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Abstract: We establish tightness of graph-based stochastic processes in
the space D[0 + ε, 1 − ε] with ε > 0 that allows for discontinuities of the
first kind. The graph-based stochastic processes are based on statistics con-
structed from similarity graphs. In this non-parametric setting, the classic
characterization of tightness is intractable, making it difficult to obtain con-
vergence of the limiting distributions for graph-based stochastic processes.
We take an alternative approach and study the behavior of the higher
moments of the graph-based test statistics. We show that, under mild con-
ditions of the graph, tightness of the stochastic process can be established
by obtaining upper bounds on the graph-based statistics’ higher moments.
Explicit analytical expressions for these moments are provided. The results
are applicable to generic graphs, including dense graphs where the number
of edges can be of higher order than the number of observations. Numerical
studies are presented to provide insight as to when tightness holds, and
potential extensions to other scenarios are explored.
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1. Introduction

Change-point detection aims to estimate and test for the presence of change-
points, locations where the distribution abruptly changes, in a sequence of obser-
vations. Research interest in change-point problems has surged in recent years
and substantial contributions by the statistics community have resulted in a
range of works [1, 21, 12, 13, 20, 23, 19, 17, 16]. In particular, an area of emphasis
has been given to handling complex data types such as high-dimensional data or
non-Euclidean data objects, including networks and images. Most change-point
methods targeting complex data types are non-parametric and aim to make
minimal assumptions on the underlying data generating mechanism in order to
be widely applicable without restrictive assumptions (see [14, 15, 18, 11] and
references therein). An obstacle for non-parametric works is that theoretical
guarantees can pose immense challenges. For example, fast type I error con-
trol via analytical p-value approximations are generally difficult to work out in
the non-parametric setting. The increasing complexity and volume of modern
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datasets call for methods that can offer fast ways to assess changes while con-
trolling type I error. However, most non-parametric approaches still depend on
re-sampling techniques to obtain p-value approximations.

Recently, a graph-based framework for change-point detection was proposed
in [7] and further studied in [9] that aims to address the needs of modern change-
point applications by offering power, flexibility, and fast type I error control.
The framework is a non-parametric approach that utilizes test statistics con-
structed from similarity graphs and is applicable to any data type, including
high-dimensional and object data, as long as a similarity measure can be de-
fined on the sample space. The similarity graph can be provided by domain
knowledge or it can be generated according to some criteria, such as the min-
imum spanning tree or the nearest neighbor graph. No distributional form or
family needs to be specified and the approach is powerful for detecting general
changes (mean, variance, covariance, higher moments etc.) without needing to
directly estimate the parameters of interest. This flexibility makes the approach
applicable to a broad range of problems. Moreover, simulation studies and real
data applications demonstrate that the approach is powerful under many set-
tings involving high-dimensional and non-Euclidean data types [7, 9].

The graph-based framework is also equipped with analytical p-value approx-
imations for testing the significance of change-points. This extends the graph-
based frameworks applicability to settings where the volume or complexity of
the observations make it computationally infeasible to assess significance via
re-sampling techniques. A key step in obtaining these analytical p-value ap-
proximations is proving, under certain regularity conditions, that the stochastic
processes of the graph-based test statistics converge to Gaussian processes in
finite dimensional distribution (see Theorem 3.1 in [7] and Theorem 4.1 in [9]).
These asymptotic results kick in even for relatively moderate sample sizes (in
the hundreds) and do not require the number of observations to grow rapidly
with dimensions. The p-value approximations given in [9] are also asymptoti-
cally distribution-free, meaning they do not depend on the underlying similarity
graph. More details are provided in Section 2.

While the existing asymptotic theory perform well for finite samples, notably,
the current theory given in [7] and [9] do not imply convergence in distribution
to Gaussian processes since tightness of the processes is not established. Since
the analytical p-value approximations necessitate that the graph-based processes
converge in distribution to a Gaussian process, it is crucial to establish tightness
of the graph-based processes. Tightness guarantees the existence of limit points
for weak convergence and it ensures that intervals between the time points con-
sidered in the finite-dimensional distribution are well-behaved. This is essential
for the type of test statistic, the maximum scan statistic, used in this framework
(see (6) below).

In this paper, we establish tightness of the stochastic processes for non-
parametric graph-based test statistics under mild conditions on the graph. In
terms of theoretical work, our proof provides the final piece in establishing the
limiting distribution of these graph-based processes, which is distinctly chal-
lenging to establish for non-parametric methods. To do so, we derive explicit
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expressions for higher product moments of graph-based test statistics; these are
obtained by studying configurations of the graph and combinatorial analysis.
Importantly, our results hold for any generic graph, including dense graphs,
and can be generalized to other graph-based stochastic processes to establish
weak convergence. In terms of practical applications, our results provide further
confidence in utilizing the asymptotic p-value approximations for modern data
applications and the testing of change-points.

The paper is organized as follows: Section 2 provides a brief overview of the
graph-based framework. The main results are given in Section 3 and the proof is
provided in Section 4, with additional details in the Appendix. Section 5 presents
numerical studies and discusses the conditions required in the theorems. Section
6 concludes with remarks on potential applications to other scenarios.

2. Review of the graph-based framework

Let {yi : i = 1, . . . , n} be a data sequence indexed by time or some other
meaningful ordering, where yt could be a high-dimensional observation or non-
Euclidean object. In the single change-point setting, there possibly exists a
change-point τ such that yt follows some unknown distribution for t ≤ τ and
follows a different (unknown) distribution for t > τ . Consider that each time t
divides the sequence of observations into two samples: those observations before
time t and those observations after time t. The graph-based framework utilizes
graph-based two-sample test statistics to test whether or not these two samples
are from the same distribution. By graph-based two-sample tests we refer to
tests that are based on graphs with the observations {yi} as nodes. The graph,
G, is constructed from all observations in the sequence and is usually derived
from a distance or a generalized dissimilarity on the sample space, with edges in
the graph connecting observations that are “close” in some sense. For example,
G could be the minimum spanning tree (MST), which is a tree connecting all
observations such that the sum of the distances of edges in the tree is minimized;
G could also be the nearest neighbor graph (NNG) where each observation con-
nects to its nearest neighbors. Four statistics are considered in [7] and [9]. These
are based on 3 quantities of the graph which we briefly discuss below.

For any event x let Ix be the indicator function that takes 1 if x is true and
0 otherwise. We define gi(t) as an indicator function for the event that yi is
observed after t, gi(t) = Ii>t. For an edge e = (i, j), we define

Je(t) =

⎧⎪⎨
⎪⎩

0 if gi(t) �= gj(t),
1 if gi(t) = gj(t) = 0,

2 if gi(t) = gj(t) = 1.

For any candidate value t of τ , the three quantities are:

R0(t) =
∑
e ∈G

IJe(t)=0, R1(t) =
∑
e ∈G

IJe(t)=1, R2(t) =
∑
e ∈G

IJe(t)=2. (1)
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Then R0(t) is the number of edges connecting observations before and after
t, R1(t) is the number of edges connecting observations prior to t, and R2(t) is
the number of edges that connect observations after t.

The four statistics considered are the edge-count test statistic (2), generalized
edge-count test statistic (3), weighted edge-count test statistic (4), and max-type
edge-count test statistic (5):

Z0(t) = −R0(t) − E(R0(t))√
Var(R0(t))

, (2)

S(t) =
(

R1(t) − E(R1(t))
R2(t) − E(R2(t))

)T

Σ−1(t)
(

R1(t) − E(R1(t))
R2(t) − E(R2(t))

)
, (3)

Zw(t) = Rw(t) − E(Rw(t))√
Var(Rw(t))

, (4)

with Rw(t) = p(t)R1(t) + q(t)R2(t), p(t) = n−t−1
n−2 , q(t) = t−1

n−2 ,

M(t) = max (|Zdiff(t)|, Zw(t)) , (5)

where Zdiff(t) = Rdiff(t)−E(Rdiff(t))√
Var(Rdiff(t)) , with Rdiff(t) = R1(t) − R2(t).

The expected value and variance of the four test statistics are computed under
the permutation null distribution and their explicit expressions can be found in
[7, 6, 4, 9]. Each of the test statistics has its own niche where it dominates; a
detailed discussion can be found in [9, 5].

The null hypothesis of no change-point is rejected when the maximum scan
statistic

max
n0≤t≤n1

Z0(t), max
n0≤t≤n1

Zw(t), max
n0≤t≤n1

S(t), max
n0≤t≤n1

M(t) (6)

is greater than a threshold with n0 and n1 being pre-specified constraints con-
trolling where we search for the change-point. When n is small, this threshold
can be obtained from permutation directly. However, this becomes computation-
ally expensive for large n and instead, [7] and [9] provide accurate analytical
formulas to approximate the p-values for these scan statistics.

To illustrate the accuracy of these p-value approximations, we compare the
critical values based on asymptotic theory (labeled ‘Asy’) to the permutation
critical values, obtained from implementing 10,000 permutations directly (la-
beled ‘Perm’). The results are shown in Tables 1 - 3. Sequences of length n = 500
were generated from multivariate normal (Table 1), multivariate t with 5 degrees
of freedom (Table 2), or multivariate log-normal distributions (Table 3). We can
see even for finite sample sizes, the critical value approximations are performing
reasonably in the high-dimension setting (d > n) relative to the permutation
critical values. Our asymptotic results are reasonable even in the presence of
heavy tails or skewness. Additional tables comparing critical values for different
values of n, n0 and n1 can be found in Supplement A [10].
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Table 1

Critical values for the graph-based scan statistics at 0.05 significance level. Observations are
simulated from d-dimensional normal distribution. n = 500, n0 = 50, n1 = n − n0.

maxt Z0(t) maxt Zw(t) maxt S(t) maxt M(t)
Asy Perm Asy Perm Asy Perm Asy Perm

d = 500 2.69 2.72 3.00 2.99 12.90 13.20 3.25 3.27
d = 1000 2.68 2.67 2.99 2.97 12.90 12.92 3.24 3.22
d = 2000 2.66 2.66 2.99 2.97 12.90 13.28 3.24 3.25

Table 2

Critical values for the graph-based scan statistics at 0.05 significance level. Observations are
simulated from d-dimensional t5 distribution. n = 500, n0 = 50, n1 = n − n0.

maxt Z0(t) maxt Zw(t) maxt S(t) maxt M(t)
Asy Perm Asy Perm Asy Perm Asy Perm

d = 500 2.56 2.55 2.99 3.00 12.90 13.33 3.26 3.27
d = 1000 2.52 2.50 2.99 3.03 12.90 13.28 3.25 3.27
d = 2000 2.51 2.49 2.99 3.05 12.90 13.30 3.28 3.21

Table 3

Critical values for the graph-based scan statistics at 0.05 significance level. Observations are
simulated from d-dimensional log-normal (μ = 0, σ = 1) distribution. n = 500, n0 = 50,

n1 = n − n0.

maxt Z0(t) maxt Zw(t) maxt S(t) maxt M(t)
Asy Perm Asy Perm Asy Perm Asy Perm

d = 500 2.33 2.43 2.99 3.04 12.90 13.70 3.21 3.35
d = 1000 2.74 2.36 2.99 3.04 12.90 13.99 3.21 3.36
d = 2000 2.74 2.30 2.99 3.03 12.90 14.00 3.21 3.39

We also report the empirical size at the significance level of 0.05 based on the
asymptotic critical values. The setup is as follows: A sequence of length n = 500
was generated from one of three distributions: multivariate d-dimensional nor-
mal, t with 5 degrees of freedom, or multivariate log-normal distribution. For
each sequence, the asymptotic critical value was calculated and used as the
threshold. Using this threshold, we performed 10,000 permutations and com-
puted the percentage of permutations with a maximum scan statistic exceeding
the threshold. The empirical size, averaged over 100 trials, is presented in Table
4. The results show that the empirical size is close to the nominal size across
different distributions.

3. Tightness of basic processes

3.1. Notation

Let fn ≾ gn denote that fn is bounded above by gn (up to a constant) asymp-
totically and fn = o(gn) denote that fn is dominated by gn asymptotically. We
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Table 4

Empirical size of graph-based scan statistics at 0.05 significance level. n = 500, n0 = 50,
n1 = n − n0.

max
n0≤t≤n1

Z0(t) max
n0≤t≤n1

Zw(t) max
n0≤t≤n1

S(t) max
n0≤t≤n1

M(t)

normal, d = 500 0.0496 0.0496 0.0505 0.0505
normal, d = 1000 0.0504 0.0499 0.0532 0.0511
normal, d = 2000 0.0495 0.0504 0.0546 0.0510

t5, d = 500 0.0504 0.0491 0.0552 0.0516
t5, d = 1000 0.0504 0.0494 0.0557 0.0520
t5, d = 2000 0.0503 0.0502 0.0561 0.0536

log-normal d = 500 0.0509 0.0492 0.0557 0.0516
log-normal d = 1000 0.0496 0.0494 0.0551 0.0518
log-normal, d = 2000 0.0477 0.0526 0.0631 0.0613

also write fn = O(gn) to denote that fn is bounded above and below by gn,
asymptotically; this will also be notated as fn � gn.

3.2. Asymptotic null distributions of the basic processes

Given the scan statistics, we reject the null hypothesis of no change-point if the
scan statistic is larger than a threshold. Explicitly, we are interested in the fol-
lowing tail probabilities: P (maxn0≤t≤n1 Z0(t) > bZ), P (maxn0≤t≤n1 S(t) > bS),
P (maxn0≤t≤n1 Zw(t) > bZw ) , and P (maxn0≤t≤n1 M(t) > bM ) .

To obtain analytical approximations of these tail probabilities, [7] and [9]
studied the properties of the stochastic processes {Z0(t)}, {S(t)}, {Zw(t)}, and
{M(t)} under the null hypothesis. Based on Lemma 3.1 in [9], S(t) can be
expressed as S(t) = Z2

w(t) + Zdiff(t), where Zw(t) and Zdiff(t) are uncorrelated.
Furthermore, Z(t) can be expressed as

Z0(t) = 2σRw Zw(t)√
4σ2

Rw
+ (p(t) − q(t))2σ2

Rdiff

+ (p(t) − q(t))σRdiffZdiff(t)√
4σ2

Rw
+ (p(t) − q(t))2σ2

Rdiff

,

where σ2
Rw

= Var(Rw(t)), σ2
Rdiff

= Var(Rdiff(t)), and p(t) and q(t) are defined
as in (4). Therefore, these stochastic processes boil down to the basic processes:
{Zdiff(t)} and {Zw(t)}.

In order to show that the limiting distributions of the basic processes converge
to Gaussian processes, the classic approach as presented in [3] is to establish:

1. The convergence of {Zw(�nu�) : 0 < u < 1}, and {Zdiff(�nu�) : 0 < u <
1} to multivariate Gaussian in finite dimensional distributions.1

2. The tightness of {Zw(�nu�) : 0 < u < 1} and {Zdiff(�nu�) : 0 < u < 1}.

The first point has been proven in [7] and [9]. We prove here that the second
point, tightness of the graph-based stochastic processes, does indeed hold under
mild conditions on the graph.

1Throughout the paper, we use �x� to denote the largest integer that is no larger than x.
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3.3. Main results

We first state our main results and then give an outline of the proof. We use
G to denote both the graph and its sets of edges. Let Gi be the subgraph of G
containing all the edges that connect to node yi. Then, |Gi| is the number of
edges in Gi or the node degree of yi in G. These results hold for generic similarity
graphs, including dense graphs. We refer to a graph as dense if the number of
edges is of higher order than the number of observations, i.e. if |G| = O(kn)
such that k = O(nα).

Theorem 3.1. Under the condition that k is at least O(1) and
∑n

i=1 |Gi|2 =
o(kn2), the stochastic process {Zw(�nu�) : 0 < u < 1} is tight on the space
D[0 + ε, 1 − ε], where ε is a positive constant.

Theorem 3.2. Under the condition that k is at least O(1) and
∑

i |Gi|2 − 4|G|2

n
is at least O(k2), the stochastic process {Zdiff(�nu�) : 0 < u < 1} is tight on the
space D[0 + ε, 1 − ε], where ε is a positive constant.

These conditions are more relaxed than the conditions in [7] and [9] when
obtaining convergence in finite dimensional distributions. A comparison of the
conditions is provided in Section 5.1.

Let D = D[0, 1] be the space of real functions x on [0, 1] that are right-
continuous and have left-hand limits:

(i) For 0 ≤ t < 1, x(t+) = lims↓t x(t) exists and x(t+) = x(t),
(ii) For 0 ≤ t < 1, x(t−) = lims↑t x(t).

Functions satisfying these two properties are known as cadlag functions. A func-
tion x is said to have a discontinuity of the first kind at t if the left and right
limits exist but differ and x(t) lies between them. Any discontinuities of a cadlag
function, an element of D, are of the first kind. Since

lim
u↓c

Zw(�nu�) = Zw(�nc�), lim
u↑c

Zw(�nu�) = Zw(�nu�),

lim
u↓c

Zdiff(�nu�) = Zdiff(�nc�) lim
u↑c

Zdiff(�nu�) = Zdiff(�nu�),

it follows that Zw(�nu�) and Zdiff(�nu�) are right-continuous and have left-hand
limits and therefore belong to the space D.

The classical characterization of tightness on the space D is given by Theorem
13.2 in [3], a version of which is presented here:

Definition 3.3. A sequence of stochastic processes {Xn(u) : 0 ≤ u ≤ 1} in D
is tight if and only if:

(i) The sequence {Xn(u) : 0 ≤ u ≤ 1} is stochastically bounded in D,
(ii) For each ε > 0,

lim
δ→0

lim sup
n

P (ω′(Xn, δ) > ε) = 0,
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where
ω′(x, δ) = inf

ti

max
i

sup
s,t∈[ti−1,ti)

|x(s) − x(t)|

and the infimum extends over all sets of {ti} satisfying min1≤i≤ν(ti − ti−1) > δ,
with 0 < δ < 1 and ti, i = 1, . . . , ν.

In general these conditions are difficult to verify, since they involve under-
standing the limit supremum of a sequence. We instead take an alternative ap-
proach and use the tightness criterion proposed by Kolmogorov-Chentsov ([8],
Theorem 1); a variant can also be found in [3]. The criterion is as follows:

Definition 3.4. A sequence of stochastic processes Xn(u), n = 1, 2, . . . , right
continuous with left-hand limits, is tight if there are positive constants C, β, α
not depending on n such that for any 0 ≤ u ≤ v ≤ w ≤ 1,

E(|Xn(v) − Xn(u)|2β |Xn(w) − Xn(v)|2β) ≤ C(w − u)1+α.

We set α = 1, β = 1 so the criterion becomes:

E
(
(Zn

w(v) − Zn
w(u))2(Zn

w(w) − Zn
w(v))2)

≤ Cw(w − u)2 (7)

E
(
(Zn

diff(v) − Zn
diff(u))2(Zn

diff(w) − Zn
diff(v))2)

≤ Cdiff(w − u)2 (8)

where the notation Zn
w(u) = Zw(�nu�) and Zn

diff(u) = Zdiff(�nu�). Both inequal-
ities automatically hold when (w − u) ≤ 1

n since at least one of the following is
true: (i) �nu� = �nv�, (ii) �nv� = �nw�. In what follows, we focus on the case
when (w − u) > 1

n . Observe that Zn
w(u) and Zn

diff(u) are not well-defined at the
boundaries, when u = 0 or u = 1. We further assume that u, v, w = O(1) and
therefore, cannot be too close to the boundaries. As such, we establish tightness
on the domain [0 + ε, 1 − ε], where ε is a positive constant.

An outline of our proof for Theorems 3.1 and 3.2 is as follows: we obtain
explicit expressions for the 4th moments and product moments of Zw and Zdiff
using combinatorial analysis. This involves determining the different graph con-
figurations for 4 edges to be randomly selected (with replacement) from the
graph and obtaining the probabilities that each configuration will occur for the
graph. Focusing on the leading terms of each configuration, we show these are
bounded by C(w − u)2.

4. Proof of Theorems 3.1 and 3.2

For simplicity, let �nu� = r, �nv� = s, and �nw� = t and r < s < t. Then,
expanding (7), we have

E((Zn
w(v)−Zn

w(u))2(Zn
w(w) − Zn

w(v))2) =
E(Z2

w(r)Z2
w(s)) − 2E(Z2

w(r)Zw(s)Zw(t)) + E(Z2
w(r)Z2

w(t))
− 2E(Zw(r)Z3

w(s)) + E(Z2
w(s)Z2

w(t)) − 2E(Zw(r)Zw(s)Z2
w(t))

+ E(Z4
w(s)) − 2E(Z3

w(s)Zw(t)) + 4E(Zw(r)Z2
w(s)Zw(t)),
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and similarly for E
(
(Zn

diff(v) − Zn
diff(u))2(Zn

diff(w) − Zn
diff(v))2)

(8).
For the two basic processes, the following analytical expressions are needed

for Zw:

E(Z2
w(r)Zw(s)Zw(t)), (9)

E(Zw(r)Zw(s)Z2
w(t)), (10)

E(Zw(r)Z2
w(s)Zw(t)), (11)

E(Z2
w(r)Z2

w(s)), (12)
E(Z2

w(r)Z2
w(t)), (13)

E(Z2
w(s)Z2

w(t)), (14)
E(Zw(r)Z3

w(s)), (15)
E(Z3

w(s)Zw(t)), (16)
E(Z4

w(s)), (17)

and the following analytical expressions are needed for Zdiff:

E(Z2
diff(r)Zdiff(s)Zdiff(t)), (18)

E(Zdiff(r)Zdiff(s)Z2
diff(t)), (19)

E(Zdiff(r)Z2
diff(s)Zdiff(t)), (20)

E(Z2
diff(r)Z2

diff(s)), (21)
E(Z2

diff(r)Z2
diff(t)), (22)

E(Z2
diff(s)Z2

diff(t)), (23)
E(Zdiff(r)Z3

diff(s)), (24)
E(Z3

diff(s)Zdiff(t)), (25)
E(Z4

diff(s)). (26)

It is straightforward to see that all the expressions can be decomposed as
combinations of R1 and R2. Since explicit expressions for the expectation, vari-
ance, and third moments of Rw(·), Rdiff(·), and R(·) can be found in [7] and
[9], the remaining unknown quantities to be derived are the product moments
of R1(·) and R2(·), which can be expressed as

E(Ra
1(t�

1)Rb
2(t�

2)Rc
1(t�

3)Rd
2(t�

4))

where a, b, c, d = 0, 1, 2, 3, 4 such that a + b + c + d = 4 and t�
1, t�

2, t�
3, t�

4 = r, s, t.
The full list of product moments can be found in Supplement C [10].

To derive the analytical expressions for the product moments we need to:

1. Determine different configurations for 4 edges to be randomly selected
(with replacement) from the graph,

2. Derive probabilities separately for each configuration.

There are in total nineteen different configurations for four edges randomly
chosen (with replacement) from the graph; see Figure 1 for an illustration of
each configuration. Let G be the similarity graph and Gi be the subgraph of G
containing all edges that connect to node yi. Then |Gi| is the degree of node
yi in G. Among all |G|4 possible ways of randomly selecting the four edges, the
number of occurrences for each of the configuration are:

1) |G|
2) 7x1
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Fig 1. Nineteen configurations of 4 edges randomly chosen, with replacement, from the graph.

3) 7|G|(|G| − 1) − 7x1
4) 6x2
5) 36x3
6) 12x5
7) 18x4 − 72x3 + 36x5
8) 6|G|(|G| − 1)(|G| − 2) − 12x5 − 18x4 + 36x3 − 6x2
9) x6

10) 12x7 − 24x8
11) 6x8
12) 24x9
13) 12x10 − 48x9
14) 4x11 − 12x10 + 24x9
15) 24x12 − 24x7 + 24x8
16) 8x13 − 24x9
17) 3x14 − 12x7 + 12x8
18) 6x15 + 36x7 − 24x8 + 72x9 − 12x10 − 48x12 − 24x13 − 6x14
19) 12x10 − 12x7 − x6 − 4x11 + 24x12 + 3x14 − 6x15 + 6x8 + 16x13 + |G|(|G| −

1)(|G| − 2)(|G| − 3)

with x1, . . . , x15 defined as:

x1 =
n∑

i=1
|Gi|2 − 2|G|,

x2 =
n∑

i=1
|Gi|3 − 3

n∑
i=1

|Gi|2 + 4|G|,
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x3 =
∑

(i,j)∈G

(|Gi| − 1)(|Gj | − 1),

x4 =|G|
n∑

i=1
|Gi|2 +

n∑
i=1

|Gi|2 −
n∑

i=1
|Gi|3 − 2|G|2,

x5 =
∑
(i,j)

|{l : (i, l), (j, l) ∈ G},

x6 =
n∑

i=1
|Gi|4 − 6

n∑
i=1

|Gi|3 + 11
n∑

i=1
|Gi|2 − 12|G|,

x7 =
∑

(i,j),(j,l),i �=l

(|Gi| − 1)(|Gl| − 1),

x8 =
∑

(i,j),(j,l),i �=l

|{m : (i, m), (l, m) ∈ G}||,

x9 =
∑
(i,j)

∑
l:(i,l),(j,l)∈G

(|Gl| − 2),

x10 =
∑

i

∑
j∈Gi;j �=i

(|Gi| − 1)2(|Gj | − 1) − 2
∑

i,j∈G

(|Gi| − 1)(|Gj | − 1),

x11 = 4|G|2 − 3|G|
n∑

i=1
|Gi|2 + |G|

n∑
i=1

|Gi|3

− 2
n∑

i=1
|Gi|2 + 3

n∑
i=1

|Gi|3 −
n∑

i=1
|Gi|4,

x12 =|G|
∑
(i,j)

(|Gi| − 1)(|Gj | − 1) −
∑

i

∑
j∈Gi;j �=i

(|Gi| − 1)2(|Gj | − 1)

−
∑
(i,j)

(|Gi| − 1)(|Gj | − 1),

x13 =
∑
(i,j)

∑
l:(i,l),(j,l)∈G

|G \ {i, j, l ∈ Gl}|,

x14 =
∑

i

∑
j �=i

(|Gi \ {j ∈ Gi}|)(|Gi \ {j ∈ Gi}| − 1)(|Gj \ {i ∈ Gj}|)×

(|Gj \ {i ∈ Gj}| − 1),

x15 =
n∑

i=1
|Gi|4 − 2|G|

n∑
i=1

|Gi|3 + |G|2
n∑

i=1
|Gi|2 + |G|

n∑
i=1

|Gi|2

−
n∑

i=1
|Gi|2 − 2|G|3 + 2|G|2.

Observe that the sum of these occurrences add up to |G|4. Each occurrence
represents the number of possible ways that configuration can occur. For exam-
ple, for configuration 2, there are 7 ways that the 4 edges can selected (with
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Fig 2. Illustration of number of occurrences (7x1) for configuration 2. The 4 randomly selected
edges are labelled e1, e2, e3, and e4.

replacement) to obtain configuration 2. The multiplication by x1 accounts for
the number of ways two edges can share a node. See Figure 2 for an illustration
for configuration 2. Two illustrative examples are presented in Supplement B
[10], which provide combinatorial details on how to derive the probability for
each configuration.

4.1. Expression for Zw

The similarity graph G can be a generic graph constructed from a similarity
measure, such as the Euclidean distance. Without loss of generality, |G| = O(kn)
with k = O(nα), 0 ≤ α < 1. We assume that u, v, w = O(1). To establish (7),
we focus on the leading terms on the left-hand side of the inequality. After
extensive simplification, the leading term for the denominator of E((Zn

w(v) −
Zn

w(u))2(Zn
w(w) − Zn

w(v))2) is

denZw ≜ v2w2(kn2 −
n∑

i=1
|Gi|2)2(1 − u)2(1 − v)2. (27)

The leading term for the numerator is

numZw ≜ (w − v)(v − u)
(

k2n4Cw,1 + x14Cw,2 + Cw,3

n∑
i=1

|Gi|4

+ nCw,4

n∑
i=1

|Gi|3 + Cw,5
∑

i

∑
j∈Gi;j �=i

(|Gi| − 1)2(|Gj | − 1)

+ kn2Cw,6

n∑
i=1

|Gi|2 + n2Cw,7

n∑
i=1

|Gi|2

+ knCw,8
∑

i,j∈G

(|Gi| − 1)(|Gj | − 1) + nCw,9
∑

i,j∈G

(|Gi| − 1)(|Gj | − 1)

+ nx7Cw,10 + nx8Cw,11 + nx9Cw,12

)
with

Cw,1 =4vw(1 − v)(1 − u) + 2(v − u)(w − v),
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Cw,2 =8vw(v − u)(1 − u)(1 − v),
Cw,3 = − 2(v − u)(w − v) + 2v(1 − u)(1 + v) + vw(5u − 7)(1 − v),
Cw,4 =8v(w − v) − 8w + 2v(2 + 9w)(1 − u)(1 − v),
Cw,5 =8(w − uv) + (48 − 56v)(w − v) + 16(3v2 + w)(1 − u)

− 4vw(49 − 37u)(1 − v),
Cw,6 = − 4(v − u)(w − v) − 8vw(1 − v)(1 − u),
Cw,7 =2(w − uv) + 2(1 − 2v)(w − v) + vw(9u − 11)(1 − v) + 2v2(1 − u),
Cw,8 =16(v − u)(w − v) + 32vw(1 − v)(1 − u),
Cw,9 =2(28v − 23)(w − v) − 2(23v2 + 9w)(1 − u)

− 2vw(72u − 95)(1 − v) + 10(uv − w),
Cw,10 = − 8vw(1 − u)(1 − v) − 4(w − v)(v − u),
Cw,11 =4vw(1 − u)(1 − v) + 2(w − v)(v − u),
Cw,12 =8v(5v(1 − v) − (1 − u)(12v2 − 7v + 2))

− (w − v)(24(1 − u) + 8(1 − v)(12uv − 17v + 4)).

Since u, v, w = O(1), the terms Cw,1, . . . , Cw,12 can be bounded asymptotically
by a constant. Then the expression numZw /denZw can be bounded by C(w−u)2

as long as the ratio of graph configurations in the numerator and denominator
can be bounded asymptotically by O(1). The terms in the numerator involving
graph configurations that need to be bounded are:

1. k2n4,
2. x14,
3.

∑n
i=1 |Gi|4,

4. n
∑n

i=1 |Gi|3,
5.

∑
i

∑
j∈Gi;j �=i(|Gi| − 1)2(|Gj | − 1),

6. kn2 ∑n
i=1 |Gi|2, n2 ∑n

i=1 |Gi|2,
7. kn

∑
i,j∈G(|Gi| − 1)(|Gj | − 1), n

∑
i,j∈G(|Gi| − 1)(|Gj | − 1),

8. nx7,
9. nx8,

10. nx9.

Since (w − v)(v − u) < (w − u)2 for u < v < w, if the ratio of each term to the
denominator (kn2 −

∑n
i=1 |Gi|2)2 is bounded by O(1), the entire expression can

be asymptotically bounded by a constant Cw × (w − u)2.
In the following, we assume that

∑n
i=1 |Gi|2 = o(kn2) and check each config-

uration in their order of appearance. Technical details are deferred to Appendix
A. Key results and properties are summarized as follows:

• x14 ≾ (
∑n

i=1 |Gi|2)2,
•

∑n
1=1 |Gi|4 ≾ k2n4, n

∑n
1=1 |Gi|3 ≾ k2n4, and kn2 ∑n

i=1 |Gi|2 ≾ k2n4,
•

∑
i

∑
j∈Gi;j �=i(|Gi| − 1)2(|Gj | − 1) < 2|G|

∑n
i=1 |Gi|3 ≾ 2|G|kn3 � k2n4,

•
∑

(i,j)∈G(|Gi| − 1)(|Gj | − 1) <
∑n

i=1 |Gi|(|G| − |Gi|) = |G|
∑n

i=1 |Gi| −∑n
i=1 |Gi|2 < 2|G|2 � 2k2n2,
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• nx7 < n
∑

i=1 |Gi|(|G| − |Gi|) < 2n|G|2 � k2n3,
• nx8 ≾ kn4,
• nx9 ≾ k2n3(x9 ≾ k2n2).

Based on these inequalities, we can bound the graph configurations with the
denominator’s (kn2 −

∑n
i=1 |Gi|2)2. Since we assume

∑n
i=1 |Gi|2 = o(kn2), it

follows that k2n4 � (kn2 −
∑n

i=1 |Gi|2)2, which implies k2n4

(kn2−
∑n

i=1 |Gi|2)2 � O(1).
Since x14 ≾ k2n4, we have x14

(kn2−
∑n

i=1 |Gi|2)2 ≾ O(1).
Similarly, from the key results

∑n
1=1 |Gi|4 ≾ k2n4 and n

∑n
1=1 |Gi|3 ≾ k2n4,

we have
∑n

i=1 |Gi|4

(kn2−
∑n

i=1 |Gi|2)2 ≾ O(1) and n
∑n

i=1 |Gi|3

(kn2−
∑n

i=1 |Gi|2)2 ≾ O(1).
It follows that all remaining terms can be asymptotically bounded by k2n4.

Therefore, the ratio of the graph configurations to (kn2 −
∑n

i=1 |Gi|2)2 is asymp-
totically bounded by O(1).

4.2. Expression for Zdiff

We adopt a similar approach for Zdiff and study the analytical expression
for E

(
(Zn

diff(v) − Zn
diff(u))2(Zn

diff(w) − Zn
diff(v))2)

. This expression can be writ-
ten as the combination of terms involving u, v, and w and terms involving
graph configurations. We first show that the expressions involving u, v, and w
(K1(u, v, w), . . . ,
K6(u, v, w)) can be bounded by C(w − u)2 or C(w − u). We then show that the
graph-configurations are bounded asymptotically by O(1) or O(1/n). It follows
then that the entire expression can be bounded by a constant Cdiff × (w − u)2.

Let ev = v(1 − v), ew = w(1 − w), and eu = u(1 − u). The leading term for
the denominator of E

(
(Zn

diff(v) − Zn
diff(u))2(Zn

diff(w) − Zn
diff(v))2)

is:

denZdiff = (nVG)2w(1 − u)eue3
vew

with VG =
∑

i |Gi|2 − 4|G|2/n.
For the numerator of E

(
(Zn

diff(v) − Zn
diff(u))2(Zn

diff(w) − Zn
diff(v))2)

, we group
the leading terms by their graph configurations. The numerator can be expressed
as

K1(u, v, w) × k4n2 + K2(u, v, w) × k2n(
n∑

i=1
|Gi|2) + K3(u, v, w) ×

n∑
i=1

|Gi|4

+ K4(u, v, w) × k
n∑

i=1
|Gi|3 + K5(u, v, w) × x14

+ K6(u, v, w) ×
∑

i

∑
j∈Gi;j �=i

(|Gi| − 1)2(|Gj | − 1).

We can establish that the coefficients K1(u, v, w), K2(u, v, w), K3(u, v, w),
K4(u, v, w), K5(u, v, w), and K6(u, v, w) are bounded by C(w−u)2 or C(w−u).
The technical details, being long and complex, are deferred to Appendix B.
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In order for the entire expression to be bounded by C(w − u)2 we need
the graph configurations in the numerator and denominator to be bounded by
O(1) or O(1/n). Recall that the leading term is the denominator is (nVG)2. Let
d̃i = |Gi|− 2|G|

n , then VG =
∑n

i=1 d̃i
2. The graph configurations in the numerator

involve:

1. k4n2,
2. k2n

∑n
i=1 |Gi|2,

3.
∑n

i=1 |Gi|4,
4. k

∑n
i=1 |Gi|3,

5. x14,
6.

∑
i

∑
j∈Gi;j �=i(|Gi| − 1)2(|Gj | − 1).

Let k = O(nα), 0 ≤ α < 1. Suppose the largest (centered) degree d̃i ≾ O(nβ),
where 0 ≤ β < 1.

We first focus on the second configuration 2 in the numerator, we have:
n∑

i=1
|Gi|2 =

n∑
i=1

(d̃i + 2|G|
n

)2 ≾
n∑

i=1
(nβ + nα)2 ≾ n2β+1 + n2α+1.

Since k2n ≾ O(n2α+1), it follows that the entire expression kn2 ∑n
i=1 |Gi|2 ≾

n2β+2α+2 + n4α+2.
In the denominator, if α ≤ β, then VG =

∑n
i=1 d̃i

2 ≿ n2β , and (nVG)2 ≿
n4β+2. Then the ratio of the numerator 2 and denominator gives us

n2α+2β+2 + n4α+2

n4β+2 ≾ O(1).

If α > β, then k2n
∑n

i=1 |Gi|2 ≾ n4α+2. With the assumption that VG ≿ k2 �
n2α, we have (nVG)2 ≿ n4α+2. Other terms can be done in a similar way. Notice
that:

1. k4n2 ≾ O(n4α+2),
3.

∑n
i=1 |Gi|4 =

∑n
i=1(d̃i + 2|G|

n )4 ≾
∑n

i=1(nβ + nα)4 ≾ n4β+1 + n4α+1,
4. k

∑n
i=1 |Gi|3 ≾ nα

∑n
i=1(nβ + nα)3 ≾ n3β+α+1 + n4α+1,

5. x14 =
∑

i

∑
j �=i(|Gi \ {j ∈ Gi}|)(|Gi \ {j ∈ Gi}| − 1)(|Gj \ {i ∈ Gj}|)(|Gj \

{i ∈ Gj}| − 1)
≾

∑
i=1 |Gi|2

∑
j=1 |Gj |2 ≾

∑n
i,j(nβ + nα)4 ≾ n4β+2 + n4α+2,

6.
∑

i=1
∑

j∈Gi;j �=i(|Gi| − 1)2(|Gj | − 1)
≾

∑
i=1

∑
j∈Gi;j �=i |Gi|2|Gj | ≾ n3β+1+α. □

Therefore, the ratio of the first 5 configurations can be bounded by O(1)
and the 6th configuration can be bounded by O(1/n). To see that the 6th
configuration can be bounded by O(1/n), consider that if α ≤ β, then (nVG)2 ≿
n4β+2 and the ratio of the numerator and denominator is 1

n(1+β−α) . If α > β,
then (nVG)2 ≿ n4α+2 and the ratio becomes 1

n(3(α−β)+1) . Recall that expression
for Zdiff can be expressed as the linear combination of the leading coefficients
K1(u, v, w), . . . , K6(u, v, w) multiplied by their respective graph configurations.
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We have established that K1(u, v, w), . . . , K5(u, v, w) are bounded by C(w−u)2

and K6(u, v, w) is bounded by C(w − u). Combining these results, and that we
are considering the case that (w −u) > 1

n , it follows that the expression for Zdiff
can be bounded by C(w − u)2.

5. Discussion

5.1. Comparison of conditions

The conditions for tightness in Theorems 3.1 and 3.2 are much more relaxed than
the conditions needed to establish convergence of finite-dimensional distribution
in Theorem 4.1 in [9]. To see this, we first define some notations used in [9]. For
an edge e = (e−, e+) ∈ G, define Ae := Ge+ ∪ Ge− as the subgraph in G that
connects to either node e− or node e+. Define Be := ∪e∗∈Ae

Ae∗ as the subgraph
in G that connects to any node in Ae. Let k = O(nα), where 0 ≤ α < 1. The
sufficient conditions in Theorem 4.1 from [9] are as follows:

1. |G| = O(nβ), 1 ≤ β < 1.25;
2.

∑
e∈G |Ae||Be| = o(|G|1.5);

3.
∑

e∈G |Ae|2 = o(|G|√n);
4.

∑n
i=1 |Gi|2 − 4|G|2/n = O(

∑n
i=1 |Gi|2).

The conditions in Theorem 3.1 require k to be at least O(1) and
∑

i=1n |Gi|2 =
o(kn2). The requirement that k is at least O(1) is automatically satisfied by the
first condition in [9], as the number of edges in the graph must be at least O(n).
Moreover, unlike the first condition in [9], our condition does not impose the
additional restriction that k ≺ n0.25. The condition

∑
i=1n |Gi|2 = o(kn2) fol-

lows naturally from the third condition in [9]. Specifically, since
∑n

i=1 |Gi|2 ≤
2

∑
e∈G |Ae|2, and the third condition in [9] is

∑
e∈G |Ae|2 = o(|G|√n), it follows

that
∑n

i=1 |Gi|2 = o(kn1.5) = o(kn2). Thus, the condition
∑

i=1n |Gi|2 = o(kn2)
is much less restrictive than the third condition in Theorem 4.1 of [9].

The conditions in Theorem 3.2 require k to be at least O(1) and
∑n

i=1 |Gi|2 −
4|G|2/n to be at least O(k2). According to the fourth condition in [9],

∑n
i=1 |Gi|2−

4|G|2/n = O(
∑n

i=1 |Gi|2). Since
∑n

i=1 |Gi|2 ≥ 4|G|2/n = 4k2n and 4k2n is way
larger than O(k2), it follows that

∑n
i=1 |Gi|2 − 4|G|2/n is at least O(k2). Thus,

the condition in Theorem 3.2 is much less restrictive than the fourth condition
in Theorem 4.1 of [9].

It follows that the conditions for tightness are significantly less restrictive
than those provided in [9] for establishing convergence of finite-dimensional
distributions. Consequently, if the conditions in [9] are satisfied, the tightness
conditions will automatically hold, allowing us to confidently use the asymptotic
properties of the maximum scan statistic for change-point detection.

5.2. Implications of conditions on tightness

To illustrate the sufficiency of our conditions, we construct similarity graphs
that intentionally violate the conditions in Theorems 3.1 and 3.2 and examine
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how Billingsley’s tightness criterion (defined in [3]) behaves when the graph
conditions are not met. The modulus of continuity in D is defined as

ω′(x, δ) = inf
ti

max
i

sup
s,t∈[ti−1,ti)

|x(s) − x(t)|.

If the stochastic process x(·) is tight, then asymptotically, when t and s are
close, the values of x(t) and x(s) should also be close. We assess this for a
finite sample size by evaluating the maximum jump in the process for sequential
time points ti−1 and ti. The simulation setup is as follows: we construct a
similarity graph, calculate the graph-based stochastic process, and then evaluate
sup |Zw(ti−1) − Zw(ti)| and sup |Zdiff(ti−1) − Zdiff(ti)| for i ∈ [n0, n1]. We let
n = 500, n0 = 0.05 ∗ n, and n1 = n − n0. We repeat this process 100 times.
We consider two types of graphs that violate the conditions in Theorem 3.1 and
Theorem 3.2, respectively.

In Theorem 3.1, we require that
∑n

i=1 |Gi|2 = o(kn2) in order for the stochas-
tic process {Zw(�nu�) : 0 < u < 1} to be tight. Consider that

∑n
i=1 |Gi|2 <∑n

i=1 max(|Gi|)|Gi|. Then even if max(|Gi|) = n, we have
∑n

i=1 |Gi|2 ≾ kn2.
Therefore, to violate this condition, we must consider a complete graph where
|G| = n(n − 1)/2. It follows that, if max(|Gi|) = n, we have

∑n
i=1 |Gi|2 <∑n

i=1 max(|Gi|)|Gi| = n
∑n

i=1 |Gi| = 2n|G| � n3, which violates our condition
in Theorem 3.1. In Figure 3, we evaluate the tightness criterion for Zw(t) for
graphs generated from a complete graph with varying number of random edges
deleted from the graph. Since n = 500, the complete graph has nE = 124,749
edges. We remove an increasing proportion of edges (from a single edge to 90%).
We see that when the condition is violated (for example, the complete graph
with only 1 edge removed), the jumps between Zw(ti−1) and Zw(ti) tend to
be larger. As we progressively delete more edges, the severity of the condition
violation decreases and we observe that difference in jumps also begins to de-
crease. In Figure 4, it is clear that as the similarity graph moves away from
the complete graph (i.e. the number of edges deleted increases), the value of∑n

i=1 |Gi|2/kn2 begins to decrease as well.
In Theorem 3.2, we require

∑
i |Gi|2 − 4|G|2

n to be at least O(k2) in order
for the stochastic process {Zdiff(�nu�) : 0 < u < 1} to be tight. This condition
can be violated when the similarity graph is very flat. For example, if every
node degree is k, then |Gi| = k, for all i = 1, . . . , n and

∑
i |Gi|2 − 4|G|2

n =
nk2 − nk2 = 0. This violates our condition in Theorem 3.2. In Figure 5, we
evaluate ω′ for the graph-based stochastic process Zdiff(t) constructed from a
k-MDP (minimum distance pairing) similarity graph [6]. The MDP graph is
constructed such that n nodes are divided into n/2 non-overlapping pairs in
such a way as to minimize the total of n/2 distances between the pairs. The
MDP can be extended to k-MDPs as well, where a k-MDP is defined similarly
to a k-MST. By construction, the k-MDP constrains the node-degrees to be
exactly k. In this setting, we set k =

√
n. We then randomly add an increasing

number of edges to the k-MDP, gradually making the graph less flat. As shown
in Figure 5, as the graph becomes less flat and the condition is less violated,
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Fig 3. Boxplots of sup |Zw(ti−1)−Zw(ti)| for graphs under different settings. 100 simulations
are conducted for each setting. For each simulation, the graph is constructed from a complete
graph, with a varying proportion of edges randomly deleted.

Fig 4. Boxplots of
∑

|Gi|2/kn2 for graphs under the same settings as in Figure 3.
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Fig 5. Boxplots of sup |Zdiff(ti−1) − Zdiff(ti))| for graphs under different settings. 100 simu-
lations are conducted for each setting. For each simulation, the graph is constructed from a
k-MDP, with a varying number of edges randomly added.

Fig 6. Boxplots of (
∑

i |Gi|2 − 4|G|2

n
)/k2 for graphs under the same settings as in Figure 5.
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the modulus of continuity ω′ becomes smaller and the magnitude of the jumps
decreases. Moreover, as we increase the number of edges, Figure 6 shows that
the condition

∑
i |Gi|2 − 4|G|2

n /k2 also improves.

6. Conclusion

We demonstrate that the graph-based stochastic processes are tight under mild
conditions on the graph. To establish this, we utilize the Kolmogorov-Chentsov
tightness criterion, which requires bounding higher moments. These moments
are derived using combinatorial analysis, with their leading terms bounded by
studying the graph configurations. This completes the framework for establish-
ing the limiting distribution of these graph-based processes, facilitating p-value
approximations for real applications. Our framework for establishing tightness
can be applied to other scenarios where higher moments can be derived and
bounded. For example, the rank-based change-point setting studied in [22] ex-
tends the existing graph-based framework by applying weights, in the form of
ranks, to each edge in the similarity graph. For illustration, consider the 5-NN
graph, where each observation is connected by edges to its five nearest neigh-
bors. Each edge is then weighted by importance, with the first nearest neighbor
(which contains the most relevant similarity information) assigned the high-
est rank. Based on these graph-induced ranks, the (weighted) graph-based test
statistics Zw(t) and Zdiff(t) are constructed. The explicit first and second mo-
ments of these rank-based test statistics are derived in [22]. Using combinatorial
analysis, higher product moments can also be derived, following a similar ap-
proach to what we outline in this manuscript, albeit with more careful treatment
of the ranks. To establish tightness for the rank-based stochastic processes, one
can demonstrate that the higher moments are bounded, though this may require
a different set of conditions on the graph.

We also conjecture that the corresponding stochastic random field under the
changed-interval alternative is tight. Bickel and Wichura [2] provide a multidi-
mensional analogue of Billingsley’s definition of tightness for multi-parameter
stochastic process. Specifically, let T = T1 × T2, and let block B in T be of the
form (s1, t1]×(s2, t2]. Similarly, let block C in T be of the form (t1, u1]×(s2, t2],
where s1 < t1 < u1. For block B, define

X(B) = X(s1, s2) − X(t1, s2) − X(s1, t2) + X(t1, t2),

and for block C

X(C) = X(t1, s2) − X(u1, s2) − X(t1, t2) + X(u1, t2).

A sufficient condition for tightness is

E(|X(B)|γ1 |X(C)|γ2) ≤ μ(B)β1μ(C)β2 ,

where γ1, γ2, β1, and β2 satisfy γ1 + γ2 > 0 and β1 + β2 > 1, and μ is a finite
nonnegative measure of T .



On the tightness of graph-based statistics 1445

We conjecture that the tightness of the graph-based scan statistics under
the changed-interval alternative setting also hold. However, proving this is not
straightforward due to the complexity of bounding the higher moments in this
version, as the two-dimensional process introduces additional challenges. This
line of research, which involves studying the increments of X around B, is
reserved for future work.

Appendix A: Proof of Theorem 3.1

Under the condition for Theorem 3.1, we have k2n4 � (kn2 −
∑n

i=1 |Gi|2)2, and
then k2n4

(kn2−
∑n

i=1 |Gi|2)2 � O(1).
For x14, we have

x14 =
∑

i

∑
j �=i

(|Gi \ {j ∈ Gi}|)(|Gi \ {j ∈ Gi}| − 1)×

(|Gj \ {i ∈ Gj}|)(|Gj \ {i ∈ Gj}| − 1)

<
∑

i

∑
j �=i

|Gi|2|Gj |2

=|G1|2
∑
j �=1

|Gj |2 + |G2|2
∑
j �=2

|Gj |2 + . . . + |Gn|2
∑
j �=n

|Gn|2

=|G1|2(
n∑

i=1
|Gi|2 − |G1|2)

+ |G2|2(
n∑

i=1
|Gi|2 − |G2|2) + . . . + |Gn|2(

n∑
i=1

|Gi|2 − |Gn|2)

=(
n∑

i=1
|Gi|2)2 −

n∑
i=1

|Gi|4 > 0.

Then x14 < (
∑n

i=1 |Gi|2)2 and x14
(kn2−

∑n
i=1 |Gi|2)2 ≾ O(1). Following similar ar-

guments, since
∑n

i=1 |Gi|2 = o(kn2), we have
∑n

i=1 |Gi|4

(kn2−
∑n

i=1 |Gi|2)2 ≾ O(1) and
n

∑n
i=1 |Gi|3

(kn2−
∑n

i=1 |Gi|2)2 ≾ O(1).
For

∑
i

∑
j∈Gi;j �=i(|Gi| − 1)2(|Gj | − 1), we have

∑
i

∑
j∈Gi;j �=i

(|Gi| − 1)2(|Gj | − 1) < 2|G|
n∑

i=1
|Gi|3.

Since the the largest |Gi| can be is n−1 (every other observation connects to node
yi), it follows that 2|G|

∑n
i=1 |Gi|3 ≾ 2|G|kn3 � k2n4 and k2n4

(kn2−
∑n

i=1 |Gi|2)2 ≾
O(1).

Similarly, since kn2 ∑n
i=1 |Gi|2 ≾ k2n4, we have kn2 ∑n

i=1 |Gi|2

(kn2−
∑n

i=1 |Gi|2)2 ≾ O(1).
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We have
∑

(i,j)∈G(|Gi|−1)(|Gj |−1) <
∑n

i=1 |Gi|(|G|−|Gi|) = |G|
∑n

i=1 |Gi|−∑n
i=1 |Gi|2 < 2|G|2 � 2k2n2, and so

∑
i,j∈G(|Gi|−1)(|Gj |−1)
(kn2−

∑n
i=1 |Gi|2)2 ≾ O(1).

Finally, since

x7 <
∑
i=1

|Gi|(|G| − |Gi|) < 2|G|2 � k2n2,

x8 =
∑

(i,j),(j,l),i �=l

|{m : (i, m), (l, m) ∈ G} ≾ kn3,

x9 =
∑
(i,j)

∑
l:(i,l),(j,l)∈G

(|Gl| − 2) � k2n2.

it follows that the ratio of the these configurations with (kn2 −
∑n

i=1 |Gi|2)2 are
bounded asymptotically by O(1).

Appendix B: Proof of Theorem 3.2

1. K1(u, v, w): The leading coefficient for k4n2 can be expanded as

K1(u, v, w) = Cd,1(w − v)2 + Cd,2(v − u)(w − v)
+ Cd,3

√
eu(

√
eu − √

ev)(w − v)

+ Cd,4
√

ev(
√

ev − √
ew)

(√
u(1 − v)(

√
v(1 − u) −

√
u(1 − v))

− 2
√

v(1 − u)(
√

v(1 − u) −
√

u(1 − v))
)

with

Cd,1 = 64v(1 − v)
√

eu(u(1 − v) + 2v(1 − u) − 3
√

euev),
Cd,2 = 32

√
eu(12u − 8)(v − u)3

+ 192
√

eu(8u2 − 9u + 2 +
√

eu(2
√

ev − √
ew))(v − u)2

+ 32(2
√

eu(36u3 − 57u2 + 24u − 2) − 18u
√

ev(1 − u)(1 − 2u)
+ 2u

√
ew(1 − u)(5 − 9u) + 2

√
eu

√
ev

√
ew(3u − 2))(v − u)

− 64u
√

eu(24u2 − 25u + 5)(1 − u) + 192u
√

ev(1 − u)(6u2 − 6u + 1)
− 64u

√
ew(1 − u)(9u2 − 10u + 2) + 32

√
eu

√
ev

√
ew(12u2 − 14u + 3),

Cd,3 = 64eu(
√

ew(3u − 2) − 3
√

eu(1 − 2u)),
Cd,4 = 64ev

√
eu.

It is clear that Cd,1(w − v)2 + Cd,2(v − u)(w − v) ≤ C(w − u)2 since
Cd,1(w − v)2 + Cd,2(v − u)(w − v) ≤ (Cd,1 + Cd,2)(w − u)2 and C can be
chosen to be large enough such that Cd,1 + Cd,2 ≤ C. In the following we
focus on the next two terms. For the third term, we need to show that√

eu(√eu − √
ev) ≤ (v − u). Let δ = v − u and define

g(δ) =
√

eu(
√

eu − √
ev)
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=
√

u(1 − u)
(√

u(1 − u) −
√

(u + δ)(1 − u − δ)
)

which is continuous everywhere on 0 ≤ δ ≤ 1 − u.
If g(δ) is convex for 0 ≤ δ ≤ 1 − u, it follows that g(δ) ≤ δ. Since g(0) = 0
and g(1 − u) = u(1 − u) ≤ 1(−u), what remains is to check its second
derivative is non-negative:

g′(δ) =
−(1 − 2u − 2δ)

√
u(1 − u)

2
√

(u + δ)(1 − u − δ)
,

g′′(δ) =
√

u(1 − u)
2

(
2√

(u + δ)(1 − u − δ)
+ (1 − 2u − 2δ)2

2
√

(u + δ)(1 − u − δ)3

)
,

and it follows that g′′(δ) > 0. Since we have established that g(δ) =√
eu(√eu − √

ev) is convex, it follows that √
eu(√eu − √

ev) ≤ (v − u) and√
ev(√ev − √

ew) ≤ (w − v). Moreover, the minimum of g(δ) is achieved
when δ = 0.5 − u and −g(0.5 − u) = √

eu( 1
2 − √

eu) ≤ 1
2 − u, for u < 1

2 .
Therefore |√eu(√eu − √

ev)| ≤ (v − u).
Following a similar argument, we can establish that

√
u(1 − v)(

√
v(1 − u)−√

u(1 − v)) ≤ (v − u).
Let h(δ) =

√
(u + δ)(1 − u)

(√
(u + δ)(1 − u) −

√
u(1 − u − δ)

)
. We have

h(0) = 0 and h(1 − u) = 1 − u. Its first and second derivatives are

h′(δ) = (1 − u) − (1 − 2u − 2δ)
√

u(1 − u)
2
√

(1 − u − δ)(u + δ)
,

h′′(δ) =
√

u(1 − u)
2

(
2√

(1 − u − δ)(u + δ)
+ (1 − 2u − 2δ)2

2
√

(1 − u − δ)(u + δ)
3

)
,

and since h′′(δ) > 0, therefore
√

v(1 − u)(
√

v(1 − u) −
√

u(1 − v)) ≤ (v −
u). Since

√
u(1 − v) <

√
v(1 − u), it follows that

√
u(1 − v)(

√
v(1 − u)−√

u(1 − v)) ≤ (v − u). Note that
√

v(1 − u) −
√

u(1 − v) > 0.
Therefore, K1(u, v, w) ≤ C(w − u)2 for some constant C.

2. K2(u, v, w): The leading coefficient for k2n(
∑n

i=1 |Gi|2) is

K2(u, v, w) =
√

eu
√

ev
√

ew

{
Cd,5(v − u)2 + Cd,6(w − u)(v − u)

+ Cd,7(
√

eu − √
ev)(v − u)

+ Cd,8(
√

eu − √
ew)(v − u) + Cd,9

√
eu(

√
eu − √

ev)2

+ Cd,10(
√

eu − √
ev)(

√
u(1 − w)(

√
w(1 − u) −

√
u(1 − w))

− 2
√

w(1 − u)(
√

w(1 − u) −
√

u(1 − w)))
}

with

Cd,5 =16(−6uw + 4w + 2u − 1)
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Cd,6 =16(−12u2 + 14u − 6
√

eu
√

ev − 3)
Cd,7 =16(−2

√
ew(2 − 3u) − 2

√
eu(1 − 3u))

Cd,8 =32(3u − 2)
√

eu

Cd,9 = − 96
√

ew

Cd,10 =32
√

eu

Since u < v < w, we have Cd,5(vu)2 + Cd,6(w − u)(v − u) ≤ C(w −
u)2 for some constant C. In order to show that remaining terms can
also be bounded by C(w − u)2, we follow that same argument detailed
above for K1(u, v, w). Observe that |√eu(√eu − √

ev)| ≤ (v − u) and
|√eu(√eu − √

ew)| ≤ (w − u). It follows that terms with Cd,7, Cd,8, and
Cd,9 of K2(u, v, w) can be by bounded by C(w − u)2 as well.
Finally, for the last term in K2(u, v, w), we see that

√
u(1 − w)(

√
w(1 − u)

−
√

u(1 − w)) ≤ (w − u) and
√

w(1 − u)(
√

w(1 − u) −
√

u(1 − w)) ≤
(w − u).
It follows that K2(u, v, w) ≤ C(w − u)2 for some constant C.

3. K3(u, v, w): The leading coefficient for
∑n

i=1 |Gi|4 is

K3(u, v, w) =Cd,11(w − v)2 + Cd,12(v − u)(w − v)
+ Cd,13

√
eu(

√
eu − √

ev)(w − v)
+ Cd,14

√
ev(

√
ev − √

eu)(w − v)
+ Cd,15

√
ev(

√
ev − √

ew)
√

eu(
√

eu − √
ev)

+ Cd,16
√

ev(
√

ev − √
ew)(v − u)

with

Cd,11 = − 2v
√

eu(3u + 5v − 8uv + 6uv2 − 4v2 − 2)
− 4eu

√
ev(3v2 − 3v + 1),

Cd,12 =8
√

eu(2 − 3u)(v − u)3(w − v),
− (4

√
eu(24u2 − 27u + 7) + 24eu

√
ev + 12eu

√
ew)(v − u)2(w − v),

+ (−2
√

eu(72u3 − 114u2 + 56u − 9) + 36u
√

ev(2u2 − 3u + 1),
− 4u

√
ew(9u2 − 14u + 5) − 4

√
eu

√
ev

√
ew(3u − 2))(v − u)(w − v),

− 2
√

eu(48u4 − 98u3 + 70u2 − 21u + 2)
+ 4u

√
ev(18u3 − 36u2 + 23u − 5),

− 2u
√

ew(18u3 − 38u2 + 25u − 5)
− √

eu
√

ev
√

ew(24u2 − 28u + 7),
− 2

√
ew(1 − u − v)(6u3 − 10u2 + 5u − 1),

Cd,13 = − 4
√

eu(14u2 − (6u − 1)(u2 + u + 1)),
Cd,14 =2

√
ew(6u3 − 10u2 + 5u − 1),

Cd,15 =4
√

ev(3v2 − 3v + 1),
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Cd,16 =2v
√

eu(6v2 − 8v + 3).

Again, the first two terms involving Cd,11 and Cd,12 can be bounded by
C(w − u)2. Repeating the convexity argument, |√ev(√ev − √

eu)| ≤ (v −
u), which allow us to bound the remaining terms by C(w − u)2 as well.
Therefore, the entire expression K3(u, v, w) can also be bounded by C(w−
u)2.

4. K4(u, v, w): The leading coefficient for k
∑n

i=1 |Gi|3 is

Cd,17(w − v)2 + Cd,18(w − v)(v − u) + Cd,19
√

eu(
√

eu − √
ev)(w − v)

+ Cd,20(v − u)2 + Cd,21
√

eu(
√

ev − √
ew)(v − u)

+ Cd,22eu(
√

eu − √
ev)(

√
ev − √

ew)

with

Cd,17 =
√

eu(16uv(12v2 − 16v + 5) − 16v(8v2 − 9v + 2))
+ 32eu

√
ev(6v2 − 6v + 1),

Cd,18 =(128
√

eu(3u − 2))(v − u)3

+ (32
√

eu(48u2 − 54u + 13) + 384eu
√

ev − 192eu
√

ew)(v − u)2

+ (16
√

eu(144u3 − 228u2 + 104u − 13) − 576
√

evu(2u2 − 3u + 1)
+ 64

√
ewu(9u2 − 14u + 5) + 64

√
eu

√
ev

√
ew(3u − 2))(v − u)

+ 16
√

eu(96u4 − 196u3 + 130u2 − 31u + 2),
Cd,19 =8(

√
eu(1 − 2u)(4(1 − 6u(1 − u))) + 2

√
ew(1 − u)(1 − 8u + 3u2)),

Cd,20 =(
√

ev − √
ew)(−192eu(v − u)2

+ 64(6u − 2
√

eu
√

ev − 18u2 + 12u3 + 3
√

eu
√

evu)(v − u)
− 32eu(7 − 36u(1 − u)) + 16

√
eu

√
ev(9 − 40u + 36u2)),

Cd,21 =32
√

eu(1 − 2u)(1 − 12u + 12u2)
+ 16

√
ev(u(36u2 − 56u + 23) − 2 + 5u − 14u2 + 9u3)

Cd,22 =32
√

eu(1 − 6u + 6u2)

The first two terms involving Cd,17, Cd,18, and Cd,20 can be bounded by
C(w − u)2. Repeating a combination of the convexity arguments from
above, the remaining terms can also be bounded by C(w − u)2. It follows
that K4(u, v, w) ≤ C(w − u)2.

5. K5(u, v, w): The leading coefficient for x14 is

K5(u, v, w) =Cd,23(w − v)2 + Cd,24
√

eu(
√

eu − √
ev)(w − v)

+ Cd,25(v − u)(w − v)
+ Cd,26

√
ev(

√
ev − √

ew)(v − u)
+ Cd,27

√
ev(

√
ev − √

ew)
√

eu(
√

eu − √
ev).
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with

Cd,23 =4v(1 − v)((u + 2v − 3uv)
√

eu − 3
√

evu(1 − u))
Cd,24 = − 2

√
ev((6u

√
ew − 6

√
eu + 12

√
euv)(

√
eu − √

ev)
− 2(1 − 2v)(u + 2v − 3uv) + 12u(1 − u)(1 − 2v)
+ 2

√
eu

√
ew(−6u + 3v − 2))

Cd,25 = − 2
√

eu
√

ev((4
√

ew − 8
√

eu + 12
√

euu)(v − u)
+ 2

√
eu(2u − 1)(3u − 2) +

√
ew(8u − 3)

− 6
√

eu
2√

ew)
Cd,26 = − 4

√
ev((−3u2 + 3u)(v − u) + 2

√
eu

√
ev

− 3u + 9u2 − 6u3 − 3u
√

eu
√

ev)
Cd,27 =12

√
evu(1 − u).

and utilizing the arguments above, this term is also bounded by C(w−u)2.
6. K6(u, v, w): The leading coefficient for

∑
i

∑
j∈Gi;j �=i(|Gi| − 1)2(|Gj | − 1)

is

K6(u, v, w) = Cd,28(v − u) + Cd,29
√

eu(
√

eu − √
ev)

with

Cd,28 =16
√

eu
√

ew(
√

eu + 2
√

ew − 3
√

ewu − 3
√

euw)(v − u)2

− 8
√

eu
√

ew(−2
√

eu(3u + 5w − 9uw − 1)
+

√
ev(2u + 4w − 6uw − 1)

+ 2
√

ew(9u2 − 10u + 2) + 6
√

eu
√

ev
√

ew)v − u)
− 8

√
ew(−2u(1 − u)w(−9u2 + 10u − 2) + 2u2(1 − u)(2 − 3u)

− √
eu

√
ev(3u + 3w − 14uw + 12u2w − 4u2)

+ 2
√

eu
√

ewu(9u2 − 14u + 5)
− 6

√
ev

√
ewu(2u2 − 3u + 1)),

Cd,29 = − √
eu(48uw(1 − u)(1 − w) + 16

√
eu

√
ew(u(1 − w) + 2w(1 − u))).

We have that Cd,28(v − u) can be bounded by a constant C(w − u) and
by convexity, Cd,29

√
eu(√eu − √

ev) ≤ C(w − u).
Therefore, the leading coefficient K6(u, v, w) is bounded by C(w − u).
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(doi: 10.1214/25-EJS2367SUPP; .pdf). Supplement A: Comparison of asymp-
totic and permutation critical values for different values of n, n0, and n1. This
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