

1

2

3 **Main Manuscript for**

4 Tip extension and simultaneous multiple fission in a filamentous bacterium

5 Scott Chimileski^{1*}, Gary Borisy^{1,2*}, Floyd Dewhirst^{2,3}, Jessica Mark Welch^{1,2}

6 1 Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological

7 Laboratory; Woods Hole, MA 02543

8 2 Department of Microbiology, American Dental Association Forsyth Institute; Cambridge, MA, 02142

9 3 Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine; Boston, MA

10 02115

11 *Corresponding authors: Gary Borisy and Scott Chimileski

12 **Emails:** gborisy@forsyth.org; schimileski@mbl.edu

13 **Author contributions:** S.C., J.M.W., F.D. and G.B. designed the research; S.C. performed experiments;

14 S.C., J.M.W., F.D. and G.B. analyzed the data; S.C. drafted the manuscript with edits from all authors. All

15 authors approved the final manuscript.

16 **Competing interests:** The authors declare that no competing interests exist.

17 **Classification:** Biological Sciences, Microbiology

18 **Keywords:** bacterial cell division, multiple fission, human microbiome, polymicrobial biofilm, apical growth

19 **This PDF file includes:**

20 Main Text

21 Legends for Figures 1 to 6

22 Abstract

23 Organisms display an immense variety of shapes, sizes, and reproductive strategies. At
24 microscopic scales, bacterial cell morphology and growth dynamics are adaptive traits
25 that influence the spatial organization of microbial communities. In one such
26 community—the human dental plaque biofilm—a network of filamentous
27 *Corynebacterium matruchotii* cells forms the core of bacterial consortia known as
28 hedgehogs, but the processes that generate these structures are unclear. Here, using
29 live-cell time-lapse microscopy and fluorescent D-amino acids to track peptidoglycan
30 biosynthesis, we report an extraordinary example of simultaneous multiple division
31 within the domain *Bacteria*. We show that *C. matruchotii* cells elongate at one pole
32 through tip extension, similar to the growth strategy of soil-dwelling *Streptomyces*
33 bacteria. Filaments elongate rapidly, at rates more than five times greater than other
34 closely related bacterial species. Following elongation, many septa form simultaneously,
35 and each cell divides into 3-14 daughter cells, depending on the length of the mother
36 filament. The daughter cells then nucleate outgrowth of new thinner vegetative
37 filaments, generating the classic “whip handle” morphology of this taxon. Our results
38 expand the known diversity of bacterial cell cycles and help explain how this filamentous
39 bacterium can compete for space, access nutrients, and form important interspecies
40 interactions within dental plaque.

41

42

43 Significance

44 The shape of bacterial cells and the way that bacteria maintain their shape through
45 cellular reproduction are fundamental biological characteristics that link form,
46 physiology, and environment in the microbial world. While most bacteria divide by binary
47 fission, we discovered a remarkable example of simultaneous multiple fission in a
48 filamentous bacterium that has a key structural role within human dental plaque. This
49 study expands our understanding of the oral microbiome, where hundreds of bacterial
50 species compete for space and nutrients, forming biofilms that have direct impacts on
51 human health. And our findings extend beyond the oral microbiome, revealing a unique
52 bacterial cell cycle and an example of how cell morphology and reproductive strategy
53 can influence the spatial organization of microbial communities.

54

55 **Main text:**

56 Introduction

57 All organisms have a growth form adapted to the environment in which they evolved (1).
58 For bacteria, cellular morphology and reproduction set constraints and open new
59 possibilities in nutrient acquisition, motility, attachment, and dispersal (2, 3). Typical
60 bacteria are rods or cocci 0.5 to 5 micrometers long that divide by binary fission, with
61 one mother cell giving rise to two daughter cells (4). While binary fission is the
62 traditional understanding of bacterial reproduction extensively studied in model species
63 like *Escherichia coli* and *Bacillus subtilis*, there are a few reports of non-binary lifecycles
64 (5-7). Multiple fission—when a large polyploid mother cell divides into more than two

Tip extension and simultaneous multiple fission in a filamentous bacterium

65 daughter cells—occurs in isolated instances, including in *Streptomyces* species as
66 aerial hyphae separate into spores (8), in pleurocapsalean cyanobacteria (9), and
67 during one stage of the predatory *Bdellovibrio bacteriovorus* lifecycle (6, 10). Non-binary
68 cell division is more complex than binary fission because several septa form
69 simultaneously and many progeny are generated at once (10).

70 Beyond the implications for the lifestyle and fitness of the individual species (11),
71 bacterial cell morphology and growth dynamics shape spatial patterns within microbial
72 communities (2, 3, 12, 13). Some of the most simple and effective ways that a
73 bacterium can structure a microbial community are by outcompeting other taxa for
74 space (14), and/or by adopting an elongated or other form that facilitates interspecies
75 interactions (15). Therefore, microbial ecology and taxon-taxon interactions depend on
76 cell cycle and physiological growth dynamics of individual taxa within microbial
77 communities (16). This is particularly true for keystone taxa that have an outsized
78 consequence on community structure (17, 18).

79 Human oral microbial communities are ideal for studying the cellular morphogenesis
80 and growth dynamics of keystone bacterial species. Dental plaque is a polymicrobial
81 biofilm composed of hundreds of bacterial taxa of varying cell shape and size, from
82 ultra-small cocci 200 nanometers wide to filamentous organisms hundreds of microns
83 long (19, 20). Among this diversity, multiple lines of evidence have converged to show
84 that the filamentous bacterium *Corynebacterium matruchotii* is a key plaque taxon.
85 Metatranscriptomic and 16S rRNA gene sequence analyses indicated that *C.*
86 *matruchotii* is one of the most prevalent bacterial species in dental plaque, and that it is
87 present at high abundance relative to other taxa (15, 21-24). This species has been

88 isolated from humans across the world (25) and is closely related to other human
89 commensal *Corynebacterium* species and pathogenic mycobacteria (including
90 *Mycobacterium tuberculosis*, all within the order Mycobacterales) (26).
91 *Corynebacterium matruchotii* lives in dental plaque both below (subgingival) and above
92 (supragingival) the gumline and is associated with a healthy oral microbiome (15, 23,
93 27, 28). Spectral imaging fluorescence *in situ* hybridization (CLASI-FISH) revealed that
94 filamentous *C. matruchotii* cells are a primary structural component of dental plaque
95 (15). The filaments interact physically and chemically with small cocci (usually
96 *Streptococcus* and *Porphyromonas* species) to form corncobs (15, 29-31) which are
97 nested within larger hedgehog consortia (15). The *C. matruchotii* cells are hypothesized
98 to act like a scaffolding spanning the biofilm, attached to initial colonizers such as
99 *Actinomyces* species at the base, with a central zone where *Fusobacteria*,
100 *Capnocytophaga* and *Leptotrichia* cells localize, and terminating at an aerobic
101 peripheral region dominated by *Streptococcus*, *Haemophilus* and *Neisseria* species
102 (15).
103 Although filamentous *C. matruchotii* cells are a main structural component of the natural
104 dental biofilm, the process by which these forms are generated via the cellular growth
105 and reproductive cycle is unclear (15). For decades, *C. matruchotii* has been noted for
106 its pleomorphic cell morphology (32-35). An assortment of cellular forms is routinely
107 observed upon microscopic observation of liquid cultures of this bacterium, including
108 filaments of various lengths and “whip handles” that appear as a wider base from which
109 a thinner filament extends (32). In this study, we characterized the cellular growth cycle
110 of *C. matruchotii* using live-cell confocal time-lapse microscopy, nucleoid staining, and

Tip extension and simultaneous multiple fission in a filamentous bacterium

111 spatiotemporal tracking of peptidoglycan biosynthesis. We report *C. matruchotii* growth
112 dynamics at the single-cell level, including rapid polar growth by tip extension and
113 simultaneous multiple fission. These basic aspects of *C. matruchotii* biology are likely
114 critical to its structural role in the formation of natural plaque biofilm.

115

116 Results

117 ***Corynebacterium matruchotii* has a Cell Cycle Based on Simultaneous Multiple** 118 **Division**

119 We tracked growth kinetics and morphometrics of individual isolated cells fixed in place
120 under an agarose pad as they developed into microcolonies to characterize the general
121 phases of the *C. matruchotii* cell cycle (Fig. 1). Filaments elongated without visible
122 septa or other internal divisions (Fig. 1A and Movie S1). Filamentous growth appeared
123 in transmitted light images to be by tip extension, unidirectionally at one cell pole (Fig.
124 1A, phase 1). Septa then appeared simultaneously at multiple sites along the
125 filamentous cell (Fig. 1A, arrows in phase 2 panel). Following septal formation,
126 cytokinesis occurred, and the filament fractured into many cells during a simultaneous
127 multiple division event (Fig. 1, phase 3). Cell division occurred rapidly, resulting in
128 daughter cells with squared edges that were oriented relative to adjacent cells at 30° to
129 180° angles. Daughter cells were often partially attached by a transient hinge-like
130 structure (Fig. 1A, arrow in phase 3 panel). After multiple division, new filamentous
131 outgrowths emerged from daughter cells (Fig. 1A, arrows in phase 4 panels), with any
132 new poles acting as potential initiation sites, and the original growth tip of the mother
133 filament also continuing to grow. Outgrowth of new filaments coincided with complete

134 separation of cells and release from transient hinge-like attachments. New filaments
135 elongated and thickened over time, and subsequent multiple division events repeated
136 the cell reproduction cycle, driving microcolony development (Fig. 1A, phase 5).

137 Within individual microcolonies, growing cells of the type strain fell into two categories
138 based on final length and how long they elongated prior to dividing. Most cells
139 elongated for 2-4 hours, then septated and divided upon reaching an intermediate
140 length of 25-40 μ m (Fig. 1B). These cells contributed to the exponential increase in the
141 number of cells and total area of the microcolony. Another group of cells elongated for 6
142 h or longer, reaching lengths of 45 to 70 μ m or more. Some of these longer cells were
143 over 120 μ m and still elongating at the end of experiments. Extra-long cells include the
144 progenitor cell tracked in Fig. 1, and many others that grew along the periphery of
145 microcolonies at later stages of development (Movie S1).

146 We tracked cell cycle dynamics for 40 cells within microcolonies formed by two different
147 strains, the type strain ATCC 14266 and ATCC 43832 (Fig. 2A), and for >500 cells
148 recorded across different experiments seen in Movies S1-S4. The same overall growth
149 dynamics occurred in microcolonies grown in Brain Heart Infusion medium (BHI; Fig. 1,
150 Fig. 2A, Movies S1 and S2), within multispecies microcolonies grown in saliva medium
151 as a simplified mock supragingival plaque condition (Fig. 2A, Movie S3), and both with
152 (Movies S1, S2, S3) and without (Movie S4) 5% CO₂ supplementation of the growth
153 atmosphere.

154

155 **Cellular Growth and Division are Heterogeneous and Asymmetric**

156 We found heterogeneity among many aspects of the *C. matruchotii* cell cycle (Fig. 2). In
157 both strains and in both media (BHI and saliva), new outgrowths that emerge from
158 daughter cells were thinner relative to the mother filaments prior to multiple fission (Fig.
159 2B). In the type strain, newly emerging filaments had a mean width one-half that of the
160 mother filaments (0.78 vs. 1.56 μ m). Outgrowth of new filaments occurred from most
161 daughter cells within 10-30 minutes after cytokinesis. We also observed lag periods of
162 no growth for some daughter cells amidst actively growing microcolonies, followed by
163 the delayed emergence of a new filament (SI Appendix, Fig. S1).

164 Filament length at septation ranged from 6 to over 70 μ m, with mean of 38.2 μ m (SD =
165 17.0) for the type strain ATCC 14266 and 25.2 μ m (SD = 7.7) for ATCC 43832. The
166 number of daughter cells resulting from multiple fission varied from 3 to 14, with a
167 median of 7 cells for the type strain ATCC 14266 and 5 for ATCC 43832. A Pearson
168 correlation indicated a significant positive relationship between length at septation and
169 the number of daughter cells, where longer mother cells gave rise to more daughter
170 cells in both strains (Fig. 2C; r = 0.864 for ATCC14266 and 0.888 for ATCC 43832, with
171 p values <0.001). Daughter cells varied in length from 1 to 19 μ m (Fig. 2D), with a mean
172 of 5.70 μ m for the type strain (SD = 3.66) and 5.58 μ m for ATCC 43832 (SD = 2.74).

173 Cell division in *C. matruchotii* was asymmetric (Fig. 2E). We calculated division
174 symmetry values for daughter cells after simultaneous multiple division events (36). In
175 this type of analysis, bacteria that reproduce by binary fission with septa aligned at mid-
176 cell yield division symmetry values at or near 0.5, because one daughter cell is exactly
177 or approximately half of the combined length of both sisters (36). Of 256 newly

178 generated daughter cells that we analyzed, only 13 cells (5.28%) were at or near
179 symmetric (having symmetry values 0.4-0.5; Fig. 2E). Rather, most nascent daughter
180 cells were asymmetric, having division symmetry values in the range of 0.05-0.2 (Fig.
181 2E). Mean division symmetry values were 0.137 (SD = 0.102) for the type strain and
182 0.200 (SD = 0.108) for strain ATCC 43832.

183

184 **Daughter Cells Elongate Rapidly, with Rates Increasing with Filament Length and**
185 **Subapical Width**

186 We tracked cellular elongation rates in several conditions for cells that continued to
187 grow for 6-8 hours without dividing. For the type strain in BHI medium and in the saliva
188 medium-based multispecies condition, newly divided cells elongated at $1.5-7.5 \mu\text{m.h}^{-1}$ in
189 the first hour after cell birth, and their elongation rate increased over time, reaching a
190 maximum of $15-19 \mu\text{m.h}^{-1}$ (Fig. 2F). Spearman's rank correlation measurements of the
191 BHI medium and saliva medium data sets (with sample sizes of 43 and 48 paired
192 values, respectively) shown in Fig. 2F indicated a significant positive relationship
193 between elongation rate and cell length ($r_s = 0.890$ for cells in BHI medium and 0.952 in
194 saliva medium, with p -values <0.001). In BHI, cells reached higher elongation rates at
195 shorter cell lengths on average relative to cells in saliva medium, and then remained at
196 a steady state of rapid elongation once cells reached 50 μm in length, with an average
197 maximum of $16.4 \mu\text{m.h}^{-1}$ (SD = 0.60; Fig. 2F). Cells in the saliva medium condition
198 reached a slightly higher average maximum of $17.5 \mu\text{m.h}^{-1}$ (SD = 0.91). A two-tailed T-
199 test indicated that there was no significant difference between the average maximum
200 elongation rates in BHI medium and the multispecies saliva condition ($p > 0.05$).

201 As cells elongated, subapical width of the growth tip increased, while the non-growing
202 end of filaments remained at the same width (SI Appendix, Fig. S2). Spearman's rank
203 correlation of growth tip width and total cell length yielded r_s values of 0.906 for the BHI
204 medium data set and 0.935 for the saliva condition, with p-values <0.001. Applying the
205 same statistical analysis using subapical width values of the non-growing end of
206 filaments resulted in non-significant, weak relationships with cell length for both culture
207 conditions (r_s values <0.3 with p-values >0.1). We found a significant positive
208 relationship between elongation rate and subapical width of elongating growth tips (SI
209 Appendix, Fig. S2). Spearman's rank correlation of the BHI medium and saliva condition
210 data sets yielded r_s values of 0.970 and 0.860, respectively (p-values <0.001). Most
211 measured filaments that reached elongation rates over $10 \mu\text{m.h}^{-1}$ were at least 20 μm in
212 length and had growth tips with subapical widths above 1.2 μm .

213

214 **Filaments Elongate at One Pole by Tip Extension, and Develop Many Septa**
215 **Simultaneously During Cell Division, with Condensed Nucleoids**

216 In transmitted light images, *C. matruchotii* cells appeared to grow from one end of the
217 filament, with visible septa forming simultaneously prior to multiple division (Fig. 1A,
218 Movie S1). We extended these observations using fluorescent D-amino acids (FDAAs).
219 FDAAs have emerged as powerful tools for tracking bacterial cell morphogenesis
220 because they are covalently incorporated into the cell wall by transpeptidases without
221 interfering with the growth of live cells (37-39). A range of FDAAs have been designed
222 with different spectral properties, enabling multicolor “virtual time-lapse” experiments
223 that show sequential periods of incorporation (40, 41). By growing cells in the presence

224 of FDAs throughout their cell cycle, one can label the entire cell wall, whereas a
225 shorter “pulse” of FDAA exposure reveals specific regions of active peptidoglycan
226 biosynthesis (40).

227 To image spatiotemporal dynamics of cellular elongation and division, we
228 conducted experiments with one or multiple FDAs (Fig. 3). Exposing growing cells to a
229 single pulse of Rf470DL for 15 minutes labeled a short region of the cell wall at a single
230 growth tip (Fig. 3A). Cells with an overall length of 10-20 μm showed a 1-2 μm apical
231 region of FDAA signal, corresponding to an estimated elongation rate of 4-8 $\mu\text{m}\cdot\text{h}^{-1}$.
232 Consistent with direct measurement of cell length during conventional timelapse
233 experiments (Fig. 2F), a 72-micron-long filament had a 4 μm region of FDAA signal,
234 indicating that it was elongating at a greater rate of \sim 16 $\mu\text{m}\cdot\text{h}^{-1}$ during the labeling
235 experiment. We also imaged cells that were developing >5 septa simultaneously during
236 the 15 min FDAA exposure (Fig. 3A). In separate virtual timelapse experiments, we
237 exposed growing cells to HADA for 4 h, followed by a 45 m pulse of NADA. This
238 resulted in signal from HADA across most of the cell length, with NADA signal localized
239 at a single growth tip and at the sites of multiple developing septa (Fig. 3B). As further
240 confirmation of these elongation dynamics, we conducted experiments with sequential
241 exposure to 3 different FDAs. The result was elongated cells, including those with
242 whip handle morphology, with unidirectional regions of signal from each FDA (Fig.
243 3C). We also imaged a less common double-ended whip handle. The double-ended
244 whip handle was divided by an older septum (formed during incubation with the first
245 FDA), representing two daughter cells that failed to separate during multiple division,
246 each elongating in one direction (Fig. 3C, arrow). These images demonstrate that single

Tip extension and simultaneous multiple fission in a filamentous bacterium

247 growing cells (not divided by septa) elongate at one pole by tip extension and establish
248 that new peptidoglycan was synthesized at multiple septa simultaneously within single
249 filaments.

250 We stained nucleoids at the end point of FDAA experiments with SYBR green, a stain
251 that preferentially labels double-stranded DNA. We found that nucleoids are condensed
252 between developing septa within cells undergoing multiple division. Each nascent
253 daughter cell contained one or more nucleoid bodies, with evidence of sister nucleoids
254 and occlusion from the septal region (Fig. 4 and SI Appendix, Fig. S3). In many actively
255 elongating cells that we observed (defined as cells lacking septa and having a region of
256 recently added FDAA at the growth tip), nucleoids were decondensed, present in a
257 diffuse state throughout the filament (Fig. 4A). Other long cells were elongating at the
258 growth tip and forming septa further back in the filament at the same time. These cells
259 were imaged in a heterogenous state, with regions of uncondensed and condensed
260 nucleoids (Fig. 4B). Filaments with the most condensed nucleoids were in an advanced
261 state of multiple division, with developed septa, and partially separated cells attached by
262 the hinge-like structure (Fig. 4C). The difference in nucleoid condensation between
263 these cell states is further visualized through fluorescence intensity plots (SI Appendix,
264 Fig. S4). We also observed several long, septating filaments with highly condensed
265 nucleoids that did not have HADA incorporated at a growth tip, indicating they were not
266 actively elongating prior to initiating cell division (Figs. S5-S6). One cell was 93 microns
267 long, forming 28 septa simultaneously and poised to divide into 29 daughter cells (SI
268 Appendix, Fig. S5).

269

270 **Ex-vivo Dental Plaque Biofilm Contains Filamentous *C. matruchotii* Cells with**
271 **Heterogenous Lengths, Widths, Morphologies, and Orientations**

272 We expanded on our previously published findings (15) by analyzing a representative
273 CLASI-FISH image that highlights heterogenous growth of *C. matruchotii* within the
274 natural dental plaque biofilm (Fig. 5). Within the dense network of *C. matruchotii*
275 filaments, we measured cells from 1 to over 30 μm long, in line with the wide range
276 observed within in vitro microcolonies grown in the saliva-based simplified mock
277 supragingival plaque community (Figs. 2E-F). Filaments extended from the core of the
278 biofilm to the periphery where corncobs formed at the distal ends of the apparent growth
279 tip (Fig. 5, arrow). Within the ex-vivo plaque image, we measured filament widths
280 ranging from 0.6 to 1.3 μm , matching heterogeneity in width that we recorded in vitro
281 within the saliva condition (Fig. 2B). We also measured single ex-vivo cells that
282 increased in width across the length of the filament, like those measured in vitro (SI
283 Appendix, Fig. S2). Finally, individual filaments were not always straight, and instead
284 often showed sharp breaks or turns in direction. This tangled mass of filaments,
285 extending at all angles, was conceivably the result of microcolony growth driven by
286 multiple division as seen in Movies S1-S4.

287

288 **Discussion**

289 **New Cell Cycle Biology and Comparison with Other Bacteria**

290 The cellular growth and division cycle in *C. matruchotii* has unique qualities that go
291 beyond features shared with other Gram-positive bacteria. In many Gram-positive rod-

292 shaped bacteria such as *B. subtilis*, new peptidoglycan is synthesized dispersively
293 along the sidewall (42, 43). In contrast, cellular elongation in *C. matruchotii* occurs via
294 polar growth (44). The feature of polar growth is shared with *Corynebacterium*
295 *glutamicum* and mycobacteria, except that in these taxa, growth is bipolar with cell wall
296 synthesis occurring at both poles (42, 43, 45-48), whereas in *C. matruchotii*,
297 peptidoglycan synthesis occurs unidirectionally at one cell pole (Fig. 6). This type of
298 unipolar elongation has previously been described in more distantly related
299 streptomycetes and in some alphaproteobacteria (42, 49, 50).

300 We observed that *C. matruchotii* divides through a form of V-snapping as seen in other
301 Actinobacteria (46, 48, 51), resulting in partial attachment of daughter cells by a hinge-
302 like structure (48, 51). Despite the overall commonality of V-snapping-like division, *C.*
303 *matruchotii* does not divide by binary fission like other species in the genera
304 *Corynebacterium* and *Mycobacterium* (48, 52-54). Rather, *C. matruchotii* divides
305 through simultaneous multiple fission (Fig. 6). Outgrowth of new filaments half the width
306 of the daughter cells that they emerge from is another variance from other bacteria in
307 the order Mycobacterales, which continue to grow after binary fission at or near the
308 same width as the mother cell (46, 52).

309 The hyphal lifestyle of the genus *Streptomyces* parallels most aspects of the *C.*
310 *matruchotii* growth cycle, including elongation by tip extension, V-snapping, and a
311 multiple division-based reproductive stage. In *Streptomyces*, hyphae are a vegetative
312 growth phase, whereby filamentous cells elongate by tip extension (50, 55). Then aerial
313 hyphae develop, septate at many sites simultaneously (referred to as sporulation septa)
314 and divide into unigenomic prespore compartments (8, 55, 56). Zhou, Halladin and

315 Theriot described this process in *S. venezuelae* as a “chain reaction,” during which
316 hyphae snapped at once or in quick succession into many spores (51). Images of
317 sporulation septa in *S. venezuelae* or sporangia in *B. subtilis* can appear superficially
318 similar to the fluorescence micrographs of multiple division that we captured (55-57),
319 including nucleoid condensation and occlusion from septal regions (58). However,
320 *Corynebacterium* species are not known to form endospores (32, 59). Instead, multiple
321 division in *C. matruchotii* gives rises to new vegetative cells that immediately elongate.
322 We identified predicted orthologs of bacterial polar elongation and division proteins that
323 are attractive targets for future investigation of tip extension and multiple fission in *C.*
324 *matruchotii* (SI Appendix, Table S1). Based on studies of *C. glutamicum* (60, 61), we
325 expect that DivIVA is essential for polar elongation. DivIVA (known as Wag31 in
326 mycobacteria) localizes to growing poles in actinobacteria, where it acts as a scaffold
327 that recruits other components to the polar elongation complex (or polarisome) (60, 62-
328 64). Distinct dynamics of the contractile ring-forming protein FtsZ and FtsZ-interacting
329 proteins of the division complex (or divisome), such as SepF and SepH (65, 66), are
330 also likely at play. The synchronous assembly of Z-ladders during the development of
331 sporulation septa in *S. coelicolor* serves as one model for how FtsZ may localize during
332 multiple division (56). We anticipate that the corynebacterial cytoskeletal element RsmP
333 (Rod-Shaped-Morphology Protein) is involved as well. Like Scy and FilP in
334 *Streptomyces* species (67-71), RsmP is an intermediate-filament-like protein that self-
335 assembles into filaments in vitro and within living cells (61). Mutation, depletion or
336 overexpression of several other genes in *Corynebacterium* and *Mycobacterium* species
337 that are normally short rods resulted in a filamentous or multiseptate phenotype (72).

338 Mutating the gene encoding lipoprotein LpqB in *M. smegmatis* resulted in a hyphal,
339 polyploid cellular phenotype resembling the natural morphology of streptomycetes (73).
340 Likewise, depletion of WhiB2 in *M. smegmatis*, a homolog of transcriptional regulator
341 WhiB essential for septation of aerial hyphae in streptomycetes, caused a filamentous,
342 branching phenotype (72, 74). We found homologs of all these proteins in *C.*
343 *glutamicum*, a taxon with a short rod morphology that divides by binary fission. This
344 suggests that the *C. matruchotii* growth form results from modifications to the structure
345 and function, localization and/or expression of these proteins rather than their presence
346 or absence. Considering that researchers continue to find proteins with new functions in
347 actinobacterial growth and division (66-68, 75), it is plausible that unknown molecular
348 factors will be discovered while elucidating the *C. matruchotii* cell cycle.

349

350 **Cell Division is Heterogenous and Exceeds the Level of Asymmetry Observed in**
351 **Mycobacteria**

352 Bacteria from the genus *Mycobacterium* reproduce through an asymmetric form of
353 binary fission (47). A wider distribution of division symmetries has been recorded among
354 populations of mycobacteria cells relative to *E. coli* and vegetative *B. subtilis* cells that
355 typically divide into two cells of equal length (36, 52, 76). Despite this distinction, only a
356 minority of sister pairs in *M. smegmatis* and *M. tuberculosis* are asymmetric, with most
357 daughter cells being near symmetric (36). In contrast, over 90% of daughter cells in *C.*
358 *matruchotii* were asymmetric, consistent with a lack of binary fission. Heterogeneity in
359 *C. matruchotii* cellular growth is also seen in the wide range of daughter cell lengths
360 after multiple division and in lag periods before new outgrowth that occurred in a

361 minority of daughter cells. These growth lags resembled “new end take off” dynamics in
362 *M. smegmatis* and *M. tuberculosis* (52).

363 In mycobacteria, physiological heterogeneity and asymmetry can enhance the ability of
364 a population of cells to cope with environmental stress and variable microenvironments
365 (36, 46, 77), and future studies may test whether the same is true for *C. matruchotii*.
366 Mycobacterial cells with variable sizes and growth rates have survival advantages
367 during antibiotic treatment and within host tissues (46, 77). This relationship between
368 heterogeneity at the population level and differential survival of individual cells likely
369 extends to the oral cavity, where *C. matruchotii* encounters a variety of physical,
370 chemical, and biological conditions (15, 78).

371

372 **Spatial Context for the Whip Handle Morphology, and a Constitutive, Natural
373 Filamentous Lifecycle**

374 Our time-lapse imaging of immobilized microcolonies adds spatiotemporal context to the
375 pleomorphic forms seen in shaken liquid or otherwise disrupted cultures (32). Whip
376 handles are the shorter cells generated from simultaneous multiple division of a
377 filament, with outgrowths of the new thinner filaments. Unlike conditional filamentation
378 induced by SOS responses (79), or filamentous phenotypes of genetically engineered
379 bacterial strains (58, 80), the filamentous lifecycle is natural and constitutive in *C.*
380 *matruchotii*. Our experiments show a filamentous growth cycle in two undomesticated,
381 genetically wild type human isolates, without antibiotic treatment, DNA damage, or other
382 experimental stress, in rich and reduced strength saliva media, in monoculture and
383 multispecies microcolonies, and throughout 24-hour growth experiments, at low and

384 high cell densities. This filamentous lifecycle is also unlike that of the so-called cable
385 bacteria and giant bacteria like *Thiomargarita* species, which grow as chained cells that
386 are intrinsically multicellular as they elongate (7, 81).

387

388 ***Corynebacterium matruchotii* is Among the Most Rapidly Elongating Bacteria**

389 *Corynebacterium matruchotii* is capable of sustained cell elongation rates above 16
390 microns per hour, greater than most other bacteria and all close relatives in the genera
391 *Corynebacterium* and *Mycobacterium* with known elongation rates. Wild type C.
392 *glutamicum* cells elongated at maximum of $2.6 \mu\text{m}\cdot\text{h}^{-1}$ in BHI medium in one study (53),
393 and a few cells reached $3 \mu\text{m}\cdot\text{h}^{-1}$ in another study, with the average under $2 \mu\text{m}\cdot\text{h}^{-1}$ (47).
394 Maximum elongation rates within *Mycobacterium smegmatis* cell populations in rich
395 medium were reported under $2 \mu\text{m}\cdot\text{h}^{-1}$ (36) and pathogens like *M. tuberculosis* have
396 much lower maximum elongation rates (36, 52). Among model Gram negative and
397 Gram positive bacteria, *E. coli* elongated at $3.72 \mu\text{m}\cdot\text{h}^{-1}$ (36) and *B. subtilis* at a
398 maximum of $3.5 \mu\text{m}\cdot\text{h}^{-1}$ in an intermediate growth condition and $8 \mu\text{m}\cdot\text{h}^{-1}$ in a fast
399 growing condition (82). In summary, *C. matruchotii* cells elongate twice as fast as *B.*
400 *subtilis*, 4 times faster than *E. coli*, and more than 5 times faster than other
401 *Corynebacterium* and *Mycobacterium* species.

402 One bacterial genus with measured cellular elongation rates that do match *C.*
403 *matruchotii* is *Streptomyces*, the same group that we argue shares the most in common
404 with the *C. matruchotii* filamentous lifecycle. Several hyphal *Streptomyces* species
405 elongate by tip extension at rates of $10 \mu\text{m}\cdot\text{h}^{-1}$ (83), or above $20 \mu\text{m}\cdot\text{h}^{-1}$ in some culture

406 conditions (84). An increase in elongation rate as cells lengthen has also been reported
407 for *Streptomyces* species (83). The increase we measured may be due to an
408 accumulation of proteins that mediate cell wall biogenesis at the growth tip, and was
409 correlated with an increase in subapical width, presumably expanding the growth zone.
410 In mycobacteria, accumulation of the polar growth scaffold protein Wag31 resulted in
411 increased polar elongation rates over time for individual cells (52).

412

413 **Significance for the Spatial Organization of the Natural Plaque Biofilm**

414 We propose that rapid growth by tip extension and simultaneous multiple division
415 explain how *C. matruchotii* outcompetes other taxa to form filamentous networks at the
416 core of the dental plaque biofilm (15). At each multiple division event, cells nucleate
417 outgrowth of many additional growth tips extending at different angles relative to the
418 axis of the mother cell. Based on the elongation rates that we report, a colony of
419 filamentous *C. matruchotii* cells could theoretically advance 0.3-0.4 millimeters in
420 favorable growth conditions during a 24-hour period. Like sessile *Streptomyces* bacteria
421 and mycelial fungi that evolved a hyphal lifecycle adapted to utilizing nutrients among
422 particles of soil or decaying plant material (85, 86), we speculate that a filamentous
423 mode of growth, the capacity for rapid tip extension, and reproduction by multiple
424 division provide selective advantages as *C. matruchotii* competes for space and
425 nutrients within the heterogeneous, biodiverse dental plaque environment.

426 Considering that *C. matruchotii* is incapable of swimming motility, the ability to
427 elongate rapidly by tip extension may enable a form of exploratory growth that

428 enhances cell fitness in certain conditions. At high cell density and favorable growth
429 conditions, multiple division may occur more frequently, promoting a rapid increase in
430 the number of cells and growth tips that is associated with exponential growth of a
431 microcolony. Long filaments (50 to >120 μ m) that elongate for extended periods of time
432 could favor mutualistic interspecies interactions. For example, corncobs may develop at
433 the edge of hedgehog consortia through the coupling of *C. matruchotii* tip extension with
434 streptococcal reproduction. Tip extension would expand the attachment substrate and
435 interface for chemical interaction (30) for growing streptococci. Beyond the significance
436 for dental plaque, insights from this study provide a striking example of how bacterial
437 cell morphology and growth dynamics can structure the spatial organization of microbial
438 communities.

439

440 Materials and Methods

441 **Strains, Growth Media and Culture Conditions**

442 The strains used in this study (SI Appendix, Table S2) were cultured in BHI medium (37
443 g in 1L, BD Cat. No. B11059) with 0.5% (w/v) yeast extract. Cells were used for
444 experiments after a single growth passage from frozen glycerol stocks inoculated on
445 BHI medium containing 1.5% agar. Cultures were incubated at 37°C, shaking at 180
446 rpm. Our protocol for producing saliva growth medium was adapted from previous
447 studies (87, 88). 5 ml of unstimulated saliva was collected from four volunteers who self-
448 identified as having good oral health and combined. The pooled saliva was centrifuged
449 at 1500 rpm for 10 m and the supernatant was diluted with phosphate-buffered saline

450 (PBS) to a final concentration of 25%. The 25% saliva solution was supplemented to a
451 final concentration of 0.25% BHI powder and 0.25% yeast extract and passed twice
452 through a 0.22-micron filter. This saliva medium is ~1/15 strength BHI relative to full
453 strength BHI medium. Protocols involving human saliva including volunteer consent
454 were approved by an Institutional Review Board (WCG IRB Protocol #20232102).

455

456 **Preparation of Bacteria for Time-lapse Microscopy**

457 Overnight cultures of *C. matruchotii* were diluted 1:50 in BHI medium and incubated for
458 ~8 h until they reached an optical density at 600 nm of 0.4-0.5. These mid-exponential
459 phase cultures were centrifuged at 10,000 rpm for 2 m, resuspended in fresh medium,
460 mechanically homogenized by pipetting, and diluted 1:10 in fresh growth medium. 10 μ l
461 of diluted culture was then aliquoted onto the bottom surface of a chambered
462 coverglass (Ibidi Cat. No. 80807). An agarose pad (growth medium supplemented with
463 1.5% agarose) was then placed and gently pressed on top of the cell culture suspension
464 to confine cellular growth within a narrow focal range. The lid was added to the
465 chambered coverglass and the vessel was immediately placed within the microscope
466 incubator system.

467

468 **Multispecies Mock Supragingival Plaque Community**

469 Multispecies biofilms were established to test *C. matruchotii* growth dynamics in a
470 system that more closely resembled the natural condition. *Actinomyces naeslundii* and
471 *Streptococcus cristatus* (SI Appendix, Table S2) were chosen for coculture with *C.*

472 *matruchotii* because they are prevalent and abundant in supragingival plaque (15, 24).
473 *A. naeslundii* and *S. cristatus* were grown in BHI medium and prepared through the
474 same process described for *C. matruchotii*. Mid-exponential phase cultures of the 3
475 species were centrifuged at 10,000 rpm for 2 m, washed by resuspension in PBS,
476 centrifuged again, and resuspended in the 25% saliva medium. A mixture of the cultures
477 of each species in saliva medium at equal volumes was used to inoculate chambered
478 coverglass wells. The coverglass was coated with saliva as an attachment substrate
479 intended to mimic the salivary pellicle of teeth. Saliva coating was performed by adding
480 50 μ l of 25% sterile saliva to each well, rotating to coat the entire surface, and drying
481 uncovered in a laminar flow hood for 1 hour.

482

483 **Labeling Experiments with Fluorescent D-amino Acids and Nucleoid Stains**

484 Fluorescent D-amino acid experiments were conducted as previously described (37, 39,
485 40) using FDAA molecules HADA, NADA green and Rf470DL (SI Appendix, Table S3).
486 Overnight cultures were diluted 1:50 in BHI, grown until mid-exponential phase and then
487 diluted again in fresh medium containing FDAA. The duration and number of FDAA
488 exposures, whether a single pulse or sequential exposures (virtual timelapse), are
489 indicated in Figs. 3-4. All exposures occurred at a working FDAA concentration of 0.25
490 mM, incubated at 37°C in BHI medium.

491 For the single 15 m pulse of Rf470DL (Fig. 3A), cultures were immediately washed after
492 FDAA exposure by centrifugation at 10,000 rpm for 2 m and resuspension in cold PBS.

Tip extension and simultaneous multiple fission in a filamentous bacterium

493 Cold ethanol was added to a final concentration of 70% and cells were fixed on ice for 1
494 hour. Cells were then washed twice in PBS and resuspended in PBS prior to imaging.

495 For virtual time-lapse experiments, cells were washed twice with PBS after the initial
496 exposure to remove the first FDAA. After washing, cells were resuspended in 1 ml of
497 pre-warmed growth medium containing a second FDAA and returned to the incubator.

498 For 2-color experiments (Fig. 3B), cells were washed and fixed after the second
499 exposure. For 3-color experiments (Fig. 3C), washing was repeated after the second
500 exposure, and cells were resuspended in medium containing a third FDAA, then
501 incubated, washed and fixed.

502 For experiments when FDAA labeling was combined with nucleoid staining (Fig. 4),
503 cells were exposed to FDAAAs within growth medium as described above, washed, and
504 then incubated at room temperature with SYBR green for 15 m in PBS at a working
505 concentration of 2x according to manufacturer instructions. Following SYBR labeling,
506 cells were washed twice with PBS and immediately imaged without fixation. We imaged
507 these cells without fixation to avoid loss of SYBR signal due to interaction with ethanol
508 (89). Ethanol fixation reportedly causes a hollowing (phase-transparency) of some
509 bacterial cells (39), which could perturb the natural organization of nucleoids.

510

511 To collect reference spectra for linear unmixing of multi-label experiments, cells were
512 labeled at the same working concentrations with each FDAA individually for 4 h, and
513 with SYBR green alone for 15 m. For imaging FDAA experiments, cell suspensions
514 were mounted on a 1.5% agarose pad (prepared with PBS). The agarose pad was

515 covered by a No. 1.5 coverglass within a 125 μ l Gene Frame (Thermo Scientific AB-
516 0578) adhered to a standard microscope slide (90).

517

518 **CLASI-FISH of Ex-vivo Dental Plaque**

519 The dental plaque sample shown in Fig. 5 was collected, fixed, hybridized, mounted,
520 imaged, and analyzed through the methods detailed in Mark Welch et al. 2016 (15).
521 Fluorescence signal for the five species in Fig. 5 corresponds to hybridization with
522 probes Cor633, Str405, Cap371, Fus714 and Lep568 as previously described (15).

523

524 **Microscopy Acquisition and Image Analyses**

525 Images for time-lapse experiments were captured using a Zeiss Plan-Apochromat
526 63 \times /1.4 NA oil lens on a Zeiss LSM 980 microscope system configured on an inverted
527 Axio Observer Z1, with Pecon incubation system. The system included a heated stage
528 insert, heated insert lid, and light-tight incubated chamber, set to 37°C and 5% CO₂
529 (except for the experiment shown in Movie S4 when cells were grown without CO₂).
530 Transmitted light images for time-lapse series were captured at 10 m intervals through
531 T-PMT with excitation from the 639 nm laser at 0.2% power, automated through the
532 Zeiss ZEN software. Cell length and width were measured using Fiji (91). Length was
533 measured along the center line of filaments, accounting for cell curvature. See the SI
534 Appendix for additional detail on image analyses.

535 Virtual time-lapse imaging experiments with FDAs were imaged with a Zeiss Plan-
536 Apochromat 40 \times /1.4 NA oil lens on a Zeiss LSM 780 system, configured on an inverted

537 Axio Observer, and equipped with a 34-channel spectral array module. Images for multi-
538 label experiments were captured in lambda mode with 405 nm, 458 nm and 488 nm
539 laser excitation. Within the Zeiss ZEN software, a median filter was applied with a kernel
540 size of 3 for X and Y and reference spectra were used for weighted linear unmixing.

541

542 Data, Materials, and Software Availability

543 All data are included in the main article and/or supporting information files.

544

545 Acknowledgements

546 This work was supported by NIH award R01 DE022586 and NSF award 2245229. We
547 thank Carsten Wolff and Louie Kerr from the Central Microscopy Facility at the Marine
548 Biological Laboratory, and Blair Paul for providing fluorescent D amino acids. We thank
549 Katharina Ribbeck, Sujit Datta, Gilles van Wezel, Matthew Ramsey and Tabita Ramirez-
550 Puebla for helpful discussions on this project.

551

552 References

553 1. J. R. Banavar, T. J. Cooke, A. Rinaldo, A. Maritan, Form, function, and evolution
554 of living organisms. *Proc Natl Acad Sci U S A* **111**, 3332-3337 (2014).

555 2. D. T. Kysela, A. M. Randich, P. D. Caccamo, Y. V. Brun, Diversity Takes Shape:
556 Understanding the Mechanistic and Adaptive Basis of Bacterial Morphology.
557 *PLoS Biol* **14**, e1002565 (2016).

558 3. K. D. Young, The selective value of bacterial shape. *Microbiol Mol Biol Rev* **70**,
559 660-703 (2006).

560 4. C. R. Mahone, E. D. Goley, Bacterial cell division at a glance. *J Cell Sci* **133**
561 (2020).

562 5. E. R. Angert, Alternatives to binary fission in bacteria. *Nat Rev Microbiol* **3**, 214-
563 224 (2005).

564 6. P. J. Eswara, K. S. Ramamurthi, Bacterial Cell Division: Nonmodels Poised to
565 Take the Spotlight. *Annu Rev Microbiol* **71**, 393-411 (2017).

566 7. P. A. Levin, E. R. Angert, Small but Mighty: Cell Size and Bacteria. *Cold Spring
567 Harb Perspect Biol* **7**, a019216 (2015).

568 8. D. Jakimowicz, G. P. van Wezel, Cell division and DNA segregation in
569 Streptomyces: how to build a septum in the middle of nowhere? *Mol Microbiol* **85**,
570 393-404 (2012).

571 9. J. B. Waterbury, R. Y. Stanier, Patterns of growth and development in
572 pleurocapsalean cyanobacteria. *Microbiol Rev* **42**, 2-44 (1978).

573 10. J. Kaljevic *et al.*, Chromosome choreography during the non-binary cell cycle of a
574 predatory bacterium. *Curr Biol* **31**, 3707-3720 e3705 (2021).

575 11. J. K. Wagner, S. Setayeshgar, L. A. Sharon, J. P. Reilly, Y. V. Brun, A nutrient
576 uptake role for bacterial cell envelope extensions. *Proc Natl Acad Sci U S A* **103**,
577 11772-11777 (2006).

578 12. W. P. Smith *et al.*, Cell morphology drives spatial patterning in microbial
579 communities. *Proc Natl Acad Sci U S A* **114**, E280-E286 (2017).

580 13. B. R. Wucher, J. B. Winans, M. Elsayed, D. E. Kadouri, C. D. Nadell, Breakdown
581 of clonal cooperative architecture in multispecies biofilms and the spatial ecology
582 of predation. *Proc Natl Acad Sci U S A* **120**, e2212650120 (2023).

583 14. C. D. Nadell, J. B. Xavier, K. R. Foster, The sociobiology of biofilms. *FEMS*
584 *Microbiol Rev* **33**, 206-224 (2009).

585 15. J. L. Mark Welch, B. J. Rossetti, C. W. Rieken, F. E. Dewhirst, G. G. Borisy,
586 Biogeography of a human oral microbiome at the micron scale. *Proc Natl Acad*
587 *Sci U S A* **113**, E791-800 (2016).

588 16. G. A. O'Toole, We have a community problem. *Journal of Bacteriology* **0**,
589 e00073-00024 (2024).

590 17. S. Banerjee, K. Schlaeppi, M. G. A. van der Heijden, Keystone taxa as drivers of
591 microbiome structure and functioning. *Nat Rev Microbiol* **16**, 567-576 (2018).

592 18. B. Niu, J. N. Paulson, X. Zheng, R. Kolter, Simplified and representative bacterial
593 community of maize roots. *Proc Natl Acad Sci U S A* **114**, E2450-E2459 (2017).

594 19. F. E. Dewhirst *et al.*, The human oral microbiome. *J Bacteriol* **192**, 5002-5017
595 (2010).

596 20. J. L. Baker, J. L. Mark Welch, K. M. Kauffman, J. S. McLean, X. He, The oral
597 microbiome: diversity, biogeography and human health. *Nat Rev Microbiol* **22**,
598 89-104 (2024).

599 21. L. Eriksson, P. Lif Holgerson, I. Johansson, Saliva and tooth biofilm bacterial
600 microbiota in adolescents in a low caries community. *Sci Rep* **7**, 5861 (2017).

601 22. A. Benitez-Paez, P. Belda-Ferre, A. Simon-Soro, A. Mira, Microbiota diversity
602 and gene expression dynamics in human oral biofilms. *BMC Genomics* **15**, 311
603 (2014).

604 23. A. Esberg *et al.*, *Corynebacterium matruchotii* Demography and Adhesion
605 Determinants in the Oral Cavity of Healthy Individuals. *Microorganisms* **8** (2020).

606 24. A. M. Eren, G. G. Borisy, S. M. Huse, J. L. Mark Welch, Oligotyping analysis of
607 the human oral microbiome. *Proc Natl Acad Sci U S A* **111**, E2875-2884 (2014).

608 25. R. D. Olson *et al.*, Introducing the Bacterial and Viral Bioinformatics Resource
609 Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. *Nucleic Acids*
610 *Res* **51**, D678-D689 (2023).

611 26. R. S. Gupta, Commentary: Genome-Based Taxonomic Classification of the
612 Phylum Actinobacteria. *Front Microbiol* **10**, 206 (2019).

613 27. I. F. Escapa *et al.*, New Insights into Human Nostril Microbiome from the
614 Expanded Human Oral Microbiome Database (eHOMD): a Resource for the
615 Microbiome of the Human Aerodigestive Tract. *mSystems* **3** (2018).

616 28. K. Schoilew *et al.*, Bacterial biofilm composition in healthy subjects with and
617 without caries experience. *J Oral Microbiol* **11**, 1633194 (2019).

618 29. V. Morillo-Lopez, A. Sjaarda, I. Islam, G. G. Boris, J. L. Mark Welch, Corncob
619 structures in dental plaque reveal microhabitat taxon specificity. *Microbiome* **10**,
620 145 (2022).

621 30. E. Almeida *et al.*, Bacterial multispecies interaction mechanisms dictate
622 biogeographic arrangement between the oral commensals *Corynebacterium*
623 *matruchotii* and *Streptococcus mitis*. *mSystems* **8**, e0011523 (2023).

624 31. P. Lancy, Jr., B. Appelbaum, S. C. Holt, B. Rosan, Quantitative in vitro assay for
625 "corncob" formation. *Infect Immun* **29**, 663-670 (1980).

626 32. S. L. Barrett, B. T. Cookson, L. C. Carlson, K. A. Bernard, M. B. Coyle, Diversity
627 within reference strains of *Corynebacterium matruchotii* includes

628 Corynebacterium durum and a novel organism. *J Clin Microbiol* **39**, 943-948

629 (2001).

630 33. M. N. Gilmour, P. A. Hunter, Isolation of an oral filamentous microorganism. *J*
631 *Bacteriol* **76**, 294-300 (1958).

632 34. M. N. Gilmour, The classification of organisms termed Leptotrichia (Leptothrix)
633 buccalis. II. Reproduction of Bacterionema matruchotii. *Bacteriol Rev* **25**, 142-
634 151 (1961).

635 35. B. G. Bibby, G. P. Berry, A Cultural Study of Filamentous Bacteria Obtained from
636 the Human Mouth. *J Bacteriol* **38**, 263-274 (1939).

637 36. B. B. Aldridge *et al.*, Asymmetry and aging of mycobacterial cells lead to variable
638 growth and antibiotic susceptibility. *Science* **335**, 100-104 (2012).

639 37. E. Kuru *et al.*, In Situ probing of newly synthesized peptidoglycan in live bacteria
640 with fluorescent D-amino acids. *Angew Chem Int Ed Engl* **51**, 12519-12523
641 (2012).

642 38. E. Kuru *et al.*, Mechanisms of Incorporation for D-Amino Acid Probes That Target
643 Peptidoglycan Biosynthesis. *ACS Chem Biol* **14**, 2745-2756 (2019).

644 39. E. Kuru, S. Tekkam, E. Hall, Y. V. Brun, M. S. Van Nieuwenhze, Synthesis of
645 fluorescent D-amino acids and their use for probing peptidoglycan synthesis and
646 bacterial growth in situ. *Nat Protoc* **10**, 33-52 (2015).

Tip extension and simultaneous multiple fission in a filamentous bacterium

647 40. Y. P. Hsu *et al.*, Full color palette of fluorescent d-amino acids for in situ labeling
648 of bacterial cell walls. *Chem Sci* **8**, 6313-6321 (2017).

649 41. Y. P. Hsu *et al.*, Fluorogenic D-amino acids enable real-time monitoring of
650 peptidoglycan biosynthesis and high-throughput transpeptidation assays. *Nat
651 Chem* **11**, 335-341 (2019).

652 42. P. J. Brown, D. T. Kysela, Y. V. Brun, Polarity and the diversity of growth
653 mechanisms in bacteria. *Semin Cell Dev Biol* **22**, 790-798 (2011).

654 43. R. A. Daniel, J. Errington, Control of cell morphogenesis in bacteria: two distinct
655 ways to make a rod-shaped cell. *Cell* **113**, 767-776 (2003).

656 44. R. Locci, K. P. Schaal, Apical growth in facultative Anaerobic actinomycetes as
657 determined by immunofluorescent labeling. *Zentralbl Bakteriol A* **246**, 112-118
658 (1980).

659 45. J. W. Sher, H. C. Lim, T. G. Bernhardt, Polar Growth in *Corynebacterium*
660 *glutamicum* Has a Flexible Cell Wall Synthase Requirement. *mBio* **12**, e0068221
661 (2021).

662 46. K. J. Kieser, E. J. Rubin, How sisters grow apart: mycobacterial growth and
663 division. *Nat Rev Microbiol* **12**, 550-562 (2014).

664 47. B. Sieger, K. Schubert, C. Donovan, M. Bramkamp, The lipid II flippase RodA
665 determines morphology and growth in *Corynebacterium glutamicum*. *Mol
666 Microbiol* **90**, 966-982 (2013).

667 48. E. C. Hett, E. J. Rubin, Bacterial growth and cell division: a mycobacterial
668 perspective. *Microbiol Mol Biol Rev* **72**, 126-156, table of contents (2008).

669 49. P. J. Brown *et al.*, Polar growth in the Alphaproteobacterial order Rhizobiales.
670 *Proc Natl Acad Sci U S A* **109**, 1697-1701 (2012).

671 50. K. Flardh, Cell polarity and the control of apical growth in Streptomyces. *Curr*
672 *Opin Microbiol* **13**, 758-765 (2010).

673 51. X. Zhou, D. K. Halladin, J. A. Theriot, Fast Mechanically Driven Daughter Cell
674 Separation Is Widespread in Actinobacteria. *mBio* **7** (2016).

675 52. M. T. M. Hannebelle *et al.*, A biphasic growth model for cell pole elongation in
676 mycobacteria. *Nat Commun* **11**, 452 (2020).

677 53. J. J. Messelink, F. Meyer, M. Bramkamp, C. P. Broedersz, Single-cell growth
678 inference of *Corynebacterium glutamicum* reveals asymptotically linear growth.
679 *Elife* **10** (2021).

680 54. X. Zhou *et al.*, Sequential assembly of the septal cell envelope prior to V
681 snapping in *Corynebacterium glutamicum*. *Nat Chem Biol* **15**, 221-231 (2019).

682 55. S. Schlimpert, M. A. Elliot, The Best of Both Worlds-Streptomyces coelicolor and
683 Streptomyces venezuelae as Model Species for Studying Antibiotic Production
684 and Bacterial Multicellular Development. *J Bacteriol* **205**, e0015323 (2023).

685 56. J. Schwedock, J. R. McCormick, E. R. Angert, J. R. Nodwell, R. Losick,
686 Assembly of the cell division protein FtsZ into ladder-like structures in the aerial
687 hyphae of *Streptomyces coelicolor*. *Mol Microbiol* **25**, 847-858 (1997).

688 57. L. Shapiro, H. H. McAdams, R. Losick, Why and how bacteria localize proteins.
689 *Science* **326**, 1225-1228 (2009).

690 58. L. J. Wu, J. Errington, Coordination of cell division and chromosome segregation
691 by a nucleoid occlusion protein in *Bacillus subtilis*. *Cell* **117**, 915-925 (2004).

692 59. F. Soriano, J. Zapardiel, E. Nieto, Antimicrobial susceptibilities of
693 *Corynebacterium* species and other non-spore-forming gram-positive bacilli to 18
694 antimicrobial agents. *Antimicrob Agents Chemother* **39**, 208-214 (1995).

695 60. M. Letek *et al.*, DivIVA is required for polar growth in the MreB-lacking rod-
696 shaped actinomycete *Corynebacterium glutamicum*. *J Bacteriol* **190**, 3283-3292
697 (2008).

698 61. M. Fiúza *et al.*, Phosphorylation of a novel cytoskeletal protein (RsmP) regulates
699 rod-shaped morphology in *Corynebacterium glutamicum*. *J Biol Chem* **285**,
700 29387-29397 (2010).

701 62. L. R. Hammond, M. L. White, P. J. Eswara, ¡vIVA la DivIVA! *J Bacteriol* **201**
702 (2019).

703 63. X. Meniche *et al.*, Subpolar addition of new cell wall is directed by DivIVA in
704 mycobacteria. *Proc Natl Acad Sci U S A* **111**, E3243-3251 (2014).

705 64. D. van Dissel, D. Claessen, G. P. van Wezel, Morphogenesis of Streptomyces in
706 submerged cultures. *Adv Appl Microbiol* **89**, 1-45 (2014).

707 65. A. Sogues *et al.*, Essential dynamic interdependence of FtsZ and SepF for Z-ring
708 and septum formation in *Corynebacterium glutamicum*. *Nat Commun* **11**, 1641
709 (2020).

710 66. F. Ramos-Leon *et al.*, A conserved cell division protein directly regulates FtsZ
711 dynamics in filamentous and unicellular actinobacteria. *Elife* **10** (2021).

712 67. K. Celler, R. I. Koning, A. J. Koster, G. P. van Wezel, Multidimensional view of
713 the bacterial cytoskeleton. *J Bacteriol* **195**, 1627-1636 (2013).

714 68. N. A. Holmes *et al.*, Coiled-coil protein Scy is a key component of a multiprotein
715 assembly controlling polarized growth in Streptomyces. *Proc Natl Acad Sci U S A*
716 **110**, E397-406 (2013).

717 69. S. Bagchi, H. Tomenius, L. M. Belova, N. Ausmees, Intermediate filament-like
718 proteins in bacteria and a cytoskeletal function in Streptomyces. *Mol Microbiol*
719 **70**, 1037-1050 (2008).

720 70. M. J. Frojd, K. Flardh, Apical assemblies of intermediate filament-like protein FilP
721 are highly dynamic and affect polar growth determinant DivIVA in *Streptomyces*
722 *venezuelae*. *Mol Microbiol* **112**, 47-61 (2019).

723 71. K. Fuchino *et al.*, Dynamic gradients of an intermediate filament-like cytoskeleton
724 are recruited by a polarity landmark during apical growth. *Proc Natl Acad Sci U S*
725 **A** **110**, E1889-1897 (2013).

726 72. N. Scherr, L. Nguyen, Mycobacterium versus Streptomyces--we are different, we
727 are the same. *Curr Opin Microbiol* **12**, 699-707 (2009).

728 73. H. T. Nguyen, K. A. Wolff, R. H. Cartabuke, S. Ogwang, L. Nguyen, A lipoprotein
729 modulates activity of the MtrAB two-component system to provide intrinsic
730 multidrug resistance, cytokinetic control and cell wall homeostasis in
731 Mycobacterium. *Mol Microbiol* **76**, 348-364 (2010).

732 74. J. E. Gomez, W. R. Bishai, whmD is an essential mycobacterial gene required for
733 proper septation and cell division. *Proc Natl Acad Sci U S A* **97**, 8554-8559
734 (2000).

735 75. M. Martinez *et al.*, Eukaryotic-like gephyrin and cognate membrane receptor
736 coordinate corynebacterial cell division and polar elongation. *Nat Microbiol* **8**,
737 1896-1910 (2023).

738 76. H. Botella *et al.*, Distinct Spatiotemporal Dynamics of Peptidoglycan Synthesis
739 between Mycobacterium smegmatis and Mycobacterium tuberculosis. *mBio* **8**
740 (2017).

741 77. E. S. Chung, W. C. Johnson, B. B. Aldridge, Types and functions of
742 heterogeneity in mycobacteria. *Nat Rev Microbiol* **20**, 529-541 (2022).

743 78. D. M. Proctor, D. A. Relman, The Landscape Ecology and Microbiota of the
744 Human Nose, Mouth, and Throat. *Cell Host Microbe* **21**, 421-432 (2017).

745 79. J. Bos *et al.*, Emergence of antibiotic resistance from multinucleated bacterial
746 filaments. *Proc Natl Acad Sci U S A* **112**, 178-183 (2015).

747 80. M. Letek *et al.*, Characterization of the promoter region of *ftsZ* from
748 *Corynebacterium glutamicum* and controlled overexpression of *FtsZ*. *Int Microbiol*
749 **10**, 271-282 (2007).

750 81. N. M. J. Geerlings *et al.*, Division of labor and growth during electrical
751 cooperation in multicellular cable bacteria. *Proc Natl Acad Sci U S A* **117**, 5478-
752 5485 (2020).

753 82. N. Nordholt, J. H. van Heerden, F. J. Bruggeman, Biphasic Cell-Size and
754 Growth-Rate Homeostasis by Single *Bacillus subtilis* Cells. *Curr Biol* **30**, 2238-
755 2247 e2235 (2020).

756 83. U. Reichl, T. K. Buschulte, E. D. Gilles, Study of the early growth and branching
757 of *Streptomyces tendae* by means of an image processing system. *J Microsc*
758 **158**, 55-62 (1990).

759 84. U. Reichl, R. King, E. D. Gilles, Effect of temperature and medium composition
760 on mycelial growth of *Streptomyces tendae* in submerged culture. *J Basic*
761 *Microbiol* **32**, 193-200 (1992).

762 85. K. F. Chater, Streptomyces inside-out: a new perspective on the bacteria that
763 provide us with antibiotics. *Philos Trans R Soc Lond B Biol Sci* **361**, 761-768
764 (2006).

765 86. M. Held, O. Kaspar, C. Edwards, D. V. Nicolau, Intracellular mechanisms of
766 fungal space searching in microenvironments. *Proc Natl Acad Sci U S A* **116**,
767 13543-13552 (2019).

768 87. A. Edlund *et al.*, An in vitro biofilm model system maintaining a highly
769 reproducible species and metabolic diversity approaching that of the human oral
770 microbiome. *Microbiome* **1**, 25 (2013).

771 88. A. Simon-Soro *et al.*, Polymicrobial Aggregates in Human Saliva Build the Oral
772 Biofilm. *mBio* **13**, e0013122 (2022).

773 89. W. Martens-Habbena, H. Sass, Sensitive determination of microbial growth by
774 nucleic acid staining in aqueous suspension. *Appl Environ Microbiol* **72**, 87-95
775 (2006).

776 90. I. G. de Jong, K. Beilharz, O. P. Kuipers, J. W. Veening, Live Cell Imaging of
777 *Bacillus subtilis* and *Streptococcus pneumoniae* using Automated Time-lapse
778 Microscopy. *J Vis Exp* 10.3791/3145 (2011).

779 91. J. Schindelin *et al.*, Fiji: an open-source platform for biological-image analysis.
780 *Nat Methods* **9**, 676-682 (2012).

781 Figure legends

782 **Fig. 1. Microcolony development is driven by filament elongation and**
783 **simultaneous multiple division.**

784 (A) The general phases of the *C. matruchotii* cell cycle highlighted by tracking a single
785 cell as it develops into a microcolony. In phase 1, the progenitor cell elongates and
786 forms a filament. The outline of the progenitor cell at $t = 0$ (purple) is overlaid on the 3.5
787 h image. Multiple septa then form along the filament (phase 2, arrows), and it divides
788 into many daughter cells simultaneously, with some daughter cells transiently attached
789 by a hinge-like structure (phase 3, arrow). After multiple division, new thinner filaments
790 emerge from daughter cells (phase 4, arrows). After the first division event, continued
791 cycles of filament elongation, multiple division, and daughter filament outgrowth drive
792 exponential growth of a microcolony (phase 5). (Scale bars for top panels and detail
793 panels below are 20 μm and 5 μm , respectively.) (B) Growth dynamics of the
794 microcolony imaged in (A). Black lines track elongation and division events (black
795 boxes) for individual cells, including the progenitor cell and some of its offspring. Overall
796 growth of the microcolony is expressed by the total number of cells (blue line) and %
797 area of the field of view covered by cells (orange line).

798

799 **Fig. 2. Single-cell growth kinetics and micron-scale morphometrics reveal rapid**
800 **elongation, heterogeneity, and asymmetry in the *C. matruchotii* cell cycle.**

801 (A) Representative images of microcolonies developing in several conditions, with cells
802 dividing by multiple division. (Scale bars: 10 μm .) (B) Width of mother cell filaments and
803 new filaments that emerge after multiple division, for 15 cells per condition. (C) The
804 number of daughter cells resulting from multiple division for 20 cells per strain, plotted
805 according to the length of the mother cell. (D) Violin plots of daughter cell lengths, with
806 mean shown as circles. (E) Daughter cell lengths plotted according to the length of the
807 mother cell at septation. Each vertical series represents one of 40 total cells. Most cells
808 divided after reaching lengths of 5-40 μm (Group 1), while other cells divided at lengths
809 ranging from 45-75 μm (Group 2). Below: a histogram of division symmetry values. (F)
810 Elongation rates of 12 individual cells (6 per condition) over an extended period of
811 growth (6-8 h), plotted according to cell length.
812

813

814 **Fig. 3. New peptidoglycan is synthesized at one pole of elongating filaments and**
815 **at the sites of multiple septa developing simultaneously within dividing cells.**

816 (A) Eight representative cells imaged following a single 15 min pulse of the fluorescent
817 D-amino acid Rf470DL. Outlines show the entire cell from transmitted light images. (B)
818 Maximum intensity projection images acquired from a 2-color virtual time-lapse
819 experiment, showing a dividing cell grown in the presence of the fluorescent D-amino
820 acid HADA for 4 hours, then washed and grown with NADA for 45 mins. The left panel
821 is the transmitted light image. Bottom image panels are maximum intensity views of the
822 X, Z plane showing 6 z-slices, representing 1.6 μm of depth. A fluorescence intensity
823 profile of each FDAA along the cell length is also shown. (C) Representative images of
824 elongating cells having a whip handle morphology from a 3-color virtual time-lapse
825 experiment. Cells were grown with sequential exposure to HADA for 4 h, followed by 30
826 min pulses of Rf470DL and NADA. A less common double-ended whip handle is also
827 highlighted (arrow), composed of two elongating cells divided by a septum. (Scale bars
828 for A-C: 10 μm .)

829

830 **Fig. 4. Nucleoids are condensed between multiple developing septa in dividing**
831 **cells.**

832 Columns A-C show cells representing three cell cycle stages: elongating, elongating
833 and septating, and elongating, septating and dividing. Cells were grown with a long
834 exposure (6 h) of Rf470DL, followed by washing and a 45 min HADA exposure. Then
835 cells were washed in PBS and labeled with the double-stranded DNA stain SYBR
836 green. Transmitted light images (top row) are single z-slices. Lower rows are maximum
837 projection images of 3 z-slices (showing a depth of 1 μ m) for the fluorescence channels
838 corresponding with the experiment overview schematic. (Scale bar: 10 μ m.)

839

840 **Fig. 5. Ex-vivo dental plaque biofilm contains a core of filamentous *C. matruchotii***
841 **cells with heterogenous lengths, widths, morphologies, and orientations,**
842 **consistent with in vitro experiments.**

843 A supragingival plaque sample imaged with the CLASI-FISH technique (15). Arrow
844 highlights a corncob formed by interaction between *C. matruchotii* and *Streptococcus*
845 cells. (Scale bar: 20 μ m.)

846

847 **Fig. 6. Tip extension and simultaneous multiple fission add special features**
848 **relative to other characterized bacterial reproductive modes**

849 A comparison of one generation of cell division for bacteria that undergo: (A)
850 symmetrical binary fission after adding new cell wall material along the sidewalls, as
851 seen in *E. coli* and vegetative *B. subtilis*, (B) exact or approximate symmetric polar
852 elongation and binary fission as seen in *C. glutamicum*, (C) asymmetric elongation and
853 binary fission as in *Mycobacterium* species, and (D) a model for tip extension and
854 simultaneous multiple fission in *C. matruchotii*, showing a filament dividing into 7
855 daughter cells (the median from our experimental data). Actively growing areas of the
856 cell are shown in lighter shades.