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Abstract
This analysis quantifies the network dynamics, geographic concentration, and disparities in
perishable food supply networks for temperature-controlled food shipments in the United States.
The United States forms the core of global food systems and produces more high-quality data for
network analysis than most other countries. We use the 2017 US Census Commodity Flow Survey
and other publicly available data to derive empirical results from the Food Flow Model for
perishable meats and perishable prepared foods. We identify the top ten counties for perishable
food distribution and find that the Los Angeles and Chicago regions support the greatest volumes
of perishable food movements. States that largely exist outside national perishable food networks
are Arizona, Michigan, Montana, North Dakota, Texas, and West Virginia. Our analysis of US data
highlights the importance of certain counties, states, and regions in perishable food networks and
illustrates how data and logistics optimization models shape the geography of food. Findings
suggest areas where interventions could improve systems’ functions by reducing reliance on core
areas, increasing access to markets for farmers, and improving access to food for under-served
communities, especially those in rural regions.

1. Introduction

Food distribution is an integral food systems function, left largely to the private sector. Using network
centrality analysis to uncover patterns in perishable food distribution, we explore how improvements to
distribution may improve food security and meet other social goals [1]. Recent policy focus on supply chain
improvements (for instance the 2022 Bi-partisan Infrastructure Act to improve broadband access, freight
routes, and accelerated reporting on state freight plans) [2], and the White House Council on Supply Chain
Resilience [3]) indicate public interest in food movements using network analyses.

Perishable foods are valued for their high nutritional content. They have high commercial value and are
costly to distribute. Compared to other food supply networks, cold chain carbon emissions are high, due in
part to refrigeration necessary for food safety. As we transform food systems to support health, equity,
resilience, and sustainability rather than to simply provide calories [4], understanding costs and benefits of
perishable food networks may be useful in negotiating systems trade-offs.

Perishable foods move through supply chains distinct from shelf stable products, largely via
temperature-controlled trucks, from one cold storage location to another. Several recent studies use
materials flow data and modeling to ascertain network structures that contribute to resilience, including food
systems resilience [5–9]. This study contributes to this growing body of knowledge by considering perishable
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food movements specifically and identifying core and peripheral geographic regions in these networks using
transportation flow data. The United States is the central country in global food trade networks and can
affect global food systems’ stability [6, 10]. Unlike most of the rest of the world, researchers in the US have
access to large amounts of public data that we can use to understand systemic patterns that commonly
develop in food distribution, and thus make a unique contribution to countries without these public
resources. At global, national and bioregional scales there is increasing agreement that transforming
agri-food systems is needed to meet high level goals, including the seventeen United Nations Sustainable
Development Goals [11]. Participants at United Nations summits are calling to renegotiate food systems
[12–14]. However, the policy pathways for achieving such a vision are inevitably contested, and the enabling
conditions are insufficient. Currently, we lack quantitative data to support negotiations for systems
transformation [15]. The US government and private firms collect some of the data necessary to assess food
networks thereby providing a data-rich environment in which to analyze US network structures that affect
regional, national and global food supply networks. We intend for this analysis to contribute factual
knowledge that describes current national food networks and to inform discussions around values, interests,
and trade-offs in policy negotiations.

Our study is unique in that we modeled two perishable food flows for the United States (US), estimating
county-level flows based upon data from the 2017 US Census Commodity Flow Survey. The model
incorporated additional variables to create a supervised learning model of food flows [16]. The Census
collects data on agricultural product distribution and organizes them into Standard Classification of
Transported Goods (SCTG) categories 01–07 (supplementary table 1). Using these transportation data, we
estimated network centrality measures for two perishable food supply networks (the temperature-controlled
portions of SCTG 05 ‘meat’ and SCTG 07 ‘prepared foods’, supplementary tables 2 and 3). We limited our
analysis to products moving via truck, thereby capturing 74% of all perishable food movements by truck
using weight as our measure.

Centrality metrics are the structural indicies that supply chain managers use to optimize supply networks
[7]. Taken together, these optimized supply chains create a digitized geography based on data and modeling
to meet private enterprise goals [17]. Vertically integrated firms determine centrality at nodes (i.e.:
warehouse, processing plant) and system (supply chain) levels as a routine management task. Centrality
informs managerial decisions on the strategic use of materials, infrastructure, capital, and information given
the firm’s goals. We applied this method to the nation’s food supply networks, identifying centrality values
for counties as network nodes. We then looked for geographic patterns at state and regional levels. This study
provides valuable insights into perishable food networks, such as geographic concentration and dispersion.
We highlight the network importance of certain counties, states, and regions and suggest areas where
interventions may improve food distribution, given the importance of fresh food to health and economic
well-being, as well as costs incurred to distribute perishable foods.

We mapped the relationship between two centrality measures, degree of connectivity and betweenness.
Connectivity indicates first order relationships, while betweenness is a global network measure, thus
providing complimentary insights. Three other centrality measures were available to us: stress, closeness and
eigenvector. Since earlier research indicates they would be redundant to measure, we focused on connectivity
and betweenness [6, 18].

Degree of connectivity indicates the number of connections a network node—in our study, a
county—has in a food supply chain network. Betweenness indicates how well counties connect into the
supply network through linear connections. These two centrality measures allow us to delineate between core
and peripheral counties [19]. Core counties have high centrality, and geographically concentrated food
distribution resources necessary for efficiency. Peripheral counties have low centrality, indicating that
national food distribution resources are scarce, and dispersed. Counties that are neither core nor peripheral
may exhibit resilience, the sweet spot between efficiency and diversity [20]. We uncover system dynamics at
the regional scale to highlight the trade-offs at local and bioregional scales to support national networks [21].

2. Methods

2.1. Modeling
Although several proprietary models exist that use public and private data for supply chain management,
these models lack transparency and are costly to access. The Food Flow Model, developed and used by the
Konar Lab, is open source, fully transparent, and easily adapted to address specific issues, such as perishable
food flows in food supply networks.

Public data provide information on food flows at a relatively coarse geospatial level. The Konar Food
Flow Model estimates food commodity flows at a more granular, county level. The process uses a statistical
model that relates food flows between domestic regions to variables describing those domestic regions,
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including data on population, employment, income, production, and storage. The estimated model is then
applied using similar county-level variables—along with additional constraints that ensure estimated county
flows sum to totals at the domestic region level. The model’s accuracy in estimating county-level flows was
assessed for the coarse spatial resolution and then applied to the fine spatial resolution, assuming the
regression equations hold across spatial scales. It draws from eleven public data sources (supplementary table
4) and has been peer reviewed [22]. For more detailed information on model development, see Wang et al
[16]. Empirical findings from gravity modeling for 2017 SCTG 05 and 07 temperature-controlled
movements can be accessed from the University of Illinois data repository at https://databank.illinois.edu/
datasets/IDB-8455093.

2.2. Data
There are multiple, distinct supply chains that make up supply networks that move food from farm to fork.
This study improves upon earlier work by refining and curating data used in the modeling process to better
approximate movements of perishable food by refrigerated truck between counties within the Continental
US. This was accomplished by using the refrigerated portion of the primary data only, and focusing on truck
movements, since we know that most perishable food travels by truck.

As with prior studies using the Food Flow Model, we used data from the CFS, and its refinement known
as the Freight Analysis Framework. There are distortions inherent in CFS survey data, as discussed at a
workshop held virtually 24 September 2020, organized by the Transportation Research Board’s Standing
Committee on Freight Transportation Data [23]. First, CFS over-emphasizes large movements and may not
capture smaller movements adequately. Second it is uncertain whether CFS data sufficiently captures large
grower shipments, which are increasingly common for west-to-east movements. Third, ports that might not
be the true shipping or receiving points, are overemphasized in CFS, while much of the food distribution
data are privatized and so may be unavailable. CFS data is collected every five years and then provides freight
movement data for the collection year. It cannot accurately capture seasonal movements that are critical to
understanding the movement of perishable food given the nonlinear nature of food systems. Despite its
limitations, CFS is the best available public data source on food movements.

The 2017 CFS separated food movements based on temperature control for each of the four freight
modes: air, rail, truck, and multimodal, and disaggregated movements by SCTG categories. It was then
possible to sort, model, and analyze perishable food movements across the US. Perishable movements are
low weight and have high economic value relative to shelf stable commodities. This study modeled perishable
foods movements by weight only and did not model movements by value.

The CFS organizes food movements by SCTG category (supplementary table 2). Each category represents
a mix of products, some similar and some dissimilar. For example, SCTG 03 includes ‘Agricultural Products
Except for Animal Feed, Cereal Grains, and Forage Products’ and includes both fresh produce and large-scale
soybean movements. We focused on the bulk of perishable foods flows, which are SCTG 05 ‘meat’ and SCTG
07 ‘prepared foods’, and then limited the study to refrigerated portions of these two categories. Since
dairy—including fluid milk—is the food item within SCTG 07 most likely to be refrigerated, we assume that
dairy comprises much of the weight in this category. However, the category also includes frozen and
otherwise prepared refrigerated fruits and vegetables, and juices. The nine states in the USDA’s Economic
Research Service’s ‘Fruitful Rim’ region likely represent perishable streams for ‘fresh cut’, juiced, and frozen
fruits and vegetables. Fruitful Rim states are Washington, Oregon, Idaho, California, Arizona, Texas, Florida,
Georgia, and South Carolina [24].

2.3. Mapping methodology
To develop refined maps that illustrate the network structures, we used a three-step process to identify
clusters and outliers, determine counties with high and low centrality, and then optimize those findings. The
variable mapped is ‘betweenness connectivity’, the relationship between how connected the county is with
other counties and its importance to the network in total, in other words the relationship between degree of
connectivity and betweenness centrality, or betweenness connectivity. These data are then further refined by
aggregating data and applying algorithms to identify the appropriate scale in which to analyze the data while
adjusting for multiple testing and spatial dependence [25–27].

In Step One, we used Anselin Local Moran’s I, also known as Cluster and Outlier Analysis. Developed in
1995, this mapping tool identifies hot spots and cold spots that are statistically significant. It allows us to see
geographic patterns in data and is part of the Environmental Systems Research Institute (ESRI) mapping tool
set for geographic information systems. Researchers in industry, government, and academia use these tools
to understand the geographic patterns that underlie human and natural systems.

Spatial relationships are not always uniform across space, and this can impact the validity of spatial
autocorrelation measures. To account for this, we conducted additional tests to account for spatial
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non-stationarity, including an optimized hotspot analysis that adjusts for spatial dependence using a False
Discovery Rate (FDR) correction. We also examined different spatial weighting schemes, including K-nearest
neighbors and inverse distance weighting, to assess whether the results were sensitive to the choice of spatial
structure. The Moran’s I results were interpreted in conjunction with Getis-Ord Gi∗ and other clustering
techniques, such as Anselin Local Moran’s I, to ensure robustness across different methodological
approaches. Given the inverse relationship to distance, we also incorporated spatial influence beyond
immediate neighbors by evaluating varying neighborhood structures. While we acknowledge that
non-stationarity is an inherent challenge in spatial analysis, our multi-method approach allowed us to
validate key patterns and avoid undue reliance on a single spatial structure.

In Step Two, Getis-Ord Gi was used to identify high and low centrality, and in Step Three we further
refined the information based on optimal settings for analysis. This process sorts out high value clusters from
low value clusters and determines if they are statistically significant based on neighboring values. It is
commonly applied to traffic and other transportation analyses, and within demographics, and epidemiology.
In this study, the betweenness connectivity value of a county and its eight neighboring counties is compared
proportionately to the sum values of all the counties. When the sum of a county’s betweenness connectivity is
different than expected, and when that difference is too large to be a result of random chance, it is statistically
significant.

To mitigate potential distortions arising from scale mismatches, we implemented several sensitivity
analyses. We performed optimized hotspot analysis using multiple configurations, such as K-nearest
neighbor distances, Inverse distance weighting, Anselin Local Moran’s I, and optimized hotspot analysis
using FDR correction. We cross-validated with subject matter experts in supply chain logistics and regional
food systems to ensure consistency with empirical knowledge of perishable food distribution. We compared
results across different spatial weight matrices and clustering techniques to ensure that the observed patterns
in food network centrality were not artifacts of a particular analytical choice.

Additional information and results are available for each of the three steps in supplementary information.

2.4. Analysis
We used the network statistics by county provided by the Konar Lab to conduct further analysis of the
network structure of perishable foods. Network statistical data are available through the University of
Wisconsin data repository [28]. There are several ways to use these statistics to improve understanding of
how networks are structured to allow food flows between counties. We apply two centrality measures in this
analysis:
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First, we use degree of connectivity (a combined metric for degree in and degree out) to measure the
number of connections any single county has to other counties in the food flow. The more connections a
county has, the higher the county’s degree of connectivity. Degree-in refers to product moving into a county,
and degree-out refers to product moving out. Karakoc and Konar found that flow direction (in or out) is less
important to node centrality at the village scale than it is at the national and global scales, based on data from
three Alaskan villages [29]. Since a county is closer in scale to a village than a nation, we used the overall
degree measure, rather than parsing the degree of connectivity by degree-in and degree-out. The second
centrality measure we used was betweenness. Betweenness indicates the pathways between counties. Those
counties that are en route to other counties have more control over the network and the flow of food.
Betweenness indicates how frequently a county connects with other counties in a network and therefore
reflects access to transportation infrastructure. The relationship between degree of connectivity and
betweenness is similar across spatial scales.

We used the relationship between degree of connectivity and betweenness to represent overall network
centrality for perishable meat and perishable prepared foods. High centrality indicates where food supply
chains are geographically concentrated and food is plentiful, while low centrality indicates where farmers
may have difficulty entering the wholesale market or consumers may have difficulty accessing food due to
missing connections. Centrality analysis allows supply chain managers, planners, and policy makers to
monitor, identify, and take proactive steps to reduce bottlenecks, enhance flow, and improve the
management of material assets such as transportation infrastructure, warehousing, and processing facilities.
Our approach captures the upper and lower centrality measures of perishable supply networks, providing a
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boundary analysis of food supply networks. High centrality values may indicate a county’s function as part of
the network core, although relatively brittle in the network. Low centrality values indicate peripheral
connection and insufficient network infrastructure to support flow, relative to other nodes.

To visualize perishable food networks across the nation, we mapped centrality using hotspot analysis at
the county scale and completed state-scale comparisons. This assumed that those counties in the top tier of
centrality—core counties—contributed to highly efficient movements. We also studied peripheral counties
in the bottom tier of centrality since these counties may not have sufficient wholesale infrastructure to
participate in national perishable supply networks for temperature-controlled food shipments in the US. To
capture the relative importance of these supply networks to each state, the number of counties with high and
low network centrality were divided by the number of counties in each state, resulting in a per cent of the
state’s counties with high or low participation in supply networks. Additional parameters such as access to
capital, extreme weather, and climate risk, ruralness, and per cent of Indigenous population were also
included in the analysis.

3. Results

3.1. Summary statistics
In 2017, temperature-controlled food shipments constituted over 36% of the mass and almost 48% of
agricultural product value moved nationally via all transportation modes (rail, barge, air, and truck). Truck
movements of perishable products constitute over 93% of the value and over 57% of the mass. By far the
highest value items moving by temperature-controlled truck were meats (22.72% value, 4.71% mass).
Perishable prepared foods ranked second in value (16.09%), with slightly more mass (4.98%) than meat.

Our analysis covers truck movements for perishable SCTG 05 ‘meat’ and perishable SCTG 07 ‘prepared
foods’ (supplementary figures 2 and 3). This represents 74% of total refrigerated food movements for all
transportation modes for commodity and prepared foods (SCTG 01-07, supplementary figure 1) for the
continental US [16].

3.2. Network analysis
We mapped county-level network centrality to uncover geographic variations and identify core and
peripheral counties (figures 1 and 2). The more product volume that moves through a county, the more
connections that county is likely to have with networks serving that flow, a pattern also found in international
trade [29, 30]. Perishable food distribution infrastructure could include Primary and Secondary Freight
Routes as defined by the US Department of Transportation, cold storage warehousing, and processing
facilities. Core counties suggest large processing plants, private distribution warehouse centres, and vertically
integrated wholesale and retail markets, all linked by and dependent upon the interstate transportation
system. Peripheral counties have insufficient connections to the national distribution networks.

Pink (light red) indicates core counties, while light blue counties are peripheral. Large swaths of low
network centrality in rural regions, such as the Great Plains and the Southwest, may be more difficult to
connect to existing networks. White counties fall in the midrange and suggest areas requiring further research
to determine the nature of food movements. The regions of high-low centrality (dark red adjacent to light
blue) and low-high centrality (dark blue adjacent to pink) indicate counties that are not well-linked to their
surrounding counties, creating localized disparities in network access. Note the differences between networks
for ‘meat’ and ‘prepared foods’. This more granular modeling of perishable movements for products that
move independently, as meat and prepared foods usually do, uncovers different patterns in these networks.

3.3. Geographic concentration at the county level
Perishable meat and prepared foods networks show similar patterns of geographic concentration, as well as
some significant differences at the county scale. The primary difference between these two types of perishable
networks is the extent of geographic concentration. Perishable meat networks have more core counties (pink
and red) and are therefore more geographically concentrated than perishable prepared foods networks.

There are core counties that disproportionately bear the weight of perishable food distribution and are
freight transit choke points. Identifying the top ten core counties out of 3108 counties illustrates the extent of
regional geographic concentration (table 1). Most notably, two Southern California counties are choke
points in both perishable foods categories.

For perishable meat networks, five southern California counties rank in the top seven, along with three
Tennessee counties near Memphis. Chautauqua County, NY, located between Erie, Pennsylvania and Buffalo,
New York, ranks fourth. Webb County, a border crossing, between Monterrey, Nuevo Leon (Mexico) and San
Antonio, Texas, places tenth.
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Figure 1. Network centrality for perishable ‘meat’ SCTG05.
Note: See supplementary information for methodological detail.

Figure 2. Network centrality for perishable ‘prepared foods’ SCTG 07.
Note: See Supplementary Information for methodological detail.

For perishable prepared foods networks, San Bernardino County, CA ranks first, Riverside County, CA
ranks second, followed by five Chicago area counties. Graham and adjacent Cherokee Counties in North
Carolina rank seventh and ninth, respectively. These counties are near urban Chattanooga and Knoxville,
Tennessee. Webb County, Texas rounds out the list with a rank of eight.
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Table 1. Choke point counties for meat and prepared foods.

Rank SCTG 05 ‘meat’ SCTG 07 ‘prepared foods’

1 Imperial County, CA San Bernardino County, CA
2 Inyo County, CA Riverside County, CA
3 San Bernardino County, CA Kankakee County, IL
4 Chautauqua County, NY Lake County, IL
5 Kern County, CA Grundy County, IL
6 Shelby County, TN Cook County, IL
7 Riverside County, CA Graham County, NC
8 Fayette County, TN Webb County, TX
9 Tipton County, TN Cherokee County, NC
10 Webb County, TX Putnam County, IL

Table 2.High and low network centrality for perishable SCTG 05 at the state level, % counties.

High ‘meat’ % counties Low ‘meat’ % counties

Arkansas 73% North Dakota 76%
Nebraska 60% Arizona 67%
North Carolina 35% West Virginia 67%
Texas 19% Delaware 66%
Georgia 17% New Mexico 64%
Virginia 15% Oregon 64%
Illinois 13% South Dakota 62%
Kansas 13% Michigan 43%
Michigan 12% New Hampshire 40%
New York 11% Connecticut 38%
California 10% Montana 29%
Oklahoma 7% Vermont 29%
Wisconsin 7% Idaho 25%
Florida 6% Louisiana 23%

+4 states less than or equal to 5% +7 states under 20%

Notes: 1) Bolded and italicised states exhibit both high and low network centrality.

2) States not listed are included in supplementary information.

3.4. State concentration of perishable meat networks
We then aggregated county-level centrality values by state, since federal programs to alleviate systems
imbalances are typically administered by states. States exhibit high or low network centrality, and some have
both concurrently. To capture the relative importance of these perishable networks to each state, the number
of counties in the top and bottom 10% centrality were divided by the total number of counties, resulting in a
per cent of the state’s counties with high or low centrality for each supply network (table 2 and
supplementary information).

Eighteen states had counties in the top 10% of the perishable meat network. State-level geographic
concentration in this sector was evident in three states: Arkansas 73% (chicken processing), Nebraska 60%
(beef processing), and North Carolina 35% (pork processing). Four states have less than 5% of their counties
strongly connected to national meat networks—Minnesota (1%); Pennsylvania (2%); Washington (3%), and
Iowa (5%).

Comparing these values with figure 2, we can see each state has a different relationship with meat supply
networks, giving us more insight into how these networks function. For instance, even though few Iowa
counties fall into the top 10%, the state lies between Nebraska and Illinois, resulting in a high centrality score
in meat networks (mapping pink). Minnesota and Pennsylvania have a few core counties, and these counties
are not well connected to surrounding counties (red counties proximate to light blue). Washington has a few
core counties, and it is likely that they are not well connected to the national network, but instead the core
may be connected to local or regional networks (mapping as white) and require further exploration.

Twenty-one states have counties in the bottom 10% of perishable meat networks. Of those, fourteen
states have more than 20% peripheral counties. While some of the states with low network centrality have
significant metropolitan regions, several of them are predominantly rural and have significant agricultural
receipts from animal production, such as North Dakota, Arizona, New Mexico, Oregon, and South Dakota.
Many of these states are building capacity for meat processing in response to the Biden Administration’s
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Table 3.High and low network centrality for perishable SCTG 07 at state level, % counties.

High centrality
‘prepared foods’ % counties Low centrality ‘prepared foods’ % counties

New Jersey 67% West Virginia 89%
California∗ 60% Arizona∗ 60%
Florida∗ 45% Kansas 45%
New York 37% Montana 39%
Maryland 30% Georgia∗ 35%
Pennsylvania 28% North Dakota 25%
Utah 28% Colorado 20%
Ohio 27% Mississippi 17%
Illinois 22% Texas∗ 15%
Louisiana 16% North Carolina 15%
Washington∗ 15% South Dakota 14%
Virginia 14% Michigan 12%
Arizona∗ 13% Oklahoma 8%

Louisiana 5%

+19 states less than or equal to 13% +2 states 5% and under

Notes: 1) ‘∗’ indicates Fruitful Rim state. USDA designates nine agricultural resource regions,

depicting geographic specialization in production of U.S. farm commodities. The Fruitful Rim

produces fruit, vegetable, nursery and cotton, and has the largest share of large and very large

family farms and non family farms [24].

2) Bolded and italicized states exhibit both high and low network centrality.

3) See supplemental information for the full list of states.

efforts to support supply chain resilience, such as the US Department of Agriculture’s Meat and Poultry
Processing Expansion Program [31].

Some states have uneven connections to meat supply networks, with some counties operating at the core
and others on the periphery. This indicates that meat moves through some counties, but other counties are
not well-linked to supply networks. State governments could efficiently add regional infrastructure to rectify
these disparities. These states are Michigan, Oklahoma, Pennsylvania, Texas, and Washington. Michigan has
many more peripheral counties (43% low, 12% high), while Texas has more core counties (19% high, 5%
low).

3.5. State concentration of perishable prepared food supply networks
Perishable ‘prepared foods’ networks are less geographically concentrated than perishable ‘meat’(compare
tables 2 and 3, supplementary information). Thirty-two states have core counties in the top 10%, with nine
states supporting>20% of their counties in high centrality. Further, there are fewer peripheral counties for
SCTG 07 perishable prepared foods compared to meat. Overall, 16 states have counties in the bottom 10%,
with seven states experiencing 20% or more of their counties in the bottom 10%.

There are several states with core and peripheral counties, bolded and italicized above. Arizona is a
Fruitful Rim state with 13% of its counties in the core, yet 60% of Arizona counties are peripheral for
perishable prepared foods. Texas is another Fruitful Rim state, with 11% of its counties in the core and 15%
of its counties at the periphery. Other states with large disparities are Montana (high 2%, low 39%); Georgia
(high 13%, low 35%), North Dakota (high 2%, low 25%); Colorado (high 2%, low 20%); Mississippi (high
17%, low 2%); Louisiana (high 16%, low 5%); Nebraska (high 6%, low 4%); and Minnesota (high 2%, low
5%).

3.6. Under-served states with overall low network centrality
Perishable supply networks under-serve seven states, suggesting insufficient cold chain infrastructure for
national distribution (table 4). They are West Virginia, Arizona, North Dakota, South Dakota, Michigan,
Montana, and Texas. These states contain Frontier and Remote (FAR) areas as designated by the USDA
Economic Research Service [32]. Apart fromWest Virginia, all these states are more than 20% rural (FAR
acres total) and at least 10% remote (FAR designation 4), with Montana, South Dakota, and North Dakota as
the most rural and remote. Low centrality in rural regions may disproportionately affect ethnically and
racially distinct communities.
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Table 4. Characteristics of states with low network centrality for perishable ‘meat’ and perishable ‘prepared foods’.

Low centrality
state

SCTG 05
‘meat’

SCTG 07 ‘prepared
foods’

Average % SCTG
05+ 07

State Indigenous
population % (2024)

% State FAR
acres (2010)

% State FAR4
(remote)
acres (2010)

W Virginia 67% 89% 78% 0.76% 15% 8.5%
Arizona 67% 60% 63.5% 5.41% 43.9% 21.4%
N Dakota 76% 60% 50.5% 6.46% 72.3% 53.2%
S Dakota 62% 14% 38% 9.82% 78.4% 54%
Michigan 43% 12% 27.5% 1.47% 48.9% 15.4%
Montana 29% 39% 19.7% 7.66% 78.9% 57.8%
Texas 5% 15% 10% 1.20% 26.5% 10.4%

4. Discussion

These results advance our ability to monitor and manage network infrastructure for perishable foods
distribution as a public good. We highlight geographic concentration and disparities in perishable supply
networks to target actions that may improve food supply networks. Perishable foods are nutritious, high
value, and cost more to distribute. Federal support for irrigation and other infrastructure supports
perishable foods production, influencing where crops are grown and animals raised, which then may affect
costs to distribute. Compared to shelf stable food supply networks, cold chain carbon emissions are high for
perishables, in part because of the refrigeration required to ensure food safety and value, the distance
between production regions and markets, and because refrigerated trucks are the primary transportation
mode. As we transform food systems to support health, equity, resilience, and sustainability rather than to
simply provide calories [4], a better understanding of perishable networks may inform regional, national and
international negotiations around trade-offs such as food insecurity, food loss, water use and air pollution.

We found that Los Angeles and Chicago metro regions are dominant in national perishable food
distribution. Comparing choke point counties from our findings for perishable networks to an earlier study
examining the broader agri-food network using similar methods [6], there are four county choke points in
common (San Bernardino CA, Riverside CA, Shelby TN, and Cook IL) and sixteen choke points that are
unique to the two analyses (supplementary table S7). Findings also differ on areas of regional importance in
North Carolina, Arizona, New York, Tennessee and San Francisco metro counties (supplementary table S8).
These differences illustrate the value of data curation.

Perishable supply networks vary regionally due to differences such as agriculturally-related seasonality,
water availability, proximity to markets, and international trade routes at border crossings and ports [6].
Significant regional differences in food network disruptions were observed during the COVID-19 Pandemic,
reflecting differences in network structures [33]. Businesses invest in network management to efficiently
direct resources and navigate disruptions, such as COVID-19. Choi advises that supply network mapping,
such as the mapping in this research, is critical in this age of ‘regression to the tail’, where extreme events are
increasingly common, and natural systems are profoundly impacted by human systems. Networks tend to
centralize and form core nodes where goods for final sale are produced (i.e. packing houses and processing
facilities), concurrently increasing system efficiencies and vulnerabilities [7].

In a review of supply chain resilience literature early during the Pandemic (2020), the authors noted a
move from looking at supply chains to supply networks was possible as more research utilized network
science and AI tools such as machine learning, as we did in this study. Of the 94 articles published from
2017–2019, none of the ten US studies covered food and agriculture supply chains, while several European
studies did. They also noted that only 48% of the papers used quantitative methods and 26% used
characteristics of resilience as proxies rather than directly quantify resilience. A key recommendation was to
address transportation networks when assessing resilience [34]. Others during this period reminded us that
while network resilience is important, there are other systems properties to keep in mind, such as tipping
points, non-linearity, asymmetry, and interconnectedness. The systems approach can promote cross-sectoral
collaboration in policy formulation by accounting for linkages between and within different specializations
and institutional ‘silos’ [35].

Further work to understand how supply network structures contribute to food systems resilience is
needed. Measuring resilience is much discussed in food systems circles drawing on several disciplines.
Differences between assessing system operations or outcomes, or by type of resilience such as robustness,
recovery and reorientation [36], aligns somewhat with logistics literature that calls for a
‘plan-absorb-recover-adapt’ approach [34]. A 2023 review of agrifood supply chain resilience discusses two
types of interrelated and complementary resilience: inherent resilience and adaptive resilience [37]. Inherent
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resilience is derived from network structure, buffer capacity and high social connection, while adaptive
resilience is a result of transportation flows, storage, information flows and demand management.
Interestingly, this study finds that adaptive resilience was not the result of planning and preparation but arose
from the components of inherent resilience. In our research, we use transportation flows to uncover the
system structure, thereby incorporating freight transportation into the analysis.

The Volpe National Transportation Assistance Center analyzed seventeen high-volume highway corridors
to understand their role in moving agricultural freight. Comparing their findings with ours, we can see how
corridors align with network structure. For instance, the rural network concentration for perishable meat in
Nebraska, Iowa and Illinois can be linked to two highway corridors in the Volpe analysis. The corridors
connecting Omaha, NE westbound to Salt Lake City and eastbound to Chicago, IL are moving high volumes
of meat east and west. They estimate about 659 million ton-miles of meat are moving east and 1.37 billion
ton-miles are moving west [38].

Research suggests that identifying core nodes in food logistics networks is critical to improving food
systems resilience and recommends that geographic risk assessment profiles be developed for each node in
the network, similar to Choi’s recommendations and the Volpe Center’s work on highway corridors [7, 37,
38]. However, focus on network concentration is insufficient. We also need to understand challenges
encountered where networks are weak: the peripheral nodes where food supply is relatively scarce. Networks
could be transformed by developing lattice structures, thereby lessening the importance of core nodes, and
trading some efficiency for more network resilience [39].

In our study, we identified structural boundaries to perishable food systems by modeling core and
peripheral geographic nodes, and do not investigate those nodes that fall in between. Our approach captures
the upper limits (core nodes) and lower limits (peripheral nodes) of perishable supply networks, providing a
boundary analysis of relative network geographic centrality, while other works of note measured food
systems resilience with a proxy resilience measure. The three quantitative studies below have further explored
resilience based on earlier research on the global grain network, that indicated network resilience and
efficiencies complement each other as more nodes participate in trade[39]. Trade intensity together with
network structure can achieve higher efficiency and resilience simultaneously.

Gomez et al explored urban food supply resilience based on the finding that increasing trade diversity
increases system resilience [40]. They found that food shock risk decreases with supply chain diversity (a
diversity of sources and trading partners) using an intensity—duration—frequency model. Subsequent work
(2023) using supply chain diversity as a proxy for food supply resilience concluded that increasing the
number of trading partners a city utilizes may concurrently reduce the environmental impacts of food
systems and improve supply resilience between cities. Importantly, this study linked urban resilience to
nitrogen, carbon and water environmental impacts from different agricultural production systems and
found that the meat production sector has the highest footprint [41]. Omaha scores relatively high on urban
food supply resilience and has a high environmental footprint, while our analysis indicates Omaha is core to
the meat network as is much of Nebraska and Iowa.

Bingham et al employed a novel food flow model with 2012 data and found commensurate results to
ours [9]. They curated food flow data similar to our approach and modeled differently, in that they measured
resilience by quantifying the diversity of food supply chain sources rather than the connections to food
supply networks. The Bingham study found that low population regions exhibit low food supply resilience,
and urban and suburban counties have high overall resilience, where low food access is masked at the
neighborhood scale [42]. Unlike our approach which considers supply chains from the moment the food is
refrigerated to when it is consumed, these approaches consider the production and consumer ends of supply
chains, and do not provide insight into the processing and transportation network connections.

There are clearly economic benefits to core counties and their food businesses, as well as costs and
challenges from geographic concentration. Core counties are critical to the food supply while their residents,
especially the working poor and other marginalized populations, might disproportionately bear the costs
from network concentration, including air pollution, traffic congestion, draw on the energy grid, high levels
of food loss, poor working conditions, and a greater need for enforcement of labor and other regulations. For
example, warehouse concentration in poorer parts of Southern California (Los Angeles, Riverside, San
Bernardino and Orange counties) is associated with air pollution from diesel combustion [43]. Twelve
Illinois counties rank in the top 9% of US counties at risk of health, societal and economic impacts from
diesel fine particle air pollution, including prepared food choke point counties Cook, Lake, Grundy and
Kankakee [44]. The growth in freight is a major contributor to traffic congestion on urban and intercity
routes [45]. In 2021, the most congested metro regions measured by minutes of delay include Los Angeles
and Chicago [46]. Low income regions are challenged to meet the energy, capital and cooling requirements
for perishable foods, leading to food loss post-harvest [47]. The risk for forced labor in the US food industry,
based on known occurrences, is particularly high for meat and processed produce [48].
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We identified areas insufficiently connected to national food distribution networks. Arizona, Michigan,
Montana, North Dakota, Texas, and West Virginia are positioned on the periphery of these networks.
Appalachia, the High Plains and Southwest contain FAR areas, with higher-than-average Indigenous
populations and rural poverty. Some states exhibit uneven connections to supply networks, where core
counties are adjacent to peripheral counties, and vice versa. Research documents how low access to capital,
energy and cold chain infrastructure inhibits perishable food supply chain development in low-income
contexts [47]. Opportunities to alleviate these disparities are likely to be locally specific and require assistance
to access the necessary capital. State programs to support infrastructure development could integrate
peripheral counties into vigorous adjacent networks to improve economic conditions and reduce the
pressure on core counties.

Research indicates that geographic concentration in food supply networks shapes and is shaped by
transportation infrastructure and those data businesses used to optimize infrastructure location. Facility and
transportation infrastructure determine routing decisions for products flowing through the networks. About
80% of transportation costs are attributable to facility location and access to transportation networks [49].
The Mid-America Freight Coalition working across ten states found 50% of businesses and 60% of their
employees are located along designated freight corridors [50]. Firms concentrate facilities where
transportation routes are cost effective to their firm, not necessarily to meet food needs, improve regional
market access, or to optimize food freight and transit across networks as a whole. The geography of food and
market access is produced by digitalization [51].

Concentration in food distribution inhibits rural entrepreneurship as reported by the USDA Economic
Research Service in a 2021 study [52]. They indicate that independent grocers in rural and remote regions are
disadvantaged in a concentrating wholesale environment dominated by proprietary infrastructure. Rural
groceries are the most important rural retailer type and are likely to be independently owned. Independents
rely on wholesale distributors that may also serve chain store competitors that have resources to benefit from
wholesale volume discounts. Structural changes such as increasing supply network concentration have
widespread implications for rural quality of life beyond simple access to food, such as employment
opportunities and other community services [52].

5. Conclusion

Although these findings on core and periphery geography are specific to food supply networks in the US,
they may point to similar network disparities and challenges in other regions and countries. Much attention
is paid to food production and its connection to food access, even though food distribution also affects
market access for farmers, food access for low-income and low-density regions, and food loss throughout
perishable supply networks. Globally, remote rural regions may face similar challenges to perishable food
access as may other countries that rely on vertically integrated food firms and are concentrated in highly
populated regions. Since the US is core to global food supply networks, changes in US network structure may
lead to disruptions in supply networks worldwide.

Policymakers can use network analysis combined with geographic modeling to identify, monitor and
alleviate choke points, target resources to under-served areas, or establish rules to curtail geographic
dominance. For instance, US policies enacted in the 1930s supported regional dairy production and could be
updated and applied to other foods. These policies influence regional market dynamics and may have slowed
geographic concentration in the dairy sector. In-depth and qualitative studies could provide greater insight
on counties, regions and countries that fall in between the core and peripheral extremes, as well identify
specific interventions to better balance supply networks geographically.

Several efforts are underway to democratize food systems data, information, and knowledge that can
further analysis of this type. The National Science Foundation Artificial Intelligence Institutes are creating
data pipelines between public data and public and private models to improve information access. Ontologies
to facilitate data interoperability and model development to optimize rural food logistics through
collaboration are under development. These steps are necessary so that small and medium-sized businesses
and public interest researchers can easily visualize and monitor essential supply networks, including food
[53, 54].
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