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ABSTRACT

In this study, we present a convolutional neural network (CNN)

architecture, GeoConv, designed to improve the accuracy and adapt-

ability of deep learning models using satellite imagery. Traditional

CNNs, such as ResNet18, employ �xed-weight convolutional lay-

ers - i.e., layers that leverage the same set of weights for each

input observation. However, these models can struggle to capture

context-speci�c features inherent in satellite images, which may

vary signi�cantly across di�erent geographic regions. To address

this challenge, the GeoConv model utilizes dynamic weights that

adapt based on the input image coordinates, allowing the model to

tailor its feature extraction process to the unique characteristics of

di�erent geographic regions. Through experiments, we illustrate

the utility of this approach in a case study which leverages satellite

imagery to estimate household wealth across 11 countries, with

GeoConv explaining an additional 10.12% of the variance in the

data compared to a ResNet18 model. These results underscore the

importance of incorporating spatially adaptive mechanisms in han-

dling the variability present in satellite imagery. Code is available

at: https://github.com/heatherbaier/geoconv
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1 INTRODUCTION AND RELATEDWORK

Convolutional Neural Networks (CNNs) have achieved signi�cant

success across various visual recognition tasks [10, 11]. In most

applications, these networks employ �xed-weight convolutional
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layers, applying the same weights consistently across all inputs

[12]. While this approach is e�ective for tasks with consistent

visual features, it is challenged by the spatial variability inherent

in satellite imagery, where features can vary signi�cantly across

geographic contexts [19].

We study this challenge in the context of predicting socioeco-

nomic indicators - such as household wealth - from satellite imagery,

a recent approach being utilized in the context of international de-

velopment and the social sciences more broadly [8, 15, 16]. In this

context, the generalizability of �xed-weight CNNs across diverse ge-

ographic regions is limited [4, 8], as the relationship between visual

features and wealth can di�er markedly between urban and rural ar-

eas [5]. Scholars have explored various techniques, but broad-scope

estimation across multiple countries remains a challenge [3, 14].

Several models address spatial heterogeneity in deep learning.

The Spatial Ensemble Learning (SEL) framework clusters data into

zones and trains local classi�ers to manage class ambiguity and

spatial dependencies [9]. The Spatial Transformation And mod-

eRation (STAR) model dynamically partitions the spatial domain,

introducing a hierarchical structure with a spatial moderator for

broader adaptability [17]. The Spatial Variability Aware Neural Net-

work (SVANN) modi�es either its architecture or weights based on

location, enabling tailored responses to geographic variations [6].

Here, we build on these frameworks and present a model which

explicitly leverages geographic coordinate-based conditioning to

vary weights across individual inputs using hypernetworks. Hy-

pernetworks have recently emerged as a tool to enhance model

predictions by dynamically incorporating metadata into model

weights [7]. In spatial contexts, hypernetworks have been used

to generate weights based on factors like image capture time and

sensor-speci�c spectral wavelengths [13, 18].

In contrast to existing spatial variability aware networks, which

tend to focus on region-based model adaptation, GeoConv directly

integrates spatial metadata into hypernetwork layers for more �exi-

ble, �ne-grained spatial adjustments.We demonstrate that GeoConv

signi�cantly improves the generalization of wealth estimation from

satellite imagery across multiple countries by tailoring its feature ex-

traction to the speci�c characteristics of each region. Our approach

addresses the limitations of �xed-weight CNNs in spatially diverse

contexts and provides a �exible, scalable solution for satellite-based

socioeconomic analysis.

2 METHODOLOGY

GeoConv builds on the ResNet18 framework by integrating adap-

tive convolutional layers that dynamically adjust based on the geo-

graphic coordinates of the input images. The architecture begins

with an initial GeoConv 3x3 layer, followed by max pooling, three
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basic blocks, an adaptive block, and �nally average pooling leading

to a linear classi�cation layer. This integration allows the network

to tailor its feature extraction process to the speci�c characteristics

of di�erent regions, improving the model’s ability to capture and

interpret the complex spatial patterns inherent in satellite imagery.

The implementation of coordinate-conditioned convolutional

layers in GeoConv involves four main steps:

(1) Coordinate Projection: The input image’s 2D coordinate vec-

tor, representing the latitude and longitude, is initially projected

into a higher-dimensional space to enable more complex mappings.

Speci�cally, this is done using a linear layer that transforms the 2D

coordinates into a 128-dimensional vector. The transformation is

governed by the equation:

Ĭ1 = ReLU(ē1ę + Ę1)

whereē1 ∈ R
128×2 represents the weight matrix, and Ę1 ∈ R

128 is

the bias vector. The ReLU activation function ensures that the pro-

jection captures non-linear relationships between the coordinates

and the subsequent convolutional weights.

(2) Feature Mapping: The 128-dimensional vector Ĭ1 generated in

the previous step is then further mapped to match the number of

weights required for the convolutional �lters in the network. For

example, if we target a convolutional layer with 64 input channels,

64 output channels, and a 3x3 kernel, the resulting number of pa-

rameters would be 36,864. This is achieved through a second linear

layer that takes the 128-dimensional vector and outputs a vector Ĭ2
with the required number of elements:

Ĭ2 = Sigmoid(ē2Ĭ1 + Ę2)

Here,ē2 ∈ R
Ě×128 and Ę2 ∈ R

Ě represent the weight matrix and

bias vector of the second linear layer, respectively, where Ě is the

dimensionality needed to reshape Ĭ2 into the convolutional kernel.

(3) Kernel Shaping: The output vector Ĭ2 is then reshaped to form

the convolutional kernel weights. The reshaping process converts

the 1-dimensional output vector into a 4-dimensional tensorē ′,

which represents the dynamically generated weights for the convo-

lutional operation:

ē ′
= reshape(Ĭ2, [ÿĥīĪ ,ÿğĤ, ć, ć])

In this context, ÿĥīĪ denotes the number of output channels, ÿğĤ
denotes the number of input channels, and ć represents the kernel

size (e.g., 3x3).

(4) Convolution Operation: Finally, the reshaped tensorē ′ is

used as the convolutional kernel in the network’s layers. The adap-

tive nature of these weights allows each convolutional layer to

respond speci�cally to the geographic features of the input image,

enhancing the model’s ability to extract meaningful patterns that

are relevant to the spatial context.

By dynamically adjusting the convolutional kernel weights based

on the input image’s geographic coordinates, GeoConv seeks to

improve the network’s ability to delineate features pertinent to

di�erent geographic regions. This approach is particularly advan-

tageous for tasks involving satellite imagery, where the spatial

variability of features can be substantial.

2.1 Layer Placement Strategy

In the GeoConv architecture, we integrate adaptive convolutional

layers into a standard ResNet18 model. Speci�cally, we replace

the �rst convolutional layer and add adaptive layers before the

residual connections in the �nal convolutional block. These adap-

tive layers use weights computed by a hypernetwork, allowing the

model to �ne-tune its convolutional �lters based on geographic

metadata (in our experiments, latitude and longitude). This enables

targeted feature extraction relevant to the speci�c geographic con-

text—for example, emphasizing agricultural features in rural areas

or infrastructure-related features in urban regions. The remaining

layers follow the standard ResNet18 architecture.

3 EXPERIMENTS

3.1 Data

3.1.1 USAID Demographic and Health Survey. We utilize data from

the USAID Demographic and Health Surveys (DHS) [1], focusing

on the Wealth Index, a composite measure of household socioeco-

nomic status derived from principal component analysis (PCA) of

assets and housing characteristics. Wealth scores, standardized and

divided into quintiles, are mean-normalized per country as shown

in Equation 1:

Įnorm =

Į − Ć

max(Į) −min(Į)
(1)

where

• Įnorm: The mean-normalized value of the data point Į .

• Į : An individual data point within the dataset.

• Ć: The mean of all the data points in the dataset.

• max(Į): The maximum value in the dataset.

• min(Į): The minimum value in the dataset.

The presented analysis includes information from 11 countries

(95,579 data points) in Western Africa.

3.1.2 Planet Satellite Imagery. We used the 2023 Q3 global com-

posite Planet Basemaps [2] with 3m resolution, clipped to a 0.08km

bu�er around each DHS point, resulting in 95,579 imagery tiles

labeled with the corresponding mean-normalized Wealth Index

value.

3.2 Implementation Details

All models are trained using PyTorch. We utilize an L1 loss function,

an Adam optimizer, and train each model for 200 epochs utilizing

3-kfold cross-validation. Each image has three RGB channels and

is cropped to an input size of 224 × 224 × 3. GeoConv utilizes a

learning rate of 0.00005, while the other models we contrast to

utilize a learning rate of 0.00001. Learning rates were selected after

a grid search of hyperparameters.

3.3 Training Procedure

We trained the GeoConv model using a single image per training

pass, replacing the batch normalization layers with InstanceNorm

layers to accommodate the batch size of 1. This approach allows

the model to adjust weights based on the metadata of each individ-

ual image. To maintain training e�ciency, we employed gradient

accumulation over 64 images, updating the model parameters after

each accumulation and resetting the gradients.
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3.4 Evaluation Metrics

The performance of each model was evaluated using two metrics:

the r2 score measures the proportion of variance in the dependent

variable predictable from the independent variable(s), and the Mean

Absolute Error (MAE) quanti�es the average magnitude of errors

in a set of predictions, regardless of their direction.

3.5 Baseline Models for Comparison

In addition to the GeoConvmodel, we provide three baselinemodels

to contrast our �ndings to:

• ResNet18: A ResNet18 model trained by aggregating data

from all source countries.

• Spatial-Embed (SEM): A ResNet18 architecture with a 2-

layer MLP that projects the coordinates of every image into

latent space using 64 and 128 element linear layers. The

128-element output of the coordinate projector and the 512

element output from the �nal convoluional block of the

ResNet18 are concatenated into a 640 element vector that is

then fed through the �nal fully connected layer for a wealth

prediction.

• Dynamic Fully Connected Model (DFC): In DFC, a hy-

pernetwork is employed to generate the weights of the �nal

fully connected layer of a ResNet18. The hypernetwork takes

as input the coordinates of the input image and processes

them through 2 linear layers within the hypernetwork, re-

sulting in the dynamic generation of the weights for the �nal

fully connected layer.

These models are contrasted in our discussion to explore the

degree to which spatial metadata can improve the estimation of

household wealth from satellite images.

4 RESULTS

Table 1: Modeling Results

Model r2 MAE

ResNet18 0.6027 0.0858

SEM 0.6122 0.084

DFC 0.6424 0.0793

GeoConv 0.7039 0.0678

Table 1 presents a comparison of our method and each baseline

method based on their mean average error and r2 values. Values are

averages across 3 folds. ResNet18 is the lowest performing model,

achieving an r2 accuracy of 0.6027 with and an MAE of 0.0858. SEM

shows a slight improvement with an r2 accuracy 0.6122 and an

MAE of 0.084. DFC further improves performance with an accuracy

of 0.6424 and an MAE of 0.0793. Finally, GeoConv outperforms the

other methods with an accuracy of 0.7039 and the lowest MAE of

0.0678.

5 DISCUSSION

Incorporating spatial metadata consistently improves performance

compared to a standard ResNet18 model without spatial context.

Among the methods tested, SEM, which directly concatenates spa-

tial information into the fully connected layer, shows a slight im-

provement over ResNet18 but is outperformed by both DFC and

GeoConv. DFC, which conditions the fully connected layer based

on geographic coordinates, surpasses SEM but lacks the ability to

dynamically extract features. GeoConv, on the other hand, demon-

strates superior performance across all baselines by conditioning

feature extraction on geographic context, allowing it to adapt more

e�ectively to diverse spatial patterns.

To understand the geographic variation in the model’s learned

features, we analyzed the spatial clustering of convolutional weights

predicted by the GeoConv model. Using t-SNE, we visualized these

weights, revealing distinct clusters across di�erent regions, indicat-

ing that GeoConv captures region-speci�c relationships between

features and socioeconomic outcomes. This spatial clustering was

further con�rmed by a strong positive spatial autocorrelation (I =

0.99976, z = 521.57; see �gure 1), suggesting that similar feature

patterns are geographically clustered within the study area.

We also explored the relationship between predicted weights and

land cover types, hypothesizing that GeoConv’s dynamic weights

might vary across di�erent landscapes. A Kruskal-Wallis test, as

shown in table 2, con�rmed signi�cant di�erences in t-SNE values

among various land cover types, indicating that the model adapts

its feature extraction to the speci�c characteristics of di�erent

environments.

Figure 1: t-SNE of predicted model weights

Finally, as shown in Figure 2, we compared activation maps from

the GeoConv and ResNet18 models, observing that GeoConv acti-

vates a higher number of neurons across various layers, capturing

more detailed spatial features. This increased neuron activation

in GeoConv suggests a superior ability to extract and represent

�ne-grained geospatial information, leading to more accurate and

context-aware predictions.

6 LIMITATIONS & FUTURE DIRECTIONS

Our study has several limitations that suggest avenues for future re-

search. First, we only tested the GeoConv approach using ResNet18,
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Table 2: Median t-SNE value of each land cover class

Land Cover Type Median t-SNE Value

Agricultural Lands -30.86

Forested Areas 22.17

Grasslands and Wetlands -16.52

Shrublands and Savannas 19.02

Urban and Built-up Lands -30.28

Water Bodies and Non-Vegetated Lands -8.29

Figure 2: Activation Maps

and its generalizability to other architectures like ResNet50, VGG16,

Inception, and Transformer-based models remains uncertain. Eval-

uating GeoConv across a broader range of architectures would help

establish its robustness and versatility. Additionally, our experi-

ments were geographically limited to African datasets, restricting

the generalizability of our �ndings. Expanding the study to in-

clude datasets from diverse regions could provide insights into

the model’s global applicability. Finally, GeoConv signi�cantly in-

creases the number of parameters compared to ResNet18, resulting

in larger model sizes and longer training times. Future work could

explore optimizing the architecture to reduce parameters while

maintaining performance, improving its e�ciency for broader use.

7 CONCLUSION

In this piece, we tested the value of introducing dynamic weights

into a convolutional model, allowing �lter weights to vary based

on the latitude and longitude metadata of satellite images. Using

a dataset of 95,579 household survey points across 11 African na-

tions, we estimated household wealth with approximately 3-meter

resolution satellite imagery. We found that deep learning models

without spatial metadata could achieve a regressive accuracy of r2

of 0.6027, models with spatial information but no adaptive layers

could achieve up to r2 = 0.6424, and the GeoConv approach with

adaptive layers achieved r2 = 0.7039. These results highlight the

value of introducing adaptive weights into convolutional neural

network architectures, speci�cally in the context of spatial data.
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