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Abstract
In 1970, Schneider introduced themth order difference body of a convex body, and also
established the mth-order Rogers–Shephard inequality. In this paper, we extend this
idea to the projection body, centroid body, and radial mean bodies, as well as prove the
associated inequalities (analogues of Zhang’s projection inequality, Petty’s projection
inequality, the Busemann–Petty centroid inequality and Busemann’s random simplex
inequality). We also establish a new proof of Schneider’smth-order Rogers–Shephard
inequality. As an application, a mth-order affine Sobolev inequality for functions of
bounded variation is provided.

Mathematics Subject Classification 52A39 · 52A40 · 28A75 · 46E35

B Dylan Langharst
dylan.langharst@imj-prg.fr

Julián Haddad
jhaddad@us.es

Eli Putterman
putterman@mail.tau.ac.il

Michael Roysdon
mar327@case.edu

Deping Ye
deping.ye@mun.ca

1 Departamento de Análisis Matemático, Universidad de Sevilla, C. Tarfia, 41012 Sevilla, Spain

2 Institut de Mathématiques de Jussieu, Sorbonne Université, 4 Place Jussieu, 75252 Paris, France

3 School of Mathematical Sciences, Tel Aviv University, Tel Aviv 66978, Tel Aviv-Yafo, Israel

4 Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve,
Cleveland, OH 44106, USA

5 Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s,
Newfoundland A1C 5S7, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-025-03271-x&domain=pdf
http://orcid.org/0000-0002-4767-3371


J. Haddad et al.

1 Introduction

In this work, we will be dealing with convex bodies. A set K in R
n (the standard

n-dimensional Euclidean space) is said to be a convex body if it is a compact set with
non-empty interior such that, for every x, y ∈ K andλ ∈ [0, 1], (1−λ)y+λx ∈ K .The
set of convexbodies inRn will be denoted byKn . A convexbody K is origin-symmetric
if K = −K , and is said to be symmetric if a translate of K is origin-symmetric.

1.1 The difference body and the Rogers–Shephard inequality

The difference body of K ∈ Kn is given by

DK := {x : K ∩ (K + x) �= ∅} = K + (−K ),

where K + L = {a + b : a ∈ K , b ∈ L} is the Minkowski sum of K , L ∈ Kn .
Throughout, Voln(K ) denotes the volume (Lebesgue measure) of K . The functional
K �→ Voln(DK )/Voln(K ) is continuous and affine invariant onKn , and can be taken
as a measure of asymmetry of K ∈ Kn . Indeed, one has

2n ≤ Voln(DK )

Voln(K )
≤
(
2n

n

)
, (1)

where the left-hand side follows from the Brunn–Minkowski inequality (see Sect. 2.1),
with equality if and only if K is symmetric, and the right-hand side is the Rogers–
Shephard inequality, with equality if and only if K is a n-dimensional simplex
(closed convex hull of n + 1 affinely independent points) [62]. Here, �(z) is the
standard gamma function and

(m
n

) = �(m+1)
�(n+1)�(m−n+1) are the binomial coefficients.

The starting point of this work is the following. For m ∈ N, consider the higher-
dimensional difference body, given by

Dm(K ) :=
{
x = (x1, . . . , xm) ∈ (Rn)m : K ∩

m⋂
i=1

(xi + K ) �= ∅
}

.

We will henceforth refer to Dm(K ) as the mth-order difference body of K. We
emphasize that this is a convex body in (Rn)m = R

nm . Throughout this paper we
will simply write R

nm, but the product structure R
nm = R

n × · · · × R
n will be of

central importance.Wewill often use x̄ = (x1, . . . , xm), with each xi ∈ R
n , to denote a

point inRnm . In [64], Schneider established the followingmth-order Rogers–Shephard
inequality for K ∈ Kn :

Volnm (Dm(K ))

Voln(K )m
≤
(
nm + n

n

)
, (2)

with equality if and only if K is a n-dimensional simplex. From the affine invariance
and continuity of the functional in the left-hand side of (2), aminimum for this quantity
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also exists. When n = 2 and m ∈ N is arbitrary, Schneider was able to show that the
minimum is attained for every symmetric K ∈ K2, but, for n ≥ 3, m ≥ 2, he
constructed an example of a symmetric body where the value of the functional in (2)
is strictly larger than its value when K is an ellipsoid. Thus, it is conjectured that (2) is
minimized for ellipsoids for such n and m. The objective of this paper is to extend the
theory of mth-order convex bodies to other operators defined onKn andKnm , namely
the projection body, the centroid body and the radial mean bodies.

1.2 The projection body and related inequalities

Let Bn
2 denote the unit Euclidean ball inR

n and denote its boundary asSn−1, for n ∈ N.

Using the notation 〈x, y〉 for the Euclidean inner-product of x, y ∈ R
n, we have that

for K ∈ Kn , the orthogonal projection of K onto θ⊥ = {x ∈ R
n : 〈θ, x〉 = o}, the

subspace through the origin orthogonal to θ ∈ S
n−1, is denoted by Pθ⊥K . The support

function of L ∈ Kn, defined as

hL(x) = sup{〈x, y〉 : y ∈ L}, x ∈ R
n,

uniquely determines L. Recall also the following notation: given a function f , we can
write f = f+ − f−, where f+ = max{ f , 0} and f− = −min{ f , 0}. The projection
body of K ∈ Kn , denoted �K , is the origin-symmetric convex body whose support
function is given by any of the following equivalent definitions:

h�K (θ) = Voln−1
(
Pθ⊥K

) =
∫

∂K
〈θ, nK (y)〉−dy = nVn(K [n − 1], [o,−θ ]),

for θ ∈ S
n−1. Here, ∂K denotes the boundary of K , dy represents integration with

respect to the (n − 1)-dimensional Hausdorff measure on ∂K , nK (y) represents the
outward-pointing unit normal vector, which is defined a.e. on ∂K , and Vn(K [n −
1], [o,−θ ]) denotes the mixed volume of (n − 1) copies of K and the line segment
connecting the origin o and −θ, denoted [o,−θ ] (see Sect. 2.1 for the definition of
mixed volumes).

An important function associated with a convex body K is its covariogram func-
tion, which appears often in the literature. We recall its definition: for K ∈ Kn the
covariogram of K is given by

gK (x) = Voln (K ∩ (K + x)) = (χK �χ−K )(x)

(recall that for a set K ⊂ R
n, χK (y) = 1 if y ∈ K and 0 otherwise and ( f �g)(x) =∫

Rn f (y)g(x − y)dy is the convolution of functions f , g : Rn → R.)
The support of gK (x) is the difference body of K , DK . In fact, Chakerian [15] was

the first to show the connection between the covariogram and reverse-isoperimetric-
type inequalities in his celebrated, concise proof of the Rogers–Shephard inequality.
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The covariogram function has the following radial derivatives:

dgK (rθ)

dr

∣∣∣∣
r=0+

= −h�K (θ), θ ∈ S
n−1.

This formula was first shown by Matheron [48].
For a convex body L having the origin as an interior point, its polar body is L◦ =

{x ∈ R
n : hL(x) ≤ 1}. Write κn = Voln(Bn

2 ) and (�K )◦ = �◦K . One has that
�◦Bn

2 = κ−1
n−1B

n
2 . The Petty product K �→ Voln(K )n−1Voln(�◦K ) is a continuous,

affine invariant functional on Kn . For K ∈ Kn , one has

1

nn

(
2n

n

)
≤ Voln(K )n−1Voln(�

◦K ) ≤
(

κn

κn−1

)n

. (3)

The right-hand side of (3) is Petty’s projection inequalitywhich was proven by Petty
in 1971 [61]; equality occurs if and only if K is an ellipsoid. The left-hand side of (3)
is known as Zhang’s projection inequality, proven by Zhang in 1991 [69]; equality
holds if and only if K is a n-dimensional simplex.

An easy consequence of the definition of the projection body operator is Petty’s
isoperimetric inequality [60, 61], which asserts that, for every K ∈ Kn,

Voln(�
◦K )Voln−1(∂K )n ≥ κn

(
κn

κn−1

)n

, (4)

with equality if and only if�K is a dilate of the Euclidean ball. In fact, Petty’s isoperi-
metric inequality (4), in conjunction with Petty’s projection inequality, the second
inequality in (3), implies the classical isoperimetric inequality.

Prominent extensions of the projection body operator include the L p projection
bodies, where the Petty projection inequality for these bodies was established by
Lutwak et al. [44], and asymmetric L p projection bodies, introduced by Lutwak [43]
and Ludwig (from a valuation-theory perspective) [40]; the Petty projection inequality
for these latter bodies was established by Haberl and Schuster [30].

1.3 Higher-order projection body

We now introduce the extension of the covariogram, first defined implicitly by Schnei-
der [64]. One has, for K ∈ Kn and m ∈ N, that the m-covariogram of K is given by,
using the notation x̄ = (x1, . . . , xm) ∈ R

nm :

gK ,m(x) = Voln

(
K ∩

m⋂
i=1

(xi + K )

)
.

Our first main result gives a formula for the radial derivative of the m-covariogram.
For θ̄ = (θ1, . . . , θm), we introduce the notation

Cθ̄ = conv1≤i≤m[o, θi ],
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where conv1≤i≤m(Ai ) denotes the closed convex hull of the sets A1, . . . , Am . Notice
that max1≤i≤m〈θi , v〉− = hC−θ̄

(v).

Theorem 1.1 Let K ∈ Kn and m ∈ N. Then, for every direction θ̄ = (θ1, . . . , θm)

∈ S
nm−1:

d

dr
gK ,m(r θ̄ )

∣∣∣∣
r=0+

= −
∫

∂K
max
1≤i≤m

〈θi , nK (y)〉−dy.

We next introduce a new generalization of the projection body.

Definition 1 For K ∈ Kn and m ∈ N, the mth-order projection body �mK is an nm-
dimensional convex body whose support function is defined for θ̄ = (θ1, . . . , θm) ∈
S
nm−1 as

h�mK (θ̄) = nVn(K [n − 1],C−θ̄ ) =
∫

∂K
max
1≤i≤m

〈θi , nK (y)〉−dy.

From the second equality, it is easy to see that θ̄ �→ h�mK (θ̄) is sublinear, which
guarantees the existence of �mK and that it is a compact, convex set. Next, note that
�1K = �K . From the fact that

h�mK (θ̄) ≥ max
1≤i≤m

h�K (θi ) > 0,

we see that �mK contains the origin as an interior point. In particular, �mK ∈ Knm .
The translation invariance of mixed volumes shows that �m(K + x) = �mK for
every x ∈ R

n . For u ∈ S
n−1, let u j = (o, . . . , o, u, o, . . . , o) ∈ S

nm−1, where u is in
the j th coordinate. As an easy observation, we see that

h�mK (u j ) = nVn(K [n − 1], [o,−u]) = h�K (u).

This shows in that the projection of�mK onto any of them copies ofRn is�K .Addi-
tionally, taking um = 1√

m
(u, . . . , u) yields h�mK (um) = nVn(K [n−1], [o,− u√

m
]) =

1√
m
h�K (u), and thus �mK is not a product set.

One can see that the dimension of C−θ̄ exhausts all dimensions from 1 to m as θ̄

varies over Snm−1. This shows that we cannot consider generalizations of �mK by
changing the number of copies of K and C−θ̄ in the mixed volumes (say, for example,
K appearing (n − 2) times and C−θ̄ appearing twice). Compare this to [65, Eq. 5.68]
which says, for a (n − k)-dimensional subspace E of Rn (k = 1, . . . , n − 1) and any
convex bodyU in E⊥ of k-dimensional volume 1, that Voln−k(PEK ) = (nk)Vn(K [n−
k],U [k]). In particular, this shows we are not in general studying projections of K
onto subspaces of co-dimension larger than 1.

We will use the natural notation �◦,mK = (�mK )◦; in Appendix A, we compare
this body to (�◦K )m . Then, we verify in Proposition 3.3 that

K ∈ Kn �→ Voln(K )nm−mVolnm(�◦,mK )
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is affine invariant onKn .Amajor focus is to then find extremizers of this affine invari-
ant, which in the case of m = 1 return the classical affine isoperimetric inequalities
(3) of Petty and Zhang.

Gardner and Zhang defined in [26] the radial mean bodies RpK for p ∈ (−1,∞)

as a way to interpolate between the bodies �◦K and DK (see Sect. 2.2). We shall
define the mth-order radial mean bodies Rm

p K (see Sect. 4) and prove the following
chain of set inclusions, generalizing [26, Theorem 5.5]:

Theorem 1.2 Let K ∈ Kn and m ∈ N. Then, for −1 < p < q < ∞, one has

Dm(K ) ⊆
(
q + n

n

) 1
q

Rm
q K ⊆

(
p + n

n

) 1
p

Rm
p (K ) ⊆ nVoln(K )�◦,mK .

Equality occurs in any set inclusion if and only if K is an n-dimensional simplex.

As a corollary of Theorem 1.2, we establish the following.

Corollary 1.3 (The mth-order Zhang’s projection inequality) Let K ∈ Kn and m ∈ N.
Then,

Voln(K )nm−mVolnm
(
�◦,mK

) ≥ 1

nnm

(
nm + n

n

)
,

with equality if and only if K is a n-dimensional simplex.

We then have the case of the mth-order Petty’s projection inequality, which we
prove using a symmetrization technique.

Theorem 1.4 (The mth-order Petty’s projection inequality) Let m ∈ N be fixed. Then,
for every K ∈ Kn, one has

Voln(K )nm−mVolnm(�◦,mK ) ≤ Voln(B
n
2 )nm−mVolnm(�◦,mBn

2 ),

with equality if and only if K is an ellipsoid.

We then establish the following generalization of Petty’s isoperimetric inequality,
(4). We denote by wn(K ) the mean width of K ∈ Kn (see (13)).

Theorem 1.5 Let K ∈ Kn and m ∈ N. Then, one has the following inequality:

Volnm(�◦,mK )Voln−1(∂K )nm ≥ Volnm(�◦,mBn
2 )Voln−1(S

n−1)nm

≥ κnm

(
nκn

wnm(�mBn
2 )

)nm

.

Equality in the first inequality holds if and only if�K is anEuclidean ball. If m = 1,
there is equality in the second inequality, while for m ≥ 2, the second inequality is
strict.
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In fact, the first inequality in Theorem 1.5, in conjunction with Theorem 1.4, implies
the classical isoperimetric inequality in Rn regardless of the choice of m ∈ N.

There havebeen, of course, other generalizations of theRogers–Shephard inequality
(see e.g. [6, 63] for measure-theoretic extensions, [7] for an extension to the lattice
point enumerator and [4, 5, 9, 17] for functional extensions) and Petty’s projection
inequality (see e.g. [69] for all compact Borel sets, [39] for sets of finite perimeter, [47]
for the Orlicz setting and [31] for the fractional calculus-setting). Zhang’s projection
inequality has also been recently extended to measures [38].

1.4 Centroid bodies and dual mixed volumes

Given a compact set A ⊂ R
n with positive volume, its centroid body �A ∈ Kn is

defined by the support function

h�A(θ) = Voln(A)−1
∫
A

|〈x, θ〉|dx, θ ∈ S
n−1.

Petty’s inequality (the right-hand side of (3)) implies via a duality argument (see (17))
that the continuous and affine invariant operator K �→ Voln(�K )Voln(K )−1 onKn is
minimized by centered ellipsoids. This lower bound is known as theBusemann–Petty
centroid inequality.

The Busemann–Petty centroid inequality can be interpreted as a bound on a ran-
dom process. Let Xi ∈ R

n, i = 1, . . . n, be independent random vectors uniformly
distributed inside K . We denote the expected volume of CX̄ = conv1≤i≤m[o, Xi ], a
random simplex of K , by

EKn (Voln(CX̄ )) := Voln(K )−n
∫
K

· · ·
∫
K
Voln

(
conv1≤i≤n[o, xi ]

)
dx1 . . . dxn .

Petty [59] showed the right-hand side equals 2−nVoln(�K ). Thus, the Busemann–
Petty centroid inequality is equivalent to the Busemann random simplex inequality
[14]:

EKn (Voln(CX̄ ))Voln(K )−1 ≥
(

κn−1

(n + 1)κn

)n

,

with equality if and only if K is a centered ellipsoid. Our last main result is the mth-
order extension of the centroid body. We will define the mth-order centroid body of
L ∈ Knm , denoted �mL, via a duality relation with �◦,mK for K ∈ Kn (see Sect. 5).

Definition 2 For a compact set L ⊂ R
nm with positive volume, its m-centroid body

�mL ∈ Kn is given by the support function

h�mL(θ) = 1

Volnm(L)

∫
L

max
1≤i≤m

〈xi , θ〉−dx̄, (5)

where x̄ = (x1, . . . , xm) and θ ∈ S
n−1.
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Like in the case of themth-order projection body, the fact that θ �→ h�mL(θ) is sub-
linear and strictly positive yields that �mL exists and is a convex body. We emphasize
that the operator �m sends a nm-dimensional compact set to a n-dimensional convex
body, which is dual to the behavior of the operator �◦,m . We obtain the mth-order
Busemann–Petty centroid inequality, where a new convex body plays the role of min-
imizer. We will actually prove the result for a class of compact sets larger than the
class of convex bodies having the origin in their interior, the so-called star bodies (see
Sect. 2.1 for a precise definition). We will use Snm to denote the class of star bodies
in Rnm .

Theorem 1.6 (The mth-order Busemann–Petty centroid inequality) For L ∈ Snm,
where n,m ∈ N, one has

Voln(�mL)

Volnm(L)1/m
≥ Voln(�m�◦,mBn

2 )

Volnm(�◦,mBn
2 )1/m

,

with equality if and only if L = �◦,mE for any ellipsoid E ∈ Kn.

Other prominent extensions of the Busemann–Petty centroid inequality have been
established in the setting of the Firey–Brunn–Minkowski theory [44], functions [32]
and the Orlicz–Brunn–Minkowski theory [46].

We note that �1L is not the usual centroid body �L , but instead the asymmetric
L1 centroid body studied by Haberl and Schuster [30]. The reason we recover the
asymmetric case and not the usual case is because we defined our operators in terms
of [o,−θ ] instead of [− θ

2 , θ
2 ]. While this preserves the mixed volumes defining �K ,

it will not preserve the dual mixed volumes. However, the m = 1 case of Theo-
rem 1.6 (which is the L1 case of Haberl and Schuster’s asymmetric Busemann–Petty
centroid inequality) is sharper than the usual Busemann–Petty centroid inequality.
Indeed, notice that �1(−L) = −�1L , and, therefore, �L = D(�1 L). Then, combin-
ing Theorem 1.6 with the left-hand side (1), which is merely the Brunn–Minkowski
inequality, yields the usual Busemann–Petty centroid inequality.

After Busemann, Groemer generalized the random simplex inequality. First, he
proved in [27] that the expected value, as well as the higher order moments, of the
volume of the closed convex hull of (n+1) points inside K ∈ Kn isminimizedwhen K
is an ellipsoid. Then, Groemer [28] extended this result to the case where the number
of points is allowed to be greater than or equal to (n + 1). Hartzoulaki and Paouris
[33] proved an analogous result for the expected value of the Quermaßintegrals.

There have beenmany other recent extensions ofGroemer’s results, see for example
[1, 2, 18, 53–58]. A common feature of all Groemer-type results is that the points Xi

are always taken independently, so that the vector (X1, . . . , Xm) ∈ R
nm is distributed

with respect to a product probability measure on Rnm = R
n × · · · ×R

n . Theorem 1.6
lets us obtain a new Groemer-type result, generalizing [33] for the mean width. Fix
K ∈ Kn, L ∈ Snm and let X̄ = (X1, . . . , Xm) ∈ R

nm be a random vector uniformly
distributed inside L , (no independence of the Xi is required). We denote the expected
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mixed volume of K and CX̄ by

EL(Vn(K [n − 1],CX̄ ) := 1

Volnm(L)

∫
L
Vn(K [n − 1],Cx̄ )dx̄ .

Theorem 1.7 The functional

(K , L) ∈ Kn × Snm �→ Volnm(L)−
1
nm Voln(K )−

n−1
n EL(Vn(K [n − 1],CX̄ ))

is uniquely minimized when K is an ellipsoid and L = λ�◦,mK for some λ > 0.

We would like to emphasize that Theorem 1.7 is not a generalization nor a particular
case of the results in [33, 53, 57], since we are minimizing in a different class of
probability measures.

The convex body �◦,mBn
2 ⊆ R

nm has some interesting properties that we investi-
gate in Sect. 3.2. Recalling that wn denotes the mean width, the support function of
�◦,mBn

2 is
h�m Bn

2
(x̄) = nκnwn(Cx̄ ).

In fact, a special case of Theorem 1.7 is that the functional

Volnm(L)−
1
nm EL(wn(CX̄ )) = Voln(L)−

nm+1
nm

∫
L

wn(Cx̄ )dx̄ (6)

is minimized for L = �◦,mBn
2 over Snm . This fact can be regarded as a result of mini-

mization of a random process in the spirit of the Busemann random simplex inequality.
Actually, (6) represents the expected value of the mean width of Cx̄ , assuming that x̄
is distributed uniformly on L . If L = K × · · · × K we obtain exactly EKm (wn(CX̄ ))

as defined previously.

1.5 Affine Sobolev inequalities

Recall that the L p norm of an integrable function on Rn is given by

‖ f ‖p =
(∫

Rn
| f (x)|pdx

)1/p

.

We follow the standard notation of using ∇ f to denote the gradient of a differentiable
function. Recall also that f belongs to the Sobolev space W 1,1(Rn) if it has a weak
derivative, i.e. there exists measurable vector map ∇ f : Rn → R

n such that |∇ f | is
integrable and satisfies

∫
Rn

f (x) divψ(x)dx = −
∫
Rn

〈∇ f (x), ψ(x)〉dx

for every compactly supported, smooth vector field ψ : Rn → R
n [21].
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Given a function f ∈ W 1,1(Rn) which is not zero almost everywhere, there exists
a unique convex body 〈 f 〉 in Rn with center of mass at the origin, the LYZ body of f ,
that satisfies the following change of variables formula

∫
∂〈 f 〉

g(nK (y))dy =
∫
Rn

g(−∇ f (x))dx (7)

for every 1-homogeneous function g (see [45]) onRn \{o}. We remark that the epithet
“LYZ Body of f ∈ W 1,1(Rn)", first introduced by Ludwig [41], is reserved for the
origin-symmetric convex body given by the Blaschke body of 〈 f 〉 (see (14)); in which
case, (7) would only hold for even, 1-homogeneous functions g. Lutwak et al. [45]
first defined both sets of bodies (though, the body we denote by 〈 f 〉 is actually the
reflection of the body implied to exist by [45, Lemma 4.1]). The more general, not
necessarily symmetric body, is important for our setting. Indeed, by setting g = hC−θ̄

in (7), which is in general not an even function, we obtain the LYZ projection body of
order m of f ∈ W 1,1(Rn), �m〈 f 〉, defined via

h�m 〈 f 〉(θ̄) =
∫
Rn

max
1≤i≤m

〈∇ f (x), θi 〉−dx .

As an application of our results, we show the following affine Sobolev inequality.
It generalizes the result of Zhang [70] in the m = 1 case. The result we present here
is actually a corollary of a more general result for functions of bounded variation (see
Theorem 7.2), which was first done by Wang [67] in the m = 1 case.

Corollary 1.8 Fix m, n ∈ N. Consider a compactly supported f ∈ W 1,1(Rn) which is
not zero almost everywhere. Then, one has the geometric inequality

‖ f ‖ n
n−1

Volnm(�◦,m〈 f 〉) 1
nm ≤ Volnm(�◦,mBn

2 )
1
nm κ

n−1
n

n .

Equivalently, by setting dn,m := nκn
(
nmVolnm(�◦,mBn

2 )
) 1
nm , this is

(∫
Snm−1

(∫
Rn

max
1≤i≤m

〈∇ f (z), θi 〉−dz
)−nm

d θ̄

)− 1
nm

dn,m ≥ nκ
1
n
n ‖ f ‖ n

n−1
.

An extension of the affine Sobolev inequality was also done to the setting of Firey–
Brunn–Minkowski theory [44] and the fractional calculus [31].

The paper is organized as follows. In Sect. 2, we discuss more facts about convex
bodies and their volume (Sect. 2.1) and the classical theory of radial mean bodies
(Sect. 2.2). In Sect. 3, we recall the basic properties of the m-covariogram and prove
Theorem 1.1 (Sect. 3.1). In Sect. 3.2, we analyze the mth-order projection body,
and then we analyze the mth-order centroid body in Sect. 3.3. Then, in Sect. 4, we
present the generalization of radial mean bodies to our setting and prove Theorem 1.2
and Corollary 1.3. In Sect. 5, we use a symmetrization technique to establish Petty’s
projection inequality, Theorem 1.4, and Petty’s isoperimetric inequality, Theorem 1.5,
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in our setting. The equality case is characterized through a class-reduction technique
(see Lemma 5.1 and Lemma 5.4). Finally, in Sect. 6, we prove the Busemann–Petty
centroid inequality, Theorem 1.6, and the random-simplex inequality, Theorem 1.7, in
our setting. The proof of the Busemann–Petty centroid inequality relies on a duality
(see Lemma 3.9) between the centroid and the projection operators. Finally, in Sect. 7,
we exploit Theorem 1.6 to prove a mth-order version of the affine Sobolev inequality
of Zhang [70] andWang [67] in Theorem 7.2. As a consequence, we are able to extend
Theorem 1.4 to sets of finite perimeter.

2 Preliminaries

2.1 Background from convex geometry

An important fact about volume, the n-dimensional Lebesgue measure, is the famed
Brunn–Minkowski inequality: as a functional on Kn equipped with Minkowski sum-
mation +, volume is 1/n-concave, i.e. for λ ∈ (0, 1) and convex bodies K , L ⊂ R

n,

one has

Voln ((1 − λ)K + λL)1/n ≥ (1 − λ)Voln (K )1/n + λVoln (L)1/n , (8)

with equality if and only if K and L are homothetic, i.e., K = aL +b for some a ∈ R

and b ∈ R
n . Minkowski summation is compatible with support functions: one has,

for α, β > 0 and K , L ∈ Kn, that hαK+βL(x) = αhK (x) + βhL(x).
We say that a set L ⊂ R

n is a star body if it is a compact set with o ∈ int(L), if
[o, x] ⊂ L for all x ∈ L , and if its radial function is continuous when restricted to
S
n−1. Recall that the radial function of a compact set L is given by ρL(y) = sup{λ >

0 : λy ∈ L}. The radial function satisfies ρt L(y) = tρL(y) for t > 0. Similar to how
support functions uniquely determine their associated convex bodies, radial functions
uniquely determine their star bodies. Every K ∈ Kn containing the origin in its interior
is a star body. A use of the radial function is that, if f is integrable over a star body
L , then we have the polar coordinate formula:

∫
L
f (x)dx =

∫
Sn−1

∫ ρL (θ)

0
f (rθ)rn−1drdθ, (9)

where dθ denotes the spherical Lebesgue measure on Sn−1. We isolate the case when
f (x) = 1:

Voln(L) = 1

n

∫
Sn−1

ρL(θ)ndθ. (10)

Similarly, for those K ∈ Kn containing the origin in their interior, the Minkowski
functional, or gauge, of K is defined to be ‖y‖K = inf{r > 0 : y ∈ r K }, and we
have ‖y‖K = ρK (y)−1 for y �= o. Notice that ‖x‖K ◦ = hK (x). A classification of
norms onRn is that a 1-homogeneous, convex function is a norm if and only if it is the
Minkowski functional of an origin-symmetric convex body. The standard Euclidean
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norm is precisely the Minkowski functional of Bn
2 , and in this instance we write

|x | := ‖x‖Bn
2
. Other classical notions we use include O(n), the orthogonal group on

S
n−1, and GLn(R), the group of non-singular n × n matrices over R.

The following facts about convex bodies can be found in the textbook by Schneider
[65]. Steiner’s formula states that the Minkowski sum of two compact, convex subsets
of Rn can be expanded as a polynomial of degree n: for every t ∈ (0, 1) and compact,
convex K , L ⊂ R

n, one has

Voln(K + t L) =
n∑
j=0

(
n

j

)
t j Vn(K [n − j], L[ j]),

where Vn(K [n − j], L[ j]) is the mixed volume of (n − j) copies of K and j
copies of L . When j = 1, one often writes Vn(K [n − 1], L). Also, when j = 0,
Vn(K [n]) = Voln(K ).TheBrunn–Minkowski inequality (8) then impliesMinkowski’s
first inequality

Vn(K [n − 1], L)n ≥ Voln(K )n−1Voln(L), (11)

with equality if and only if K and L are homothetic.
A convex set K is often studied through its surface area measure σK : for every

Borel A ⊂ S
n−1, one has

σK (A) = Hn−1(n−1
K (A)),

where Hn−1 is the (n − 1)-dimensional Hausdorff measure and nK : ∂K → S
n−1 is

theGaussmap, which associates an element y of ∂K , the boundary of K ,with its outer
unit normal. For almost all x ∈ ∂K , nK (x) is well-defined (i.e. x has a single outer
unit normal). One can verify via approximation by polytopes that for K , L ∈ Kn,

Vn(K [n − 1], L) := 1

n
lim
ε→0

Voln(K + εL) − Voln(K )

ε
= 1

n

∫
Sn−1

hL(θ)dσK (θ).

(12)
A relevant example of mixed volumes in our case is the mean width of L ∈ Kn , given
by

wn(L) = 1

nκn

∫
Sn−1

hL(θ)dθ = 1

κn
Vn(B

n
2 [n − 1], L). (13)

Given a convex body K , its Blaschke body K̃ is the unique origin-symmetric convex
body whose surface area measure is given by [25, Definition 3.3.8]

dσK̃ (θ) = dσK (θ) + dσK (−θ)

2
. (14)

An application of Minkowski’s first inequality is that [25, Theorem 3.3.9]

Voln(K ) ≤ Voln(K̃ ), (15)

with equality if and only if K is symmetric, in which case K is a translate of K̃ .
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In [42], Lutwak introduced the i th dual mixed volume for K and L star bodies in
R
n :

Ṽi (K [n − i], L[i]) = 1

n

∫
Sn−1

ρK (θ)n−iρL(θ)i dθ.

Lutwak originally only considered the case when i ∈ N, i ≤ n, but it is not too
difficult to expand his theory to the case when i ∈ R, see for example the appendix
of [25]. When i = −1, we write Ṽ−1(K [n + 1], L). Dual mixed volumes satisfy the
dual Minkowski’s first inequality: for K , L ∈ Sn ,

Voln(K )n+1Voln(L)−1 ≤ Ṽ−1(K [n + 1], L)n, (16)

with equality if and only if K and L are dilates (see e.g. [25, Section B.4, pg. 421, eq.
B.24]). Both the inequality (16) and its equality characterization follow from Hölder’s
inequality.
We refer the reader to [25, 29, 35, 36, 65] for more classical definitions and properties
of convex bodies and corresponding functionals.

To emphasize how the dual mixed volumes will be used in this work, it is known
[25] that the centroid operator � and the polar projection operator �◦ satisfy the
following duality

Ṽ−1(L[n + 1],�◦K ) = Voln(L)
n + 1

2
Vn(K [n − 1], �L), (17)

for every convex body K and star body L in Rn .
Let us conclude this subsection with a historical remark on one possible proof

of Petty’s projection inequality, the second inequality in (3). Given u ∈ S
n−1,

the Steiner symmetrization of K about u⊥ constructs the Steiner symmetral of K ,
denoted SuK . The set SuK is a convex body that is symmetric about u⊥ and sat-
isfies Voln(SuK ) = Voln(K ). A well-known theorem [68, Theorem 6.6.5] states
that there exists a sequence of directions {u j }∞j=1 ⊂ S

n−1 such that, if we define

S1K = Su1K , S j K = Su j S j−1K , then S j K → κ
−1/n
n Voln(K )1/n Bn

2 in the Haus-
dorff metric (see [65]), i.e., K is transformed into the centered Euclidean ball of the
same volume. A fact that seems to have been folklore for a long time, but, as far as the
authors are aware, was only first shown rigorously in [44], is that for u ∈ S

n−1 and
K ∈ Kn, one has

Su�
◦K ⊆ �◦SuK ,

and therefore Petty’s inequality, the right-hand side of (3), is an immediate conse-
quence of Steiner symmetrization. Inspired by this classical proof, we will recall
another type of symmetrization to settle Theorem 1.4.
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2.2 Radial mean bodies

Next, we recall that a non-negative function ψ is said to be s-concave, s > 0, if for
every x, y ∈ supp(ψ) and λ ∈ [0, 1], one has

ψ((1 − λ)x + λy)s ≥ (1 − λ)ψ(x)s + λψ(y)s .

Furthermore, in the limit as s → 0+, one has log-concavity:

ψ((1 − λ)x + λy) ≥ ψ(x)1−λψ(y)λ.

Jensen’s inequality shows that every s-concave measure, s > 0, is also log-concave.
There is an interesting connection between log-concave functions and convex bodies
in Rn .

Proposition 2.1 (Theorem 5 in [10] and Corollary 4.2 in [26]) Let f be a log-concave
function on R

n. Then, for every p > 0, the function on S
n−1 given by

θ �→
(
p
∫ ∞

0
f (rθ)r p−1dr

)1/p

defines the radial function of a convex body containing the origin in its interior.

As an interesting historical development,we remark that in [18], it was shown that if the
concavity of the function f is related to the power p, then the integral in Proposition 2.1
is the radial function of a convex body when f is −1/(p + 1)-concave.

Gardner and Zhang [26] defined the pth radial mean body of a convex body K as
the star bodies whose radial function is given by, for θ ∈ S

n−1,

ρRpK (θ) =
(

1

Voln(K )

∫
K

ρK−x (θ)pdx

) 1
p

. (18)

A priori, the above is valid for p > −1, p �= 0. But also, by appealing to continu-
ity, Gardner and Zhang were able to define R0K and establish that R∞K = DK .
Additionally, Gardner and Zhang established that each RpK is an origin-symmetric
convex body for p ≥ 0 by applying Proposition 2.1 to the covariogram, which is even
(the convexity for p ∈ (−1, 0) is still open). By using Jensen’s inequality, they then
obtained that for −1 < p < q ≤ ∞, one has

RpK ⊆ RqK ⊆ R∞K = DK . (19)

One sees that RpK tends to {o} as p → −1. Therefore, Gardner and Zhang defined
another family of star bodies depending on K ∈ Kn , the pth spectral mean bodies of
K . It turned out the 0th spectral mean body is eR0K and the pth spectral mean body

for p ∈ (−1, 0) ∪ (0,∞) is (p + 1)
1
p RpK . With this renormalization, one obtains

(p + 1)
1
p RpK → Voln(K )�◦K as p → (−1)+, showing that the shape of RpK
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indeed tends to that of a multiple of the polar projection body of K as p → (−1)+.
Gardner and Zhang then obtained a reverse of (19). They accomplished this by using a
reverse Hölder-type inequality, Berwald’s inequality [11, 13] obtaining [26, Theorem
5.5], for −1 < p < q < ∞, that

DK ⊆
(
n + q

q

) 1
q

Rq K ⊆
(
n + p

p

) 1
p

RpK ⊆ nVoln(K )�◦K , (20)

There is equality in each inclusion in (20) if and only if K is a n-dimensional simplex.
Radial mean bodies themselves were recently generalized to the setting of Borel
measures with density and concavity [37] and the fractional calculus [31].

2.3 Wulff shapes

LetC(Sn−1) denote the set of continuous functions from S
n−1 toR. For f ∈ C(Sn−1),

the Wulff shape of f is

[ f ] =
⋂

u∈Sn−1

{x ∈ R
n : 〈x, u〉 ≤ f (u)}.

In most works, f is assumed to be strictly positive, to ensure that [ f ] has non-empty
interior (in particular, o ∈ int([ f ])); see, for example, the textbook by Schneider
[65, Sect. 7.5, p. 410]. A notable case is when f = hK + th, where K is a convex
body containing the origin in its interior, h ∈ C(Sn−1), and t is small enough so
that f is strictly positive. Actually, one can drop the assumption that K contains the
origin and [hK + th] will still have non-empty interior. Indeed, let z ∈ R

n be so that
K − z contains the origin in its interior - for example, z being the barycenter of K .
Then, hK−z(u) = hK (z) − 〈z, u〉. Therefore, by picking t > 0 small enough so that
hK−z + th > 0 on S

n−1, we have

[hK + th] = [hK−z + th + 〈z, ·〉] = [hK−z + th] + z, (21)

where, in the last line, we used the easily verifiable fact that, if f is so that [ f ] has
non-empty interior, then [ f + 〈z, ·〉] = [ f ] + z.

We next recall the following classical fact about the variation of the volume of
Wulff shapes. Usually, it is stated with o ∈ int(K ). However, (21) combined with the
translation invariance of the Lebesgue measure allows us to drop this assumption.

Lemma 2.2 (Aleksandrov’s Variational Formula, [3]) For f ∈ C(Sn−1) and K ∈ Kn,
one has

lim
t→0

Voln([hK + t f ]) − Voln(K )

t
=
∫
Sn−1

f (u)dσK (u).
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3 Themth-order projection and centroid bodies

3.1 The covariogram

We first recall the definition of the generalized covariogram, which was first implicitly
defined by Schneider [64].

Definition 3 Let K be a convex body inRn andm ∈ N. We define them-covariogram
of the body K to be the function gK ,m : (Rn)m → R

+ given by

gK ,m(x̄) = gK ,m(x1, . . . , xm) =
∫
K

(
m∏
i=1

χK (y − xi )

)
dy.

In the following proposition, we recall rudimentary facts about gK ,m and Dm(K ).

They are easily verifiable by the reader, and can also be found in [64].

Proposition 3.1 Fix m ∈ N and consider K ∈ Kn. Then:

(1) gK ,m is supported on Dm(K ) and, for every z ∈ R
n, gK+z,m = gK ,m.

(2) Dm(K ) ∈ Knm and, for every z ∈ R
n, Dm(K + z) = Dm(K ).

(3) For m ≥ 2, Dm(K ) is origin-symmetric if and only if K is symmetric.
(4) gK ,m is 1/n-concave on its support.

We now compute the radial derivative of the m-covariogram, that is prove
Theorem 1.1. For the convenience of the reader, we restate it here.

Theorem 1.1 Let K be a convex body inRn and m ∈ N. Then, for every fixed direction
θ̄ = (θ1, . . . , θm) ∈ S

nm−1, one has

d

dr
gK ,m(r θ̄ )

∣∣∣∣
r=0+

= −
∫

∂K
max
1≤i≤m

〈θi , nK (y)〉−dy.

Themain toolwe use in the proof of Theorem1.1 is the formula for the first variation
of the volume of a Wulff shape, see Sect. 2.3. For K ∈ Kn, r ≥ 0 and θ̄ ∈ S

nm−1, we
define the convex set in R

n

Kr (θ̄) =
[
hK − r max

0≤i≤m
〈θi , ·〉−

]
.

For r ≥ 0 small enough, Kr (θ̄) is a convex body. We can now prove our first theorem.

Proof of Theorem 1.1 It suffices to show, for every θ̄ ∈ S
nm−1 and r ∈ [0, ρDm (K )(θ̄ )],

gK ,m(r θ̄ ) = Voln(Kr (θ̄)). (22)
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Indeed, Lemma 2.2 and (22) yield

d

dr
Voln(Kr (θ̄))

∣∣∣∣
r=0

= −
∫
Sn−1

max
1≤i≤m

〈u, θi 〉− dσK (u),

and then the claim follows by use of the Gauss map.
Recall that, by definition, K ∩ (K + rθ1) ∩ · · · ∩ (K + rθm) �= ∅ for r ∈

[0, ρDm (K )(θ̄ )]. Henceforth, we fix such an r . Next, we note that for any θ ∈ R
n ,

hK+rθ (u) = hK (u)+r〈u, θ〉. Also, for any convex body L , we have L =⋂u∈Sn−1{x :
〈u, x〉 ≤ hL(u)} [65, Corollary 1.3.5, pg. 12]. Setting θ0 = o for notational
convenience, we also have

min
0≤i≤m

〈u, θi 〉 = min
1≤i≤m

(−〈u, θi 〉−) = − max
1≤i≤m

〈u, θi 〉−.

Therefore,

K∩(K + rθ1) ∩ · · · ∩ (K + rθm) =
m⋂
i=0

⋂
u∈Sn−1

{x : 〈u, x〉 ≤ hK+rθi (u)}

=
⋂

u∈Sn−1

m⋂
i=0

{x : 〈u, x〉 ≤ hK+rθi (u)}

=
⋂

u∈Sn−1

{
x : 〈u, x〉 ≤ min

0≤i≤m
(hK (u) + r〈θi , u〉)

}

=
⋂

u∈Sn−1

{
x : 〈u, x〉 ≤ hK (u) + r min

0≤i≤m
〈u, θi 〉

}

=
⋂

u∈Sn−1

{
x : 〈u, x〉 ≤ hK (u) − r max

0≤i≤m
〈u, θi 〉−

}
= Kr (θ̄).

Taking volume establishes (22). ��
We additionally remark that as a function in the variable r , gK ,m(r θ̄ ) is monotonically
decreasing for r ∈ [0, ρDm (K )(θ̄ )]. Therefore, from Lebesgue’s theorem, gK ,m(r θ̄ ) is
differentiable almost everywhere on [0, ρDm (K )(θ̄ )].

3.2 Properties of themth-order projection body

In this section, we study properties of the operator�m introduced in Definition 1. The
formula for the support function of�mK was written as an integral over ∂K ; by using
(12) and the definition of the surface area measure, we can also write

h�mK (θ̄) = nVn(K [n − 1],C−θ̄ ) =
∫
Sn−1

max
1≤i≤m

〈u, θi 〉−dσK (u).
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It is easily seen that, for any θ̄ ∈ R
nm , C−θ̄ = −Cθ̄ . As a consequence, it holds

h�mK (−θ̄ ) = nVn(K [n − 1],Cθ̄ ) =
∫
Sn−1

max
1≤i≤m

〈u, θi 〉+dσK (u).

Now, we shall introduce a functional associated with �m and show that it is affine-
invariant. First, we show how �mK behaves under linear transformations. For T ∈
GLn(R), x̄ ∈ R

nm, we define T ∈ GLnm(R) by T (x̄) = (T (x1), . . . , T (xn)).

Proposition 3.2 Let T ∈ GLn(R). For m ∈ N and K ∈ Kn, one has

�mT K = | det T |T−t�mK .

Proof Begin by writing, from Theorem 1.1, that

h�mT K (θ̄) = − lim
t→0

Voln
(
(T K ) ∩⋂m

i=1(T K + tθi )
)− Voln(T K )

t

= − lim
t→0

Voln
(
T
(
K ∩⋂m

i=1(K + tT−1θi )
))− Voln(T K )

t

= −| det T | lim
t→0

Voln
(
K ∩⋂m

i=1(K + tT−1θi )
)− Voln(K )

t

= | det T |h�mK (T−1θ̄ ) = h| det T |�mK (T−1θ̄ )

= hT−t | det T |�mK (θ̄),

and the claim follows. ��
We now show the associated affine invariant quantity for �◦,mK .

Proposition 3.3 (Petty product for mth-order projection bodies) For m ∈ N the
following functional is invariant under affine transformations:

K ∈ Kn �→ Voln(K )nm−mVolnm(�◦,mK ).

Proof Since both volume, as a functional on Rn, and the surface area measure (which
define �mK ) are translation invariant, it suffices to consider only a linear transforma-
tion. Then, the claim is immediate from Proposition 3.2. Indeed, taking polarity, one
obtains

�◦,mT K = | det T |−1T�◦,mK .

Noting that the determinant of T , considered as a matrix onRnm, is equal to | det T |m,

one obtains Volnm(�◦,mT K ) = | det T |m−nmVolnm(�◦,mK ). The claim follows. ��
Throughout this work, we will use that �m is continuous as an operator on Kn .

Proposition 3.4 (Continuity of �m) Let {K j } j be a sequence of convex bodies such
that K j → K for some K ∈ Kn with respect to the Hausdorff metric onKn. Then, for
every m ∈ N, one has �mK j → �mK with respect to the Hausdorff metric on Knm .
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Proof The statement that �mK j → �mK in the Hausdorff metric is equivalent to
the claim that h�mK j → h�mK uniformly on Snm−1. One easily verifies that the map
S
nm−1 → Kn defined by θ̄ �→ C−θ̄ is continuous. As we have seen, h�mK (θ̄) =

nVn(K [n − 1],C−θ̄ ). The mixed volumes are continuous in the Hausdorff metric
[65, p. 280], so the map Kn × S

nm−1 → R
+ defined by (K , θ̄ ) → h�mK (θ̄) is

continuous. Since S
nm−1 is compact, this implies that the map Kn → C(Snm−1)

defined by K �→ h�mK is continuous, which precisely means that if K j → K , then
h�mK j → h�mK uniformly on S

nm−1. ��
In the remainder of this subsection, we study some additional properties of the

operator �mK . It is well-known that �K uniquely determines K if K is assumed to
be origin-symmetric [65, §10.9]. We first show that for m ≥ 2, �mK determines K
(up to translations) without the symmetry restriction.

Proposition 3.5 Fix m ≥ 2 and let K , L ∈ Kn. If �mK = �mL then K = L + u for
some u ∈ R

n.

Proof Consider the vectors θ̄ = (x, y, o, . . . , o): as x, y vary inRn ,Cθ̄ varies over the
set of triangles with a vertex at the origin, so the assumption �mK = �mL implies
that Vn(K [n − 1], T ) = Vn(L[n − 1], T ) for any triangle T with a vertex at the
origin, and hence, by translation invariance of mixed volumes, for any triangle. By
linearity, it then follows that Vn(K [n − 1], M) = Vn(L[n − 1], M) for any M ∈ Kn

which is a Minkowski sum of triangles, and by continuity, when M is a Hausdorff
limit of such Minkowski sums (a so-called “triangle body”). Again by linearity, this
implies that Vn(K [n−1], M) = Vn(L[n−1], M) if M is a generalized triangle body,
i.e., if there exist triangle bodies M1, M2 such that M + M1 = M2. Finally, since
the set of generalized triangle bodies is dense in Kn [65, Corollary 3.5.12], we have
Vn(K [n − 1], M) = Vn(L[n − 1], M) for any M ∈ Kn . This is well-known to imply
that K and L are translates of each other [65, Theorem 8.1.2]. ��

Observe that item 3.) of Proposition 3.1 and Theorem 1.2 show that, if K is
a n-dimensional simplex, then �mK is not origin-symmetric. We characterize the
symmetry of �mK in the next proposition.

Proposition 3.6 Fix m ≥ 2 and let K ∈ Kn. Then, �m(−K ) = −�mK , and
−�mK = �mK if and only if K is symmetric.

Proof Recall that for any θ̄ ∈ R
nm , we have C−θ̄ = −Cθ̄ . Hence, by the linear

invariance of mixed volumes, we have

h�mK (−θ̄ ) = nVn(K [n − 1],Cθ̄ ) = nVn(−K [n − 1],−Cθ̄ )

= nVn(−K [n − 1],C−θ̄ ) = h�m(−K )(θ̄ ).

This immediately yields �m(−K ) = −�mK . Since �m(K + x) = �mK for any
x ∈ R

n , it follows more generally that �mK is origin-symmetric if K is symmetric.
Conversely, if �mK = −�mK then �mK = �m(−K ), which implies by

Proposition 3.5 that K is a translate of −K , i.e., K is symmetric. ��
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Finally, we study �2B2
2 as a concrete example; recall the concept of mean width

from (13).

Example 1 When K = Bn
2 , Definition 1 becomes

h�m Bn
2
(θ̄) = nκnwn(Cθ̄ ).

Consider the simple case when n = m = 2. Here,

2πw2(L) = 2V2(B
2
2 , L) = 2V2(L, B2

2 ) = Vol1(∂L).

Observe that, for θ̄ = (θ1, θ2) ∈ S
3:

h�2B2
2
((θ1, θ2)) = Vol1(∂ conv([o, θ1], [o, θ2])) = |θ1| + |θ2| + |θ1 − θ2|,

where θ1, θ2 ∈ R
2 are such that |θ1|2 + |θ2|2 = 1. In particular, this shows that

�2B2
2 is not a direct product of balls, as hB2

2×B2
2
((θ1, θ2)) = |θ1| + |θ2|. In fact,

this shows that �2B2
2 ⊃ B2

2 × B2
2 . It is perhaps more natural to compare �2B2

2 to
�B2

2 × �B2
2 = (2B2

2 ) × (2B2
2 ). Here,

h(2B2
2 )×(2B2

2 )((θ1, θ2)) = |θ1| + |θ2| + |θ1| + |θ2| ≥ h�2B2
2
((θ1, θ2))

from the triangle-inequality, and so �2B2
2 ⊂ (2B2

2 ) × (2B2
2 ).

One can verify that �2B2
2 is, in fact, not of the form T (K1 × K2) for K1, K2 ∈ K2

and T an affine transformation of R4.

3.3 Properties of themth-order centroid body

We now list properties concerning the m-th centroid body operator �m , whose defini-
tion is given in Definition 2. Our first step is to determine the behavior of �mL under
linear transformations.

Proposition 3.7 Let T ∈ GLn(R). For m ∈ N and a compact set L ⊂ R
nm with

positive volume, one has
�mT L = T�mL. (23)

Proof The result follows from the definition. Indeed, from (5), one has

h�mT L(θ) = 1

Volnm(T L)

∫
T L

max
1≤i≤m

〈xi , θ〉−dx̄

= 1

Volnm(L)

∫
L

max
1≤i≤m

〈T xi , θ〉−dx̄

= 1

Volnm(L)

∫
L

max
1≤i≤m

〈xi , T tθ〉−dx̄
= h�mL(T tθ) = hT�mL(θ).

��
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Interestingly, �mL is actually a smooth convex body in Rn .

Proposition 3.8 For compact L ⊂ R
nm with positive volume, �mL is a C1 convex

body in Rn.

Proof Denote f (x̄, ξ) = max1≤i≤m〈xi , ξ 〉−, where x̄ = (x1, . . . , xm) ∈ R
nm and

ξ ∈ R
n . Let ∂2 f (x̄, ξ) be the vector in R

n given by the gradient of the function
ξ �→ f (x̄, ξ). Let R be the radius of a ball containing L . We claim that f has the
following properties:

(a) | f (x̄, ξ) − f (x̄, η)| ≤ (R + 1)|ξ − η| for |x̄ | ≤ R + 1 and all ξ, η ∈ R
n .

(b) | f (x̄, ξ)| ≤ (R + 1)|ξ | for |x̄ | ≤ R + 1 and all ξ ∈ R
n .

(c) For every ξ �= o, there is an open set A(ξ) ⊆ R
nm satisfying Volnm(Rnm \A(ξ)) =

0 and, if x̄ ∈ A(ξ), then the function f (x̄, ·) is C1 in a neighborhood of ξ .
(d) |∂2 f (x̄, ξ)| ≤ (R + 1) for |x̄ | ≤ R + 1, x̄ ∈ A(ξ), ξ �= o.

Indeed, for item (a), write f (x̄, ξ) = hC−x̄ (ξ). Then, we use that hC−x̄ is sublinear to
obtain

hC−x̄ (ξ) − hC−x̄ (η) ≤ hC−x̄ (ξ − η).

We introduce the notation xξ for any element of {x1, . . . , xm} where the maximum
in the definition of hC−x̄ (ξ) is obtained for ξ , i.e. hC−x̄ (ξ) = 〈xξ , ξ 〉−. Then, by the
Cauchy–Schwarz inequality,

hC−x̄ (ξ − η) = 〈xη−ξ , ξ − η〉− ≤ |〈xη−ξ , ξ − η〉| ≤ |xη−ξ ||η − ξ | ≤ (R + 1)|η − ξ |.
By permuting η and ξ , the claim follows. Item (b) follows from (a) by picking η = o.

For part (c), first note that the function ξ �→ 〈x, ξ 〉− is C1 except on the subspace
{x ∈ R

n : 〈x, ξ 〉 = o}, and that if f , g areC1 on some neighborhood thenmax( f , g) is
C1 away from the closed set { f = g}, as for any x such that f (x) > g(x) there exists a
neighborhood V such that max( f , g)|V = f |V , and similarly if g(x) > f (x). Hence
ξ �→ maxi 〈xi , ξ 〉− is C1 in a neighborhood of ξ for a fixed x̄ satisfying ξ �→ hC−x̄ (ξ)

is differentiable. We then define the set A(ξ) ⊂ R
nm to be the set of all x̄ with this

property; it is defined as the complement of the set

m⋃
i=1

{x̄ ∈ R
nm : 〈xi , ξ 〉 = o} ∪

⋃
i, j∈{1,...,m}

i �= j

{x̄ ∈ R
nm : 〈xi , ξ 〉 = 〈x j , ξ 〉},

which, in turn, is a union of linear subspaces and hence a closed set of Lebesgue
measure 0.

For (d), we use that hC−x̄ isC
1 near ξ when ξ �= o and x̄ ∈ A(ξ) to write, for t > 0

small and u ∈ S
n−1,

hC−x̄ (ξ + tu) = hC−x̄ (ξ) + t〈∇hC−x̄ (ξ), u〉 + o(t)

where o is a function so that o(t)/t → 0 as t → 0. Therefore, from item (a),

∣∣∣∣〈∇hC−x̄ (ξ), u〉 + o(t)

t

∣∣∣∣ =
∣∣∣∣hC−x̄ (ξ + tu) − hC−x̄ (ξ)

t

∣∣∣∣ ≤ (R + 1).
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Sending t → 0, we obtain

|〈∇hC−x̄ (ξ), u〉| ≤ R + 1.

Taking supremum over all u ∈ S
n−1, we obtain that |∇hC−x̄ (ξ)| ≤ R + 1.

Now, we are ready to prove �mL is a C1 convex body. It suffices to show
that h�mL is C1 outside the origin. From (a) we deduce immediately that F(ξ) =
Volnm(L)h�mL(ξ) = ∫

L f (x̄, ξ)dx̄ is continuous in R
n . Fix ξ �= o and set Q(ξ) =∫

L ∂2 f (x̄, ξ)dx̄ (which is well-defined by (c)). For any sequence η j → o in Rn ,

∣∣F(ξ + η j ) − F(ξ) − 〈Q(ξ), η j 〉
∣∣ ≤∫

L
| f (x̄, ξ + η j ) − f (x̄, ξ) − 〈∂2 f (x̄, ξ), η j 〉|dx̄ .

By (c), the integrand tends to 0 for a.e x̄ ∈ R
nm . By (b) and (d), we may apply

the dominated convergence theorem to deduce that the last integral tends to 0. Since
this happens for every sequence η j , we deduce that F is differentiable at ξ and its
differential is Q(ξ).

Finally, let ξ j → ξ . We compute:

|Q(ξ j ) − Q(ξ)| ≤
∫
L

|∂2 f (x̄, ξ j ) − ∂2 f (x̄, ξ)|dx̄ .

Again by (c), the integrand tends to 0 for a.e. x̄ ∈ R
nm . By (d), we may apply the

dominated convergence theorem and we obtain that Q(ξ j ) → Q(ξ) showing that F
is C1. ��

The next lemma shows that �m and �◦,m are connected through mixed volumes.

Lemma 3.9 For K ∈ Kn and L ∈ Snm, one has

Ṽ−1(L[nm + 1],�◦,mK ) = Volnm(L)
nm + 1

m
Vn(K [n − 1], �mL),

where the dual mixed volume Ṽ−1(·, ·) is nm-dimensional and the mixed volume
Vn(·, ·) is n-dimensional.
Proof From the definition of the dual mixed volume and mixed volume, we have

Ṽ−1(L[nm + 1],�◦,mK )

= 1

nm

∫
Snm−1

ρL(θ̄)nm+1
∫
Sn−1

max
1≤i≤m

〈θi , ξ 〉−dσK (ξ)d θ̄

= 1

nm

∫
Sn−1

∫
Snm−1

ρL(θ̄)nm+1 max
1≤i≤m

〈θi , ξ 〉−d θ̄dσK (ξ)

= nm + 1

nm

∫
Sn−1

∫
Snm−1

∫ ρL (θ̄)

0
tnm−1 max

1≤i≤m
〈tθi , ξ 〉−dtd θ̄dσK (ξ)
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= nm + 1

nm

∫
Sn−1

∫
L

max
1≤i≤m

〈xi , ξ 〉−dx̄dσK (ξ)

= Volnm(L)
nm + 1

nm

∫
Sn−1

h�mL(ξ)dσK (ξ)

= Volnm(L)
nm + 1

m
Vn(K [n − 1], �mL).

��
We conclude this section by showing an interaction of �m and �◦,m when applied

to ellipsoids. Notice that �◦,m : Kn → Knm and �m : Knm → Kn .

Lemma 3.10 Let E be a centered ellipsoid in Rn . Then,

�m�◦,mE = m

nm + 1

1

Voln(E)
E .

Proof First, we show that �m�◦,mBn
2 is rotation invariant, and thus a dilate of Bn

2 .We
first notice that, for every T ∈ O(n), (23) and Proposition 3.2 yield �mT L = T�mL
and �◦,mT K = T�◦,mK for L ∈ Knm and K ∈ Kn . Thus, for K = Bn

2 and
L = �◦,mBn

2 , one has

�m�◦,mBn
2 = �m�◦,mT Bn

2 = �mT�◦,mBn
2 = T�m�◦,mBn

2 ;

this means that �m�◦,mBn
2 is rotation invariant and thus a ball. Next, let E ∈ Kn

be a centered ellipsoid. Then, there exists T ∈ GLn(R) so that E = T Bn
2 . From

Proposition 3.2, we have

�◦,mT Bn
2 = T | det T |−1�◦,mBn

2 .

Applying �m, we obtain

�m�◦,mT Bn
2 = �mT | det T |−1�◦,mBn

2

= | det T |−1T�m�◦,mBn
2

= κnVoln(E)−1Cn,mT Bn
2

= κnVoln(E)−1Cn,mE

for some Cn,m > 0. To establish the formula for Cn,m , set K = Bn
2 and L = �◦,mBn

2
in in Lemma 3.9 to obtain

m

nm + 1
= Vn(B

n
2 [n − 1], �m�◦,mBn

2 ) = Vn(B
n
2 [n − 1],Cn,mBn

2 ) = κnCn,m .

��
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4 Themth-order radial mean bodies

The following is in [24, Sect. 6]. Firstly, let ψ : [0,∞) → [0,∞) be an integrable
function that is right continuous and s-concave for some s > 0. Then, its Mellin
transform is the map given by

Mψ : p �→
{∫∞

0 t p−1(ψ(t) − ψ(0))dt, p ∈ (−1, 0),∫∞
0 t p−1ψ(t)dt, p > 0,

When viewed as a function on C, the Mellin transform is analytic on the half-plane
{p ∈ C : Re(p) > 0}. If ψ is additionally right-differentiable at zero, then its Mellin
transform Mψ is a meromorphic function on {p ∈ C : Re(p) > −1} with a simple
pole at the origin. This is verified via integration by parts: for p ∈ (−1, 0)∪ (0,+∞),

one has

Mψ(p) = 1

p

∫ ∞

0
t p(−ψ(t))′dt =

∫ 1

0
t p−1(ψ(t)−ψ(0))dt+ψ(0)

p
+
∫ ∞

1
t p−1ψ(t)dt .

(24)
For s > 0, letψs(t) = (1− t)1/s+ . Then, we have the following monotonicity result.

Lemma 4.1 (The Mellin–Berwald inequality, Theorem 6.1 from [24]) Let ψ be a
non-increasing, s-concave function, s > 0. Then the function

Gψ(p) :=
(Mψ(p)

Mψs (p)

)1/p

=
(
p

(
p + 1

s

p

)
Mψ(p)

)1/p

is decreasing on (−1,∞). Additionally, if there is equality for any two p, q ∈
(−1,∞), then Gψ(p) is constant. Furthermore, Gψ(p) is constant if and only if
ψ s is affine on its support.

The equality conditions of Lemma 4.1 are not stated in [24, Theorem 6.1] but
implied by the proof; see [37, Lemma 2.2] for an explicit proof. We remark that the
Mellin transform is defined, and theMellin–Berwald inequality holds, for all s-concave
functions, s ∈ R, but, for s < 0, the constants become more complicated and one
must restrict to p < − 1

s for integrability.
We now introduce the mth-order radial mean bodies.

Definition 4 Let K ∈ Kn . For m ∈ N and p > −1, we define the (m, p) radial mean
bodies of K , Rm

p K , to be the star bodies in R
nm whose radial functions are given by,

for θ̄ ∈ S
nm−1:

ρRm
p K (θ̄) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

Voln(K )

∫
K

(
mini=1,...,m {ρK−x (−θi )}

)p
dx
) 1

p
, p > −1, p �= 0;

exp
(

1
Voln(K )

∫
K log

(
mini=1,...,m {ρK−x (−θi )}

)
dx
)

, p = 0;
maxx∈K mini=1,...,m ρK−x (−θi ), p = ∞.
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It follows fromProposition 4.3 below that Rm
p K is a star body for all p > −1.Notice

that R1
pK = RpK , since, when m = 1, Definition 4 recovers (18) when one uses the

fact that the bodies RpK are origin-symmetric. We now show that Rm∞K = Dm(K ).

Proposition 4.2 Fix m, n ∈ N and K ∈ Kn . Then, Rm∞K = Dm(K ) and Rm
p K → {o}

as p → (−1)+.

Proof Since Rm∞K is a star body, we know that

Rm∞K = {ȳ ∈ R
nm : ρRm∞K (ȳ) ≥ 1}.

Hence, if ȳ ∈ Rm∞K , then, maxx∈K mini ρK−x (−yi ) ≥ 1; but this is true if and only if
there exists at least one x ∈ K such that mini=1,...,m ρK−x (−yi ) ≥ 1. But, for such an
x, this means, for every i = 1, . . . ,m, one has ρK−x (−yi ) ≥ 1. However, K − x is a
star body, and hence this inequality implies−yi ∈ K −x, or, equivalently, x ∈ K + yi .
Therefore, we have

x ∈ K ∩
m⋂
i=1

(K + yi ).

By definition, this means that ȳ ∈ Dm(K ). So, Rm∞K ⊆ Dm(K ). Conversely, if we
know that ȳ ∈ Dm(K ), then there exists some x ∈ K ∩⋂m

i=1(K + yi ). This means
that ρK−x (−yi ) ≥ 1 for all i = 1, . . . ,m. Thus, so, too is their minimum. Taking
maximum over x ∈ K yields maxx∈K mini ρK−x (−yi ) ≥ 1, i.e. ȳ ∈ Rm∞K , and so
the claim follows.

For the second claim, we note that, when p ∈ (−1, 0),

∫
K

(
min

i=1,...,m
{ρK−x (−θi )}

)p

dx ≥
∫
K

ρK−x (−θi )
pdx

for all i = 1, . . . ,m, and the latter integral was shown to go to ∞ as p → −1 by
Gardner and Zhang [26]. ��
We now show that the radial functions ρRm

p K of the (m, p) radial mean bodies Rm
p K

are actually the Mellin transform of the mth-covariogram gK ,m . In the presence of
(−gK ,m(r θ̄ ))′ below, the derivative is in r , and, we make note of the fact that, since
gK ,m(r θ̄ ) is decreasing, −gK ,m(r θ̄ )′ is positive.

Proposition 4.3 Let m, n ∈ N be fixed. Then, for K ∈ Kn, one has that, for p �= 0,

ρRm
p K (θ̄) =

(
pM gK ,m (r θ̄ )

Voln (K )

(p)

) 1
p

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
p

Voln(K )

∫ ρDm (K )(θ̄ )

0 gK ,m(r θ̄ )r p−1dr

) 1
p

, p > 0,

(
p
∫ ρDm (K )(θ̄ )

0

(
gK ,m (r θ̄ )

Voln(K )
− 1
)
r p−1dr + ρ

p
Dm (K )(θ̄ )

) 1
p

, p ∈ (−1, 0).
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From Proposition 2.1, this yields that, for each p ≥ 0, Rm
p K ∈ Knm and that it

contains the origin in its interior. Additionally, the above formula re-writes as, for
p ∈ (−1,∞):

ρRm
p K (θ̄) =

⎧⎪⎪⎨
⎪⎪⎩

(
1

Voln(K )

∫ ρDm (K )(θ̄ )

0 (−gK ,m(r θ̄ ))′r pdr
) 1

p

, p �= 0,

exp

(
1

Voln(K )

∫ ρDm (K )(θ̄ )

0 (−gK ,m(r θ̄ ))′ log(r)dr
)

, p = 0.

(25)

Proof Observe that x ∈ ∩m
i=1(K + rθi ), if and only if −rθi ∈ K − x for every

i = 1, . . . ,m. But this is equivalent to 0 ≤ r ≤ ρK−x (−θi ). Then, for p > 0:

∫
K

(
min

i=1,...,m
{ρK−x (−θi )}

)p

dx = p
∫
K

∫ mini=1,...,m {ρK−x (−θi )}

0
r p−1drdx

= p
∫
K

∫ ∞

0
χ⋂m

i=1{r>0:r≤ρK−x (−θi )}(r)r
p−1drdx

= p
∫ ∞

0

∫
K

χ⋂m
i=1{x∈Rn :x∈(K+rθi )}(x)dx r

p−1dr

= p
∫ ∞

0
gK ,m(r θ̄ )r p−1dr = p

∫ ρDm (K )(θ̄ )

0
gK ,m(r θ̄ )r p−1dr .

For p ∈ (−1, 0), we obtain

∫
K

(
min

i=1,...,m
{ρK−x (−θi )}

)p

dx = −p
∫
K

∫ ∞

mini=1,...,m {ρK−x (−θi )}
r p−1drdx

= −p
∫
K

∫ ∞

0
χ⋃m

i=1{r>0:r>ρK−x (−θi )}(r)r
p−1drdx

= −p
∫ ∞

0

∫
K

χ⋃m
i=1{x∈Rn :x /∈(K+rθi )}(x)dxr

p−1dr

= −p
∫ ∞

0
Voln

(
K \

(
m⋂
i=1

(K + rθi )

))
r p−1dr

= −p
∫ ∞

0
(Voln(K ) − gK ,m(r θ̄ ))r p−1dr

= p
∫ ρDm (K )(θ̄ )

0
(gK ,m(r θ̄ ) − Voln(K ))r p−1dr + Voln(K )ρ

p
Dm (K )(θ̄ ).

The equation (25) comes from (24) and the differentiability of gK ,m(r θ̄ ) almost every-
where (as a function in r on its support) for p �= 0, and then via continuity for p = 0.

��
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The convexity for p ∈ (−1, 0) is unknown. On the other-hand, for p ∈ (−1, 0),
let s := 1 + p ∈ (0, 1). Then, we obtain

sρRm
p K (θ̄)s−1 = s

∫ ρDm (K )(θ̄ )

0

(−gK ,m(r θ̄ ))′

Voln(K )
rs−1dr . (26)

We recall the following elementary lemma; see, for example, [31, Lemma 4] for a
proof.

Lemma 4.4 If ϕ : [0,∞) → [0,∞) is a measurable function such that, for some
s0 ∈ (0, 1), one has

∫∞
0 t s0−1ϕ(t)dt < ∞, then

lim
s→0+ s

∫ ∞

0
t s−1ϕ(t)dt = lim

t→0+ ϕ(t).

Consequently, we can now establish the behavior of ρRm
p K as p → (−1)+.

Proposition 4.5 Fix m, n ∈ N and K ∈ Kn . Then,

lim
p→(−1)+

(p + 1)1/p Rm
p K = Voln(K )�◦,mK .

Proof Taking the limit of (26), using Lemma 4.4, and inserting the result for the
derivative of the covariogram from Theorem 1.1, we obtain for every θ̄ ∈ S

nm−1 that

lim
p→(−1)+

(p + 1)1/pρRm
p K (θ̄) = Voln(K )ρ�◦,mK (θ̄). (27)

��
Thus, we see that the shape of Rm

p K approaches that of Voln(K )�◦,mK as p →
(−1)+. With the aid of (25), one can deduce the following chain of set-inclusions.

Lemma 4.6 Fix n,m ∈ N. For every K ∈ Kn and −1 < p < q < ∞ one has:

Rm
p K ⊆ Rm

q K ⊆ Dm(K ).

Proof It suffices to show for every θ̄ ∈ S
nm−1 that ρRm

p K (θ̄) is an increasing function
in p for p > −1. Indeed, this follows from Jensen’s inequality applied to (25) with
respect to the probability measure

−Voln(K )−1gK ,m(r θ̄ )′χ[0,ρDm (K )(θ̄ )](r).

��
We now show the reverse of this chain of inclusions, that is, we prove Theorem 1.2.

For the convenience of the reader, we shall restate this theorem below.
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Theorem 1.2 Let K ∈ Kn and m ∈ N. Then, for −1 < p < q < ∞, one has

Dm(K ) ⊆
(
q + n

n

) 1
q

Rm
q K ⊆

(
p + n

n

) 1
p

Rm
p K ⊆ nVoln(K )�◦,mK .

Equality occurs in any set inclusion if and only if K is a n-dimensional simplex.

Proof Recall from Proposition 3.1 that gK ,m(r θ̄ )
1
n is a concave function (in r ) on its

support for every fixed θ̄ ∈ S
nm−1. Thus, from Lemma 4.1 and Proposition 4.3, the

function

GK (p; θ̄ ) :=
(
p + n

n

) 1
p

ρRm
p K (θ̄)

is non-increasing in p, p > −1, for every fixed θ̄ , which establishes the first three
set inclusions upon insertion of definitions. For the last set inclusion, we have not yet
established the behavior of lim p→(−1)+ GK (p; θ̄ ). Observe that

GK (p; θ̄ ) =
(

1

p + 1

(
p + n

n

)) 1
p

(p + 1)1/pρRm
p K (θ̄).

From the fact that (
1

p + 1

(
p + n

n

)) 1
p −−−−−−→

p→(−1)+
n,

one obtains from (27) that lim p→(−1)+ GK (p; θ̄ ) = nVoln(K )ρ�◦,mK (θ̄). The equal-
ity conditions follow from those of Lemma 4.1, which shows equality occurs for any

set inclusion, and hence for all set inclusions, if and only if gK ,m(r θ̄ )
1
n is as affine

function in r on its support. Indeed, Proposition 4.7 below shows this characterizes a
simplex. ��

The following proposition characterizes a simplex; the equivalence between (i) and
(i i) can be found in [20, Sect. 6], or [16, 62], and the equivalence between (i i) and
(i i i) is the content of [64, Sect. 5].

Proposition 4.7 Let K ∈ Kn and m ∈ N. The following are equivalent:

(i) K is a n-dimensional simplex.
(ii) For every θ ∈ S

n−1 and r > 0 so that K ∩ (K + rθ) �= ∅, K ∩ (K + rθ) is
homothetic to K .

(iii) For every θ̄ ∈ S
nm−1, gK ,m(r θ̄ )1/n is an affine function in r for r ∈ [0, ρDm (K )(θ̄ )].

We next show that there exists an (m, p) radial mean body whose measure is
comparable to that of K .

Proposition 4.8 Let K ∈ Kn and m ∈ N. Then,

Volnm(Rm
nmK ) = Voln(K )m .
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Proof We first observe that, from the translation invariance of the Lebesgue measure:

Voln(K )m = 1

Voln(K )

∫
K

m∏
i=1

Voln(y − K )dy

= 1

Voln(K )

∫
K

m∏
i=1

(∫
Rn

χy−K (xi )dxi

)
dy

= 1

Voln(K )

∫
Rn

· · ·
∫
Rn

∫
K

χ∩m
i=1(xi+K )(y)dydx1 · · · dxm

= 1

Voln(K )

∫
Rnm

gK ,m(x̄)dx̄ = 1

Voln(K )

∫
Dm (K )

gK ,m(x̄)dx̄ .

On the other-hand, integrating in polar coordinates (9) and using the polar formula
for volume (10) yields

1

Voln(K )

∫
Dm(K )

gK ,m(x̄)dx̄

= 1

Voln(K )

∫
Snm−1

∫ ρDm (K )(θ̄ )

0
gK ,m(r θ̄ )rnm−1drd θ̄

= 1

nm

∫
Snm−1

ρRm
nmK (θ̄)nmd θ̄ = Volnm(Rm

nmK ).

��
From this we can prove the following results; the first one is a new proof of (2).

Corollary 4.9 (Rogers–Shephard inequality for mth-order difference bodies) Fix m ∈
N and K ∈ Kn . Then, one has

Voln(K )−mVolnm
(
Dm(K )

) ≤
(
nm + n

n

)
,

with equality if and only if K is a n-dimensional simplex.

The second one is the mth-order Zhang’s projection inequality. We restate it here for
convenience.

Corollary 1.3 (Zhang’s projection inequality for mth-order projection bodies) Fix m ∈
N and K ∈ Kn . Then, one has

Voln(K )nm−mVolnm
(
�◦,mK

) ≥ 1

nnm

(
nm + n

n

)
,

with equality if and only if K is a n-dimensional simplex.
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Proofs of Corollaries 1.3 and 4.9 From the homogeneity of volume, Theorem 1.2 with
p = nm, and Proposition 4.8, one has

Volnm(Dm(K )) ≤ Volnm

((
nm + n

n

) 1
nm

Rm
nmK

)

=
(
nm + n

n

)
Volnm(Rm

p K ) =
(
nm + n

n

)
Voln(K )m

≤ Volnm
(
nVoln(K )�◦,mK

)
= nnmVoln(K )nmVolnm(�◦,mK ).

The equality conditions are immediate. ��

5 Themth-order Petty’s projection inequality

In this section, we set out to prove Theorem 1.4, which we restate for the reader’s
convenience here.

Theorem 1.4 Fix any m ∈ N and K ∈ Kn. Then, one has

Voln(K )nm−mVolnm(�◦,mK ) ≤ Voln(B
n
2 )nm−mVolnm(�◦,mBn

2 ),

with equality if and only if K is an ellipsoid.

Before proceeding to the proof of Theorem 1.4, we establish the following class-
reduction argument in the spirit of [44].

Lemma 5.1 Fix m, n ∈ N and let K ∈ Kn. Then,

Volnm(�◦,mK )Voln(K )nm−m ≤
Volnm(�◦,m�m�◦,mK )Voln(�

m�◦,mK )nm−m,
(28)

with equality if and only if K is homothetic to �m�◦,mK .

Proof By setting K = �mL in Lemma 3.9 and using the dual Minkowski’s first
inequality (16), we obtain for every L ∈ Snm that:

Voln(�
mL)nm ≥

(
nm + 1

m

)−nm

Volnm(L)Volnm(�◦,m�mL)−1 (29)

with equality if and only if L is a dilate of �◦,m�mL . Then, set L = �◦,mK in (29)
to obtain for every K ∈ Kn that

Voln(�
m�◦,mK )nmVolnm(�◦,m�m�◦,mK )

≥
(
nm + 1

m

)−nm

Volnm(�◦,mK ),
(30)
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with equality if and only if�◦,mK is a dilate of�◦,m�m�◦,mK . Next, let L = �◦,mK
in Lemma 3.9 and apply Minkowski’s first inequality (11) to obtain for every K ∈ Kn

that (
nm + 1

m

)−n

≥ Voln(�
m�◦,mK )Voln(K )n−1, (31)

with equality if and only if K is homothetic to�m�◦,mK . Raising both sides of (31) to
themth-power and combining with (30), we then obtain (28) with equality if and only
if K is homothetic to �m�◦,mK (from (31)) and�◦,mK is a dilate of�◦,m�m�◦,mK
(from (30)). Notice the first condition implies the second, as the operator �◦,m is
translation invariant. Thus, it suffices to say there is equality if and only if K is
homothetic to �m�◦,mK . ��

In 1999,McMullen [50] introduced the fiber combination of convex bodies. In 2016,
Bianchi, Gardner and Gronchi [12] further generalized the concept of fiber combina-
tion and constructed a general framework of symmetrizations of convex bodies. We
now introduce a symmetrization that is adapted to our setting, i.e. which uses the
product structure of Rnm . It is actually a particular fiber summation of certain bodies.
The definition as a union also emphasizes that the symmetrization is a particular case
of [12, Eq. 6]. As far as we know, this is the first application of this particular case. For
lack of a better phrase, we will call this fiber symmetrization. It will be convenient to
write x̄ = (x1, . . . , xm) ∈ R

nm as (xi )i .

Definition 5 Fix m, n ∈ N. For ξ ∈ S
n−1, consider the line 〈ξ 〉 := {tξ : t ∈ R} ⊆ R

n

and let V = V (ξ) be its orthogonal complement. Let L ⊆ R
nm be a compact, convex

set. Consider the subspace Vm = V × · · · × V ⊆ R
nm and define similarly 〈ξ 〉m . We

define the fiber symmetral of L with respect to ξ by

S̄ξ L =
⋃
x̄∈Vm

(
x̄ + 1

2
D(L ∩ (x̄ + 〈ξ 〉m))

)
.

We use the convention that the Minkowski sum of a point and the emptyset is the
emptyset. Notice that the set D(L ∩ (x̄ + 〈ξ 〉m)) is an m-dimensional convex body
inside the vector space 〈ξ 〉m . Furthermore, we have

S̄ξ L =
{(

xi + 1

2
(ti − si )ξ

)
i
∈ R

nm : xi ∈ V ,

ti , si ∈ R, (xi + tiξ)i , (xi + siξ)i ∈ L

}
.

(32)

It is easy to see that if L ∈ Knm , i.e. if L has non-empty interior, then so too is
S̄ξ L . This can be verified directly or found in [12, 50]. In the case whenm = 1, the set
L∩ (x +〈ξ 〉m) is an interval, and half its difference body is the centered interval of the
same length, parallel to 〈ξ 〉. Consequently, the above definition reduces to the classical
Steiner symmetrization of compact, convex sets. It is straightforward to verify that

T (S̄ξ L) = S̄T ξT (L) (33)
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for every rotation T ∈ O(n).

A basic property of Steiner symmetrization is that it preserves volume. In [66],
Ulivelli studied the analogue of this property for the symmetrizations introduced by
Bianchi et al. [12]. In the following proposition, we provide a self-contained proof of
a particular case of [66, Lemma 3.1].

Proposition 5.2 Let n,m ∈ N and fix ξ ∈ S
n−1. In the notation of Definition 5, we

have that, for L ∈ Knm,
Volnm(S̄ξ L) ≥ Volnm(L). (34)

Equality holds if and only if the fibers L ∩ (x̄ + 〈ξ 〉m) with positive m-dimensional
volume are symmetric for every x̄ ∈ Vm (the center of symmetry may depend on x̄ ).

Proof By the Brunn–Minkowski inequality (8),

Volm

(
1

2
D(L ∩ (x̄ + 〈ξ 〉m))

)
≥ Volm(L ∩ (x̄ + 〈ξ 〉m)).

Applying Fubini’s theorem, we obtain

Volnm(S̄ξ L) =
∫
Vm

Volm

(
x̄ + 1

2
D(L ∩ (x̄ + 〈ξ 〉m))

)
dx̄

=
∫
Vm

Volm

(
1

2
D(L ∩ (x̄ + 〈ξ 〉m))

)
dx̄

≥
∫
Vm

Volm(L ∩ (x̄ + 〈ξ 〉m))dx̄ = Volnm(L),

as required. ��
Remark 1 As pointed out by the referee, it makes sense to apply fiber symmetrization
from Definition 5 to any compact set L ⊂ R

nm . However, when m = 1, one does
not necessarily recover the Steiner symmetrization of L ⊂ R

n . The inequality (34) in
Proposition 5.2 still holds, but the equality conditions becomemore complicated due to
themore intricate nature of the equality conditions of theBrunn–Minkowski inequality
(see e.g. [25, p. 363]): there is equality if and only if whenever Volm(L∩(x̄+〈ξ 〉m)) >

0, the set L∩ (x̄+〈ξ 〉m) is a convex set with a center of symmetry, fromwhich subsets
of m-dimensional volume zero may have been removed.

In order to characterize the equality case of Theorem 1.4, we need the following
lemma.

Lemma 5.3 Let� : Rn → R
nm be the diagonal function given by�(x) = (x, . . . , x).

Then, for ξ ∈ S
n−1 and K ∈ Kn:

�−1(S̄ξ�
◦,mK ) ⊆ Sξ�

◦K ,

where �−1 is the pre-image of �.
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Proof Notice that �−1(�◦,mK ) = �◦K . Consider the left-inverse of �,

A(x̄) = 1

n

m∑
j=1

x j , satisfying �A(x̄) = 1

m!
∑

σ∈Pm

σ(x̄),

where the second sum runs over Pm, the collection of all permutations in m-
coordinates. Since �mK is invariant under permutations in Pm , we have

h�mK (θ̄) = 1

m!
∑

σ∈Pm

h�mK (σ (θ̄)) ≥ h�mK

⎛
⎝ 1

m!
∑

σ∈Pm

σ(θ̄)

⎞
⎠

= h�mK (�(A(θ̄))) = h�K (A(θ̄)),

which implies that
A(�◦,mK ) ⊆ �◦K .

To prove the lemma, take x +rξ ∈ �−1(S̄ξ�
◦,mK )with x ⊥ ξ . We have x +rξ =

(x+ 1
2 (ti−si )ξ) for i = 1, . . . ,m with (x+tiξ)i , (x+siξ)i ∈ �◦,mK and ti−si = 2r .

Also notice that A((x + tiξ)i ) = x + tξ with t = 1
n

∑
ti , and A((x + siξ)i ) = x + sξ

with s = 1
n

∑
si . Since (x + tξ), (x + sξ) ∈ A(�◦,mK ) ⊆ �◦K and

(x + rξ) = x + A(�(rξ))

= x + A

(
(
1

2
(ti − si )ξ)i

)

= x + 1

2
tξ − 1

2
sξ

we obtain x + rξ = x + 1
2 (t − s)ξ ∈ Sξ�

◦K and the lemma follows. ��
The critical ingredient in the proof of Theorem 1.4 is the next lemma, which is a

mth-order variant of [44, Lemma 14].

Lemma 5.4 Fix ξ ∈ S
n−1. Given K ∈ Kn with C1 smooth boundary, one has

S̄ξ�
◦,mK ⊆ �◦,mSξ K .

If there is equality, then Sξ�
◦K ⊇ �◦Sξ K.

Proof By the invariance property (33), we may assume that ξ = en, where en =
(0, . . . , 0, 1). In view of (32) it is enough to show that if ((xi , ti ))i , ((xi , si ))i ∈
�◦,mK , then ((xi ,

1
2 (ti − si )))i ∈ �◦,mSξ K . Write

K = {(x, t) ∈ R
n−1 × R : z(x) ≤ t ≤ z(x), x ∈ Pe⊥

n
K },
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where z, z : Rn−1 → R are C1 functions in the relative interior of Pe⊥
n
K , and we are

identifying e⊥
n = R

n−1 and x + ten = (x, t). Then the (classical) Steiner symmetral
in the direction en has the form

Sen K = {(x, t) ∈ R
n−1 × R : − z(x) ≤ t ≤ z(x), x ∈ Pe⊥

n
K },

where z = 1
2 (z − z). Note that, since K is C1, so is Sen K . Set θi = (xi , ti ) and

θ̄ = (θ1, . . . , θm). Notice for x in the interior of Pe⊥
n
K , the outer unit normal on ∂K

at the point (x, z̄(x)) is given by

nK (x, z̄(x)) = (−∇z(x), 1)

|(−∇z(x), 1)| .

Similarly, the outer unit normal on ∂K at the point (x, z(x)) is given by

nK (x, z(x)) = (∇z(x),−1)

|(∇z(x),−1)| .

Then, we have from a variable substitution that

h�mK (θ̄) =
∫
P
e⊥n K

max
1≤i≤m

{〈
θi ,

(−∇z(x), 1)

|(−∇z(x), 1)|
〉
−

}
|(−∇z(x), 1)|dx

+
∫
P
e⊥n K

max
1≤i≤m

{〈
θi ,

(∇z(x),−1)

|(∇z(x),−1)|
〉
−

}
|(∇z(x),−1)|dx

=
∫
P
e⊥n K

(
max
1≤i≤m

{〈θi , (−∇z(x), 1)〉−}+ max
1≤i≤m

{〈θi , (∇z(x),−1)〉−
})

dx

=
∫
P
e⊥n K

(
max
1≤i≤m

{0, 〈xi ,∇z(x)〉 − ti }+ max
1≤i≤m

{0,−〈xi ,∇z(x)〉 + ti }
)
dx,

where we used that t− = (−t)+ = max{0,−t}.
Now assume h�mK ((xi , ti )i ), h�mK ((xi , si )i ) ≤ 1 and let ri = 1

2 (ti − si ).
Continuing our computation, we have

h�m Sen K ((xi , ri )i )

=
∫
P
e⊥n K

(
max
1≤i≤m

{0, 〈xi ,∇z(x)〉 − ri }+ max
1≤i≤m

{0,−〈xi ,∇(−z)(x)〉 + ri }
)
dx

= 1

2

∫
P
e⊥n K

(
max
1≤i≤m

{0, 〈xi ,∇z(x)〉 − 〈xi ,∇z(x)〉 − ti + si }

+ max
1≤i≤m

{0, 〈xi ,∇z(x)〉 − 〈xi ,∇z(x)〉 + ti − si }
)
dx
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≤ 1

2

∫
P
e⊥n K

(
max
1≤i≤m

{0, 〈xi ,∇z(x)〉 − ti } + max
1≤i≤m

{0,−〈xi ,∇z(x)〉 + si }

+ max
1≤i≤m

{0,−〈xi ,∇z(x)〉 + ti } + max
1≤i≤m

{0, 〈xi ,∇z(x)〉 − si }
)
dx

where we used that maxi {ai + bi } ≤ maxi {ai } + maxi {bi } for every ai , bi ∈ R. We
obtain

h�m Sen K ((xi , ri )i )

≤ 1

2

∫
P
e⊥n K

(
max
1≤i≤m

{0, 〈xi ,∇z(x)〉 − ti } + max
1≤i≤m

{0,−〈xi ,∇z(x)〉 + ti }

+ max
1≤i≤m

{0, 〈xi ,∇z(x)〉 − si } + max
1≤i≤m

{0,−〈xi ,∇z(x)〉 + si }
)
dx

= 1

2
(h�mK ((xi , ti )i ) + h�mK ((xi , si )i )) ≤ 1,

which completes the proof of the first inclusion.
If S̄ξ�

◦,mK = �◦,mSξ K , then by Lemma 5.3 we have

�◦Sξ K = �−1�◦,mSξ K = �−1 S̄ξ�
◦,mK ⊆ Sξ�

◦K .

��
We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4 First we prove that

Voln(K )nm−mVolnm(�◦,mK ) ≤ Voln(B
n
2 )nm−mVolnm(�◦,mBn

2 ).

In view of Proposition 3.4, we can assume that K is a C1 convex body. Combining
(34) and Lemma 5.4, we observe that, for any given ξ ∈ S

n−1, one has

Voln(K )nm−mVolnm(�◦,mK ) ≤ Voln(Sξ K )nm−mVolnm(S̄ξ�
◦,mK )

≤ Voln(Sξ K )nm−mVolnm(�◦,mSξ K ).
(35)

Finally, following the notation of Section 2.1, we choose a sequence of directions
{ξ j } j ⊂ S

n−1 such that S j K → κ
−1/n
n Voln(K )1/n Bn

2 in the Hausdorff metric. Again,
by Proposition 3.4 we obtain the result.

Now assume there is equality in (35). By Proposition 3.8, we know that K is a
C1 convex body. By Lemma 5.4 and the equality of volumes, we have S̄ξ�

◦,mK =
�◦,mSξ K for every ξ ∈ S

n−1. By the equality case of Lemma 5.4, we have�◦Sξ K ⊆
Sξ�

◦K and, therefore,
�◦Sξ K = Sξ�

◦K
for every ξ ∈ S

n−1. This implies that K is an extremal body for the classical Petty
projection inequality and thus, an ellipsoid. ��
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From the mixed volume formula, we can also obtain an isoperimetric-type
inequality, a mth-order analogue of Petty’s isoperimetric inequality (4).

Theorem 1.5 Let K ∈ Kn and m ∈ N. Then, one has the following inequality:

Volnm(�◦,mK )Voln−1(∂K )nm ≥ Volnm(�◦,mBn
2 )Voln−1(S

n−1)nm

≥ κnm

(
nκn

wnm(�mBn
2 )

)nm

.

Equality in the first inequality holds if and only if�K is anEuclidean ball. If m = 1,
there is equality in the second inequality, while for m ≥ 2, the second inequality is
strict.

Proof We begin with the first inequality. Using the polar formula for volume (10), one
obtains

Volnm(�◦,mK ) = 1

nm

∫
Snm−1

(nVn(K [n − 1],C−θ̄ ))
−nmd θ̄ . (36)

Note that for any T ∈ O(n), we have T ∈ O(nm). Now, by a change of variables
and integrating with respect to the Haar probability measure μ on O(n), we obtain

Volnm(�◦,mK ) = 1

nm

∫
O(n)

∫
Snm−1

(nVn(K [n − 1],C−T θ̄ ))
−nmd θ̄dμ(T ).

By Fubini’s theorem, Jensen’s inequality and the identity C−T θ̄ = TC−θ̄ , we have

Volnm(�◦,mK ) ≥ 1

nm

∫
Snm−1

(∫
O(n)

nVn(K [n − 1], TC−θ̄ )dμ(T )

)−nm

d θ̄

= 1

nm

∫
Snm−1

(∫
O(n)

∫
Sn−1

hC−θ̄
(T tu)dσK (u)dμ(T )

)−nm

d θ̄ .

Using Fubini’s theorem again, and the fact that O(n) acts uniformly on Sn−1,

Volnm(�◦,mK ) ≥ 1

nm

∫
Snm−1

(∫
Sn−1

∫
O(n)

hC−θ̄
(T tu)dμ(T )dσK (u)

)−nm

d θ̄

= 1

nm

∫
Snm−1

(
1

nκn

∫
Sn−1

∫
Sn−1

hC−θ̄
(ν)dνdσK (u)

)−nm

d θ̄

= 1

nm

∫
Snm−1

(
Voln−1(∂K )

1

κn
Vn(B

n
2 [n − 1],C−θ̄ )

)−nm

d θ̄

= Voln−1(∂K )−nm κnm
n

nm

∫
Snm−1

Vn(B
n
2 [n − 1],C−θ̄ )

−nmd θ̄ ,

and we obtain

Volnm(�◦,mK )Voln−1(∂K )nm
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≥ Voln−1(S
n−1)nm

1

nm

∫
Snm−1

(nVn(B
n
2 [n − 1],C−θ̄ ))

−nmd θ̄ .

But by (36), this quantity is precisely Voln−1(S
n−1)nmVolnm(�◦,mBn

2 ). This yields
the first inequality in the proposition.

Equality holds in this inequality if and only if Vn(K [n − 1],C−T θ̄ ) is independent
of T for almost every θ̄ . By continuity (see the proof of Proposition 3.4), in this
case it actually holds that Vn(K [n − 1],C−T θ̄ ) is independent of T for any θ̄ . In
particular this is true if we take θ̄ = (θ, o, o, . . . , o) for some θ ∈ S

n−1, in which case
Vn(K [n − 1],C−T θ̄ ) = h�K (T θ). Thus �K is a ball.

For the second inequality, we return to (36) and now apply Jensen’s inequality to
the integral over Snm−1, giving

Volnm(�◦,mK ) ≥ (κnmnm)nmκnm

(∫
Snm−1

∫
Sn−1

hC−θ̄
(u)dσK (u)d θ̄

)−nm

.

If m = 1, then
∫
Sn−1 h[o,−θ1](u)dσK (u) is constant for all θ1, if and only if K is a

multiple of Bn
2 . Form ≥ 2, the corresponding integral is never constant for all θ̄ .Next,

it is not hard to see from the rotational invariance of the spherical Lebesgue measure
that

∫
Snm−1 hC−θ̄

(u)d θ̄ = constant, i.e., this integral is independent of u. Thus, from
Fubini’s theorem, one obtains

Volnm(�◦,mK )Voln−1(∂K )nm ≥ (κnmnm)nmκnm

(∫
Snm−1

hC−θ̄
(u)d θ̄

)−nm

.

We now replace
∫
Snm−1 hC−θ̄

(u)d θ̄ with something more geometric in meaning. Since

this is a constant, we can integrate it over Sn−1 and obtain

∫
Snm−1

hC−θ̄
(u)d θ̄ = 1

nκn

∫
Sn−1

∫
Snm−1

hC−θ̄
(u)d θ̄du.

However, from a use of Fubini’s theorem, this becomes

∫
Snm−1

hC−θ̄
(u)d θ̄ = 1

nκn

∫
Snm−1

h�m Bn
2
(θ̄)d θ̄ = mκnm

κn
wnm(�mBn

2 ).

Inserting this computation yields the result. ��

6 The Busemann–Petty centroid inequality and random processes
without independence

Westart by obtaining themth-orderBusemann–Petty centroid inequality, Theorem1.6,
as a direct corollary of themth-order Petty’s projection inequality. We list it here again
for the convenience of the reader.
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Theorem 1.6 (The mth-order Busemann–Petty centroid inequality) For L ∈ Snm,
where n,m ∈ N, one has,

Voln(�mL)

Volnm(L)1/m
≥ Voln(�m�◦,mBn

2 )

Volnm(�◦,mBn
2 )1/m

,

with equality if and only if L = �◦,mE for any ellipsoid E ∈ Kn .

Proof Applying Theorem 1.4 to the body �mL, one has the bound

Volnm(�◦,m�mL)−1 ≥ Voln(�
mL)nm−mκm−nm

n Volnm(�◦,mBn
2 )−1,

with equality if and only if �mL is an ellipsoid. Combining this bound with (29) and
the fact that Lemma 3.10 shows

Voln(�
m�◦,mBn

2 ) = κn

(
m

(nm + 1)κn

)n

yields the inequality. The equality conditions are inherited from Theorem 1.4 and
Lemma 3.10. ��
Remark 2 Given a compact set K ⊂ R

n , its moment body MK is defined as

hMK (θ) =
∫
L

|〈x, θ〉|dx ←→ MK = Voln(K )�K .

Similarly, we can define themth-order moment body of a compact set L ⊂ R
nm as the

C1 convex body (from Proposition 3.8) MmL in R
n whose support function is given

by

hMmL(θ) =
∫
L

max
1≤i≤m

〈xi , θ〉−dx̄ ←→ MmL = Volnm(L)�mL.

From Proposition 3.7, one has

MmT L = | det T |mT MmL

for T ∈ GLn(R). The Busemann–Petty inequality for the mth-order moment body
follows from Theorem 1.6 via homogeneity: for L ∈ Snm,

Voln(MmL)

Volnm(L)n+ 1
m

≥ Voln(Mm�◦,mBn
2 )

Volnm(�◦,mBn
2 )n+ 1

m

,

with equality if and only if L = �◦,mE for any ellipsoid E ∈ Kn .

Wenowwork towards provingTheorem1.7.Wefirst need the followingproposition.
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Proposition 6.1 For L ⊂ R
nm a compact set with positive volume, K ∈ Kn, and

x̄ ∈ R
nm one has

Vn(K [n−1], �mL)= 1

Volnm(L)

∫
L
Vn(K [n−1],C−x̄ )dx̄=EL(Vn(K [n−1],C−X̄ )).

Proof The result follows from the definition of mixed volumes, the definition of �mL,

and Fubini’s theorem. Indeed:

Vn(K [n − 1], �mL) = 1

n

∫
Sn−1

h�mL(θ)dσK (θ)

= 1

n

∫
Sn−1

1

Volnm(L)

∫
L

max
1≤i≤m

〈xi , θ〉−dx̄dσK (θ)

= 1

Volnm(L)

∫
L

1

n

∫
Sn−1

hC−x̄ dσK (θ)dx̄

= 1

Volnm(L)

∫
L
Vn(K [n − 1],C−x̄ )dx̄ .

��

We now prove Theorem 1.7, which we first restate.

Theorem 1.7 The functional

(K , L) ∈ Kn × Snm �→ Volnm(L)−
1
nm Voln(K )−

n−1
n EL(Vn(K [n − 1],CX̄ ))

is uniquely minimized when K is an ellipsoid and L = λ�◦,mK for some λ > 0.

Proof By Proposition 6.1, Minkowski’s first inequality for mixed volumes (11) and
Theorem 1.6,

Volnm(L)−1− 1
nm Voln(K )−

n−1
n

∫
L
Vn(K [n − 1],Cx̄ )dx̄

= Volnm(L)−1− 1
nm Voln(K )−

n−1
n

∫
L
Vn(−K [n − 1],C−x̄ )dx̄

= Volnm(L)−
1
nm Voln(K )−

n−1
n Vn(−K [n − 1], �mL)

≥ Volnm(L)−
1
nm Voln(�

mL)
1
n

≥ Volnm(�◦,mBn
2 )−

1
nm Voln(�

m�◦,mBn
2 )

1
n .

From the equality conditions of Minkowski’s first inequality, there is equality if and
only of K and �mL are homothetic. From Theorem 1.6, there is equality if and only
if L = T (�◦,mBn

2 ). By Lemma 3.10, this happens if and only if K is an ellipsoid and
L is a dilate of �◦,mK . ��
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We next showwe can generalize these results. Minkowski [52] showed that volume
behaves as a polynomial: given λ1, . . . , λn > 0 and K1, . . . , Kn ∈ Kn, one has that

Voln(λ1K1 + λ2K2 + · · · + λnKn) =
n∑

i1,i2,...,in=1

Vn
(
Ki1 , . . . , Kin

)
λi1λi2 . . . λin .

Then Vn
(
Ki1 , . . . , Kin

)
is called the mixed volume of Ki1, . . . , Kin .

We can then repeat the above procedure and obtain a Groemer-like result for these
larger order mixed volumes. We first need the following proposition.

Proposition 6.2 For K1, . . . , Kn−1 ∈ Kn and a compact set L ⊂ R
nm with positive

volume, one has

Vn(K1, . . . , Kn−1, �
mL) = 1

Volnm(L)

∫
L
Vn(K1, . . . , Kn−1,C−x̄ )dx̄,

Voln(�
mL) = 1

Volnm(L)n

∫
L

· · ·
∫
L
Vn(C−x̄1 , . . . ,C−x̄n )dx̄1 . . . dx̄n .

Proof It is well-known that the mixed volumes have an integral representation similar
to that of (12), except instead of σK , one integrates with respect to the mixed surface-
area measures [65, Chap. 5]: consider a convex body K in R

n and a collection of
(n − 1) convex bodies K = (K2, . . . , Kn), Ki ∈ Kn . Then,

Vn(K1,K) = 1

n

∫
Sn−1

hK1(u)dσK(u),

where σK is the mixed surface-area measure of the collection K. Thus, the proof of
the first identity is similar to that of Proposition 6.1. As for the second identity, use

Voln(�
mL) = Vn(�

mL, · · · , �mL)

and apply the first identity n-times. ��
Finally, given L ∈ Snm , we select independently n points X̄i ∈ R

nm uniformly
distributed inside L . We denote the expected mixed volume of the closed convex hulls
by

ELm (Vn(CX̄1
, · · · ,CX̄n

)),

and we obtain the following extension of the Busemann random simplex inequality.

Corollary 6.3 The functional

L ∈ Snm �→ Volnm(L)−
1
m ELm (Vn(CX̄1

, · · · ,CX̄n
))

is minimized exactly when L = �◦,mE, where E is an ellipsoid.
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Proof From Proposition 6.2, one obtains

Voln(�
m(−L)) = ELm (Vn(CX̄1

, · · · ,CX̄n
)).

From the translation invariance of volume, the result therefore follows from Theorem
1.6 applied to −L. ��

7 Themth-order affine Sobolev inequality

Throughout this section, we say that a function f : Rn → R is non-identically zero
if Voln({x ∈ R

n : f (x) �= 0}) > 0. Recall that f ∈ BV (Rn), the space of functions
of bounded variation, if, by definition, there exists a vector valued measure Df such
that, if η f : Rn → R

n is the Radon–Nykodim derivative of Df with respect to |Df |
(the variation measure of f ), then

∫
Rn

f (x) div(ψ(x))dx = −
∫
Rn

〈η f (x), ψ(x)〉d|Df |(x)

holds for every compactly supported, smooth vector field ψ : Rn → R
n . In the case

when f is differentiable, or in the Sobolev space W 1,1(Rn), one has, d|Df |(x) =
|∇ f (x)|dx and η f = ∇ f /|∇ f | when ∇ f �= o, and o otherwise (see [22]).

It was shown in [67] that given a non-identically zero function f ∈ BV (Rn), there
exists a unique Borel measure μ f on Sn−1, not concentrated on any great hemisphere,
such that ∫

Sn−1
g(u)dμ f (u) =

∫
Rn

g(−η f (x))d|Df |(x)

for every 1-homogeneous function g on R
n \ {o}. But also, the center of mass of μ f

is the origin. Indeed, with {ei } the canonical basis of Rn ,

∫
Sn−1

udμ f (u) =
n∑

i=1

(∫
Sn−1

〈u, ei 〉dμ f (u)

)
ei

= −
n∑

i=1

(∫
Rn

〈η f (x), ei 〉d|Df |(x)
)
ei

=
n∑

i=1

(∫
Rn

f (x) div(ei )dx

)
ei =

n∑
i=1

0ei = o.

Thus, we apply Minkowski’s existence theorem to μ f and obtain a unique convex
body with center of mass at the origin, the asymmetric LYZ body of f denoted 〈 f 〉,
such that σ−〈 f 〉 = μ f . That is, 〈 f 〉 satisfies the following change of variables formula
for every 1-homogeneous function g on R

n \ {o}:
∫
Sn−1

g(u)dσ〈 f 〉(u) =
∫
Rn

g(η f (x))d|Df |(x). (37)
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We remark that the epithet “LYZ Body of f ∈ BV (Rn)" in [67] is reserved for the
origin-symmetric convex body whose surface area measure is the even part of σ〈 f 〉, in
which case (37) would only hold for even, 1-homogeneous functions g (this distinction
is made implicitly in the proof of [67, Theorem 3.1] but not in the statement of that
theorem). In fact, this origin-symmetric convex body is the Blaschke body of 〈 f 〉 (see
(14)). The not necessarily symmetric body is important for our setting. Indeed, by
setting g(u) = hC−θ̄

(u) in (37), which is in general not an even function in u, we
obtain the LYZ projection body of order m of f ∈ BV (Rn), �m〈 f 〉, defined via

h�m 〈 f 〉(θ̄) =
∫
Rn

max
1≤i≤m

〈η f (x), θi 〉−d|Df |(x).

We need the following lemma. In the case of Sobolev functions, it was done in by
Federer and Fleming [23] and Maz’ja [49] when K = Bn

2 . Gromov later generalized
this to when K is any symmetric convex body [51]. Cordero-Erausquin, Nazaret and
Villani then extended Gromov’s result, with equality conditions, in the case when
f ∈ BV (Rn) [19, Theorem 3]. The version we present here, which holds for all con-
vex bodies K containing the origin in their interior, follows by either modifying the
proof of [19, Theorem 3] slightly, or, alternatively, from the result by Alvino, Ferone,
Trombetti and Lions for Sobolev functions [8, Corollary 3.2], an approximation argu-
ment involvingW 1,1(Rn), and repeating the argument for equality conditions done in
[19].

Lemma 7.1 (Anisotropic Sobolev inequality)Let K be a convex body inRn containing
the origin in its interior. Consider a compactly supported, non-identically zero function
f ∈ BV (Rn). Then,

‖ f ‖ n
n−1

Voln(K )
1
n ≤ 1

n

∫
Rn

hK (η f (z))d|Df |(z),

with equality if and only if there exists a convex body L homothetic to K and a constant
A > 0 such that f = AχL .

Theorem 7.2 Fix m, n ∈ N. Consider a compactly supported, non-identically zero
function f ∈ BV (Rn). Then, one has the geometric inequality

‖ f ‖ n
n−1

Volnm(�◦,m〈 f 〉) 1
nm ≤ Volnm(�◦,mBn

2 )
1
nm κ

n−1
n

n .

Equivalently, by setting dn,m := nκn
(
nmVolnm(�◦,mBn

2 )
) 1
nm , this is

(∫
Snm−1

(∫
Rn

max
1≤i≤m

〈η f (z), θi 〉−d|Df |(z)
)−nm

d θ̄

)− 1
nm

dn,m ≥ nκ
1
n
n ‖ f ‖ n

n−1
.

In either case, there is equality if and only if there exists A > 0, and an ellipsoid
E ∈ Kn such that f (x) = AχE (x).
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Proof From Theorem 1.4 applied to 〈 f 〉, we obtain

Voln(〈 f 〉) n−1
n Volnm(�◦,m〈 f 〉) 1

nm ≤ Voln(B
n
2 )

n−1
n Volnm(�◦,mBn

2 )
1
nm .

From an application of Lemma 7.1 with K = 〈 f 〉, (37) and (12), we obtain

‖ f ‖ n
n−1

≤ Voln(〈 f 〉) n−1
n .

This establishes the geometric inequality. Using the polar formula (10) for the volume
of �◦,m〈 f 〉 yields the other inequality.

As for the equality conditions, there is equality in the use of Theorem 1.4 if and
only if �◦,m〈 f 〉 = �◦,mE for some centered ellipsoid E ∈ Kn . First, we show that
〈 f 〉 is a translate of E . If m ≥ 2, this is immediate from Proposition 3.5. If m = 1,
we take polarity and deduce that�〈 f 〉 = �E . It follows by Aleksandrov’s projection
theorem [25, Theorem 3.3.6, p. 142] combined with [25, Theorem 4.1.3, p. 143] that
this means ˜〈 f 〉, the origin-symmetric Blaschke-body of 〈 f 〉 defined via (14), equals
E . Since �〈 f 〉 = � ˜〈 f 〉, the equation (15) yields

Voln(B
n
2 )n−1Voln(�

◦Bn
2 ) = Voln(〈 f 〉)n−1Voln(�

◦〈 f 〉)
= Voln(〈 f 〉)n−1Voln(�

◦ ˜〈 f 〉)
≤ Voln( ˜〈 f 〉)n−1Voln(�

◦ ˜〈 f 〉)
≤ Voln(B

n
2 )n−1Voln(�

◦Bn
2 ),

and, therefore, there is equality throughout. By the equality conditions of (15), ˜〈 f 〉 =
E and 〈 f 〉 is a translate of E .

As for the use of Lemma 7.1, there is equality if and only if f is a multiple of χL ,

where L is homothetic to 〈 f 〉. Thus, L is homothetic to E and the claim follows. ��
A Borel set D ⊂ R

n is said to be a set of finite perimeter if χD ∈ BV (Rn).
Examples include convex bodies and compact sets with C1 boundary. Given such a
set D, we define its mth-order polar projection body via the Minkowski functional

‖θ̄‖�◦,mD =
∫

∂�D
max
1≤i≤m

〈θi , nD(y)〉−dy, θ̄ ∈ S
nm−1,

where ∂�D is the reduced boundary of D and nD := −ηχD is its measure-theoretic
outer-unit normal, see e.g. [67, Definition 2.2]. A standard mollifying argument by
Hörmander [34] (using the fact that continuously differentiable, compactly supported
functions are dense in BV (Rn)) immediately yields the following extension of Theo-
rem 1.4 to sets of finite perimeter by setting f = χD in Theorem 7.2; see [67, Theorem
7.2] for the m = 1 case.

Corollary 7.3 Let m ∈ N be fixed. Then, for every set of finite perimeter D ⊂ R
n, one

has
Voln(D)nm−mVolnm(�◦,mD) ≤ Voln(B

n
2 )nm−mVolnm(�◦,mBn

2 ),
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with equality if and only if D is an ellipsoid up to a set of measure zero. If D is
unbounded, then the left-hand side is taken to be 0.

Observe that applying Theorem 1.5 with K = 〈 f 〉 for f ∈ BV (Rn) yields

Volnm(�◦,m〈 f 〉)Voln−1(∂〈 f 〉)nm ≥ Volnm(�◦,mBn
2 )Voln−1(S

n−1)nm

with equality if and only if 〈 f 〉 is a centered Euclidean ball. Combining this with
Theorem 7.2, one obtains an isoperimetric inequality for the LYZ body:

Voln−1(∂〈 f 〉) ≥ n‖ f ‖ n
n−1

κ
1
n
n , (38)

with equality if and only if f is a multiple of a characteristic function of a centered
Euclidean ball. Using the integral formula for mixed volumes (12) and the change of
variables formula satisfied by functions of bounded variation (37), we obtain

Voln−1(∂〈 f 〉) = nVn(〈 f 〉[n − 1], Bn
2 ) =

∫
Sn−1

dσ〈 f 〉(u)

=
∫
Rn

d|Df |(x) = T V ( f ),

where T V ( f ) is the total variation of f ∈ BV (Rn). If f ∈ W 1,1(Rn), then T V ( f ) =
‖∇ f ‖1. In other words, Theorem 7.2 in conjunction with Theorem 1.5 implies the
classical Sobolev inequality for every choice of m ∈ N. By setting f = χD in (38),
we also obtain the classical isoperimetric inequality for sets of finite perimeter.

Appendix A Themth-order polar projection body versus product sets

The first way one can construct a higher-order Petty projection inequality is to “embed"
the Petty projection inequality from R

n into R
nm via the direct product K �→ (K ×

· · · × K ) = (K )m . Then, this“embedded” higher-order Petty’s projection inequality
is

Volnm((K )m)n−1Volnm((�◦K )m) ≤ (Volnm((Bn
2 )m)n−1Volnm((�◦Bn

2 )m)).

We show that the mth-order Petty projection inequality Theorem 1.4 is sharper than
this embedded version.

Theorem A.1 For K ∈ Kn and m ∈ N, one has

�◦,mK ⊆ (�◦K )m and Volnm(�◦,mK ) ≤ Voln(�
◦K )m,

with equality if and only if m = 1.
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Proof For each θ̄ ∈ S
nm−1, given by θ̄ = (θ1, . . . , θm), notice that

h�mK (θ̄) =
∫
Sn−1

max
1≤i≤m

〈u, θi 〉−dσK (u) ≥ max
1≤i≤m

[∫
Sn−1

〈u, θi 〉−dσK (u)

]

= max
1≤i≤m

h�K (θi ) = hconv(�K ,··· ,�K )(θ̄ ).

Applying duality, this above computation implies that

�◦,mK ⊆ �◦K × · · · × �◦K︸ ︷︷ ︸
m−times

=: (�◦K )m,

where each �◦K belongs to an independent copy of Rn .
We now show for m ≥ 2 that Volnm ((�◦K )m\�◦,mK ) > 0. From the continuity

of radial functions, it suffices to find a single x̄ ∈ R
nm\{o} such that ρ�◦,mK (x̄) <

ρ(�◦K )m (x̄). From duality, it suffices to show that h�mK (x̄) > hconv(�K ,··· ,�K )(x̄).
We will actually show there are many such x̄, to illustrate that (�◦K )m and �◦,mK
differ “by a lot”. First, define the following sets:

� = {x̄ ∈ R
nm : x1, x2 ∈ R

n \ {o}, x1 �= x2, x3 = · · · = xm = o
}
,

�a(x̄) =
{
u ∈ S

n−1 : 〈x1, u〉− > 〈x2, u〉−
}

, for a fixed x̄ ∈ �,

�b(x̄) =
{
u ∈ S

n−1 : 〈x1, u〉− ≤ 〈x2, u〉−
}

, for a fixed x̄ ∈ �.

Notice for a fixed x̄ ∈ �, �a(x̄) ∩ �b(x̄) = ∅ and �a(x̄) ∪ �b(x̄) = S
n−1. Further-

more, it is possible to pick x̄ ∈ � such that σK (�a), σK (�b) > 0.Wewill let�′ ⊆ �

denote the collection of x̄ with this property. One such example is when x1 = −x2,
for any x2 ∈ R

n \ {o}, since σK is not concentrated on any great hemisphere.
We now compute: for every x̄ ∈ �′,

h�mK (x̄) =
∫
Sn−1

max
1≤i≤m

〈u, xi 〉−dσK (u) =
∫
Sn−1

max
i=1,2

〈u, xi 〉−dσK (u)

=
∫

�a(x̄)
〈u, x1〉−dσK (u) +

∫
�b(x̄)

〈u, x2〉−dσK (u).

Applying the definition of �a(x̄) yields

h�mK (x̄) >

∫
�a(x̄)

〈u, x2〉−dσK (u) +
∫

�b(x̄)
〈u, x2〉−dσK (u)

=
∫
Sn−1

〈u, x2〉−dσK (u).

Similarly, applying the definition of �b(x̄) yields

h�mK (x̄) >

∫
�a(x̄)

〈u, x1〉−dσK (u) +
∫

�b(x̄)
〈u, x1〉−dσK (u)
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=
∫
Sn−1

〈u, x1〉−dσK (u).

In particular, this yields, for every x̄ ∈ �′,

h�mK (x̄) > max
i=1,2

[∫
Sn−1

〈u, xi 〉−dσK (u)

]

= max
1≤i≤m

h�K (xi ) = hconv(�K ,··· ,�K )(x̄).

We remark that there is nothing special about x1 and x2; one could pick any i, j ∈
{1, . . . ,m}, i �= j, and define �′

i, j analogously to �′
1,2 := �′. Then,

h�mK (x̄) > hconv(�K ,··· ,�K )(x̄) for every x̄ ∈
⋃

1≤i, j≤m
i �= j

�′
i, j .

��
Consequently, we have that

Voln(K )nm−mVolnm(�◦,mK ) ≤ (Voln(K )n−1Voln(�
◦K ))m,

with equality if and only if m = 1. Combining this estimate with Theorem 1.4 we
obtain the following.

Corollary A.2 For K ∈ Kn and m ∈ N, one has that

Voln(K )nm−mVolnm(�◦,mK ) ≤ Voln(B
n
2 )nm−mVolnm(�◦,mBn

2 )

≤ (Voln(B
n
2 )n−1Voln(�

◦Bn
2 ))m,

with equality in the first inequality if and only if K is an ellipsoid, and equality in the
second inequality if and only if m = 1.
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