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ABSTRACT

In this study, we present a convolutional neural network (CNN)
architecture, GeoConv, designed to improve the accuracy and adapt-
ability of deep learning models using satellite imagery. Traditional
CNNs, such as ResNet18, employ fixed-weight convolutional lay-
ers - i.e., layers that leverage the same set of weights for each
input observation. However, these models can struggle to capture
context-specific features inherent in satellite images, which may
vary significantly across different geographic regions. To address
this challenge, the GeoConv model utilizes dynamic weights that
adapt based on the input image coordinates, allowing the model to
tailor its feature extraction process to the unique characteristics of
different geographic regions. Through experiments, we illustrate
the utility of this approach in a case study which leverages satellite
imagery to estimate household wealth across 11 countries, with
GeoConv explaining an additional 10.12% of the variance in the
data compared to a ResNet18 model. These results underscore the
importance of incorporating spatially adaptive mechanisms in han-
dling the variability present in satellite imagery. Code is available
at: https://github.com/heatherbaier/geoconv
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1 INTRODUCTION AND RELATED WORK

Convolutional Neural Networks (CNNs) have achieved significant
success across various visual recognition tasks [10, 11]. In most
applications, these networks employ fixed-weight convolutional
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layers, applying the same weights consistently across all inputs
[12]. While this approach is effective for tasks with consistent
visual features, it is challenged by the spatial variability inherent
in satellite imagery, where features can vary significantly across
geographic contexts [19].

We study this challenge in the context of predicting socioeco-
nomic indicators - such as household wealth - from satellite imagery,
a recent approach being utilized in the context of international de-
velopment and the social sciences more broadly [8, 15, 16]. In this
context, the generalizability of fixed-weight CNNs across diverse ge-
ographic regions is limited [4, 8], as the relationship between visual
features and wealth can differ markedly between urban and rural ar-
eas [5]. Scholars have explored various techniques, but broad-scope
estimation across multiple countries remains a challenge [3, 14].

Several models address spatial heterogeneity in deep learning.
The Spatial Ensemble Learning (SEL) framework clusters data into
zones and trains local classifiers to manage class ambiguity and
spatial dependencies [9]. The Spatial Transformation And mod-
eRation (STAR) model dynamically partitions the spatial domain,
introducing a hierarchical structure with a spatial moderator for
broader adaptability [17]. The Spatial Variability Aware Neural Net-
work (SVANN) modifies either its architecture or weights based on
location, enabling tailored responses to geographic variations [6].

Here, we build on these frameworks and present a model which
explicitly leverages geographic coordinate-based conditioning to
vary weights across individual inputs using hypernetworks. Hy-
pernetworks have recently emerged as a tool to enhance model
predictions by dynamically incorporating metadata into model
weights [7]. In spatial contexts, hypernetworks have been used
to generate weights based on factors like image capture time and
sensor-specific spectral wavelengths [13, 18].

In contrast to existing spatial variability aware networks, which
tend to focus on region-based model adaptation, GeoConv directly
integrates spatial metadata into hypernetwork layers for more flexi-
ble, fine-grained spatial adjustments. We demonstrate that GeoConv
significantly improves the generalization of wealth estimation from
satellite imagery across multiple countries by tailoring its feature ex-
traction to the specific characteristics of each region. Our approach
addresses the limitations of fixed-weight CNNs in spatially diverse
contexts and provides a flexible, scalable solution for satellite-based
socioeconomic analysis.

2 METHODOLOGY

GeoConv builds on the ResNet18 framework by integrating adap-
tive convolutional layers that dynamically adjust based on the geo-
graphic coordinates of the input images. The architecture begins
with an initial GeoConv 3x3 layer, followed by max pooling, three
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basic blocks, an adaptive block, and finally average pooling leading
to a linear classification layer. This integration allows the network
to tailor its feature extraction process to the specific characteristics
of different regions, improving the model’s ability to capture and
interpret the complex spatial patterns inherent in satellite imagery.
The implementation of coordinate-conditioned convolutional
layers in GeoConv involves four main steps:
(1) Coordinate Projection: The input image’s 2D coordinate vec-
tor, representing the latitude and longitude, is initially projected
into a higher-dimensional space to enable more complex mappings.
Specifically, this is done using a linear layer that transforms the 2D
coordinates into a 128-dimensional vector. The transformation is
governed by the equation:

01 = ReLU(ch + b])

where W; € R128%2 represents the weight matrix, and b; € R1%8 is
the bias vector. The ReLU activation function ensures that the pro-
jection captures non-linear relationships between the coordinates
and the subsequent convolutional weights.

(2) Feature Mapping: The 128-dimensional vector v; generated in
the previous step is then further mapped to match the number of
weights required for the convolutional filters in the network. For
example, if we target a convolutional layer with 64 input channels,
64 output channels, and a 3x3 kernel, the resulting number of pa-
rameters would be 36,864. This is achieved through a second linear
layer that takes the 128-dimensional vector and outputs a vector vz
with the required number of elements:

vg = Sigmoid(Who; + by)

Here, W € R9%128 and by € R represent the weight matrix and
bias vector of the second linear layer, respectively, where d is the
dimensionality needed to reshape vz into the convolutional kernel.
(3) Kernel Shaping: The output vector v; is then reshaped to form
the convolutional kernel weights. The reshaping process converts
the 1-dimensional output vector into a 4-dimensional tensor W’,
which represents the dynamically generated weights for the convo-
lutional operation:

W’ = reshape(v, [Cout, Cin, K, K1)

In this context, Coy; denotes the number of output channels, Ci,
denotes the number of input channels, and K represents the kernel
size (e.g., 3x3).

(4) Convolution Operation: Finally, the reshaped tensor W’ is
used as the convolutional kernel in the network’s layers. The adap-
tive nature of these weights allows each convolutional layer to
respond specifically to the geographic features of the input image,
enhancing the model’s ability to extract meaningful patterns that
are relevant to the spatial context.

By dynamically adjusting the convolutional kernel weights based
on the input image’s geographic coordinates, GeoConv seeks to
improve the network’s ability to delineate features pertinent to
different geographic regions. This approach is particularly advan-
tageous for tasks involving satellite imagery, where the spatial
variability of features can be substantial.
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2.1 Layer Placement Strategy

In the GeoConv architecture, we integrate adaptive convolutional
layers into a standard ResNet18 model. Specifically, we replace
the first convolutional layer and add adaptive layers before the
residual connections in the final convolutional block. These adap-
tive layers use weights computed by a hypernetwork, allowing the
model to fine-tune its convolutional filters based on geographic
metadata (in our experiments, latitude and longitude). This enables
targeted feature extraction relevant to the specific geographic con-
text—for example, emphasizing agricultural features in rural areas
or infrastructure-related features in urban regions. The remaining
layers follow the standard ResNet18 architecture.

3 EXPERIMENTS

3.1 Data

3.1.1 USAID Demographic and Health Survey. We utilize data from
the USAID Demographic and Health Surveys (DHS) [1], focusing
on the Wealth Index, a composite measure of household socioeco-
nomic status derived from principal component analysis (PCA) of
assets and housing characteristics. Wealth scores, standardized and
divided into quintiles, are mean-normalized per country as shown
in Equation 1:

_ X—H
Ynorm = max(x) — min(x) M

Xnorm: The mean-normalized value of the data point x.
x: An individual data point within the dataset.

#: The mean of all the data points in the dataset.
max(x): The maximum value in the dataset.

min(x): The minimum value in the dataset.

The presented analysis includes information from 11 countries
(95,579 data points) in Western Africa.

3.1.2  Planet Satellite Imagery. We used the 2023 Q3 global com-
posite Planet Basemaps [2] with 3m resolution, clipped to a 0.08km
buffer around each DHS point, resulting in 95,579 imagery tiles
labeled with the corresponding mean-normalized Wealth Index
value.

3.2 Implementation Details

All models are trained using PyTorch. We utilize an L1 loss function,
an Adam optimizer, and train each model for 200 epochs utilizing
3-kfold cross-validation. Each image has three RGB channels and
is cropped to an input size of 224 X 224 x 3. GeoConv utilizes a
learning rate of 0.00005, while the other models we contrast to
utilize a learning rate of 0.00001. Learning rates were selected after
a grid search of hyperparameters.

3.3 Training Procedure

We trained the GeoConv model using a single image per training
pass, replacing the batch normalization layers with InstanceNorm
layers to accommodate the batch size of 1. This approach allows
the model to adjust weights based on the metadata of each individ-
ual image. To maintain training efficiency, we employed gradient
accumulation over 64 images, updating the model parameters after
each accumulation and resetting the gradients.
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3.4 Evaluation Metrics

The performance of each model was evaluated using two metrics:
the r? score measures the proportion of variance in the dependent
variable predictable from the independent variable(s), and the Mean
Absolute Error (MAE) quantifies the average magnitude of errors
in a set of predictions, regardless of their direction.

3.5 Baseline Models for Comparison

In addition to the GeoConv model, we provide three baseline models
to contrast our findings to:

o ResNet18: A ResNet18 model trained by aggregating data
from all source countries.

e Spatial-Embed (SEM): A ResNet18 architecture with a 2-
layer MLP that projects the coordinates of every image into
latent space using 64 and 128 element linear layers. The
128-element output of the coordinate projector and the 512
element output from the final convoluional block of the
ResNet18 are concatenated into a 640 element vector that is
then fed through the final fully connected layer for a wealth
prediction.

e Dynamic Fully Connected Model (DFC): In DFC, a hy-
pernetwork is employed to generate the weights of the final
fully connected layer of a ResNet18. The hypernetwork takes
as input the coordinates of the input image and processes
them through 2 linear layers within the hypernetwork, re-
sulting in the dynamic generation of the weights for the final
fully connected layer.

These models are contrasted in our discussion to explore the
degree to which spatial metadata can improve the estimation of
household wealth from satellite images.

4 RESULTS

Table 1: Modeling Results

Model r? MAE

ResNet18  0.6027 0.0858
SEM 0.6122 0.084
DFC 0.6424  0.0793

GeoConv 0.7039 0.0678

Table 1 presents a comparison of our method and each baseline
method based on their mean average error and r? values. Values are
averages across 3 folds. ResNet18 is the lowest performing model,
achieving an r? accuracy of 0.6027 with and an MAE of 0.0858. SEM
shows a slight improvement with an r? accuracy 0.6122 and an
MAE of 0.084. DFC further improves performance with an accuracy
of 0.6424 and an MAE of 0.0793. Finally, GeoConv outperforms the
other methods with an accuracy of 0.7039 and the lowest MAE of
0.0678.

5 DISCUSSION

Incorporating spatial metadata consistently improves performance
compared to a standard ResNet18 model without spatial context.
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Among the methods tested, SEM, which directly concatenates spa-
tial information into the fully connected layer, shows a slight im-
provement over ResNet18 but is outperformed by both DFC and
GeoConv. DFC, which conditions the fully connected layer based
on geographic coordinates, surpasses SEM but lacks the ability to
dynamically extract features. GeoConv, on the other hand, demon-
strates superior performance across all baselines by conditioning
feature extraction on geographic context, allowing it to adapt more
effectively to diverse spatial patterns.

To understand the geographic variation in the model’s learned
features, we analyzed the spatial clustering of convolutional weights
predicted by the GeoConv model. Using t-SNE, we visualized these
weights, revealing distinct clusters across different regions, indicat-
ing that GeoConv captures region-specific relationships between
features and socioeconomic outcomes. This spatial clustering was
further confirmed by a strong positive spatial autocorrelation (I =
0.99976, z = 521.57; see figure 1), suggesting that similar feature
patterns are geographically clustered within the study area.

We also explored the relationship between predicted weights and
land cover types, hypothesizing that GeoConv’s dynamic weights
might vary across different landscapes. A Kruskal-Wallis test, as
shown in table 2, confirmed significant differences in t-SNE values
among various land cover types, indicating that the model adapts
its feature extraction to the specific characteristics of different
environments.

1-SNE Value
I -141--55
. -55--28
. -28--7
717

17-47

47-122

Figure 1: t-SNE of predicted model weights

Finally, as shown in Figure 2, we compared activation maps from
the GeoConv and ResNet18 models, observing that GeoConv acti-
vates a higher number of neurons across various layers, capturing
more detailed spatial features. This increased neuron activation
in GeoConv suggests a superior ability to extract and represent
fine-grained geospatial information, leading to more accurate and
context-aware predictions.

6 LIMITATIONS & FUTURE DIRECTIONS

Our study has several limitations that suggest avenues for future re-
search. First, we only tested the GeoConv approach using ResNet18,
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Table 2: Median t-SNE value of each land cover class

Land Cover Type Median t-SNE Value
Agricultural Lands -30.86
Forested Areas 22.17
Grasslands and Wetlands -16.52
Shrublands and Savannas 19.02
Urban and Built-up Lands -30.28
Water Bodies and Non-Vegetated Lands -8.29
Urban and Urban and
Built-up Lands  Agricultural Lands Forested Areas Built-up Lands  Agricultural Lands Forested Areas
g -
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(a) ResNet18 Activation Maps (b) GeoConv Activation Maps

Figure 2: Activation Maps

and its generalizability to other architectures like ResNet50, VGG16,
Inception, and Transformer-based models remains uncertain. Eval-
uating GeoConv across a broader range of architectures would help
establish its robustness and versatility. Additionally, our experi-
ments were geographically limited to African datasets, restricting
the generalizability of our findings. Expanding the study to in-
clude datasets from diverse regions could provide insights into
the model’s global applicability. Finally, GeoConv significantly in-
creases the number of parameters compared to ResNet18, resulting
in larger model sizes and longer training times. Future work could
explore optimizing the architecture to reduce parameters while
maintaining performance, improving its efficiency for broader use.

7 CONCLUSION

In this piece, we tested the value of introducing dynamic weights
into a convolutional model, allowing filter weights to vary based
on the latitude and longitude metadata of satellite images. Using
a dataset of 95,579 household survey points across 11 African na-
tions, we estimated household wealth with approximately 3-meter
resolution satellite imagery. We found that deep learning models
without spatial metadata could achieve a regressive accuracy of r
of 0.6027, models with spatial information but no adaptive layers
could achieve up to r? = 0.6424, and the GeoConv approach with
adaptive layers achieved r? = 0.7039. These results highlight the
value of introducing adaptive weights into convolutional neural
network architectures, specifically in the context of spatial data.
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