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Abstract: This study investigates the application of explainable AI (XAI) techniques to un-
derstand the deep learning models used for predicting urban conflict from satellite imagery.
First, a ResNet18 convolutional neural network achieved 89% accuracy in distinguishing
riot and non-riot urban areas. Using the Score-CAM technique, regions critical to the
model’s predictions were identified, and masking these areas caused a 20.9% drop in the
classification accuracy, highlighting their importance. However, Score-CAM’s ability to con-
sistently localize key features was found to be limited, particularly in complex, multi-object
urban environments. Analysis revealed minimal alignment between the model-identified
features and traditional land use metrics, suggesting that deep learning captures unique
patterns not represented in existing GIS datasets. These findings underscore the potential of
deep learning to uncover previously unrecognized socio-spatial dynamics while revealing
the need for improved interpretability methods. This work sets the stage for future research
to enhance explainable Al techniques, bridging the gap between model performance and
interpretability and advancing our understanding of urban conflict drivers.

Keywords: deep learning; convolutional neural networks; satellite imagery; explainable
Al land use/land cover

1. Introduction

Understanding why conflict arises, particularly in urban areas, is critical for addressing
its causes and mitigating its impacts [1]. Deeper insights into urban conflict offer numerous
benefits: city planners can better anticipate and manage human behavior in these spaces [2],
while modeling riots and protests helps uncover the underlying dynamics driving these
events [3,4]. In previous work [5], it has been shown that satellite imagery—in conjunction
with deep learning approaches—could be leveraged to predict the most likely geospatial
locations where riots and protests may occur. Here, we build on this work, specifically
seeking to understand the types of features or land covers that these models are leveraging
in their estimations.

Understanding the features identified by deep learning models is important for ad-
vancing research in the growing field of socioeconomic estimation from satellite data.
Satellite imagery enables researchers to address topics that were previously difficult to
measure, including estimating socioeconomic metrics such as wealth [6,7], predicting ed-
ucational outcomes [8], human migration patterns [9], conflict-related fatalities [10], and
economic devastation in conflict zones [11], predicting riots in urban areas [5], and conflict
prediction [12]. Modern platforms like Planet [13] further enhance this capability by pro-
viding near-real-time global coverage, allowing for continuous monitoring and analysis.
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However, a critical gap remains in our ability to interpret which specific factors within
these models drive their predictions, limiting both transparency and trust in their outputs.

While significant attention has been devoted to explaining Al model outputs in the
broader XAI community and even in the context of satellite-based models [14], there is a
notable absence of literature specifically addressing the explainability of features driving
socioeconomic outcomes derived from satellite imagery. Although numerous studies have
demonstrated the capability of satellite imagery to predict factors such as household wealth
or conflict [15,16], the underlying mechanisms remain largely unexplored. This knowledge
gap is particularly significant given the increasing reliance on these predictive models
for policy-making and resource allocation in developing regions [17]. The present study
aimed to bridge this gap in the context of conflict studies by addressing two fundamental
research questions, thereby contributing to the nascent field of XAl in satellite-based so-
cioeconomic predictions:

RQ1. How effective are class activation maps at localizing the regions of satellite imagery that are
relevant for the classification of socioeconomic factors?

RQ2. Can land use be used as a proximate factor to understand the likely location of riot events in
urban environments?

To explore these questions, we employed a multi-faceted approach combining deep
learning techniques with explainable Al (XAI) methods, focusing on the prediction of
urban conflict from satellite imagery. Our methodology leveraged convolutional neural
networks (CNNs) trained on high-resolution satellite imagery to predict the likelihood of
riots and protests in urban areas. To explore RQ1, we applied Score-CAM (class activation
mapping) techniques to generate heat maps highlighting the most influential regions within
each image for the model’s predictions and quantify the model degradation when these
regions were removed. The goal of this approach was to first verify Score-CAM’s ability
to locate regions of satellite imagery relevant to classification. If Score-CAM was able to
indicate regions successfully, the next step (RQ2) was to semantically define the features the
network was identifying. For RQ2, we overlaid high-resolution land use categories onto
the activation maps and then analyzed the correlation between specific land use types and
areas of high activation. This analysis allowed us to determine whether certain land use
categories were disproportionately influencing the model’s predictions of urban conflict.
This research aimed to evaluate how effectively current explainable AI (XAI) methods can
predict events such as riots or protests, particularly in cases where satellite imagery does
not contain clear, easily identifiable features that directly relate to these events.

This paper is structured as follows. Background information and the current research
are discussed in Sections 1.1-1.4. In Section 2, the materials and methods are discussed,
including dataset construction in Section 2.1 and a detailed methodology in Section 2.2.
The results are presented in Section 3. Finally, Sections 3 and 4 present the discussion
and conclusion.

1.1. Explainability in Machine Learning

One of the main critiques of neural networks and other machine learning techniques
is their tendency to function as “black boxes”, offering predictions without clear insight
into the underlying features or relationships being exploited [18-22]. To address this
opacity, researchers have developed various explainability methods that reveal which image
features (such as objects or regions) are essential for a model’s predictions. These methods
include analyzing intermediate convolutional layers [23], inverting neural networks to
reconstruct input features [24,25], and using class activation mapping (CAM) to highlight
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important regions within an image [26]. While CAM methods are effective at identifying
regions relevant to image classification, other approaches have been explored to enhance
explainability. For example, attention mechanisms explicitly model the dependencies
between features, as demonstrated by self-attention techniques [27]. Vision Transformers
extend this idea by modeling attention across an image, though they are primarily designed
for object-centric datasets [28]. However, the satellite imagery used in this research presents
unique challenges: the features indicative of riots are not well-defined objects, and their
resolution may vary across images. In this context, CAM-based visual heat maps offer a
robust solution, capable of identifying relevant regions even under these uncertain and
variable conditions.

Researchers’ approaches to explainability, and the extent to which they aim to uncover
the underlying behavior of models, vary significantly. Layer-wise Relevance Propaga-
tion [29] decomposes the prediction of a neural network to asses the relevance of input
features at the pixel level, offering a detailed means of opening the “black box”. In contrast,
some researchers propose counterfactuals [30] that alter the inputs to neural networks
to change the classifications, providing explanations without opening the “black box”.
In a review, Hohl et al. found CAM techniques to be one of the more frequently used
explainability methods, particularly in land cover tasks [31].

Grad-CAM introduced the idea of examining training gradients to produce heat maps,
visually identifying regions critical for classification [32]. Its success has inspired numerous
extensions, such as Grad-CAM++, which improves the object localization accuracy [21],
and SSGrad-CAM, designed to enhance the sensitivity to small features [33]. Other varia-
tions include Integrated Grad-CAM, which applies path integrals to gradients for refined
analysis [34], and Score-CAM, which replaces gradients with activation-based weights
to enhance stability [35]. A further refinement, Score-CAM++, uses logarithmic transfor-
mations to minimize noise from non-target elements in the activation map [36]. These
advancements collectively aim to make neural networks more interpretable, bridging the
gap between model performance and transparency.

For further information about the broader field of XAI, we recommend reading [31,37].

1.2. Explainability in Satellite Imagery Machine Learning Applications

The literature on applying explainability techniques to satellite imagery remains lim-
ited. The existing research predominantly focuses on well-defined identification tasks, such
as detecting well-defined semantic classes like bridges, ports, stadiums, and airports [38] or
counting objects such as airplanes in airport imagery [39]. According to Hohl et al., the three
most common satellite imagery tasks where researchers apply explainability techniques
are land cover mapping, agricultural monitoring, and natural hazard monitoring [31].

A variety of tools have been employed to address explainability in satellite data
applications. Researchers have explored techniques such as Saliency Maps [40], LIME [41],
and SHAP [42]. Saliency Maps have demonstrated effectiveness in ship detection tasks,
outperforming other methods with a recall exceeding 93% [43]. SHAP has been used to
visualize pixel-level correlations with classification outcomes in land cover tasks, achieving
over 94% accuracy with a CNN [44].

Khan et al. compared Grad-CAM and Integrated Gradients in the context of satel-
lite imagery, finding mixed performance depending on the target class [45]. Integrated
Gradients, implemented via the Captum library [46], also offer a general framework for
interpretability across a range of tasks beyond satellite imagery, such as text classification.

Explainability in satellite imagery poses several challenges that differ from those in
traditional object-centric image datasets:
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¢ (lass overlap: The presence of multiple objects from the same class in an image, such
as airplanes in an airport scene, complicates classification [47].

*  Gradient noise: Models relying on gradient-based methods often struggle with the
noisy gradients inherent in satellite data [35].

*  Limited spectral information: Compared to traditional images, satellite imagery pro-
vides restricted pixel values and band ranges, limiting the variability of available
information [48,49].

These domain-specific challenges underscore the complexities faced by researchers in
achieving effective explainability for remote sensing data.

1.3. Lulc Used to Explain Human Behavior and Social Modeling in GIS

Another avenue to exploit satellite imagery to understand human behavior is to
explore correlations between the land use and land cover (LULC) and social phenomena,
such as conflict [50,51]. LULC analysis has established itself as a fundamental concept
within the Geographic Information System (GIS) community, frequently employed to
model human behavior and explain social phenomena [52,53]. This approach has been
applied to various research domains, including the study of urban land expansion to
understand and predict the global-scale impacts [54] and the integration of LULC data
with population studies to model urban expansion [55], with ongoing efforts to establish
connections between LULC patterns and socioeconomic processes [56]. In specific contexts,
such as the use of pastoral lands in Ethiopia, the LULC and changes in land use have been
utilized to explain conflicts between groups [50,51].

The application of LULC analysis in satellite imagery research has a rich history in
the literature [57-61]. Various LULC studies have provided evidence to explain human
activities and social interactions. For instance, the interaction between governmental
policy and land use has been studied in the Mekong Delta [62], Columbia [63], and Inner
Mongolia [64]. Furthermore, the LULC is frequently employed to model, explain, and
understand urban growth and expansion across diverse global regions [65-68]. The LULC
has also been used to understand the social dynamics of suburban regions [69,70].

Urban land use data, a specialized form of LULC information, have emerged as a
powerful tool for understanding and modeling complex urban dynamics [71,72]. This
approach has been applied to a diverse range of research areas, significantly enhancing our
understanding of urban systems and human behavior within them. Traditional applica-
tions include studies on travel patterns, where researchers have explored the relationships
between urban land use configurations and travel behaviors [73,74]. More recent inves-
tigations have revealed direct links between the urban land use mix and various urban
phenomena, providing insights into how urban design influences human behavior and
public health outcomes [75,76].

Recently, the incorporation of human-generated data, such as mobile phone records, with
satellite imagery has enabled the highly accurate mapping of urban land use patterns [77].
Researchers have developed methods to model changes in the urban land use and associated
human behavior with high degrees of accuracy [78]. These models not only provide a
snapshot of the current urban conditions but also offer predictive capabilities for future urban
development scenarios [79,80]. Such advancements in urban land use modeling contribute
significantly to urban planning, policy-making, and sustainable development strategies [81].

While the links between the land use and human behavior have been explored in various
contexts [52,53,56], there is relatively less focus placed on distinguishing between cases where
relationships may be defined by specific objects—such as the presence of a car—rather than
broader land cover categories. This distinction is crucial, as it may reveal more nuanced
drivers of human behavior that are not captured by traditional land use classifications. In
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urban environments, for instance, the presence of certain objects or structures might be more
indicative of social dynamics than the general land cover type [75,77].

In the context of conflict studies, this differentiation becomes particularly relevant.
While the LULC has been used to explain conflicts in some scenarios, such as disputes
over pastoral lands in Ethiopia [50,51], it may not fully capture the complexities of urban
conflicts. The urban landscape contains a multitude of features that could potentially
influence conflict dynamics beyond what is typically captured in land cover classifications.

In this study, we aimed to explore the degree to which the land cover may provide
an alternate, more semantically interpretable (as contrasted with deep learning) expla-
nation of conflict in urban settings. By comparing the explanatory power of traditional
LULC categories with the features identified by our deep learning model, we sought to
understand whether conventional land use classifications are sufficient for predicting and
explaining urban conflicts or if more granular, object-level features play a significant role.
This approach not only contributes to the field of conflict studies but also challenges the
conventional use of the LULC in explaining complex urban phenomena [54,55,62].

1.4. Understanding Conflict Through Satellite Imagery

Satellite imagery, combined with machine learning techniques, has become an im-
portant tool in conflict studies, offering new ways to analyze conflict dynamics, assess
damage, and understand the socioeconomic impacts. Researchers have developed methods
to leverage this technology for predicting protests and riots in urban environments [5].
Goodman et al. utilized convolutional neural networks (CNNs) and satellite data to predict
conflict fatality risks in Nigeria, achieving an area under the ROC curve exceeding 75% [12].
Their earlier work also involved predicting non-permissive environments using moderate-
resolution imagery [10], laying the foundation for broader applications of satellite imagery
in identifying unstable regions.

In post-conflict damage assessment, deep learning models have been effective in
detecting building damage. Xu et al. and Mueller et al. demonstrated the utility of these
methods across various conflict zones [82,83], while Nabiee et al. reported accuracies of
between 75% and 92% in identifying damaged buildings during the Syrian civil war [84].

Beyond immediate conflict zones, Murillo-Sandoval et al. employed satellite imagery to
monitor land cover changes related to illicit activities in Colombia, successfully identifying
96% of the overall changes, including the expansion of illegal coca farming [63]. Eklund et al.
used similar techniques to study agricultural land use changes in territories controlled by the
Islamic State in Iraq and Syria, achieving 80% accuracy in tracking these changes [85].

In this piece, we extend this literature to riots and protests in urban areas, with a focus
on explaining the underlying factors which drive such events.

2. Materials and Methods
2.1. Data and Labeling

We developed a dataset according to the process described in [5], combining data
from multiple open-source repositories with commercially available satellite imagery. The
primary motivation of the dataset construction was to download satellite images predicated
on known riot and protest events. These satellite images were used to generate clipped riot
images and clipped non-riot images. For a more in-depth description of the process, please
see [5].

2.1.1. Data

Satellite imagery data were the primary source of information used to train the neural
network and classify locations as either an urban area which experienced a riot or a “non-
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riot” location at which no such event occurred. Planetscope images were downloaded from
Planet [13] that corresponded to 24—48 h prior to a known riot event. Planetscope provides
3—4 m resolution images. A more detailed description of the imagery products available is
shown in Table 1. The Planetscope constellation has changed over time, including the type
and number of bands available for download. Only the visual bands (RGB) of locations
that had 50% or less cloud cover were retrieved.

Table 1. This table presents the technical details of the satellite imagery, based on the Planetscope
sensor [86]. The details for each image correspond to the generation of satellite used to image
the location.

Wavelength (nm)

Instrument Image Area Availability

Red Green Blue
Dove Classic 25 x 11.5 sq km July 2014-April 2022 590-670 500-590 455-515
Dove-R 25 x 23 sq km March 2019-April 2022 650-682 547-585 464-517
SuperDove 32.5 x 19.6 sq km March 2020—present 650-680 547-583 465-515

The Armed Conflict Location Event Data Project (ACLED) [87] database provided the
location of known riots. The ACLED is an open-source database containing information
about conflict from around the globe. While the ACLED database contains over 1.5 million
entries, we only considered entries that were from riots and/or protests (referred to simply
as riots in this paper). Additionally, only riots that were georeferenced to a specific neigh-
borhood within an urban city were included. This level of geographic precision provided
better localization during the clipping of satellite images during data labeling.

An additional source of data was the Degree of Urbanisation (DEGURB) dataset
developed by the European Commission’s Joint Research Center [88]. These data classify
the entire surface of the globe in terms of the population density and are released every
5 years. For our purposes, we only considered areas with a population density of over
300 inhabitants per square kilometer, seeking to only include urban locales [89]. The
DEGURB data created a binary mask for the globe, allowing us to subsequently restrict
satellite imagery information to only include regions with 300 or more inhabitants per
square kilometer. An example of this binary mask is shown in Figure 1.

Figure 1. A portion of the DEGURB data, highlighting the areas of the world that were considered
urban in our dataset. The DEGURB defines urban regions as those with a density of more than
300 inhabitants per km [89]. Red lines represent country-level boundaries [90].
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The final data source was the urban land use (ULU) data introduced by Guzder
et al. [91]. These data provided a 7-class urban land use map derived using Sentinel-2
satellite imagery. Guzder et al. constructed this dataset with a 5 m spatial resolution for
approximately 4000 cities across the globe. The seven semantic classes they used were
open space, non-residential areas, atomistic settlements, informal land subdivisions, formal
land subdivisions, housing projects, and roads [91]. These seven classes allow for easy
delineation between open spaces and built-up areas higher in the hierarchy and more
detailed analysis lower in the hierarchy when labeling the four different types of residential
areas. An example of this land cover classification is shown in Figure 2.

.

i . Open Space
. Non-Residential

Atomistic

Informal Subdivision
. Formal Subdivision
Housing Project

Roads

-1.-
[ )
iy

a
'

Figure 2. These are examples of the ULU data from Guzder et al. [91]. The satellite images on the left
of both rows are from two different neighborhoods in South Korea. The land use maps in the center
of each row show the ULU data associated with each neighborhood. The legend listing the 7 classes
as described by Guzder et al. is on the right. Imagery ©Planet Labs PBC 2023. All rights reserved.

Guzder et al. reported that, at a 5m spatial resolution, their 6-class (omitting roads)
product had an overall accuracy of 71%. They reported 85% accuracy in identifying roads,
present in the 7-class dataset [91]. This data source served as a potential explanatory
variable for what features the neural network learned to classify as riot and non-riot images.
For example, these may have included factors such as the amount of the area that was
covered by roadways or if there was a connection between the types of residential areas
present that correlated with riots in a neighborhood.

2.1.2. Labeling

To construct a labeled dataset for use in training a deep learning model, we inte-
grated multiple data sources. Riot events were aggregated using the information from the
ACLED [92], specifically focusing on the location and date of each event. Satellite imagery
was then retrieved from Planet [13], corresponding to a 24-48 h window prior to each
riot. This time frame was chosen to capture the environmental and infrastructure features
present before the riot, rather than attempting to capture images of crowds or the riot itself.
The goal was to identify potential precursors or patterns that may precede a riot.

For each event, the neighborhood where the riot occurred was isolated, and a 1-square-
kilometer image was clipped from the corresponding satellite tile. This image was labeled
as a “riot” instance in the dataset. To generate control cases, we used the remaining portion
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of the satellite tile outside the riot-affected area. Using DEGURB data [88], we ensured that
all control cases were drawn exclusively from urban regions within the tile. From these
urban areas, a single 1-square-kilometer clipping was randomly selected and labeled as a
“null” (non-riot) instance in the dataset. This labeling methodology allowed us to generate
a balanced dataset that had riots and non-riots equivalently represented in it. Additionally,
any imagery, sensor, or seasonal biases were equally represented across classes.

In the final dataset, there were 16,274 satellite images from 24 countries (representing
countries with a minimum of 500 or more images). Using a test and train split of 80% for
training and 20% for testing for each country, we constructed a training set where each
country was represented at least 400 times and a validation testing set where each country
was represented at least 100 times. Details are provided in Table 2.

Table 2. There were 32,548 clipped images in the dataset. Half of these were from riots, and half were
null clippings. Only countries that had at least 500 images were included. A total of 20% of each
country’s images was withheld from training and testing and used in validation.

Country Images Country Images Country Images
South Korea 7494 Pakistan 2622 Iran 2334
Lebanon 1656 Israel/Palestine 1572 China 1550
South Africa 1480 Chile 1302 Japan 1256
India 1148 Brazil 1112 Bangladesh 1092
Ukraine 924 Thailand 890 Italy 728
Russia 668 Indonesia 678 Venezuela 648
Greece 634 Yemen 604 Taiwan 562
UK. 566 Peru 522 Iraq 506

The wide range of countries represented in the dataset allowed us to explore the
capability of explanatory Al techniques at a global scale and further enabled tests as to the
spatial variation in the explanatory capabilities.

2.2. Methods
Our methodological approach followed a multiple-step process:

1. A convolutional neural network (ResNet18) was fit to the 32,548 images labeled as the
location of a “riot” or “no riot”, following the procedures outlined in [5]. We recorded
the global accuracy and country-level accuracy for the model.

2. Class activation mapping (Score-CAM) was applied to every image, generating a heat
map localizing the regions of each image important for its classification.

3. A threshold value was set to filter areas identified by Score-CAM as being critical
for the classification; these areas were removed from each image (all values were
set to 0), and then each image was classified as the location of a riot or non-riot a
second time. We contrasted the revised accuracy (after critical areas were removed)
with the original accuracy to determine the efficacy of Score-CAM in localizing where
important features existed within the image.

4. Using the same localized regions identified by Score-CAM, we tested if there were
meaningful land cover distinctions between those regions and the remainder of each
urban tile, testing if the land cover could provide a useful proximate feature for
identifying riot locations.

Each of these steps is described in more detail below and is summarized in Figure 3.
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Figure 3. A synopsis of the analysis conducted after training ResNet18. The data generation and
training were similar to those in [5]. After training, a Score-CAM analysis determined the regions
of interest to mask. The masking relevance was evaluated through accuracy and softmax analysis.
Finally, the land use was explored as an explanatory variable to understand the deep learning
classification rationale. The figure was adapted from [5]. Imagery ©Planet Labs PBC 2023. All
rights reserved.

2.2.1. Neural Network Training

As in [5], ResNet18 was trained with 32,548 images (16,274 from riots and 16,274 from
non-riots) and validated with a testing dataset consisting of 6490 images (3245 from riots
and 3245 from non-riots). These images were from 24 countries, with each country having
at least 500 images (see Table 2). By selecting countries from around the world, with a
minimum of 500 images each, we sought to mitigate biases from any one country or region
impacting the results. Prior to training on this dataset, ResNet18 was pretrained with
weights from ImageNet. After training on 80% of the data, the performance of the network
was tested on the remaining 20% for validation. The network achieved over 89% accuracy,
demonstrating the ability to distinguish between neighborhoods where riots will occur and
neighborhoods where riots will not occur. The trained ResNet weights were saved and
constituted the trained neural network used throughout this work.

2.2.2. Score-CAM-Informed Masking

The explicit research question we sought to answer was the following: How effective
are class activation maps at localizing the regions of satellite imagery that are relevant for the
classification of socioeconomic factors? Here, we specifically tested Score-CAM, a technique
which uses the weights of a selected convolutional layer to generate a heat map visualizing
the portions of the image relevant to classification. This research followed the implemen-
tation presented in [35], using the weights of the last convolutional layer to generate the
Score-CAM results, an example of which is displayed in Figure 4.

Integral to exploring explainability was determining how effective Score-CAM was at
localizing the features which were important in driving the classification accuracy across
each satellite image. By understanding the performance of Score-CAM in this application,
we could gain insight into the broader explainable Al field. Different thresholds for Score-
CAM were evaluated to focus efforts on the regions of the image that mattered the most in
classification. The Score-CAM weights from the final convolutional layer were used, which
ranged from 0.0 to 1.0. The higher the threshold value selected, the smaller the regions
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of interest. A threshold of 0.0 would include most of the image. A Score-CAM threshold
just under 1.0 would exclude almost none of the image. In this paper, the Score-CAM
threshold was incremented by 0.05 from 0.0 to 1.0, each time masking values above the given
Score-CAM threshold. This process was repeated to determine the optimal threshold for
analysis, prioritizing a value that identified a sufficiently large area for semantic definitions
while ensuring that masking out the identified important regions resulted in the model’s
prediction shifting from a riot classification to a non-riot case. This shift confirmed the
successful localization of critical pixels influencing the prediction. An example of this

process can be seen in Figure 5.

Figure 4. An example of a riot image on the left, with Score-CAM overlaid on top of the riot image
in the center and the Score-CAM results alone on the right. Imagery ©Planet Labs PBC 2023. All
rights reserved.

anginal Image
Label: Riot

Original Prediction: Riat

Maskod Progiction: Null

p0 130 200 250 o o ! a S0 100 150 700 230 300

Oniginal image
Label: Riot

Original Pregiction: Riot

Measked Predichion: Null

Te 4 e

Regions of Interest

100 150 700 2% 300

o s 100 156 200 250

Figure 5. An example of finding regions of interest across different Score-CAM thresholds. Regions
above the threshold are visible, while regions below the threshold are masked. During implementa-
tion, the regions of interest were obscured from ResNet during evaluation. The top row is an example
of a threshold of 0.8, the middle row is an example of a threshold of 0.6, and the bottom row is an
example of a threshold of 0.4. The satellite images on the left of each row are identical, as well as the
Score-CAM results. The regions of interest shrink as the threshold increases. Imagery ©Planet Labs
PBC 2023. All rights reserved.
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2.2.3. Evaluating Score-CAM'’s Effectiveness

After masking regions above each Score-CAM threshold (ranging from 0.0 to 0.95),
ResNet’s performance was evaluated by measuring the accuracy, precision, recall, true
positive rate, and false positive rate. As masking reduces the available information, a
decline in the classification performance was expected as larger quantities of each image
were masked. We compared the original and masked metrics using a forward pass through
the same network to assess the significance of the masked features for accurate predictions.

For each observation, the ResNet model generated a softmax output that reflected the
likelihood of a given location containing a riot. Although these outputs do not represent
true class probabilities, they can be interpreted as confidence scores, with values closer
to 1 indicating higher confidence. In the binary classification scenario (riot vs. non-riot),
values near 0.5 suggested low confidence. While softmax outputs are known to exhibit a
bias toward higher values [93,94], they remain useful as comparative metrics for analyzing
changes in the classification confidence. In this work, we utilized softmax outputs to assess
the model’s confidence in a given classification by processing the same image twice: once
with all the data and a second time with masked information.

In this controlled comparison, where no other factors changed, the direction of the
shift in softmax values represented the change in the model’s confidence regarding the class
inclusion. Softmax outputs have been used in a range of applications to highlight shifts in
confidence and explain misclassifications. For instance, Moon et al. [95] demonstrated the
use of confidence-aware learning by leveraging softmax probabilities to detect shifts in the
classification confidence, emphasizing the importance of probabilistic outputs for model
interpretability. Hendrycks and Gimpel [96] similarly showed that correctly classified
examples tend to exhibit higher maximum softmax probabilities than misclassified ones,
providing a means of detecting errors. Rozsa et al. [97] further explored the adversarial
robustness of deep neural networks by comparing softmax layers with Openmayx, illustrat-
ing how softmax outputs can be used to assess the model’s confidence and vulnerability
to adversarial perturbations. In the context of adversarial attacks on neural networks,
including ResNet101, Sen et al. [98] utilized the softmax results post-attack to demonstrate
how neural networks lose confidence and misclassify images.

To determine changes in confidence, the original image softmax was compared to
the masked image softmax results. Specifically, we subtracted the softmax estimated with
masked imagery from the original softmax value, aiming to quantify the shift in the model’s
confidence after masking the regions of interest. For example, if an image classification
had a softmax result of [0.99, 0.01], where the first value in the output represents a non-riot
and the second value represents a riot, the network would classify the image as a non-riot.
If after masking, the softmax result was [0.71, 0.29], the image would still be classified
as a non-riot, but there would be less confidence in the classification. In this example
(0.99 — 0.71 = 0.28), we would project a decrease in confidence (noting that the absolute
decrease is skewed due to the propensity for softmax values to approach maximums, we
interpret this as evidence of the directionality of a shift in the model confidence, rather
than focusing on the absolute shift). In this analysis, positive values indicated decreasing
confidence, while negative values represented increasing confidence. This was used as a
secondary metric to assess the ability of Score-CAM to isolate important features across
different thresholds.

2.2.4. Land Use Analysis

In this analysis, we engaged with our second research question: Can the land use be used
as a proximate factor to understand the likely location of riot events in urban environments? If the
land cover serves as a proximate factor, then deep learning may be unnecessary to localize
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intra-urban riot events. Conversely, if the land cover is not correlated with important
features which predict riots, then deep learning may reveal important patterns that could
shed light on the relationship between the urban form and conflict.

The ULU data (described in Section 2.1.1) were used, for each image, to calculate
two pixel counts. The first was, for each of the 7 classes, the number of pixels which fell
within the original image. The second was all the pixels which fell inside the regions of
interest identified by Score-CAM. By contrasting these two values, we sought to establish
the potential of the land cover for the localization of riot events.

Because the original image and the regions of interest were not equivalent in size
(recognizing that the geographic area of thresholded regions may vary across every image),
each vector was normalized as shown in Equations (1) and (2). Specifically, we divided the
count for each class, i, by the total count of pixels in the vectors:

A O;
Oi = —— 1
Zi:o Oi
N R;
i = 6 : (2)
Zi:o Ri

where O represents the normalized vector of the original image and R represents the
normalized vector of the regions of interest.

We implemented two tests to establish the degree to which the land cover may be
a useful explanatory variable for identifying intra-urban riots. First, we implemented a
linear regression in which the proportion of each class present in the original image, O,
was used as a variable to predict whether the image was from a riot or a non-riot. Second,
we tested if the land use could distinguish between the features CAM-based techniques
identified as important and the rest of the image. If the regions identified by Score-CAM
were significantly different from the full image in terms of their land use proportions, land
use data might explain the features deep learning techniques had learned.

To determine the similarity or dissimilarity between the images and Score-CAM-
identified regions, we considered the L1 similarity, L2 similarity, and Cosine similarity.
These three different similarity measures evaluated how similar or dissimilar the original
images were to the regions of interest; i.e., a perfect similarity score would indicate that
there was no difference between the Score-CAM-identified region and the broader image,
suggesting that the land cover was insufficient to describe the features being detected by
the deep learning algorithm. Given the 7 ULU classes, the L1 similarity for two perfectly
aligned vectors would have a value of 0, and two orthogonal vectors would have a value
of 7. The L2 evaluation would have a value of 0 for two perfectly aligned vectors, while
two orthogonal vectors would have a value of /7 ~ 2.64. In a Cosine similarity evaluation,
since the vectors are normalized, two perfectly aligned vectors would have a value of 1,
while two orthogonal vectors would have a value of 0.

3. Results

Our first goal was to test the capability of Score-CAM to identify key features of
importance in satellite imagery. Prior to masking, our trained ResNet classified images
with an accuracy of over 89%. After masking an average of 1.6% of each image using a
Score-CAM threshold of 0.8 (see Section 3.1 below for more details on why this threshold
was selected), the accuracy dropped to 68% (see Table 3). This illustrates that the features
which were being masked by Score-CAM were representative of those that were critical
to modeling predictions, as removing them resulted in a significant degradation of the
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model performance. In addition to a drop in accuracy, there was a decrease in the model’s
confidence in image classification, indicated by a shift in the softmax scores (see Figure 7).

As a second objective, we sought to establish the degree to which traditional land
cover metrics can be used to identify important features which distinguish riot or non-riot
locations. We tested this using two approaches: a linear model, and by contrasting the
similarity of the ULU inside and outside of regions identified as important by Score-CAM.
Both results suggested that the ULU alone is insufficient to identify protests in urban
environments; these findings are examined in the following subsections.

Table 3. This table compares the accuracy and other relevant metrics between the original image and
the image after masking the regions of interest. After masking the regions of interest in the images, the
neural network’s ability to perform image classification was significantly degraded. These original
image results match the findings in [5].

Original Image Masked Image

Accuracy 89.41% 68.54%

Precision 89.38% 79.91%

Recall 89.46% 49.52%

F1 89.42% 61.15%
True Positives 2903 1607
False Positives 345 404
True Negatives 2900 2841
False Negatives 342 1638

3.1. Threshold Analysis

To determine the optimal Score-CAM threshold for identifying critical features in
satellite imagery, we conducted a threshold analysis in which we iteratively tested different
thresholds in increments of 0.05. Figure 6 shows the results of this analysis. In this figure,
the red line represents the false negative rate (the frequency of incorrectly classifying a
riot as a non-riot), while the green line represents the true positive rate (the frequency of
correctly classifying a riot). The intersection of these lines at 50% represents the threshold
(in this case, 0.8) where the model’s ability to distinguish riots from non-riots is significantly
impacted. This threshold serves as an upper limit to where Score-CAM continues to
provide effective localization. For instance, Figure 6 demonstrates that selecting a threshold
higher than 0.8 results in Score-CAM identifying very few pixels, which leads to a minimal
degradation of the model’s performance, indicating that the selected pixels are not critical
to the model’s predictions. At the 0.8 threshold, the model’s performance deteriorates to
the extent that false positives outnumber true positives. This suggests that (a) the pixels
identified by Score-CAM are indeed sufficient to degrade the model’s performance when
masked and (b) the selected image regions genuinely represent the most critical pixels
driving the classification.

To evaluate how effective a threshold of 0.8 was in isolating riot-relevant information
from images, we compared the original accuracy of the model to the accuracy after applying
the mask. By using a threshold of 0.8, we masked areas of the image where the Score-CAM
values were 0.8 or higher, which corresponded to the most important features identified by
the model. This comparison allowed us to assess how much information relevant to riot
classification was captured by these high-activation regions. The results of this analysis are
shown in Table 3, illustrating the impact of masking on the model performance.

The results indicate that applying a 0.8 threshold to mask the regions of interest led to a
substantial reduction in performance, decreasing the accuracy from nearly 90% to approxi-
mately 68%, while only masking 1.6% of the image. At this threshold, the true positive and
false negative rates matched, indicating that the neural network was as likely to correctly
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classify a riot as it was to not classify a riot. This outcome suggests that the regions identified
by Score-CAM contained features important for accurate riot prediction, but not in a consistent
manner, i.e., that Score-CAM could provide a useful explanatory tool for some aspects of the
estimation of riot locations from satellite imagery but failed in other areas. These results for
each country are discussed later, with the accuracies displayed in Table 5.

Threshold Analysis

0.6

Rate/Percentage
°

—e— Unmasked Accuracy
~®- Masked Accuracy °

0.1+ —e— True Positive Rate (TPR) ...

—e— False Negative Rate (FNR) ...
®- Average Masked Percentage

0.0 0.1 02 03 0.4 05 0.6 07 038 0.9 10
Threshold

Figure 6. The results of the threshold analysis, with the threshold along the x-axis and the rate/score
along the y-axis. The unmasked accuracy was 89%, displayed in blue. The accuracy after masking
increased as the threshold increased, shown in orange. The true positive rate increased as the threshold
increased, shown in green. The false negative rate decreased as the threshold increased, shown in red.
The average masked percentage in purple is the amount of the image on average that was masked at the
given threshold.

3.2. Softmax Analysis

Across the full dataset, after masking the regions of interest, the network was less
confident in classifying images, as shown in Figure 7. Across all 6490 images, we observed
a mean shift of 0.25, indicating less confidence in the classification after masking. There
was a bimodal distribution for the shift in confidence across all images. While roughly
3000 images, nearly half of the data, showed no change in confidence, there is a significant
concentration near 0.95 in Figure 7. Further exploration of the bimodal nature of the softmax
shift is displayed in Figure 8. By analyzing the behavior of the true positives and the true
negatives specifically, we were able to gain insight into the impact of masking images that
ResNet was correctly classifving.
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Figure 7. The softmax shift after masking. The softmax value associated with the original prediction

minus the same value after masking created a softmax shift for every image. Positive values indicate

a less confident classification after masking.
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Figure 8. The softmax shift after masking, exploring the different cases in our confusion matrix. True
positives (correctly predicting a riot) are in the upper left, shown in blue. True negatives (correctly
predicting a non-riot) are in the upper right, shown in green. False negatives (predicting a riot in a
non-riot image) are in the bottom left, shown in red. False negatives (predicting a non-riot in a riot
image) are in the bottom right, shown in gold. Note that due to the different population sizes of the
four cases, the y axis is not equivalent across the four charts.

The bimodal nature of the distribution in Figure 7 was driven by distinct shifts in the
classification confidence for true positives and true negatives. After masking, approximately
half of the true positives (upper left panel in Figure 8) showed a substantial reduction
in confidence, while the other half exhibited no change. In other words, after masking,
approximately half of the correctly classified riots were now classified as non-riots. This
pattern aligns with the results in Figure 6, where the true positive and false negative rates
intersect, suggesting that Score-CAM effectively identified key features in some cases but
failed to do so consistently.

In contrast, true negatives (upper right panel in Figure 8) maintained a high classifi-
cation confidence after masking, indicating that the regions identified by Score-CAM had
minimal influence on the model’s ability to classify non-riot images. Simply stated, masking
correctly classified non-riot images did not change the model’s behavior. This asymmetry
underscores the mixed performance of Score-CAM in localizing relevant features in satellite
imagery, particularly for more complex scenarios like identifying riot-specific patterns.

3.3. Ulu Data as an Explanatory Variable

Here, we tested if using ULU data to predict the location of a protest would be a
suitable replacement for deep learning techniques. Any image that had 100% missing data
or open space was excluded from the ULU analysis. Of the 6490 images in the dataset,
949 images did not overlap with the ULU dataset, leaving a dataset of 5541 images.

A linear regression was fit using these observations, using the percentage of each
class present in the vector of the unmasked image, O, as outlined in Section 2.2.4. This
resulted in an 72 value of 0.1017. This can be interpreted as the class percentages of the
pixels explaining only 10% of the variance in the prediction of riot images. This result could
have been driven by many factors, including nonlinearity in the relationship, a lack of
correlations between the underlying drivers of conflict and the land cover, or other factors.

Using a Score-CAM threshold of 0.8 (as identified in Section 3.1), we isolated key
features of importance within each image to compare urban land use (ULU) data from the
original image to those of the masked regions associated with the image classification. This
process is displayed in Figure 9. We then sought to establish if the areas inside of each
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threshold-selected region were unique relative to the broader image in terms of the ULU.
The similarity was evaluated using the three different similarity metrics discussed earlier.

Original Image
Label: Riot
Original Prediction: Riot
Masked Prediction: Null Regions of Interest

100
150
200
250

300

[} 50 100 150 200 250 300

Masked Image

ULU TIFF within Clipped image Bounds ULU TIFF within Regions of Interest
. - 0

b=
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Figure 9. Satellite images were classified based on the features visible in the top left frame. Score-
CAM indicated the regions of interest as displayed in the top center frame. The regions of interest
were isolated based on the Score-CAM threshold; this is displayed in the top right frame. The masked
image was evaluated, obscuring the regions of interest as shown in the bottom left. The ULU data for
the full satellite image, shown in the bottom center, were compared to the ULU data for the regions
of interest, shown in the bottom right. Imagery ©Planet Labs PBC 2023. All rights reserved.

The histograms of the values for each similarity score are displayed in Figure 10. The
summary statistics for the similarity scores are shown in Table 4.

For each of the three similarity measures, a one-sided t-test was conducted to deter-
mine whether the distributions of the similarity scores indicated significant differences
between the full images and the Score-CAM-identified locations of the features of impor-
tance. In all cases, the tests showed no significant difference in the means, suggesting that
the locations of the features of importance were generally similar—in terms of the land
cover—to the full images.
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Figure 10. The frequencies of the L1 similarities are shown in blue on the left. The frequencies of the
L2 similarities are shown in red in the center. The frequencies of the Cosine similarities are shown in
green on the right.
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Table 4. The results of different similarity scores. All three similarity measures indicated that the

regions highlighted by Score-CAM were not significantly different from the full image.

L1 Similarity

L2 Similarity

Cosine Similarity

Mean 0.7004 0.4046 0.7946
Median 0.6473 0.3682 0.8753
Standard Deviation 0.4143 0.2447 0.2157
Null Hypothesis Mo > 35 o >1.3 po <05
T Statistic —502.99 —272.37 101.66
p Value 1 1 1
Result Similar Similar Similar

3.4. County-Level Analysis

The dataset was constructed to allow for the country-specific analysis of the masking

accuracy, softmax shifts, and ULU similarities; all contrasts are shown in Appendix A.1. Of

particular note is that, when masking portions of the image, the model degradation was not

uniform across all 24 countries in the dataset. The country-specific decreases in accuracy are

shown in Table 5.

Table 5. Comparison of unmasked accuracy, masked accuracy, and change in accuracy by country.

Country Unmasked Accuracy Masked Accuracy  Change in Accuracy
United Kingdom 0.8393 0.5357 —0.3036
Taiwan 0.8214 0.5179 —0.3036
Ukraine 0.9185 0.6467 —-0.2717
Israel /Palestine 0.8949 0.6338 —0.2611
Indonesia 0.8657 0.6194 —0.2463
South Africa 0.8243 0.5845 —0.2399
Bangladesh 0.8899 0.6514 —0.2385
Venezuela 0.8906 0.6563 —0.2344
South Korea 0.9212 0.6903 —0.2310
India 0.8860 0.6667 —0.2193
Thailand 0.8708 0.6517 —0.2191
Brazil 0.8514 0.6351 —0.2162
Pakistan 0.9256 0.7099 —0.2156
Italy 0.8819 0.6806 —0.2014
Yemen 0.7833 0.5833 —0.2000
Chile 0.9115 0.7231 —0.1885
Lebanon 0.9455 0.7576 —0.1879
Peru 0.7788 0.6058 —0.1731
China 0.9000 0.7290 —0.1710
Iraq 0.9100 0.7500 —0.1600
Japan 0.8560 0.7200 —0.1360
Greece 0.8730 0.7460 —0.1270
Iran 0.9442 0.8219 —0.1223
Russia 0.7803 0.6667 —0.1136

This table is ordered by each country’s change in accuracy. As an example, masking

caused the United Kingdom'’s accuracy to decrease from 83.8% to 53.6%, the largest shift in

the dataset. The relatively high unmasked accuracy indicates that the neural network was

particularly effective at learning what features predicted riots in the United Kingdom. This

contrasts with Iran and Russia, which had the two smallest changes in accuracy, indicating

that Score-CAM’s output struggled more to distinguish riot features.
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4. Discussion
4.1. Feature Detection in the Context of Socioeconomic Outcomes

This study’s novelty is in its investigation of a socioeconomic outcome—riot
activity—without predefined feature correlates; it is not clear which specific features in
satellite imagery should or should not align with riot occurrences across different geo-
graphic regions. This ambiguity creates a unique opportunity to uncover new insights into
underlying socioeconomic processes through satellite imagery, contingent on the ability to
interpret the features identified by deep learning models.

This study demonstrates that deep learning techniques are well suited to identify specific
imagery features that are associated with riot predictions. When as little as 1.6% of the image
was masked from classification, there was a significant degradation in performance. Further,
the directionality of shifts in our true and false positives outlined in Section 3.2 indicates
that the neural network had learned to detect features associated with riots specifically, as
opposed to distinguishing between riots and non-riots. The performance shift observed in
true positives that is absent in true negatives in Figure 8 supports this claim. There was
no observed degradation in the classification of non-riots, indicating that the network was
initializing images as showing a non-riot and the detection of riot features changed the
classification to a riot.

Deep learning appears to be particularly well suited for this classification task, espe-
cially in contrast to traditional GIS-based methods such as land use analysis. A land use
pixel-based linear regression was only capable of accounting for 10% of the variance in
predictions. Furthermore, when the relevant regions were isolated through deep learning,
the traditional GIS land use analysis techniques failed to detect any significant differences
in the land cover proportions between relevant regions and the broader images. Convolu-
tional neural networks and class activation mapping were able to detect features that, when
masked, degraded the performance from 89% to 68%, but land use analysis considered the
masked regions as similar to the surrounding terrain.

While the direct causes of riots are not clear at this time, deep learning demonstrates
the potential for the discovery and definition of the features used in successful classification.
Traditional GIS techniques, such as the land use, do not provide the same capabilities that
deep learning has demonstrated in the prediction of conflict locations. This underscores the
fact that the complexity and heterogeneity of satellite imagery—where objects of interest
can be obscured by atmospheric conditions, the topography, or seasonal changes—make
universal model performance more difficult to achieve. This diversity emphasizes the
need for robust domain adaptation strategies or additional fine-tuning when transferring
a model to different locations or times of year. Score-CAM can help identify whether the
model focuses on relevant features (e.g., certain spectral signatures of vegetation) or is
distracted by domain-specific artifacts (e.g., shadows, clouds, or noise), thereby clarifying
how well the model generalizes.

4.2. Limitations of Score-CAM and CAM Approaches

Score-CAM is capable of identifying some of the regions of interest within a satellite
image, but it does not provide any semantically meaningful results. Without semantic
definitions, it is difficult to understand what the features are or why they are relevant
to classification. For example, while it may be notable that a given type of building is
correlated with riots, without knowing the specific use of the building, it can be difficult to
draw conclusions as to why.

A second challenge is that differences in the results when using Score-CAM in satellite
imagery applications can arise from several factors. First, satellite images vary widely in
the resolution, spectral bands, and illumination conditions, which can lead to domain shifts
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that challenge a model’s ability to generalize. A model trained on one sensor type, for
example, may not transfer well to data gathered from another sensor with different spectral
characteristics or spatial resolution. Such disparities can manifest as inconsistent or less
meaningful Score-CAM visualizations, since the model’s learned feature representations
may not align with the new domain.

Score-CAM and other CAM techniques primarily focus on the training and evaluation
of object-centric image datasets, such as ImageNet [35]. This application is fundamentally
different to using satellite imagery. When predicting protests, satellite imagery is likely
to contain many relevant objects in a single image that can differ greatly in size. As an
example, a satellite image might contain a road that runs the length of the image, with
multiple vehicles on the road which are much smaller in size. Furthermore, the context
of vehicles on a road might be important to classification, but Score-CAM'’s ability to
understand this context is not well understood at this time. It is unknown how these
differences in the image type and object scale are handled with CAM techniques.

The multi-object nature of satellite imagery further complicates this analysis. The
dataset comprised images of cities, each containing multiple elements such as roads, build-
ings, and parks. Figure 11 provides an illustrative example of this complexity. In this image,
multiple roads and buildings are present, including several intersections. Interestingly,
Score-CAM identifies only one road intersection as relevant to image classification, while
disregarding others within the same image. This selective highlighting of features by
Score-CAM raises intriguing questions about the algorithm’s decision-making process in
complex, multi-object scenarios. It suggests that certain instances of a feature type may
be more influential in classification than others, even when they appear visually similar.
This observation underscores the nuanced nature of feature relevance in satellite imagery
classification and highlights the potential for further investigation into the criteria by which
Score-CAM determines feature importance in such complex visual environments. This may
include contextual factors which are currently not captured by available XAI approaches.

Original Image
Label: Riot
Original Prediction: Riot
Masked Prediction: Null

Regions of Interest

0 S0 100 150 200 250 300

Figure 11. An image from a riot on the left and a masked image on the right. The regions below a
Score-CAM threshold of 0.8 are masked. Masking this image resulted in the classification shifting
from a riot to a non-riot. Imagery ©Planet Labs PBC 2023. All rights reserved.

Score-CAM demonstrates limitations in consistently identifying the features the deep
learning model has successfully learned. As shown in Figure 8, approximately half of the
true positives lost confidence after masking, indicating that relevant riot features were
successfully localized to just 1.6% of the image. In contrast, the other half showed no
change in confidence, suggesting that key features were not identified by Score-CAM. This
inconsistency may have stemmed from features that exceeded the masked area or relied on
contextual or spatial relationships that Score-CAM cannot capture. While the exact reasons
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for these challenges remain unclear, they highlight the need for further research to improve
explainable AI methods for satellite imagery.

The limitations of CAMs in explaining satellite data are most evident in the country-
specific results of masking, as shown in Table 5. The inconsistent impact of masking on
the accuracy highlights this issue. For example, Score-CAM effectively identified relevant
features in the United Kingdom, resulting in the largest accuracy drop (from 83.9% to 53.6%).
However, in Iran, where ResNet achieved a higher initial accuracy (94.4%), Score-CAM had
a minimal impact, with the accuracy only decreasing to 82.2%.

As displayed in Table 5, the country-level results in Section 3.4 were not consistent for
every nation in the dataset. In particular, ResNet struggled to accurately classify images
from Russia. One example of this is shown in Figure 12, where the network correctly
classified an image from a riot in Moscow prior to and after masking. This indicates
that Score-CAM was not able to identify the features that drove classification; i.e., if the
correct features were selected by Score-CAM, we would expect the classification to flip to
“non-riot” after those features were masked. In Figure 13, the same network misclassified
a riot image from London as a non-riot after masking. This indicates that Score-CAM
was able to identify the features that drove classification. The regions of interest in both
Figures 12 and 13 appear to be similar and have similar ULU makeups, but the impact of
masking had different results. This is not offered as an explanation for why the network
struggled with images from Russia yet performed well in England. But this does highlight
the challenges of attempting to explain the features that drive classification for satellite
images of conflict and the strong potential of deep learning techniques to identify features
that may not be evident to human interpreters.

Regions of Interest
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Figure 12. An image from a riot in Moscow. This figure displays the same Score-CAM, masking,
and ULU methodology used in the rest of this research. In this example, a riot image from central
Moscow was properly classified as a riot. Following masking, the image was still classified as a riot.
This indicates that Score-CAM was not able to properly identify the location of the features that drove
riot classification. Imagery ©Planet Labs PBC 2023. All rights reserved.

There is no clear relationship between ResNet’s classification accuracy and Score-CAM'’s
ability to identify relevant features. If Score-CAM consistently identified riot features, we
would expect a uniform performance degradation across countries, regardless of the initial
accuracy. Alternatively, if Score-CAM’s performance correlated with ResNet’s accuracy, we
would expect larger accuracy drops in countries where ResNet performed well and smaller
drops where it struggled. The results show neither pattern. For instance, Yemen and Peru,
which had lower unmasked accuracies, exhibited significant performance drops after masking,
while Russia showed a minimal impact despite similar initial accuracy levels.
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The differences in the Score-CAM performance may have stemmed from several
factors. There is no evidence to suggest that riot-related features are universal or consistent
across countries. Cultural or regional factors could influence the visual indicators of riots,
making features in one country easier to detect and isolate than in another. Additionally,
Score-CAM may be well suited to identifying certain types of features while struggling with
others, depending on their complexity, context, or spatial relationships within the imagery.

Original Image
Label: Riot
Original Prediction: Riot
Masked Prediction: Null

Regions of Interest
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Figure 13. An image from a riot in London. This figure displays the same Score-CAM, masking, and
ULU methodology used in the rest of this research. In this example, a riot image from London was
correctly classified as a riot prior to masking. After masking, the image was incorrectly classified as a
non-riot. This indicates that Score-CAM was able to identify the location of features in the image that
drove riot classification. Imagery ©Planet Labs PBC 2023. All rights reserved.

These variations highlight the need for further investigation into the applicability
and limitations of explainable AI techniques like Score-CAM for satellite imagery. All of
these findings are predicated on using ResNet18 and Score-CAM, and further exploration
of different networks and techniques is warranted. Understanding these challenges is
critical for improving feature detection and interpretation across diverse geographic and
socioeconomic contexts, making this an important area for future research.

5. Conclusions

In this paper, we sought to answer two key questions: first, how effective are class
activation maps at localizing the regions of satellite imagery that are relevant for the classification of
socioeconomic factors, and second, can the land use be used as a proximate factor to understand the
likely location of riot events in urban environments? Through our analysis, we established that
Score-CAM was not able to consistently identify the regions of the image critical to the neu-
ral network’s classification decisions, demonstrating mixed utility as an interpretative tool
in high-stakes, complex applications like conflict prediction. Furthermore, our comparison
with urban land use (ULU) data revealed that these identified features did not consistently
correlate with traditional land cover classifications, indicating that the neural network
learned to recognize unique visual patterns associated with riot-prone areas, potentially
capturing subtle socioeconomic signals that would not be conventionally detected. The
observed lack of a correlation holds significant implications for advancing research on the
integration of deep learning with traditional GIS techniques, suggesting that prediction or
explainability predicated on the land cover may be insufficient in some cases.

These findings carry significant implications for the use of explainable Al in the
satellite-based predictive modeling of complex social phenomena. By moving beyond
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traditional land cover explanations, this study opens up new avenues for interpreting
deep learning models applied to satellite imagery in contexts where specific correlates
are unknown or semantically ill defined. Challenges remain, particularly regarding the
interpretability of features that do not map easily onto known semantic definitions (i.e.,
land cover types or objects such as cars or households). Future work may benefit from inte-
grating additional data sources to refine these interpretations, ultimately advancing both
the robustness and transparency of Al-driven models for social and urban research. Future
research in this field should extend beyond the independent evaluation of the model perfor-
mance and interpretability, instead emphasizing the development of models that achieve
high performance while inherently providing interpretability. This approach presents a
dual challenge, as it requires balancing the the predictive accuracy with transparency, a
task that may be intrinsically complex given the nature of satellite imagery, where critical
features of importance are often unknown or not explicitly defined.
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Appendix A
Appendix A.1

As a part of the analysis of any country-specific findings in Section 3.4, the similarity
scores, average softmax shifts, and the distribution of softmax shifts for each country were
explored. The following charts are presented to provide more insight into the similar
behavior and performance across all countries in the dataset. Figures A1-A3 present the
L1, L2, and Cosine similarities for each country. Further softmax shift analyses are shown
in Figures A5 and A6.

L1 Similarity - Bangladesh L2 Similarity - Bangladesh Cosine Similarity - Bangladesh

12 Similarity - Brazil
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Figure Al. Country-specific similarities. The frequency of L1 similarities is shown in blue. The
frequency of L2 similarities is shown in red. The frequency of Cosine similarities is shown in green.
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Figure A2. Country-specific similarities. The frequency of L1 similarities is shown in blue. The
frequency of L2 similarities is shown in red. The frequency of Cosine similarities is shown in green.
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Figure A3. Country-specific similarities. The frequency of L1 similarities is shown in blue. The

frequency of L2 similarities is shown in red. The frequency of Cosine similarities is shown in green.
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Figure A4. Country-specific similarities.
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Figure A5. The country-specific softmax shift. This is a bar graph of the mean for each country.
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