reliant on vertical PV fluxes, as lateral diffusion and fluxes of PV are likely to accelerate
equilibration. Nonetheless, we anticipate that frontlets and bores as observed in these
simulations will occur inside finite-width fronts if the front width is larger than the
deformation radius.

Details of the assumed surface forcing which precedes and generates our balanced
unstratified front have also not been considered in this work. Rather, we have assumed the
resultant mixing at t = 0 instantaneously mixes buoyancy but not momentum in order to
establish the negative PV front. This is clearly not the case in a real oceanic boundary layer.
Future work will explore the effects of a constant surface forcing acting to either add or
remove PV from the equilibrating front. If this input is small compared with the cumulative
impact of SI through transition, then the details of this early transient presented here would
likely be unaffected. The late-time and steady-state solutions, however, are expected to be
modified by this forcing (Thomas & Taylor 2010).
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Figure 12. Comparison of the mean total 〈|ū|〉 and 〈|v̄|〉 for the 2-D and 3-D simulations. While the amplitude
of the decaying inertial oscillations varies slightly, the general behaviour is robust in two dimensions.
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Appendix A. Three-dimensional simulations
We check the robustness of our results from the presented 2-D results using two 3-D
simulations with Γ = 1 and 10 (summarised in table 1). We did not run a 3-D simulation
for Γ = 100 due to the prohibitive computational cost in this case. The 3-D simulations
have only half the resolution of the analogous 2-D runs, and so we model the subgrid-scale
stresses using a modified Smagorinsky model. Further, to exclude baroclinic instability
effects in the along-front direction, we take Ly = 0.25, which is slightly larger than the
typical turbulence correlation length, but is smaller than the unstable baroclinic waves
(LBI = 3.97Γ ).

The bulk shear for the 2-D and 3-D simulations with Γ = 1 and Γ = 10 are shown
in figure 12. The amplitude of the inertial oscillations is similar in the 2-D and 3-D
simulations, although the rate at which the oscillations decay and the phasing of
the oscillations differ somewhat, particularly when Γ = 1. Importantly, like the 2-D
simulations, the 3-D simulations exhibit much larger inertial oscillations when Γ = 10
compared with Γ = 1.
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