
NERDS: A Non-invasive Environment for Remote Developer
Studies

Joseph Lewis
jlewis23@umd.edu

University of Maryland
College Park, Maryland, USA

Kelsey R. Fulton
kelsey.fulton@mines.edu
Colorado School of Mines
Golden, Colorado, USA

ABSTRACT
Given the difficulties of secure development, studying software
developers remains pivotal. However, conducting these studies
remains a pain point for the security community as recruitment
and retention can be incredibly difficult. In this work, we aim to
make conducting security studies with software developers easier
by building NERDS: a Non-invasive Environment for Remote
Developer Studies. NERDS allows for conducting remote studies
while still providing researchers with a controlled environment. We
describe our experiences building and deploying NERDS in two
distinct secure software development studies. Our lessons learned
can provide valuable insight to other researchers wanting to utilize
NERDS. We provide NERDS as an open-source system.

CCS CONCEPTS
• Security and privacy → Usability in security and privacy;
Social aspects of security and privacy.

KEYWORDS
Study methodology, Secure software development, Usable security
and privacy
ACM Reference Format:
Joseph Lewis and Kelsey R. Fulton. 2024. NERDS: A Non-invasive En-
vironment for Remote Developer Studies. In Workshop on Cyber Security
Experimentation and Test (CSET 2024), August 13, 2024, Philadelphia, PA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3675741.3675750

1 INTRODUCTION
Secure software development remains a difficult task as evidence
by the many vulnerabilities introduced on a regular basis [6, 14, 18].
Developers are a key cause of these vulnerabilities [2, 11, 16, 17,
20, 25]. As such, in order to address these vulnerabilities, we need
to understand how and why these vulnerabilities occur and how
developers think about secure development.

However, conducting these studies remains a challenge. Eco-
logical validity is difficult to achieve as professional development
environments are hard to simulate [2, 19]. Recruiting and retaining
this specialized population, software developers, can be difficult
because they can be hard to find and contact, and they often par-
ticipate in these studies outside of work hours for compensation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CSET 2024, August 13, 2024, Philadelphia, PA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0957-9/24/08
https://doi.org/10.1145/3675741.3675750

lower than their normal rates [16, 21]. Additionally, the sometimes
frustrating nature of code writing can lead to high dropout rates
and small sample sizes for these studies [1].

Given this, it is important to build studies and their infrastructure
to support recruiting and retaining as many participants as possi-
ble. To this end, we built NERDS: a Non-invasive Environment for
Remote Developer Studies. NERDS expands on a prior infrastruc-
ture [22] by focusing on the ability to scale studies and easily adapt
to different study designs.

NERDS is built using Docker containers to maximize adaptabil-
ity, scalability, and resource efficiency. Researchers can customize
NERDS using different Docker containers for different studies.
Participants interact with NERDS entirely through their browser,
meaning they do not need to install or download anything to partic-
ipate. Researchers are able to collect ample data such as participant
interactions, internet searches, and time focused on the study. We
have deployed NERDS in two studies: one completed with 141
participants using the Python programming language and one in-
progress with 25 participants using the C language.

In this paper, we detail our experience with designing, building,
and deploying the NERDS system. We also provide lessons learned
from deploying NERDS, in an effort to aid researchers who may
want to utilize NERDS in the future. The code for NERDS is open-
source, and details and documentation for using the system can be
found at our website https://joelewiss.github.io/nerds/.

2 RELATEDWORK
Prior research has exploredmaking developer studies better through
recruitment, measuring participant skill, and study deployment.

Recruitment. Prior work has explore improving software devel-
opment studies through understanding the validity of common
recruitment approaches. Researchers have studied common recruit-
ment approaches such as freelance marketplaces, GitHub users,
and social media to determine their validity in recruiting devel-
opers [3, 4, 26]. To understand how students and freelancers com-
pared to professionals, Naiakshina et al. compared the two popula-
tions, uncovering that developers performed better overall, but that
treatment effects held the same for all populations [15]. Recently,
researchers compared and contrasted a number of common recruit-
ment venues finding that CS students are viable alternatives for
developers [13, 23]. Finally, Serafini et al. interviewed 30 develop-
ers to understand why they participate in studies, finding that the
length, compensation, and topic of the study played an important
role [21].

Measuring developers’ skill. To improve the quality of partici-
pants, prior work has developed scales and survey questions to

74

https://doi.org/10.1145/3675741.3675750
https://doi.org/10.1145/3675741.3675750
https://joelewiss.github.io/nerds/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3675741.3675750&domain=pdf&date_stamp=2024-08-13


CSET 2024, August 13, 2024, Philadelphia, PA, USA Lewis and Fulton

evaluate the programming and security skills of potential partici-
pants. To measure programming experience, researchers built mul-
tiple scales utilizing self-efficacy and programming exercises to
measure skill [5, 10]. To aid in recruitment, Danilova et al. built a
screening questionnaire [8] and explored time limits as a way to
improve efficiency [7]. Focusing on security, Votipka et al. built a
scale to measure participants’ security self-efficacy [24].

Study design. Most related to ourwork is prior research exploring
alternatives to in-person lab studies. Stransky et al. built the Devel-
oper Observatory to conduct remote studies using Python [22]. The
Developer Observatory system allows participants to use their web
browser to complete a series of programming tasks. They found
that remote studies conducted using the Developer Observatory
were easier and faster than in-person lab studies, but were slightly
limited in data collection. NERDS utilizes the Developer Observa-
tory as a starting point for our work, but we expand the system by
improving scalability and adaptability.

More recently, Huaman et al. built OLab [12], another platform
for conducting remote developer studies. Rather than providing a
Python programming interface, OLab provides an entire desktop
environment that can be configured to support any programming
environment. While this is an expansive system, it requires multiple
servers to host (due to the use of Kubernetes) and is a much larger
(and heavier) system than is needed for most code-focused studies.
Additionally, the OLab system is not open-sourced and has only
been tested with loads of less than 25 participants. While we drew
some inspiration from the design of OLab, NERDS is lighter and
allows for conducting studies with hundreds of participants at a
time.

3 NERDS: ITERATION 1
To develop NERDS, we modified the existing Developer Obser-
vatory infrastructure with the hope of improving the scalability
and adaptability of the system [22]. In this section, we describe
the system requirements, system design, and the implementation
and deployment results of this first system. We highlight where
NERDS differs from the Developer Observatory.

3.1 Requirements
We describe the requirements of NERDS across four axes: partici-
pant experience, experimental design, technical, and study-specific.
We specifically highlight changes made to the system in order to
address the problems in the original system [22].

3.1.1 Participant experience requirements. The first set of require-
ments focus on ensuring that participants have the best experience
possible, as participant retention is a key challenge of conducting
developer studies [1]. Given this, we want to make participating in
the study as easy as possible for participants. To this end, the system
should be intuitive, designed with developers in mind, and should
not require participants to install any additional software on their
device (non-invasive). Rather, everything should be self-contained
and accessible through a single, provided link, only requiring po-
tential participants to have an up-to-date browser installed. Further,
given the length and frustration of these studies, participants should
also be able to leave and return to the study at arbitrary times and

pick up from where they left off (flexibility). This gives the partici-
pant flexibility to complete the study on their own time, something
not possible during an in-person lab study. Additionally, partici-
pants should be able to skip tasks they are struggling with and
revisit any previous tasks (skip-revisit).

3.1.2 Experimental design requirements. The second set of require-
ments focus on maximizing the validity of the research. To ensure
internal validity, the system should allow for randomized assign-
ment to conditions and randomized presentation of tasks (random-
ization). Additionally, the system should provide data collection
and environmental control to a level as close as possible to an
in-person lab study (control). This means the system should pro-
vide the same programming tools, development environment, and
programming experience for all participants. To ensure external
validity, the system should mirror a real-world programming envi-
ronment as closely as possible, which means allowing participants
to utilize their own devices and emulating the input and output of
development environments as closely as possible (real-world). Fi-
nally, in order to garner the best results possible, the system should
record as much data as possible so it can mimic the advantages of
an in-person lab study, while not being over intrusive in its data
collection (data collection). The system needs to record data about
the participants programming progress throughout the tasks. This
includes, but is not limited to, the participant’s responses to the pro-
gramming tasks, any associated compilation output or errors, and
each iteration of code the participant tests. This allows a wide range
of studies to be conducted on the system. In order to promote ethi-
cal research and limit privacy concerns, the collected data should
be recorded securely with an associated pseudonymous identifier
(ethics).

3.1.3 Technical requirements. The third set of requirements focus
on the technical needs to facilitate studies through a system like
this. First, the system should be as secure as possible in multiple
respects. Participants should be fully isolated from each other and
the system itself (isolation). There should be no way a participant
can view or change the responses of another participant. Partici-
pants should not be able to significantly degrade the experience for
another participant through an attack like a denial of service (DoS).
Second, the system should be scalable, meaning many participants
should be able to use the system concurrently without any no-
ticeable performance degradation (scalability). More concurrent
participants means more opportunities to collect data. Scalability
was a notable limitation of the original Developer Observatory. [22],
so we aim to address this in our design. Finally, the system should
be easy to adapt to new study designs (i.e. different programming
languages, different types of coding tasks, adding new measure-
ments or data collection)(adaptability). This promotes future use
and adoption of the system, maximizing it’s utility for researchers.
While this is not an entirely distinct goal from the Developer Ob-
servatory [22], as they aimed to make their system adaptable to all
Python studies, our system takes this requirement a step further by
making NERDS adaptable to any type of code-focused study. We
demonstrate the adaptability of NERDS through the deployment
of two very different studies which we discuss in Sections 3.2 and
4.2.

75



NERDS: A Non-invasive Environment for Remote Developer Studies CSET 2024, August 13, 2024, Philadelphia, PA, USA

3.1.4 Study-specific Requirements. Finally, we describe the study-
specific requirements of this system. The first study we utilized
NERDS for (Study 1) required participants to complete two tasks
in the Python language. This study had six total conditions. Three
of the conditions were focused on study methodology: writing
code from scratch (Write), reading existing code and finding and
explaining vulnerabilities and bugs (Read), or finding and fixing
vulnerabilities and bugs in existing code (Fix). Then, within each of
these methodologies, participants were assigned to use one of two
different libraries. Only participants in theWrite and Fix conditions
should be able to edit and run code. Additionally, participants in
the the Write condition should be presented with function headers
but not completed code, where participants in the Read and Fix
conditions should be presented with completed code. Finally, par-
ticipants needed to be redirected to a survey after completing the
tasks.

3.2 Design
To meet these requirements, as mentioned in Section 2, we mod-
ified the Developer Observatory [22]. Our modifications focused
on improving the scalability and adaptability while still meet-
ing the other requirements, as discussed above. We will give an
overview of our system design and how this satisfies our above
requirements, highlighting key differences between the original
Developer Observatory and our modified version. Descriptions of
how each requirement is satisfied by our design can be found in
Table 1.

The system has two main components: the study infrastructure
and the participant instances. The main function of the system is
to provide every participant in a study with their own instance
containing a web-based programming environment. For this study
the instance was a Python programming environment mirroring
the original deployment [1].

3.2.1 Study Infrastructure. The study infrastructure is responsible
for managing participant instances and data storage. In the pre-
vious design of the Developer Observatory, the services and the
participant instances were run on virtual machines hosted on Ama-
zon’s EC2 platform. Instead, NERDS uses Docker1 to host services
and participant instances. Docker is a open source software for
creating and running containers. Containers are less resource inten-
sive while providing some of the same benefits of virtual machines,
such as isolation. Each infrastructure component from the previ-
ous system is now its own container image hosted with Docker.
Containerisation gives multiple benefits to our system, including
quicker startup times and less overall resource usage, increasing
the scalability of NERDS. There are a total of 7 services needed
for the system’s backend, plus one helper script that runs on the
host where participant instances are hosted. Below is a description
of each service and its purpose in the system.

Router (nginx) Routes all incoming connections to either the
study infrastructure or the participant instances. Runs Nginx,
a popular reverse proxy software. In the previous Devel-
oper Observatory system, participants were redirected to an
AWS EC2 instance on a separate domain that lacked HTTPS.

1https://www.docker.com/

Figure 1: Diagram of the NERDS system. Grey lines are data
paths throughout the system. Red lines is the path a partic-
ipant takes through the system. Yellow labels match to the
participant flow described in Section 3.2.1

Instead, all participants are proxied to their instances on
the same domain as the study infrastructure, maintaining
HTTPS security throughout the study.

Manger Python script on the host that manages starting and
stopping containers. In the previous Developer Observatory
system, this communicated with Amazon’s EC2 API. Instead,
containers are started through Docker, making the process
faster. Maintains a pool of containers ready for new par-
ticipants (ready pool). Pool size can be configured to meet
expected demands.

Landing (landing) PHP application for handling all new par-
ticipants. Validates user information and system conditions
and gets a new instance from the manager. Presents the user
with intro information on how to complete the study.

Submit (submit) Handles communication between participant
instances and infrastructure. Stores participant data in db
service. Redirects participants to an exit survey on comple-
tion.

Database (db) PostgreSQL database. Used to store all infor-
mation relating to the study including conditions, running
participant instances, and participant data.

Redis (redis) Maintains a queue of started instances ready
to be given to users. Main communication path between
landing container and manager script.

Control (control) Checks for abandoned instances and sig-
nals manger to destroy them through redis. Reports statis-
tics to stats service.

Stats (stats). Aggregates statistics from services and displays
graphs for study administrators.

Participants completing a study on NERDS would go through
the following steps inside of the study infrastructure:

(1) A participant completes a pre-survey (consent or screening),
separate from the system. From this survey, the participant is

76



CSET 2024, August 13, 2024, Philadelphia, PA, USA Lewis and Fulton

Requirement Description

Participant experience non-invasive Participate through a browser. No installs or downloads necessary.
flexibility Uses cookies to allow rejoining within allotted time period.
skip-revisit Provides skip/previous buttons.

Experimental design randomization Arbitrary conditions configurable by researcher. control service assigns conditions randomly.
control All participants are provided exact same software and environment through Docker images.
real-world Programming environment based on Jupyter notebook/Visual Studio. Browser is Firefox instance.
data collection Data collected from participant in real-time through participant interface.
ethics Data stored on secure sever with pseudoanonymous identifier.

Technical isolation Participants use isolated network and file system within Docker containers. Resource limits prevent participants from
using all the systems resources.

scalability Lightweight participant Docker containers created by control service as demand increases. No limit on number of
Docker containers concurrently running.

adaptability Participant instance can be any web app packaged inside a Docker container.

Table 1: Each requirement and how NERDS satisfies it

directed to the system with a pseudoanonoymous identifier
which is used to associate all participant data.

(2) The participant is shown an introduction and instructions
for the study on the landing service. Asynchronously, the
landing service gets a new participant instance from the
ready pool.

(3) Once the participant instance is ready, the user is proxied
to the instance software via the nginx service. The partici-
pant completes the study within the instance. All data from
the instance is communicated to the backend through the
submit service

(4) Once the participant finishes the study in the instance con-
tainer, they are redirected to an external exit survey with
their pseudoanonomous identifier and other associated in-
formation (e.g. the condition assigned). The system destroys
the participant’s instance as it is no longer needed.

A If instead the participant does not fully finish, the control
servicewill destroy the instance after a pre-configured amount
of time.

3.2.2 Participant Instances. The participant instances are respon-
sible for providing the space and infrastructure for participants
to complete the study. For this study, the instances were Docker
containers with a highly customized version of Jupyter notebook, a
web-based Python programming environment2. The web interface
presents programming tasks defined by the study administrators
to the participant in sequential order, hiding future tasks until they
are reached. Participants have the option to run their code to test it,
utilizing predefined tests we provide to them. Run output will ap-
pear below the code for review by the programmer. The participant
can choose to either mark a task as complete or skip a task. See
Figure 2 for a screenshot of the interface of the participant instance.

The participant instance records data about the participants
progress throughout the study. All code runs are recorded and sent
to the infrastructure with associated output, giving researchers
and understanding of how participants progressed through the
study. The instance also records how long the participant has the

2https://jupyter.org/

Figure 2: Screenshot of the participant coding environment.
The environment is a heavily-modified Jupyter notebook to
present programming tasks in order and report progress to
the NERDS system.

window “focused,”3, giving researchers insight into the time spent
by participants focusing on the task.

As described in Section 3.1.3, participant instances must be iso-
lated from each other and from the system itself (isolation). Full
isolation is accomplished through Docker, as Docker infrastructure
prevents access to file systems, networks, and resources in other
containers. Participant code is run as an unprivileged user inside of
the container preventing superuser access. Participant instances are
given limited CPU resources through Docker, meaning the threat of
a Denial-of-Service attack is minimal. Finally, participant instances
are blocked from accessing the public internet.

3Focused means having the browser tab with our system actively selected. This is
reported by the browser through JavaScript.

77



NERDS: A Non-invasive Environment for Remote Developer Studies CSET 2024, August 13, 2024, Philadelphia, PA, USA

In order to prevent the manager service in the study infrastruc-
ture from destroying an instance while a participant is still finishing
the study (i.e. a participant taking advantage of the flexibility re-
quirement), the instance sends periodic ”heartbeats“ to the backend
while the user is using the interface. This allows the system to man-
age participant instances and shutdown any unused or abandoned
instances after a researcher-determined amount of time.

3.2.3 Design advantages and limitations. Our fully containerized
design has multiple advantages over the original Developer Obser-
vatory design [22]. Our system does not require using a specific
hosting provider, unlike the previous system that required Amazon
EC2. Any system capable of hosting Docker can host our system,
which as of writing is Mac, Linux, and Windows. Since containers
are less resource intensive, the overall computational cost of the
system (and thus monetary cost) is substantially lower for a given
number of participants making scalability more attainable. We
also maintain the same security requirements (isolation) for far
less computational cost.

One of the main limitations of the Developer Observatory was a
limited number of concurrent participants and long wait times for
new participants. These limitations are directly related to the use
of Amazon EC2 instances to host the system. The limited number
of concurrent participants was due to the hard limit of 50 running
Amazon EC2 instances at a single time. The wait times come from
the inherent increased cost of starting an entire operating system
for every participant, which took about a minute in the Developer
Observatory [22]. Our system addresses both of these limitations
with containers. Since the participant instances are now hosted
within containers, the number of concurrent participants is now
unlimited, only bounded by the amount of resources available on
the system. Containers also have little startup time, resulting in
short wait times for participants. Both of these aspects drastically
increase the scalability of the studies run on NERDS.

As the participant instances are Docker containers, they can
also be easily switched out for any other participant interface as
needed. The participant instance simply needs to be a Docker con-
tainer with a web interface and periodically report participant data
through documented calls. This means the NERDS system can be
used for any study that needs separate, isolated instances for every
participant. In the Developer Observatory, such seamless switching
was not possible as the participant instances were EC2 templates
and would need to be recreated for every instance of a study.

3.3 Deploying our system and lessons learned
Next, we detail our experience usingNERDS for a large-scale secure
software development study and the lessons we learned from this.
This study was approved by University of Maryland’s and Colorado
School of Mines’ ethical review boards.

3.3.1 Study overview. First, we give a brief overview of the study.
As described in Section 3.1.4, the study required participants to
Write code from scratch, Read existing code and identify issues
(security and functionality), or Fix the issues (security and function-
ality) in existing code utilizing one of two Python libraries. Over a
year long period, 141 participants started this study and 127 par-
ticipants completed it. We saw substantially fewer dropouts than

one of the original Developer Observatory studies [1]. We collected
more than 5,500 code run events. Participants spent an average of
30.2 minutes participating in the study, including time spent on the
final survey.

3.3.2 Utilizing the system. Next, we discuss our experience utiliz-
ing this system as researchers. The deployment process of NERDS
was substantially easier than theDeveloper Observatory. ForNERDS,
we used a single server with 16 GB of RAM hosted on our Univer-
sity’s compute cluster. While the containers could be hosted on
separate systems, we opted to keep all on the same host for sim-
plicity. In contrast, the Developer Observatory required creating
an AWS account and a multi-step process to create AWS templates
with the correct software installed.

The maintenance and updating of NERDS was also much easier
than the original Developer Observatory. As new requirements
or issues within the system arose, we could alter our system and
rebuild the entire system with a single command. The next par-
ticipant in the study (after the ready pool was exhausted) would
automatically use the new instance with the fix applied. Addition-
ally, building with Docker is incredibly fast, as Docker caches and
reuses previous builds for components that have not changed. In
contrast, the Developer Observatory requires altering each VM in
the system anytime a change is made, which is a lengthy, highly
manual process.

Running the study was straightforward and successful. Moni-
toring provided by the stats service gave quick insight into how
many participants had successfully completed the study, providing
key insights to researchers on condition balance. This made it very
easy to determine whether any weighting was needed for condition
assignment and whether we had received sufficient participants
to conclude the study. Automated data exports from the database
made analysis seamless as the data came pre-formatted (JSON). We
received no reports of participants not being able to enter the study
due to system load. No participants experienced interruption while
participating in the study due to a system error or outage. The data
was exported easily from the system’s database and analyzed using
separate tools by the researchers.

3.3.3 Lessons learned. We learned a few key lessons from con-
ducting this study. First, participants will always find ways around
system restrictions. In the study, participants in the Read condition
were not allowed to run the code, but some participants discovered
that they could still run the code using Jupyter’s hotkeys. We re-
moved data from these participants and quickly published a fix that
disabled Jupyter’s hotkey engine. Unfortunately, this also disabled
legitimate uses of hotkeys for participants in the Fix and Write
conditions. While striving for as much of a real-world participant
experience as possible, there are trade-offs that have to be made.

Second, we learned that the information provided by the stats
feature was invaluable. With a lab-study, monitoring progress is
simple as researchers are actively involved in every participant
interaction (a key trade-off of these studies). Conversely, with a
remote study, closelymonitoring participants becomes very difficult
as participants are often working in tandem and on the study at
a time that is most convenient for them (often including breaks).
The stats feature allowed for us to closely monitor the study as
it progressed. Specifically, the stats tool allowed us to discover a

78



CSET 2024, August 13, 2024, Philadelphia, PA, USA Lewis and Fulton

large imbalance in the conditions assigned to participants where
half as many participants were assigned to the Write condition
compared to the other conditions. The stats tool allowed us to
identify this and quickly push a fix to the landing service to weight
the condition assignment.

Finally, while our participant instance collected a lot of data,
there were some key insights that we lost due to the limitations
of our system. While we could see how long it took a participant
to complete the study and how long a participant spent “focused”
on the study, we could not see what the participant was doing
when they were not “focused”. This was especially important, as we
wanted participants to only use our study provided documentation
rather than other internet resources. In a lab study, this would
be trivial for researchers to see, but due to the limitations of a
remote study, collecting such data is non-trivial. These trade-offs
are something researchers need to consider in the study-design
phase to ensure they control for all study-important factors.

Despite these limitations, conducting a remote study was far
easier than an in-person study and promoted strong external and
internal validity. Specifically, our participants were incredibly ge-
ographically, programming experience, and security experience
diverse. This would not have likely been possible if we had con-
ducted a lab-study.We never had to reserve a room at our institution,
reimburse travel, or actively sit with participants as they completed
our study. Our fully automated and remote approach meant we
could collect far more data than would be possible in a lab study.
While we did not get all of the information that we would have in a
lab-study, we were still able to collect a substantial amount of data
and maintain a enough control to ensure experimental validity.

4 TAKING NERDS FURTHER
With the success of the first study, we sought to further utilize
NERDS. Specifically, we wanted to explore the adaptability of
NERDS. Can we use NERDS for a completely different type of
study? Can we change or add to the data collected during the study?
We detail our unique requirements for the next iteration of NERDS,
the design based on these requirements, the steps it took to rework
NERDS, and our experience deploying the modified NERDS.

4.1 Requirements
In addition to the requirements detailed in Section 3.1, NERDS
has additional study-specific requirements for the participant in-
stances. With this second study, we wanted to have participants
write code in the C programming language rather than in Python.
Additionally, we wanted to be able to collect all participant search
history to understand resources utilized during Study 2, given that
this was a key piece of information we missed in Study 1. With
these new requirements came two new challenges. First, running
C code would require a substantial rework of the participant in-
stance, as the previous study was limited to running Python inside
of Jupyter Notebooks, which are unable to run C code. Second,
collecting browser activity without requiring a participant to install
any additional software beyond a browser itself (the non-invasive
requirement of our system) is impossible due to the limitations of
browser APIs.

Figure 3: Screenshot of the C development environment. Task
description is shown to the participant on the left. Code is
edited on the right and output from the compiledWebAssem-
bly is shown below the editor.

4.2 Design
Given these new challenges and requirements, we utilized the exist-
ing NERDS study infrastructure design described in Section 3.2.1.
However, we needed to make heavy modifications to the partici-
pant instance to address our new study requirements. Our modified
NERDS participant instance design has threemain parts: (1) a devel-
opment environment for the C language, (2) a system for compiling
and running C code, and (3) an embedded browser for participants
to use. See Figure 5 for a diagram of the participant instance.

4.2.1 C Development Environment. We developed a web-based C
development environment for participants to use while completing
the study. The environment is task-based, meaning it presents tasks
in sequential order, allowing participants to submit a response for
each. As one of the requirements is to mimic real development
experience (real-world), we modeled the interface to resemble
Visual Studio Code (VSCode), a popular IDE. We built the code
editor using the same library4 that VSCode uses, allowing our
interface to mimic the real VSCode as closely as possible. See Figure
3 for a screenshot of the C development environment.

4.2.2 C Compiler. Instead of compiling and executing C code na-
tively on the participant instance, which could introduce possible
security concerns, we compile C code to WebAssembly and execute
it on the participant’s browser, promoting as much isolation as
possible. WebAssembly is a binary format for executables designed
to be executed on web browsers and is supported by most major
browsers5. We use Emscripten6 as the WebAssembly compiler on
the participant instance. We compile participant code into a config-
urable testing suite that displays test results to the participant in a
window below the editor when run. Running participant code on
the participant’s browser means any malicious code a participant
uploads executes inside of their own browser instead of the study
system (isolation). It also means the system has overall less load

4https://microsoft.github.io/monaco-editor/
5https://webassembly.org/
6https://emscripten.org/

79



NERDS: A Non-invasive Environment for Remote Developer Studies CSET 2024, August 13, 2024, Philadelphia, PA, USA

Figure 4: Screenshot of the embedded browser in themodified
NERDS system. Browser history is collected automatically
through a small script on the participant instance.

as participants are using their own compute resources to run their
code (scalability).

4.2.3 Embedded Browser. Since lacking internet search history
was a key lesson learned from our first deployment of NERDS
(Section 3.3.3), we wanted to collect any internet searches in our
second deployment. To collect participant browser activity without
requiring participants to install anything (non-invasive), we pro-
vided a full Firefox browser embedded in the participant interface.
The Firefox process is hosted on the participant instance and made
available through Virtual Network Computing (VNC), a remote
desktop protocol. The web interface uses noVNC7, a browser imple-
mentation of the VNC protocol, to display the embedded browser
inside of the participant’s browser. When the participant submits
code to compile, a small Python script on the instance collects the
hosted browser’s history from the container’s filesystem. In the
instructions of our study we asked the participant to do all searches
in the provided browser instead of using their own browser. See
Figure 4 for a screenshot of the embedded browser.

4.2.4 Design advantages and limitations. The primary advantage
of our new system is the ability to run arbitrary C code with asso-
ciated tests without any security concerns. The C code runs on the
participant’s browser without any ability to affect the participant
instance or the NERDS infrastructure (isolation). We can also
collect participant browser data without any additional software
installed on the participant’s device (non-invasive).

The new system also demonstrates the relative ease of rework-
ing the participant instance to work with a different language and
collect different data (adaptability). While developing the instance
itself incurred high development cost, the core NERDS infrastruc-
ture remains unchanged and supports the new participant instance
in the exact same way. This could feasibly be done by other re-
searchers for different study requirements.

There are a few limitations with this updated design. First, partic-
ipant instances are now more resource intensive given they host an
entire window server and a Firefox browser. This means the overall

7https://novnc.com

Figure 5: Diagram of redesigned participant instance for the
second NERDS study.

system resource requirements are higher for a given number of
concurrent participants. While this slightly decreases scalability,
the number of active participants is only bounded by the available
resources. Acquiring more computational resources allows more
participants to use the system concurrently.

Participants are also not forced to use the embedded browser,
and may actively choose to avoid it. Due to limitations in the web
environment, hotkeys such as Ctrl-T and the clipboard cannot be
passed to the embedded browser. Power users, like programmers,
might expect these features to be present (real-world). Additionally,
participants with high network latency to the NERDS system may
also experience frustration using the VNC session, as interacting
with the embedded browser will be less responsive than natural
interactions. These differences may cause participants to switch to
their own browser. In such a cases, our system would not be able
to collect browser data from the participant.

There are also difficulties with the WebAssembly-based exe-
cution model. WebAssembly may have significant differences in
execution compared with a native environment. For example, a null
dereference (access at memory location 0) is valid in WebAssembly
since memory is implemented in a JavaScript array [9]. We ran into
many difficulties with this as our test suite explicitly tested for null
dereferences, which were not identified in the WebAssembly envi-
ronment. This meant that running our provided tests natively and
using WebAssembly produced different results. Our solution was to
use many checks and sanitizers compiled into the final executable,
such as UBSan, Clang’s undefined behavior sanitizer. However, there
may be some edge cases that UBSan does not detect.

4.3 Deploying our system and lessons learned
In this section, we detail the deployment of this modified NERDS
system and the lessons we have learned so far. This study was
approved by University of Maryland’s and Colorado School of
Mines’ ethical review boards.

80



CSET 2024, August 13, 2024, Philadelphia, PA, USA Lewis and Fulton

4.3.1 Study overview. The study we redesigned NERDS for re-
quired participants to complete 4 tasks in the C programming lan-
guage utilizing provided, completed code suggestions. Participants
are provided multiple suggestion and directed to pick one. Once
they select a suggestion, they are able to edit and test it. Each sug-
gestion varies in its functionality and security. We deployed this
redesigned system to conduct this study on April 8, 2024. As of
writing, we have 25 finished participants and the data collection
is ongoing. Participants have spent an average of 29.95 minutes
completing the study. We have had no reports of interface issues
or system outages.

4.3.2 Utilizing the system. Developing the new participant instance
took a substantial amount of work, largely due to the complexity
of hosting the embedded browser and designing a brand new de-
velopment environment. However, as described in Section 4.2.4,
the process of switching out the old Jupyter-based instance with
the new instance (once it was completed) was seamless. The only
changes that were made to the NERDS study infrastructure were
fixes for small bugs discovered during the development of the new
participant instance.

While we anticipated that the participant instances required
more resources than in Study 1 (see Section 4.2.4), we hosted Study
2 on the same system used to host Study 1. We experimented with
the increased resource requirements by performing a stress test of
the system before we launched the study. We specifically wanted to
see how many people could be concurrently using their embedded
browsers without impacting the experience of other users. Rough
results showed around 10 people could perform intensive tasks like
watching videos inside the browser and without having a notice-
able affect on the experience of other participants. However, 10
participants is not an upper bound, and we would need to further
explore the hard upper limit forNERDS. We deemed this soft upper
bound sufficient, as we expected most participants would not be
doing extremely intensive tasks within their browser, and decided
to launch the study with the same amount of resources as Study 1.
We have not received any reports of degraded performance from
participants thus far.

The preliminary data is rich, but as anticipated in section 4.2.4,
it seems only some participants are using the embedded browser.
As of writing, only 2 participants used the browser at all. Given the
nature of the study, this is not entirely surprising as participants
are given completed code, so they may not need online resources.
However, it is also possible that they used their own browser to
look up information. If this number does not improve throughout
the course of our study we may explore alternative methods for
collecting browser information in future studies.

4.3.3 Lessons learned. As of writing the study has been running
for around 3 months, so our lessons learned are preliminary, and
we expect to learn more as the study continues.

During the first few weeks of the study, one participant was
kicked out of the system while completing the study due to an
unintended command run by a developer of the system. While the
participant was eventually able to recover and resume the study,
better checks are needed to prevent editing the system internals
while participants are actively completing a study. For our wider

release to the research community, such edits while the study is
running should be very hard, if not impossible, to make.

The relative ease of switching out the participant instance be-
tween Study 1 and Study 2 showed us that this system is very
extensible and adaptable for a wide range of studies. With docu-
mentation, this system can be useful to any researcher wishing to
run a remote study that needs isolated instances for participants.

5 FUTUREWORK
WhileNERDS is a valuable system for conducting remote developer
studies, there are many improvements that could be made. First,
while we are making this system publicly available to the research
community, the system may be hard to use for researchers. Clear
documentation and an easy-to-use study management interface
should be created to assist in creating, running, and collecting data
from a study. Additionally, creating the new participant instance for
Study 2 required a high amount of overhead and developer experi-
ence on the part of the study administrators. Thus, creating custom
instances may be difficult or impossible for some researchers. More
experience is needed in creating custom participant instances in
various studies. Potentially, a library of instances for various study
types could be made available for researchers for a more “plug-and-
play” experience. While our experience was relatively straightfor-
ward, we would love to hear from other researchers if they find the
experience intuitive enough to use for their own study.

Second, the system architecture is heavily coupled to Docker. If
the system could run on any container system, this would further
improve the adaptability of NERDS. For example, the popular
container orchestration Kubernettes may be able to run our system
more efficiently and at a greater scale than Docker.

Finally, the embedded browser in the participant instance of
Study 2 is a weak point of our system currently, as it limits the
real-world likeness of NERDS. Adding the ability to pass clipboard
data and hotkeys between the embedded browser and the partici-
pant’s system would vastly improve the experience for developers
participating in the study.

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,

Michelle L Mazurek, and Christian Stransky. 2017. Comparing the usability of
cryptographic APIs. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
154–171.

[2] Yasemin Acar, Sascha Fahl, and Michelle L Mazurek. 2016. You are not your
developer, either: A research agenda for usable security and privacy research
beyond end users. In 2016 IEEE Cybersecurity Development (SecDev). IEEE, 3–8.

[3] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L Mazurek, and
Sascha Fahl. 2017. Security developer studies with Github users: Exploring a
convenience sample. In Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017). 81–95.

[4] Sebastian Baltes and Stephan Diehl. 2016. Worse than spam: Issues in sampling
software developers. In Proceedings of the 10th ACM/IEEE international symposium
on empirical software engineering and measurement. 1–6.

[5] Gunnar R Bergersen, Dag IK Sjøberg, and Tore Dybå. 2014. Construction and
validation of an instrument for measuring programming skill. IEEE Transactions
on Software Engineering 40, 12 (2014), 1163–1184.

[6] Yung-Yu Chang, Pavol Zavarsky, Ron Ruhl, and Dale Lindskog. 2011. Trend
analysis of the cve for software vulnerability management. In Proceedings of the
2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and
2011 IEEE Third International Conference on Social Computing. IEEE, 1290–1293.

[7] Anastasia Danilova, Stefan Horstmann, Matthew Smith, and Alena Naiakshina.
2022. Testing time limits in screener questions for online surveys with program-
mers. In Proceedings of the 44th International Conference on Software Engineering.
2080–2090.

81



NERDS: A Non-invasive Environment for Remote Developer Studies CSET 2024, August 13, 2024, Philadelphia, PA, USA

[8] Anastasia Danilova, Alena Naiakshina, Stefan Horstmann, and Matthew Smith.
2021. Do you really code? Designing and Evaluating Screening Questions for On-
line Surveys with Programmers. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 537–548.

[9] Emscripten. [n. d.]. Debugging with Sanitizers.
https://emscripten.org/docs/debugging/Sanitizers.html?highlight=dereference#catching-
null-dereference|.

[10] Janet Feigenspan, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanen-
berg. 2012. Measuring programming experience. In 2012 20th IEEE international
conference on program comprehension (ICPC). IEEE, 73–82.

[11] Kelsey R Fulton, Daniel Votipka, Desiree Abrokwa, Michelle L Mazurek, Michael
Hicks, and James Parker. 2022. Understanding the how and the why: Exploring
secure development practices through a course competition. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
1141–1155.

[12] Nicolas Huaman, Alexander Krause, DominikWermke, Jan H. Klemmer, Christian
Stransky, Yasemin Acar, and Sascha Fahl. 2022. If You Can’t Get Them to the
Lab: Evaluating a Virtual Study Environment with Security Information Workers.
313–330.

[13] Harjot Kaur, Sabrina Amft, Daniel Votipka, Yasemin Acar, and Sascha Fahl. 2022.
Where to Recruit for Security Development Studies: Comparing Six Software
Developer Samples. (2022).

[14] Mitre. 2020. CVE. https://cve.mitre.org/.
[15] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and Matthew Smith. 2020. On

conducting security developer studies with CS students: Examining a password-
storage study with CS students, freelancers, and company developers. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–13.

[16] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel Von Zezschwitz,
and Matthew Smith. 2019. “If you want, I can store the encrypted password” A
Password-Storage Field Study with Freelance Developers. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–12.

[17] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. 2017. Why do developers get password storage
wrong? A qualitative usability study. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security. 311–328.
[18] NIST. 2020. National Vulnerability Database. https://nvd.nist.gov/general.
[19] Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko. 2017. Developer-centered

security and the symmetry of ignorance. In Proceedings of the 2017 New Security
Paradigms Workshop. 46–56.

[20] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L Mazurek, and
Piotr Mardziel. 2016. Build it, break it, fix it: Contesting secure development. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 690–703.

[21] Raphael Serafini, Marco Gutfleisch, Stefan Albert Horstmann, and Alena Naiak-
shina. 2023. On the Recruitment of Company Developers for Security Studies:
Results from a Qualitative Interview Study. In Nineteenth Symposium on Usable
Privacy and Security (SOUPS 2023). 321–340.

[22] Christian Stransky, Yasemin Acar, Duc Cuong Nguyen, Dominik Wermke,
Doowon Kim, Elissa M. Redmiles, Michael Backes, Simson Garfinkel, Michelle L.
Mazurek, and Sascha Fahl. 2017. Lessons Learned from Using an Online Platform
to Conduct Large-Scale, Online Controlled Security Experiments with Software
Developers. In 10th USENIX Workshop on Cyber Security Experimentation and
Test (CSET 17). USENIX Association, Vancouver, BC. https://www.usenix.org/
conference/cset17/workshop-program/presentation/stransky

[23] Mohammad Tahaei and Kami Vaniea. 2022. Recruiting Participants With Pro-
gramming Skills: A Comparison of Four Crowdsourcing Platforms and a CS
Student Mailing List. In CHI Conference on Human Factors in Computing Systems.
1–15.

[24] Daniel Votipka, Desiree Abrokwa, and Michelle L Mazurek. 2020. Building and
Validating a Scale for Secure Software Development Self-Efficacy. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. 1–20.

[25] Daniel Votipka, Kelsey R Fulton, James Parker, MatthewHou, Michelle LMazurek,
and Michael Hicks. 2020. Understanding security mistakes developers make:
Qualitative analysis from build it, break it, fix it. In 29th {USENIX} Security
Symposium ({USENIX} Security 20). 109–126.

[26] Aiko Yamashita and Leon Moonen. 2013. Surveying developer knowledge and
interest in code smells through online freelance marketplaces. In 2013 2nd In-
ternational Workshop on User Evaluations for Software Engineering Researchers
(USER). IEEE, 5–8.

82

https://cve.mitre.org/
https://nvd.nist.gov/general
https://www.usenix.org/conference/cset17/workshop-program/presentation/stransky
https://www.usenix.org/conference/cset17/workshop-program/presentation/stransky

	Abstract
	1 Introduction
	2 Related work
	3 NERDS: Iteration 1
	3.1 Requirements
	3.2 Design
	3.3 Deploying our system and lessons learned

	4 Taking NERDS further
	4.1 Requirements
	4.2 Design
	4.3 Deploying our system and lessons learned

	5 Future Work
	References

