A Newton-CG based barrier-augmented Lagrangian method for general

nonconvex conic optimization

Chuan He* Heng Huang' Zhaosong Lu?

April 2, 2023 (Revised: March 4, 2024; August 8, 2024; August 25, 2024)

Abstract

In this paper we consider finding an approximate second-order stationary point (SOSP) of general
nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality
constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient
(Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem.
Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of 6(6_11/ 3
and an operation complexity of O(¢~'"/?min{n, e 5/4}) for finding an (e, \/€)-SOSP of general nonconvex
conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds
are improved to @(677/2) and (5(677/2 min{n, 673/4})7 respectively. To the best of our knowledge, this is
the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization.
Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order
methods in terms of solution quality.

Keywords: Nonconvex conic optimization, second-order stationary point, augmented Lagrangian method, barrier method,

Newton-conjugate gradient method, iteration complexity, operation complexity

Mathematics Subject Classification: 49MO05, 49M15, 68Q25, 90C26, 90C30, 90C60

1 Introduction
In this paper we consider the following general nonconvex conic optimization problem:
min{f(z) : c(x) =0, z € K}, (1)
x

where K C R" is a closed and pointed convex cone with a nonempty interior, and f : R" — R and ¢: R" — R™
are continuous in K and twice continuously differentiable in the interior of IC. Assume that problem (1) has at
least one optimal solution. Our goal is to propose an implementable method with complexity guarantees for
finding an approximate second-order stationary point (SOSP) of (1) that will be introduced in Section 3.

In recent years, there has been considerable research on designing algorithms with complexity guarantees for
finding an approximate SOSP of nonconvex optimization problems. In particular, numerous algorithms were
developed for nonconvex unconstrained optimization, such as cubic regularized Newton methods [1, 18, 21, 57],
trust-region methods [34, 35, 53], quadratic regularization method [14], accelerated gradient method [19, 20],
second-order line-search method [61], Newton-conjugate gradient (Newton-CG) method [60], and gradient-based
methods with random perturbations [2, 46, 71]. In addition, several methods with complexity guarantees have
also been proposed for nonconvex optimization with relatively simple constraints. For example, interior-point
method [10], log-barrier method [58], and projected gradient descent method [69] were proposed for nonconvex

*Department of Mathematics, Linkoping University, Sweden (email: chuan.he@liu.se).

TDepartment of Computer Science, University of Maryland, USA (email: heng@umd.edu). The work of this author was partially
supported by NSF Award 11S-2211492.

tDepartment of Industrial and Systems Engineering, University of Minnesota, USA (email: zhaosong@umn.edu). The work of this
author was partially supported by NSF Award 11S-2211491.

optimization with sign constraints. Besides, the interior-point method [10] was generalized in [42] for nonconvex
optimization with sign constraints and additional linear equality constraints. Also, a projected gradient descent
method with random perturbations was proposed in [51] for nonconvex optimization with linear inequality
constraints. Iteration complexity of these methods has been established for finding an approximate SOSP.
Besides, operation complexity in terms of the total number of fundamental operations has been studied for the
methods [1, 2, 18, 19, 20, 34, 46, 60, 61, 71].

Several methods, including trust-region methods [17, 31], sequential quadratic programming method [15],
two-phase method [11, 27, 30], penalty method [40], and augmented Lagrangian (AL) methods [4, 12, 44, 63, 70],
were proposed for finding an approximate SOSP of equality constrained optimization:

min{f(x) : ¢(z) = 0}, (2)

which is special case of (1) with = R"™. Moreover, total inner iteration complexity and operation complexity,
which are respectively measured by the total number of iterations of the Newton-CG method in [60] and the
total number of gradient evaluations and matrix-vector products performed in the method, were established in
[44, 70] for finding an (e, /€)-SOSP x of (2) which together with some A € R™ satisfies

le(@)l| <€ [[VF(z) + Ve(@)Al <e
At (V2 f(x) + 310 MiV2ei(z))d = —Vel|d|]?, Vd € {d: Ve(x)Td = 0},

where Ve denotes the transpose of the Jacobian of c. Specifically, under some suitable assumptions, including
a generalized linear independence constraint qualification (GLICQ), the AL method [70] enjoys a total inner
iteration complexity of O(e~*1/2) and an operation complexity O(e~*1/2 min{n, ¢ 3/4}),! while the AL method
[44] achieves a total inner iteration complexity of O(e~7/2) and an operation complexity of O(e~7/2 min{n, e~3/4})
for finding an (e, 1/€)-SOSP of problem (2) with high probability. On the other hand, when the GLICQ does not
hold, the AL method [44] has a total inner iteration complexity of O(e~1%/2) and an operation complexity of
O(e~ Y2 min{n, e%/4}). Besides, it shall be mentioned that Newton-CG based AL methods were developed for
efficiently solving a variety of convex optimization problems (e.g., see [72, 73]), though their complexities remain
unknown.

In addition, a Newton-CG based barrier method was recently proposed in [43] for finding an approximate
SOSP of a class of nonconvex conic optimization of the form

m;n{f(:c) A —b=0, z € K} (3)

for some A € R™*™ and b € R™, which is a special case of (1). Iteration and operation complexity of this
method were established in [43] for finding an (e, /€)-SOSP x of (3) which together with some A € R™ satisfies

Ar =b, x € int K, Vf(z)+ ATA € K, |Vf(z) + AT)||% <,
d"V?B(z)"V2V2 f(2)V2B(x)~Y2d > —\/€||d||?, Vd € {d: AV?B(z)~'/?d = 0},

where int £ and K* are respectively the interior and dual cone of K, B is a logarithmically homogeneous
self-concordant barrier function for I, and || - ||% is a local norm induced by B at = (see Section 2 for details).
Under some suitable assumptions, this method achieves an iteration complexity of 0(6_3/ 2) and an operation
complexity? of (5(6*3/2 min{n, e~'/*}) for finding an (e, /€)-SOSP with high probability. Besides, a Hessian
barrier algorithm was proposed in [38] for finding an approximate SOSP of problem (3). Given that this algorithm
requires solving a cubic regularized subproblem exactly per iteration, it is generally expensive to implement.

It shall also be mentioned that finding an approximate first-order stationary point of (1) with I = R’} was
extensively studied in the literature (e.g., [5, 6, 7, 32, 33, 37, 39, 49, 55, 65, 66, 67]). Notably, a hybrid approach

n fact, a total inner iteration complexity of O(e~7) and an operation complexity O(e~7 min{n, e~1}) were established in [70]
for finding an (e, €)-SOSP of problem (1) with high probability; see [70, Theorem 4(ii), Corollary 3(ii), Theorem 5]. Nevertheless,
they can be easily modified to obtain the aforementioned complexity for finding an (e, /€)-SOSP of (1) with high probability.

2The operation complexity of the barrier method [43] is measured by the amount of fundamental operations consisting of
matrix-vector products, matrix multiplications, Cholesky factorizations, and backward or forward substitutions to a triangular linear
system.

by combining barrier and AL methods was commonly used in [5, 6, 7, 33, 37, 39, 49, 55]). However, finding
an approximate SOSP of (1) by such a hybrid approach has not been considered, even for (1) with £ = R’/.
Inspired by these and [43, 44], in this paper we propose a Newton-CG based barrier-AL method for finding an
approximate SOSP of problem (1) with high probability. Our main contributions are as follows.

e We study first- and second-order optimality conditions for problem (1) and introduce an approximate
counterpart of them.

e We propose an implementable Newton-CG based barrier-AL method for finding an approximate SOSP of
(1), whose main operations consist of Cholesky factorizations and other fundamental operations including
matrix-vector products and backward or forward substitutions to a triangular linear system.?

e We show that under some mild assumptions, our proposed method has a total inner iteration complexity
of O(e~11/2) and an operation complexity of O(e~ /2 min{n, e~/4}) for finding an (e, \/€)-SOSP of (1)
with high probability. Furthermore, under a constraint qualification, we show that our method achieves
an improved total inner iteration complexity of (~9(e’7/ 2) and an improved operation complexity of
O(e~"2min{n, e3/4}).4 To the best of our knowledge, there was no complexity result for finding an
approximate SOSP of problem (1) in the literature before.

The rest of this paper is organized as follows. In Section 2, we introduce some notation. In Section 3, we
study optimality conditions of problem (1) and introduce an inexact counterpart of them. In Section 4, we
propose a preconditioned Newton-CG method for solving a barrier problem and study its complexity. We then
propose a Newton-CG based barrier-AL method for (1) and study its complexity in Section 5. We present in
Section 6 some preliminary numerical results for the proposed method. In Section 7, we present the proofs of the
main results. Finally, we make some concluding remarks in Section 8.

2 Notation and preliminaries

Throughout this paper, we let R™ denote the n-dimensional Euclidean space. The symbol || - || stands for the
Fuclidean norm of a vector or the spectral norm of a matrix. The identity matrix is denoted by I. We denote
by Amin(H) the minimum eigenvalue of a real symmetric matrix H. For any two real symmetric matrices M
and Mo, My < My means that My — M; is positive semidefinite. For any positive semidefinite matrix M, M 1/2
denotes a positive semidefinite matrix such that M = MY2M'/2. For the closed convex cone K, its interior and
dual cone are respectively denoted by int X and K*. For any = € K, the normal cone and tangent cone of K at x
are denoted by N (z) and Tx(z), respectively. The Euclidean ball centered at the origin with radius R > 0 is
denoted by Bg := {z : ||z|| < R}, and we use Iz, (v) to denote the Euclidean projection of a vector v onto Bg.
For a given finite set A, we let | A| denote its cardinality. For any s € R, we let sgn(s) be 1 if s > 0 and let it be
—1 otherwise. In addition, O(-) represents O(-) with logarithmic terms omitted.

Logarithmically homogeneous self-concordant (LHSC) barrier function is a key ingredient in the development
of interior-point methods for convex programming (see the monograph [56]). It will also play a crucial role in
the design and analysis of Newton-CG based barrier-AL method for solving problem (1). Throughout this paper,
we assume that the cone K is equipped with a ¥-logarithmically homogeneous self-concordant (9-LHSC) barrier
function B for some ¥ > 1. That is, B : int £ — R satisfies the following conditions:

(i) B is convex and three times continuously differentiable in int X, and moreover, [¢"/(0)| < 2("(0))3/2 holds
for all z € int £ and v € R", where ¢(t) = B(z + tu);

(ii) B is a barrier function for K, that is, B(z) goes to infinity as a approaches the boundary of K;

(iii) B is logarithmically homogeneous, that is, B(tz) = B(x) — JInt holds for all = € int K and ¢ > 0.

3The arithmetic complexity of Cholesky factorizations for a positive definite matrix is O(n?) in general, while the arithmetic
complexity of matrix-vector products and backward or forward substitutions is at most O(n2), where n is the number of rows of the
matrix.

41t shall be mentioned that the total numbers of Cholesky factorizations are only @(6_7/2) and 6(6_11/2) respectively for the
case where constraint qualification holds or not. See Subsections 5.3 and 5.4 for details.

For any z € int I, the function B induces the following local norms:

1/2

[v]|. = (UTV2B(m)v) , YveR",
Wlli = (WV2B(z)")"?, WoeR",
MU = max [Ml;, VA € RV @

lloll=<1

In addition, V2B(z)~! is well-defined only in int & but undefined on the boundary of K. To capture the behavior
of V2B(x)~! as x approaches the boundary of K, the concept of the limiting inverse of the Hessian of B was
recently introduced in [43], which can be viewed as a generalization of [V2B]~!. Specifically, the limiting inverse
of the Hessian of B is defined as follows:

V2B(z) := {M M= klim V2B(z*)~! for some {z*} C int K with 2* — = as k — oo} , Yz ek.
— 00

As established in [43, Theorem 1], the inverse of V2B(x) is bounded in any nonempty bounded subset of int K.
Consequently, V™2B(z) # (for all x € K. Moreover, the following property holds for V2B, whose proof can
be found in [43, Theorem 2].

Lemma 2.1. For any x € K, it holds that {x + M"/?d : ||d|| < 1} C K for all M € V—2B(x).

3 Optimality conditions

Classical first- and second-order optimality conditions for nonlinear optimization can be specialized to problem (1)
(e.g., see [62, Theorems 3.38 and 3.46]). However, the inexact counterparts of them are not suitable for the
design and analysis of a barrier-AL method for solving (1). In this section we study some alternative first- and
second-order optimality conditions for (1) and also introduce an inexact counterpart of them.

Suppose that z* is a local minimizer of problem (1). To derive optimality conditions, one typically needs to
impose a constraint qualification (CQ) for 2*. The Robinson’s CQ, {Ve(z*)Td : d € Txc(z*)} = R™, is a natural
and general one (e.g., see [62, Section 3.3.2]). However, verification of Robinson’s CQ may not be easy for a
general cone K. Thus, we instead consider a more easily verifiable CQ that M'/2V¢(x*) has full column rank for
some M € V~2B(z*), which turns out to be stronger than Robinson’s CQ. Indeed, suppose that such a CQ
holds at z* for some M € V~2B(z*). It then follows from Lemma 2.1 that {M'/2d : ||d|| < 1} C Tx(«*) and
hence {M'/2d : d € R"} C Ti(x*). By this and the full column rank of M/2Ve¢(z*), one has

{Ve(@*)"d:d € Te(z*)} 2 {Ve(a*)"M/?d: d e R"} =R™,

and hence Robinson’s CQ holds at z*.
We are now ready to establish some first- and second-order optimality conditions for problem (1) under the
aforementioned CQ, whose proof is relegated to Section 7.1.

Theorem 3.1 (first- and second-order optimality conditions). Let z* be a local minimizer of problem (1).
Suppose that [is twice continuously differentiable at x* and M1/2Vc(x*) has full column rank for some
M € V~2B(z*). Then there erists a Lagrangian multiplier * € R™ such that

Vf(z*) + Ve(z*)A* € K*, (5)
MY2(V f(z*) + Ve(z*)A") =0, (6)
and additionally,
dT M2 (sz(x*) +y A;‘v%i(x*)> MY%d >0, Vde{d:Ve(z*)TMY2d = 0}. (7)
1=1

Remark 3.1. The relations (5) and (6) are the first-order optimality conditions of problem (1), which are
actually equivalent to the classical optimality condition V f(x*) + Ve(z*)* € — Nc(z*) (see [43, Proposition 1]).

Notice that it is generally impossible to find a point exactly satisfying the above first- and second-order
optimality conditions. We are instead interested in finding a point satisfying their approximate counterparts. To
this end, we next introduce the definition of an approximate first-order stationary point (FOSP) and second-order
stationary point (SOSP) of problem (1).

Definition 3.1 (e;-first-order stationary point). For any ¢; > 0, a point x is called an e;-first-order
stationary point (e1-FOSP) of problem (1) if it, together with some A € R™, satisfies

le(z)]] <€, x €int K, (8)
Vi(z)+ Ve(z)) € K7, 9)
[Vf(z) + Ve(@)Al; < e. (10)

Definition 3.2 ((e1, €5)-second-order stationary point). For any €1,€e3 > 0, a point z is called an (€1, €3)-
second-order stationary point ((e1,€2)-SOSP) of problem (1) if it, together with some A € R™, satisfies (8)-(10)
and additionally

dT'V2B(z)"1/? ()+ Z)\ Vici(x) V| V2B(2)"Y%d > —e||d||?, Vd e C(x), (11)

where C(-) is defined as
C(z) == {d: Ve(x)TV2B(z)~1/2d = 0}. (12)

Remark 3.2. Notice that if the pair (x,\) satisfies (10) and (11), then it nearly satisfies (6) and (7) with
(x*, A*) replaced by (x,\). Thus, (10) and (11) can be viewed as inexact counterparts of (6) and (7). Moreover,
the above definitions of €1-FOSP and (€1, €2)-SOSP are reduced to the ones introduced in [[3] for the case where
c is affine.

4 A preconditioned Newton-CG method for barrier problems

In this section we propose a preconditioned Newton-CG method in Algorithm 1, which is a modification of the
Newton-CG based barrier method [43, Algorithm 2], for finding an approximate SOSP of the barrier problem

min {¢,,(z) := F(z) + pB(x)}, (13)

where F' : R" — R is twice continuously differentiable in int K and p > 0 is a given barrier parameter. Specifically,
the proposed method finds an (¢4, €)-SOSP « of problem (13) that satisfies

IVou@)s < €9y Amin(V2B(x) "2V, (2)V2B(2)71/?) > —enr (14)

for any prescribed tolerances €4, ex € (0,1). It will be used to solve the subproblems arising in the barrier-AL
method later.

Our preconditioned Newton-CG method (Algorithm 1) consists of two main components. The first main
component is a modified CG method, referred to as capped CG method, which was proposed in [60, Algorithm 1]
for solving a possibly indefinite linear system

(H 4 2¢I)d = —g, (15)

where 0 # g € R", ¢ > 0, and H € R™*" is a symmetric matrix. The capped CG method terminates within a
finite number of iterations and returns either an approximate solution d to (15) satisfying I (H+2€I)d+9|| = QHQH
and d” Hd > —el|d||? for some ¢ € (0, 1) or a sufficiently negative curvature direction d of H with d” Hd < —¢||d]|2.
The second main component is a minimum eigenvalue oracle. Given a symmetric matrix H € R™*" and € > 0,
this oracle either produces a sufficiently negative curvature direction v of H with |[v]| = 1 and vT Hv < —¢/2
or certifies that Apin(H) > —¢ holds with high probability. For ease of reference, we present these two main
components in Algorithms 3 and 4 in Appendices A and B, respectively.

We are now ready to describe our preconditioned Newton-CG method (Algorithm 1) for solving (13). At
iteration ¢, if the first relation in (14) is not satisfied at the iterate x!, the capped CG method (Algorithm 3) is
invoked to find a descent direction for ¢, by solving the following damped preconditioned Newton system

(MEV2¢, (") My + 2e51)d = —MFV (1),

where M; is a matrix such that
V2B(z") ™t = MM} (16)

A line search along this descent direction is then performed to result in a reduction on ¢,. Otherwise, the
minimum eigenvalue oracle (Algorithm 4) is invoked. This oracle either produces a sufficiently negative curvature
direction of M V2¢,,(z*) M, along which a line search is performed to result in a reduction on ¢,,, or certifies that
the iterate x? also satisfies the second relation in (14) with high probability and terminates the preconditioned
Newton-CG method. The detailed description of our preconditioned Newton-CG method is presented in
Algorithm 1.

Algorithm 1 A preconditioned Newton-CG method for problem (13)

Input: tolerances eg,ey € (0,1), backtracking ratio 6 € (0,1), starting point u% € int K, CG-accuracy parameter ¢ € (0, 1),
maximum step length 8 € [ef, 1), line-search parameter n € (0, 1), probability parameter ¢ € (0, 1);
Set 20 = u0;
fort=0,1,2,... do
if |[Vou(z)||%, > ey then
Call Algorithm 3 (see Appendix A) with H = MtTVQ(bH (zYMy, e =€y, g= MtTV(j)u (z), accuracy parameter (,
and bound U = 0 to obtain outputs dt, d_type, where M; is given in (16);
if d_type=NC then

N Czt TMTv2 [AVYS dt .
d* + —sgn((d)" M{ 'V, (x')) min { ()" My Vool)M 5 i, (17)
fla*||® lla*]]
else {d_type=SOL}
dt emin{l,?}dﬁ; (18)
lla*|
end if
Go to Line Search,;
else
Call Algorithm 4 (see Appendix B) with H = M V26, (x?)M¢, € = ey, and probability parameter §;
if Algorithm 4 certifies that Amin (M V2¢,(z*)M¢) > —ep then
Output xt and terminate;
else {Sufficiently negative curvature direction v returned by Algorithm 4}
Set d_type=NC and
i —— sgn(vTMtTV@L(xt)) rnin{|1)TM,5TV2¢M(1‘t)M,gv|7 Blv; (19)
Go to Line Search;
end if
end if
Line Search:
if d_type=SOL then
Find o = 07t, where j; is the smallest nonnegative integer j such that
bu(z’ + 67 Med") < $pu(a’) —nep 6 |d||; (20)
else {d-type=NC}
Find o = 67t, where j; is the smallest nonnegative integer j such that
Su(a’ + 07 Myd') < pu(at) =m0 ||d")%/2; (21)
end if
2t = 2t 4+ oy Mydt;
end for

4.1 Iteration and operation complexity of Algorithm 1

In this subsection we study iteration and operation complexity of Algorithm 1. To proceed, we make the following
assumptions on problem (13).

Assumption 4.1. (a) There exists a finite ¢row such that

¢/L(x) > Plows YV € int IC, (22)
S={recintk:¢,(z) < d,(u’)} is bounded, (23)

where u° € int K is the initial point of Algorithm 1 and ¢,, is given in (13).
(b) There exists Lt > 0 such that

IV2F(y) = V2F(2)l; < Liglly — 2z Yo,y € Q with |ly — . < B,

where Q C int K is an open bounded convex neighborhood of S and § € (0,1) is an input of Algorithm 1.
(¢) The quantities Uf and UL are finite, where

F * *
U, = sup IVF(x)]|%, UL = sup V2F(z)]|%. (24)
zeS zeS

Before establishing operation complexity of Algorithm 1, let us make some observations on its fundamental
operations. Firstly, at iteration ¢, the main effort of Algorithm 1 is on the execution of Algorithm 3 or 4 with
H = M?'V?¢,(z')M;. Secondly, the main computational cost of Algorithms 3 and 4 per iteration is on the
product of H and a vector v. Consequently, it suffices to focus on computing Hv. Indeed, notice from (13) and
(16) that

Hov = MIV?¢,(z")My = MI'V?F(2") Myv + .

Thus, computing Hv consists of one Hessian-vector product of F' and two matrix-vector products involving M;
and M respectively. We next discuss how to efficiently compute the product of M; or M and a vector.

e When K is the nonnegative orthant, its associated barrier function is B(z) = — Y., Inz;. Notice that
V2B(x) is a diagonal matrix and so is M;. As a result, the operation cost for computing the product of
M; or M and a vector is O(n), which is typically cheaper than the Hessian-vector product of F.

e When K is a general cone, directly computing M; may be too expensive. In view of V2B(z!) = M, T M; "
(see (16)), one can instead choose M; T as the Cholesky factor of V2B (z?), which is computed only once
in each iteration of Algorithm 1. Once M, * is available, the product of M; or M and a vector can be
computed by performing backward or forward substitution to a linear system with coefficient matrix M't_1
or M; T

Based on the above discussion, we conclude that: (i) when K is the nonnegative orthant, the fundamental
operations of Algorithm 1 consist only of the Hessian-vector products of F; (ii) when K is a general cone, the
fundamental operations of Algorithm 1 consist of the Hessian-vector products of F', Cholesky factorizations of
V2B, and backward or forward substitutions to a triangular linear system.

The following theorem states the iteration and operation complexity of Algorithm 1, whose proof is deferred
to Section 7.2.

Theorem 4.1 (Complexity of Algorithm 1). Suppose that Assumption 4.1 holds. Let

Pni — Plow - - ®hi — Plow ®hi — Plow

Ty = LIHH{Csol,ZnC} max{e, Zem e |+ TOGHS +1, Th = TOGH?’ +1, (25)
where ¢ni = ¢, (u°), Prow is given in (22), and
4(1-8) 2 in{6(1—n),2}0 12
_ . — min —-n),
Cool = nmm{[4+C+\/(4+C)2+8[(1—5)L§+/t(2—B)/(1—B)]] ’ [Lﬁﬂt@—ﬁ)/(l—ﬁ)z] } (26)
2
N . min{3(1—n),1}0

Cne = 16 i {1’ [L%u(zfﬁ)%fﬁv} } ' @7

Then the following statements hold.

(i) The total number of calls of Algorithm 4 in Algorithm 1 is at most Ty.
(ii) The total number of calls of Algorithm 3 in Algorithm 1 is at most Ty.

(iii) (iteration complexity) Algorithm 1 terminates in at most Ty + Ty iterations with
T +1T, = O((¢h1 — (blow)(LZ)Q max{e;26H7 6&3}) (28)

Moreover, its output xt satisfies the first relation in (14) deterministically and the second relation in (14)
with probability at least 1 — § for some 0 <t < Ty + Ts.

(iv) (operation complexity) The total numbers of Cholesky factorizations and other fundamental operations
consisting of the Hessian-vector products of F and backward or forward substitutions to a triangular linear
system required by Algorithm 1 are at most Ty + T and

O((ni = drow) (Liy)? max{e, *epr, " min{n, (Uf; /en)'/2}),

respectively, where UL is given in (24).

5 A Newton-CG based barrier-AL method for problem (1)

In this section we propose a Newton-CG based barrier-AL method for finding a stochastic (e, 1/€)-SOSP of
problem (1) for any prescribed tolerance € € (0,1).

Recall that B is the ¥-LHSC barrier function associated with I for some ¥ > 1. We now make the following
additional assumptions on problem (1).

Assumption 5.1. (a) An e/2-approzimately strictly feasible point z. of problem (1), namely satisfying ze € int K
and ||c(ze)|| < €/2, is known.

(b) There exist constants fui, fiow € R and v,d5,6. > 0, independent of €, such that

f(ZE) + :UB(Ze) < fhia v,u S (O’/’LOL (29)

f(@) + pB(x) +lle(@)]*/2 > fiow, Vi € (0, pol, @ € int K, (30)

S(0y,6c) = U {z eintC: f(x) + uB(x) < fui + 0y, |le(zx)|| < 1+ 0.} is bounded, (31)
HE(0, 0]

where jig = 1/(29% +2) and 2. is given in (a).
(c) There exist LL,L‘;I >0 and B € (0,1) such that

IV2f(y) = V2 @)5 < Lilly = @llos Yo,y € 05, 60) with |ly — ||, < B,

IV2ci(y) = VZei(@)ll; < Lylly — 2lle, Yo,y € oy, dc) with ||y — 2. < B, 1 <i<m, o
where Q(87,6.) C int K is an open bounded convex neighborhood of S(dy,9.).
(d) The quantities Ug, Ug, U{I and U§; are finite, where
Uf = 5uscaspan IV @5 Us = 50, cnsy o masisisn Ve (53)
Ufy = sbscasy 5 IV F@)E Uty = Sbacngs, 5y maxicicn IV2a@):. (34)

We next make some remarks about Assumption 5.1.

Remark 5.1. (i) A similar assumption as Assumption 5.1(a) was considered in the study of AL methods for
nonconvezr equality constrained optimization (e.g., see [28, 41, 44, 52, 70]). By imposing Assumption 5.1(a),
we restrict our study on problem (1) for which an €/2-approximately strictly feasible point z. can be
found by an inexpensive procedure. Assumption 5.1(a) often holds in practice. For example, when the
constraints of (1) consist of sphere and nonnegative orthant constraints, a strictly feasible point is readily

available. Also, when c is an affine mapping and KC is the nonnegative orthant, a strictly feasible point
of (1) can be found using interior point methods. In addition, when the generalized LICQ condition
Amin(Ve(2)TV2B(2)~1Ve(z)) > 02 (see Assumption 5.2 below) holds on a level set of |c(z)||? + pB(z)
for u = ce/(20Y/2) and some constant o > 0 and F(z) = |c(x)||? satisfies Assumption 4.1, the point z
can be found by applying our preconditioned Newton-CG method (Algorithm 1) to the barrier problem
min, ||c(z)||? + pB(x) to find zc satisfying |V (|[c(ze)||? + uB(ze)) |5, < o€/2. It can be verified that such z
satisfies Assumption 5.1(a). As observed from Theorem 4.1, the resulting iteration and operation complexity
for finding such z. are respectively O(e~3/?) and 6(6_3/2 min{n, e~'/4}), which are negligible compared
with those of our barrier-AL method (see Theorems 5.4 and 5.5 below).

(ii) Assumption 5.1(b) is mild. In particular, the assumption in (29) holds if f(x)+ po[B(x)]+ is bounded above
for all x € int K with ||c(x)|| < 1. Besides, the function f(z)+ uB(x) +v|c(z)||?/2 is a barrier-quadratic
penalty function of problem (1) and is typically bounded below on int K. In addition, letting 2° be an
arbitrary point in int IC, it can be shown that S(df,6.) C S1US2, where

81 = {w € mtK: f(2) < fui+ 5 + o+ uol BG4, B(z) > ~1— [B(0)]y, e(a)| <1+ 4.},

. (6
So = {x eint K+ L < Mtdhe 40 Ba) < -1 - [B(O)]4, fle(@)] < 1 +6C},

and t4 = max{0,t} for all t € R. Thus, the assumption in (31) holds if S1 and S2 are bounded. The latter
holds, for example, for the problem with f(x) = €(x)+ > 1 a¥, B(xz) = —Y"" Inz; and K = R} studied
in [42], where £ : R™ — Ry is a loss function and p > 0.

(iii) Assumptions 5.1(c) means that V2f and V?c;, 1 <i < m, are locally Lipschitz continuous in Q(dy,d.) with
respect to the local norms. As pointed out in [43, Section 5], such local Lipschitz continuity is weaker than
the global Lipschitz continuity of V2f and V3¢;, 1 <i <m, in Q(d7,0.). Besides, Assumption 5.1(d) holds
if f and c are twice continuously differentiable in an open set containing K.

5.1 A Newton-CG based barrier-AL method

We now describe our Newton-CG based barrier-AL method (Algorithm 2) for finding a stochastic (e, 1/€)-SOSP
of problem (1) for a prescribed tolerance € € (0, 1). Instead of solving (1) directly, our method solves a sequence
of perturbed equality constrained barrier problems

min{ f(z) + ppB(2) : é(z) = 0}, (35)
where py is given in Algorithm 2, z, is given in Assumption 5.1(a), and
é(x) == c(x) — e(ze). (36)

It follows a similar AL framework as the one proposed in [44]. In particular, at the kth iteration, it first applies
the preconditioned Newton-CG method (Algorithm 1) to find an approximate stochastic SOSP z**! of the
subproblem:

min { £, (2, 0% o) 1= f(2) + meB() + ()7 e(2) + 2)12} (37)

which is an AL subproblem associated with (35). Then the standard multiplier estimate PUSRIE updated by
the classical scheme (see step 3 of Algorithm 2), and the truncated Lagrangian multiplier A**1 is updated by
projecting M+ onto a Euclidean ball (see step 5 of Algorithm 2).° Finally, the penalty parameter pjy is
adaptively updated according to the improvement on constraint violation (see step 6 of Algorithm 2). This
update scheme is very practical and widely used in AL type methods (e.g., see [3, 8, 28]).

Remark 5.2. (i) Notice that the starting point z3.. of Algorithm 2 can be different from z. and it may be

ini

rather infeasible, though z is a nearly feasible point of (1). Besides, z. is used to monitor convergence
of Algorithm 2. Specifically, if the algorithm runs into a “poorly infeasible point” x*, namely satisfying

5The A*t1 is also called a safeguarded Lagrangian multiplier, which has been used in the literature for designing some AL
methods (e.g., see [3, 13, 44, 47]). It has been shown to enjoy many practical and theoretical advantages (e.g., see [13]).

Algorithm 2 A Newton-CG based barrier-AL method for problem (1)

Let «v and p be given in Assumption 5.1.
Input: € € (0,1), A >0, 2° € int K, \° € Ba, po > 27, a € (0,1), 7 > 1, § € (0,1), 2z given in Assumption 5.1(a), and
i = max{e, rF108 </ 1082} /(991/2 4 9) for all k > 0.

1:
2:

N o W

Set k= 0.
Call Algorithm 1 with ¢, = px, ex = /ux and u° = zF .. to find an approximate solution z*™' € intK to
ming £, (, \¥; px) such that

[’Hk(karl?)‘k;pk) < f(Ze) +NkB(ZE)’ HVI ‘Cuk(‘rkJrl?)‘k;pk)”;’H—l < pk, (38)
)\min(MkT_,_IViwﬂM (mkH, AP Pk)My41) > —/uk with probability at least 1 — 6, (39)

where M} is defined as in (16) and

. koyk.
xﬁlit — { Zek if ‘C’Hk (ZC 7)‘ 7Pk) > f(ze) + /“LkB(Ze)v for k 2 0. (40)
z” otherwise,

: Set AFFL = 2F 4 pa(aht).
I g < €/(20Y2 +2) and ||e(z**1)|| < e, then output (zFF!, A¥+1) and terminate.

Set \FTL =115, (AFH1).

c Ifk=0or ||&@")|| > alléz®)], set prr1 = rpx. Otherwise, set pri1 = pr.
: Set k< k+ 1, and go to step 2.

L (8,05 p1) > f(2e) + peB(2e), it will be superseded by z. (see (40)), which prevents the iterates {x*}
from converging to an infeasible point. Yet, x* may be rather infeasible when k is not large. Thus,
Algorithm 2 substantially differs from a funneling or two-phase type algorithm, in which a nearly feasible
point is found in Phase 1, and then approzimate stationarity is sought while near feasibility is maintained
throughout Phase 2 (e.qg., see [11, 16, 22, 23, 24, 25, 26, 36]).

(ii) The choice of pg in Algorithm 2 is mainly for the simplicity of complexity analysis. Yet, it may be overly

large and lead to highly ill-conditioned AL subproblems in practice. To make Algorithm 2 practically more
efficient, one can possibly modify it by choosing a relatively small initial penalty parameter, then solving the
subsequent AL subproblems by a first-order method until an €;-first-order stationary point & of (35) along
with a Lagrangian multiplier \ is found, and finally performing the steps described in Algorithm 2 but with
20 = & and \° = IIg, (N).

(iii) Algorithm 2 can be easily extended to find an (e,/€)-SOSP of a more general conic optimization problem

of the form minmwy{f(x,y) :é(z,y) = 0,y € K}. Indeed, one can follow almost the same framework as
Algorithm 2, except that the associated subproblems are solved by a preconditioned Newton-CG method,
which is a slight modification of Algorithm 1 by choosing the preconditioning matrix My, as the one satisfying

-1
I 0 o 27 asrT
o wesn] =T

(iv) It is worth mentioning that Algorithm 2 shares some similarities with classical primal interior point methods

for convex conic optimization. Specifically, Algorithm 2 applies a damped Newton’s method to solve a
sequence of barrier-AL subproblems, while the primal interior point method applies a projected Newton’s
method to solve a sequence of constrained barrier subproblems.

Before analyzing the complexity of Algorithm 2, we first argue that it is well-defined if pg is suitably chosen.

Specifically, we will show that when pg is sufficiently large, one can apply Algorithm 1 to the subproblem
min, £, (2, A\¥; pi,) with 2F,, as the initial point to find an z**1 satisfying (38) and (39). To this end, we start
by noting from (29), (36), (37) and (40) that

(36)(37)

(40) (29)
Euk(xiknit:/\k;pk) < maX{‘Cuk (Zev/\k;pk)af(ze) +,ukB(ze)} f(ze) +MkB(ZG) < fhi' (41)

Based on this observation, we show in the next lemma that when py is sufficiently large, £,,, (-, M pk) is bounded
below and its certain level set is bounded, whose proof is deferred to Section 7.2.

10

Lemma 5.1 (Properties of £,,, (-, *; p) and L(-,*; py)). Suppose that Assumption 5.1 holds. Let (*, py,)
be generated at the kth iteration of Algorithm 2 for some k > 0, and

Ll N5 pe) 1= f) + ()T e(w) + B la(@)] (42)

Let S(67,0.) and zf ., be respectively defined in (31) and (40), uy be given in Algorithm 2, and let &5, Oc, fui,
Siow, L{{, L%, U};, Ug, Uy and Q(0y,9.) be given in Assumption 5.1. Suppose that po is sufficiently large such

that 651 < 6y and 0.1 < O, where

2(fni — frow +7) A2 n A
po — 27 (Po —27)* po—2v

Sp1:=NMA*/(2p0) and 6.1 := \/ (43)

Then the following statements hold.
(i) {z eintK: L, (2, N5 01) < Loy (2F 0, N5 i)} € S(65,6c).
(ii) infeeint i Loy (T, A% pr) > fiow — 7 — Ade.
(iii) [[VZa L(y, A5 pr) = Vi L2, A5)13 < L lly — @llo for all 2,y € Q(8f,6c) with ||y — @[l < B, where

UgUyg (2= B)USUg

Lk7H::Lf—|— NeI[LLS + pem | (1 4+ US)LS, + , U:= sup c(2)||. (44
u T IN Ly + pem | ()L - A=) e ()]l (44)
(iv) The quantities Uy ¢ and Uy g are finite, where
Ukg:= sup VoL@ A500)[5 Urm = sup V2, Lz, A% pp)ll3-

.7;65(6f,50) (EES((Sf,5c)

Moreover, Uy, g < U +||\¥|[LUS+pry/m(240:)UE and Uy i < UIJ;+||/\’“H1U1§+pk(m(U;)2+\/ﬁ(2+6C)UIC{).

In view of (31) and Lemma 5.1(i) and (ii), one can see that the level set {z € int K : £, (z,*; p) <
L, (xF ., AF; pr)} is bounded and £,,, (x, \¥; pi,) is bounded below for all z € int K. By these and Lemma 5.1(iii)
and (iv), one can further see that Assumption 4.1 holds for F(-) = L(-, A\¥; p.) and u® = z¥ .. Based on this and the
discussion in Section 4, we can conclude that Algorithm 1, starting with u® = 2 ., | is applicable to the subproblem
ming £, (x, A pr)- Moreover, it follows from Theorem 4.1 that this algorithm with €, = i and ez = \/pi, can
produce a point z¥*! satisfying (39) and also the second relation in (38). In addition, since this algorithm is
descent and its starting point is aF ., its output 2*+1 must satisfy £, (z*1, *; pr) < Lo, (25, A¥; pi.), which
along with (41) implies that £, (z*+1, \¥; pi) < f(z¢) + px B(2e) and thus z*+1 also satisfies the first relation in
(38).
The above discussion leads to the following conclusion concerning the well-definedness of Algorithm 2.

Theorem 5.1 (Well-definedness of Algorithm 2). Under the same settings as in Lemma 5.1, the precondi-
tioned Newton-CG method (Algorithm 1), when applied to the subproblem min, L, (z, \¥; py) with u® = z£
can find a point 2%+ satisfying (38) and (39).

The following theorem characterizes the output of Algorithm 2, whose proof is deferred to Section 7.3.

Theorem 5.2 (Output of Algorithm 2). Suppose that Assumption 5.1 holds and that po is sufficiently large
such that 01 < ¢ and 6.1 < 0., where 051 and .1 are defined in (43). If Algorithm 2 terminates at some
iteration k, then its output x*1 is a deterministic e-FOSP of problem (1), and moreover, it is an (e, /€)-SOSP
of (1) with probability at least 1 — 4.

Remark 5.3. As seen from Theorem 5.2, the output of Algorithm 2 is a stochastic (e,+/€)-SOSP of problem (1).
On the other hand, this algorithm can be easily modified to find other approximate solutions of (1) as well.
For example, if only an e-FOSP of (1) is to be sought, one can remove the condition (39) from Algorithm 2.
In addition, if one aims to find a deterministic (e,/€)-SOSP of (1), one can replace the condition (39) and
Algorithm 1 by)xmin(MkTHVizE#k (P NF o)My) > —V/#r and a deterministic counterpart, respectively.

11

5.2 Outer iteration complexity of Algorithm 2

In this subsection we establish outer iteration complexity of Algorithm 2, which measures the number of its outer
iterations. Notice that uj can be rewritten as

e = max{e, wF}/(20Y/2 + 2) with w := o8¢/ 1082 yE >0, (45)
where r is an input of Algorithm 2. By € € (0,1) and r > 1, one has w € (0, 1). For notational convenience, we
introduce the following quantity that will be frequently used later:

K= [min{k > 0:w* <€}]. (46)

In view of this and (45), we obtain that yu, = ¢/(201/2 + 2) for all k > K.. This along with the termination
criterion of Algorithm 2 implies that it runs for at least K. iterations and terminates once ||c(z**1)|| < ¢ for
some k > K.. Consequently, to establish outer iteration complexity of Algorithm 2, it suffices to bound such k.
The resulting outer iteration complexity is presented below, whose proof is deferred to Section 7.3.

Theorem 5.3 (Outer iteration complexity of Algorithm 2). Suppose that Assumption 5.1 holds and that
po is sufficiently large such that §;1 < d; and 6.1 < 0., where 651 and 6.1 are defined in (43). Let

Pe,1 -= Max {S(fhl - flow + 7)672 + 4A€71 + 277 2[)0}) (47)
K. :=inf{k > K, : [lc(z")| <€}, (48)

where K. is defined in (46), and 7y, fui and fiow are given in Assumption 5.1. Then K. is finite, and Algorithm 2
terminates at iteration K. with

< <1og(pe,1pal) +1> (
logr

Moreover, py < rpe1 holds for 0 <k < K.

log(e(26.,1)~1)
log o

=

+ 2) +1. (49)

Remark 5.4 (Upper bounds for K, and {p;}). As seen from Theorem 5.3, the number of outer iterations
of Algorithm 2 for finding a stochastic (e,/€)-SOSP of problem (1) is at most of O(|loge|?). In addition, the
penalty parameters {py} generated by this algorithm are at most of O(e~2).

5.3 Total inner iteration and operation complexity of Algorithm 2

In this subsection we present the total inner iteration and operation complexity of Algorithm 2, which measures
the total number of iterations and fundamental operations performed by Algorithm 1 in Algorithm 2. Its proof
is deferred to Section 7.3.

Theorem 5.4 (Total inner iteration and operation complexity of Algorithm 2). Suppose that Assump-
tion 5.1 holds and that po is sufficiently large such that 671 < 6y and 6.1 < 6., where dy1 and é.1 are defined in
(43). Then the following statements hold.

(i) The total number of inner iterations of Algorithm 2, namely, the total number of iterations of Alggm'thm 1
performed in Algorithm 2, is at most O(e~*/2). If ¢ is further assumed to be affine, it is at most O(e~3/?).

(ii) The total numbers of Cholesky factorizations and other fundamental operations consisting of the Hessian-
vector products of f and ¢ and backward or forward substitutions to a triangular linear system required by
Algorithm 1 in Algorithm 2 are at most (5(6_11/2) and (5(6_11/2 min{n, e~%/%}), respectively. If c is further
assumed to be affine, they are at most (5(673/2) and (5(673/2 min{n, e~5/*}), respectively.

Remark 5.5. (i) It is worth mentioning that the above complexity results are established without assuming any
constraint qualification. Moreover, when K is the nonnegative orthant, these results match the best-known
ones achieved by a Newton-CG based AL method [44] for nonconver equality constrained optimization
without imposing a constraint qualification.

(ii) For the unconstrained case, where I =R" and ¢ =0, we can eliminate the barrier function for handling K
and the AL function for handling ¢ from Algorithm 2. Consequently, Algorithm 2 reduces to the Newton-CG
method presented in [44, Algorithm 1] and [60, Algorithm 3]. The corresponding operation complexity bound
can be improved to (5(673/2 minn, e~'/4), which matches the results provided in [{4, Theorem 3.1] and [60,
Theorem 4 and Corollary 2] for unconstrained optimization.

12

5.4 Enhanced complexity of Algorithm 2 under constraint qualification

In this subsection we study complexity of Algorithm 2 under one additional assumption that a generalized linear
independence constraint qualification (GLICQ) holds for problem (1), which is introduced below. In particular,
under GLICQ we will obtain an enhanced total inner iteration complexity of (7)(6_7/ 2) and an enhanced operation
complexity of O(e~ /2 min{n, e~3/4}) for Algorithm 2 when the equality constraints in problem (1) are nonlinear,
which are significantly better than the ones in Theorem 5.4. We now introduce the GLICQ assumption for (1).

Assumption 5.2 (GLICQ). There exists some o > 0 such that
Amin(Ve(z) T VZB(2) "' Ve(z)) > 02, Vo € S(6;,0.), (50)
where S(6¢,0.) is defined in (31).

The following theorem shows that under Assumption 5.2, the total inner iteration and operation complexity
results presented in Theorem 5.4 can be significantly improved, whose proof is deferred to Section 7.3.

Theorem 5.5 (Enhanced total inner iteration and operation complexity of Algorithm 2). Suppose
that Assumptions 5.1 and 5.2 hold and that pg is sufficiently large such that 071 < 0y and 6.1 < d., where 051
and 3.1 are defined in (43). Then the following statements hold.

(i) The total number of inner iterations of Algorithm 2, namely, the total number of iterations of Algorithm 1
performed in Algorithm 2, is at most O(e~7/2). If ¢ is further assumed to be affine, it is at most O(e~3/?).

(ii) The total numbers of Cholesky factorizations and other fundamental operations consisting of the Hessian-
vector products of f and ¢ and backward or forward substitutions to a triangular linear system required by
Algorithm 1 in Algorithm 2 are at most O(e~7/2) and O(e~ 7/ min{n, e=3/4}), respectively. If c is further
assumed to be affine, they are at most O(e=3/2) and O(e~3/2 min{n, e~3/4}), respectively.

Remark 5.6. As seen from Theorem 5.5, under GLICQ and some other suitable assumptions, Algorithm 2
achieves significantly better complexity bounds than the ones in Theorem 5.4 when the equality constraints in (1)
are nonlinear. Moreover, when K is the nonnegative orthant, the complexity results in Theorem 5.5 match the
best-known ones achieved by a Newton-CG based AL method [{4] for nonconvex equality constrained optimization
under the constraint qualification that is obtained from the above GLICQ by replacing V?B(x) by the identity
malriz.

6 Numerical results

In this section we conduct some preliminary numerical experiments to test the performance of our Newton-CG
based barrier-AL method (Algorithm 2) for solving a low-rank matrix recovery problem, a simplex-constrained
nonnegative matrix factorization problem, and a sphere-constrained nonnegative matrix factorization problem.
In our experiments, all the algorithms are coded in Matlab and all the computations are performed on a desktop
with a 3.79 GHz AMD 3900XT 12-Core processor and 32 GB of RAM.

6.1 Low-rank matrix recovery

In this subsection we consider a low-rank matrix recovery problem (e.g., see [9, 29, 59])

1
min | {14Q@UT) ~ 4l I < b}, (51)
Uermxt | 2
where A : R™*"™ — R™ is a linear operator and || - || ¢ is the Frobenius norm.

For each triple (n, [, m), we randomly generate 10 instances of problem (51) in a similar manner as described
in [9]. In particular, we first randomly generate a linear operator A by setting A(-) = A(vec(-)), where A is
an m x n? matrix with all entries chosen from the normal distribution with mean zero and standard deviation
1/4/m, and vec(-) is the vectorization of the associated matrix.® Then we randomly generate the ground-truth

6The vectorization of a matrix is the column vector obtained by stacking the columns of the matrix on top of one another.

13

Relative error Objective value
n l m Algorithm 2 SpaRSA Algorithm 2 SpaRSA
20 1 40 || 6.3x107* 6.3x107% || 9.9x10~4 9.8x107%
20 2 80 | 3.3x107* 0.60 2.0x1073 7.8%x103
40 2 160 || 1.7x107* 0.66 4.2x1073 7.1x10%
40 4 320 || 1.2x10* 0.81 8.0x1073 5.5%10°
60 3 360 | 9.2x107° 0.78 9.3x1073 8.4x10°
60 6 720 || 6.3x107° 0.85 1.9x10~2 5.1x10°
80 4 640 || 5.8x107° 0.83 1.6x1072 4.4%109
80 8 1280 || 3.9x10°° 0.90 3.3x1072 2.5x107
100 5 1000 || 4.2x107° 0.89 2.6x1072 1.6x107
100 10 2000 || 2.8x107° 0.92 5.2x1072 8.1x107

Table 1: Numerical results for problem (51)

low-rank matrix X* = UUT with all entries of U chosen from the standard normal distribution. We finally set
b= ||(7H% and y = A(X™*) + e, where e;, 1 <i <m, is generated according to the normal distribution with mean
zero and standard deviation 0.01.

Observe that problem (51) is equivalent to

1
min {2||A<UUT> Y UG s =bs > o}. (52)

In this experiment, we apply Algorithm 2 to find a (107%,1072)-SOSP of (52) and hence of (51). To ensure
that the output of Algorithm 2 is a deterministic approximate second-order stationary point, we use a minimum
eigenvalue oracle that returns a deterministic output in Algorithm 2 instead, which calls the Matlab subroutine
[v,A\] = eigs(H,1,'smallestreal’) to find the minimum eigenvalue A and its associated unit eigenvector v of a real
symmetric matrix H. Besides, we apply [68, Algorithm SpaRSA], which is a nonmonotone proximal gradient
method, to find a 107#-FOSP of (51) by generating a sequence {U'} according to

U' = argmin{[|U = U1 + V(U™ Jayallr : U] < b},

where f is the objective function of (51) and «a;_; is chosen by a backtracking line search scheme such that
FUY) < maxp_p—1), <i<t—1 f(UY) — oou1||U" = UH|2,/2 for some o € (0,1) and a positive integer M (see
[68] for details). We terminate SpaRSA once the condition

lae—1(U* = U= + V(U™ = VFU")llp <107

is met. It can be verified that such U? is a 1074-FOSP of (51). We choose the initial point U® with all entries
equal to \/b/(2nl) for both methods, s° = b/2 for Algorithm 2, and set

e (A, po, A\, a,) = (103,102,0,0.25,1.5) for Algorithm 2, and (6, ¢,n,3) = (0.5,0.5,0.01,0.9) for Algorithm 1;
e (0, M, amin, Omax,n) = (0.01,5,1073°,10%°, 2) for SpaRSA [68].

Notice that the approximate solution obtained by SpaRSA must be a feasible point of (51), while the one
found by Algorithm 2 may not be a feasible point of (51). For a fair comparison, we project the latter one into
the feasible region of (51) to obtain a feasible approximate solution. Then we compare the quality of these
feasible approximate solutions in terms of objective value and relative error defined as ||[UUT — X*||p/||X*|| for
a given U. The computational results of Algorithm 2 and SpaRSA for the instances randomly generated above
are presented in Table 1. In detail, the values of n, [and m are listed in the first three columns, respectively.
For each triple (n,l,m), the average relative error and the average objective value of the feasible approximate
solutions found by each method over 10 random instances are given in the rest columns. One can observe that
the approximate SOSP found by Algorithm 2 has significantly lower relative error and objective value than the
approximate FOSP obtained by SpaRSA, except for the instances with (n,1,m) = (20, 1, 40).

14

N 450 100

E

= 400

5 <

D 350] L

< [0 g

5 300 g

@0 w

5 20 S et

= w

g 200 5 @

< 150 ®

B = I 401

£ 100 =

=

= 50

e 20
oA D,Q\Q &N X @ X A x e . 425 X _Bbp\% 3\1@\6 }QQQ\Q Tpgq\ o _bp\g [l 1@9\ R oY r e . a9 . _@9\% 7\1@\‘3 }QQQ\Q }@Q\

B @ e T e @ @ & \,\QQ k&“"\ T e 0 @ @ @ @ (\QQ Q“Q Al
Problem size: (n | m) Problem size: (n |.m)

Figure 1: Left: The total number of inner iterations of Algorithm 2 for finding a (10~=%,1072)-SOSP of (52)
for each problem size over 10 random instances. Right: The number of iterations of SpaRSA for finding a
10~%-FOSP of (51) for each problem size over 10 random instances.

* * % %

104 -— + -+ + + 0 10% - r - r r r -
1 —+—Objective | | _ :
102 \ v 102k
2 = o
> \ 155 =z
‘g 100 J @ g 10°
=) /) =]
o] \ & [s]
102f / g 0 102
/ T ¥ o
+
104 L L L L L 35 104 L I ! I L L I
1 2 3 4 5 8 7 10 20 30 40 50 60 70 80
Outer lterations of Algorithm 2 Iterations of SpaRSA

Figure 2: Numerical results of Algorithm 2 and SpaRSA on a single random instance of problem (51) with

(n,l,m) = (20,2,80). These two figures illustrate the convergence behavior of both methods in terms of objective
value 1| AUH(UM)T) — y||* and feasibility [||U*]|% — b]4.

For each triple (n,l,m), we use box charts in Figure 1 to present the total number of inner iterations of
Algorithm 2 for finding a (1074, 1072)-SOSP of problem (52) and the number of iterations of SpaRSA for finding
a 10~4-FOSP of problem (51) over 10 random instances. We observe that the total number of inner iterations of
Algorithm 2 remains at a similar level when the problem size becomes larger. In addition, Figure 2 illustrates the
convergence behavior of both methods for solving a single random instance of (51) with (n,l, m) = (20, 2, 80).
We observe that SpaRSA converges in fewer (inner) iterations than Algorithm 2. However, it converges to a
suboptimal solution with a significantly larger objective value compared to the solution found by Algorithm 2.

6.2 A simplex-constrained nonnegative matrix factorization

In this subsection we consider a simplex-constrained nonnegative matrix factorization (e.g., see [45, 50, 54, 64])
in the form of

. 1
i {GIX = UVIR AU + VIR Ve = et > 0.V > 0} (53)

UGR"XZ,VERlxm

for some v > 0, where || - || is the Frobenius norm and e4 is the d-dimensional all-ones vector for any d > 1.

15

Relative error Objective value
n I m || Algorithm 2 SpaRSA || Algorithm 2 SpaRSA
20 2 10 || 4.8x1073 0.15 0.30 3.1
20 2 20 || 3.6x1073 0.16 0.35 6.4
20 2 30 || 3.2x1073 0.16 0.39 9.7
30 3 15| 5.8x1073 0.16 0.62 7.6
30 3 30| 4.3x10°3 0.17 0.70 16.1
30 3 45 || 3.6x1073 0.17 0.76 23.8
40 4 20| 6.3x1073 0.15 1.0 11.1
40 4 40 || 4.6x1073 0.15 1.2 21.7
40 4 60 || 4.0x1073 0.15 1.2 31.8
50 5 25 || 6.8x1073 0.14 1.6 15.1
50 5 50 || 5.0x1073 0.14 1.8 20.8
50 5 75 || 4.3x1073 0.14 1.9 43.9

Table 2: Numerical results for problem (53)

-
=1
=1
=]

N

o

5000 é =
4000 Ei
3000 é e

&%

s TTLITLIL

A BV oY o B O O B 15 OO AN B N E) 0 BB S 16
PO gt gt Dol A I B AN n P B .l
@ et et P ' @®F P PP > ot ot ot @ @ P°

lterations of SpaRSA

Total inner iterations of Algorithm 2
[=]

@ et et gt @ e @

Problem size: (n,|,m) Problem size: (n,Im)

Figure 3: Left: The total inner iterations of Algorithm 2 before finding a (107*,1072)-SOSP of (53) for each
problem size over 10 random instances. Right: The number of iterations of SpaRSA before finding a 10~*-FOSP
of (53) for each problem size over 10 random instances.

For each triple (n,l,m), we randomly generate 10 instances of problem (53). In particular, we first randomly
generate U* with all entries chosen from the uniform distribution over [0, 2]. We next randomly generate V with
all entries chosen from the standard uniform distribution and set V* = YN/D, where D is a diagonal matrix such
that (V*)Te; = e,,. In addition, we set v = 0.005 and X = U*V* + E, where the entries of E follow the normal
distribution with mean zero and standard deviation 0.01.

Our aim is to apply Algorithm 2 and SpaRSA [68] to solve (53) and compare the solution quality of these
methods in terms of objective value and relative error defined as |[UV — U*V*||p/||U*V*| r. In particular, we
first apply Algorithm 2 to find a (10~%,1072)-SOSP of (53), in which a minimum eigenvalue oracle that returns
a deterministic output, namely the Matlab subroutine [v,A] = eigs(H,1,’smallestreal’) is used. Given that the
obtained approximate SOSP may not be a feasible point of (53), we post-multiply it by a suitable diagonal
matrix to obtain a feasible approximate solution of (53). In addition, we apply SpaRSA [68] to find a 10~*-FOSP
of (53) by generating a sequence {(U*,V*)} according to

Ut vt) = argrgi‘l/n{H(U, V)= (UL VEY VUL VY Jaallp Ve = e, U >0,V >0},

where f is the objective function of (53) and «;_1 is chosen by a backtracking line search scheme such that
FWUL VY < maxp_n—1), <i<e—1 f(UL V) — ooy | (UR, V) — (U, VITY)]13/2 for some o € (0,1) and a

16

102 T : . 4 102

% * —+— Objective % —+— Objective
e Fi —— Feasibility il
e 0V N 7 4 = o 10'F 7
= N » = =
o N , 2 B
2, X A <= L
=) AN o 2
(] A i o
10 ‘\\ 10
\ i
N *
\«- + T -
10! . . 0 107 L L L
1 2 3 4 5 5 10 15 20 25 30 35 40 45 50
Outer iterations of Algorithm 2 Iterations of SpaRSA

Figure 4: Numerical results of Algorithm 2 and SpaRSA on a single random instance of problem (53) with
(n,l,m) = (20,2,20). These two figures illustrate the convergence behavior of both methods in terms of objective
value (| X — U'VY|Z + y(|UY|% + |[V!||%) and feasibility [[(V)Te; — e

positive integer M (see [68] for details). We terminate SpaRSA once the condition
lae—1 (U, V) = (UL VD) + VAU L VT = VAU, V[P <1077

is met. It can be verified that such (U*, V*) is a 107#-FOSP of (53). In addition, we choose the initial point U°
and V? with all entries equal 1 and 1/k respectively for all the methods. We set the parameters for Algorithm 2
as (A, po,a,7) = (10%,102,0.25,1.5) and A\° = (0,...,0)T, and choose the same parameters for Algorithm 1 and
SpaRSA as the ones described in Subsection 6.1.

The computational results of Algorithm 2 and SpaRSA [68] for the instances randomly generated above
are presented in Table 2. In detail, the values of n, k and m are listed in the first three columns, respectively.
For each triple (n, k,m), the average relative error and the average objective value of the feasible approximate
solutions found by each method over 10 random instances are given in the rest columns. One can observe that
the approximate SOSP found by Algorithm 2 has significantly lower relative error and objective value than the
approximate FOSP obtained by SpaRSA.

For each triple (n,l,m), we use box charts in Figure 3 to present the total number of inner iterations of
Algorithm 2 for finding a (10~%,1072)-SOSP of problem (53) and the number of iterations of SpaRSA for finding
a 107%-FOSP of problem (53) over 10 random instances. We observe that the total number of inner iterations of
Algorithm 2 increases when the problem size becomes larger. In addition, Figure 4 illustrates the convergence
behavior of both methods for solving a single random instance of (53) with (n,l, m) = (20,2, 20). We observe
that SpaRSA converges in fewer (inner) iterations than Algorithm 2, but it converges to a poorer approximate
solution. Specifically, it quickly gets stuck at a suboptimal point with a significantly larger objective value
compared to the solution found by Algorithm 2.

6.3 A sphere-constrained nonnegative matrix factorization

In this subsection we consider a sphere-constrained nonnegative matrix factorization in the form of

. 1
win{GIX=UVER AT + VIR IVIE =m0 > 0.7 20} (54)
UeR" Xt VeRixm
where || - || is the Frobenius norm.

For each triple (n,l,m), we randomly generate 10 instances of problem (54). In particular, we first randomly
generate U* with all entries chosen from the uniform distribution over [0,2]. We next randomly generate 1%
with all entries chosen from the standard uniform distribution and set V* = /mV/||[V|r. In addition, we
set v = 0.005 and X = U*V* + E, where the entries of F follow the normal distribution with mean zero and
standard deviation 0.01.

17

Relative error Objective value
n I m || Algorithm 2 SpaRSA || Algorithm 2 SpaRSA
20 2 5 | 5.5%x1073 0.10 0.29 2.3
20 2 10 || 3.9x1073 0.12 0.33 5.5
20 2 15| 3.4x1073 0.13 0.36 8.6
20 2 20 || 3.1x1073 0.12 0.39 10.9
20 2 25| 2.9x1073 0.12 0.42 13.5
20 2 30 | 2.8x1073 0.12 0.45 16.5
40 4 10 || 4.5x1073 0.12 1.1 18.1
40 4 20| 3.1x1073 0.12 1.2 36.8
40 4 30 | 2.8x1073 0.12 1.3 54.6
40 4 40 || 2.6x1073 0.13 1.3 75.0
40 4 50| 2.2x1073 0.13 1.4 94.5
40 4 60 || 2.3x1073 0.13 1.5 113.0

Table 3: Numerical results for problem (54)

Our aim is to apply Algorithm 2 and SpaRSA [68] to solve (54) and compare the solution quality of these
methods in terms of objective value and relative error defined as ||[UV — U*V*||gp/||U*V*| r. In particular, we
first apply Algorithm 2 to find a (10~%,1072)-SOSP of (54), in which a minimum eigenvalue oracle that returns
a deterministic output, namely the Matlab subroutine [v,A\] = eigs(H,1,’smallestreal’) is used. Given that the
obtained approximate SOSP may not be a feasible point of (54), we post-multiply it by a suitable diagonal
matrix to obtain a feasible approximate solution of (54). In addition, we apply SpaRSA [68] to find a 10~4-FOSP
of (53) by generating a sequence {(U*,V*)} according to

(Ut vt = arg min {IU, V)= U VY + VU VY oy |p V[T =m,U >0,V >0},

where f is the objective function of (54) and «;_; is chosen by a backtracking line search scheme such that
fUL V) < maxp_y—1), <i<e—1 f(UL V) — o |[[(UL V) — (UL VEEY)|3/2 for some o € (0,1) and a
positive integer M (see [68] for details). We terminate SpaRSA once the condition

loe—1 (U, V) = (UL V) + VUL VY = VAU V| < 107

is met. It can be verified that such (U?,V?) is a 1074-FOSP of (54). Furthermore, we choose the initial point
UY and VY with all entries equal to 1 and 1/l respectively for all the methods. We set the parameters for
Algorithm 2 as (A, pg, o, 7) = (103,10%,0.25,1.5) and A\° = 0, and choose the same parameters for Algorithm 1
and SpaRSA as the ones described in Subsection 6.1.

The computational results of Algorithm 2 and SpaRSA [68] for the instances randomly generated above
are presented in Table 3. In detail, the values of n, [and m are listed in the first three columns, respectively.
For each triple (n,l,m), the average relative error and the average objective value of the feasible approximate
solutions over 10 random instances are given in the rest columns. One can observe that the approximate SOSP
found by Algorithm 2 has significantly lower relative error and objective value than the approximate FOSP
obtained by SpaRSA.

For each triple (n,l,m), we use box charts in Figure 5 to present the total number of inner iterations of
Algorithm 2 for finding a (10~%,1072)-SOSP of problem (54) and the number of iterations of SpaRSA for finding
a 107%-FOSP of problem (54) over 10 random instances. We observe that the total number of inner iterations of
Algorithm 2 increases when the problem size becomes larger. In addition, Figure 6 illustrates the convergence
behavior of both methods for solving a single random instance of (54) with (n,l,m) = (20,2,5). We observe
that SpaRSA converges in fewer (inner) iterations than Algorithm 2. However, it converges to a suboptimal
solution with a much larger objective value compared to the solution found by Algorithm 2.

18

@
=1
2
=1

BOOD

4000

2000

1 Lo

= %)
@ =3
o o

Iterations of SpaRSA
=]
{=]

o
=]

Total inner iterations of Algorithm 2

%?@@?égéﬁ

DY AT aBY oY aBY o aY oY oY Y oY
@ Y PV e e et o (o

LEoaag8

DAY ABY B g8 A ADY gOY Y Y g O
BV Y PV Y oM oMo oM o

Problem size: (n | m) Problem size: (n,Im)

Figure 5: Left: The total inner iterations of Algorithm 2 before finding a (10=*,1072)-SOSP of (54) for each
problem size over 10 random instances. Right: The number of iterations of SpaRSA before finding a 10~*-FOSP
of (54) for each problem size over 10 random instances.

—+#— Objective |

. 0.12
102 \ I/':k\\ —+#— Objective
= X —+— Feasibility | 1 0.1
i AN

Objective
5_.
. /
/
™,
=
E =
Feasibility
Objective
l:“\

10°
\\L
o + + 2
/'/ .‘\\
it I o 1071
1 2 3 4 5 0 15 20 25 30 35 40 45 50

Quter iterations of Algarithm 2 Iterations of SpaRSA

Figure 6: Numerical results of Algorithm 2 and SpaRSA on a single random instance of problem (54) with
(n,l,m) = (20,2,5). These two figures illustrate the convergence behavior of both methods in terms of objective
value 3| X — U'V||Z + y(||[UY|% + ||V![|%) and feasibility |||[V||% — m|.

7 Proof of the main results

In this section we provide a proof of our main results presented in Sections 3, 4, and 5, which are, particularly,
Theorems 3.1 and 4.1, Lemma 5.1, and Theorems 5.2, 5.3, 5.4, and 5.5.
Let us start with the following lemma concerning some properties of the ¥-LHSC barrier function.

Lemma 7.1. Let z € int K and 8 € (0,1) be given. Then the following statements hold for the 9-LHSC' barrier
function B.

() (IVB@)I2)? = 2"V B() =]2 = 0.
(i) —~VB(z) € int K*.
(iii) {y: lly —zll» <1} Cint K.
(iv) For any y satisfying ||y — x||» < B, it holds that
1= B)lvlle < llolly < (1= B)" vl

Yo € R, (55)

19

A= B)lollz < llolly < @ =B)7Holl;, Vv eR™. (56)
(v) {s:lls+ VB()|; <1} C K"
(vi) [[V2B(y) — V2B(2)||x < %Hy — ||, holds for all y with ||y — x|, < .

Proof. The proof of statements (i)-(v) can be found in [43, Lemma 1].
We next prove statement (vi). Let y be such that ||y — x|, < 8. It follows from [56, Theorem 2.1.1] that

(1= lly = [)*I 2 V2B(2)"*V2B(y)V*B(x)"/* < (1 = |ly — 2l|.) 1. (57)
By (4), (57), and [ly — «[|; < B, one has

IV?B(y) ~ V2B@)l; 2 maxpu<y [V2B(x)2(V?B(y) — V2B(x) V> B(x) "/ u]
= |V?B(x) 2V B(y)V?B(x) '/ ~ |

(57)
< max{l—(L—|ly—zf.)% A= lly—=ll.)? =1} = (1= lly - zll.) > — 1
2—|ly—z||» —
= %Hy —zf. < %Hy = 2,
where the last inequality is due to ||y — z||; < . Hence, statement (vi) holds as desired. O

7.1 Proof of the main results in Section 3

In this subsection we provide a proof of Theorems 3.1.

Proof of Theorem 3.1. By M € V~2B(z*), the full column rank of M'/2Ve¢(z*), and also the discussion in
Section 3, one knows that Robinson’s constraint qualification holds at z*. Since x* is a local minimizer of (1), it
then follows from [62, Theorem 3.38] that there exists some A* € R™ such that

V(z*) + Ve(z*)A* € — Nic(z*). (58)

Further, by [43, Proposition 1], one knows that (58) holds if and only if (5) and (6) hold. Consequently, (5) and
(6) hold as desired.

We next prove (7). It follows from Lemma 2.1 that {z* + M'/2d : ||d|| < 1} C K. Using this and the fact
that z* is a local minimizer of (1), we see that d* = 0 is a local minimizer of the problem

mdin {f(x*+M1/2d) se(x* + MY2d) :O}. (59)

In addition, since M/2V¢(x*) has full column rank, it is clear that LICQ holds at d* = 0 for (59). By the first-
and second-order optimality conditions of (59) at d* = 0, there exists some A* € R™ such that

MY2(Vf(a*) + Ve(a*)X) =0, (60)
d"m? (sz(a:*) +2 X:vﬂcz»u*)) M2d >0, Vde{d:Ve(a") M"/*d=0}. (61)
=1

In view of (6), (60), and the fact that M'/2V¢(z*) has full column rank, one can see that * = A*. Using this
and (61), we conclude that (7) holds. O

7.2 Proof of the main results in Section 4

In this subsection we first establish several technical lemmas and then use them to prove Theorem 4.1.
To proceed, by (16) and the definitions of local norms, one can verify that

]l = | Mdllae, ldllze = [[Medll, [HIGe = [McHM||, Vd € R", H € R (62)

20

In addition, as a consequence of Assumption 4.1(b) and Lemma 7.1(vi), one can observe that ¢, is locally
Lipschitz continuous in 2 with respect to the local norms, i.e.,

IV26,(y) = V2ou(@); < Llly — @lle, Va,y € Q with |y — . < 5, (63)

where
LY =L +p(2 - B)/(1 - B)% (64)

The following lemma directly follows from (63). Its proof can be found in [43, Lemma 3].

Lemma 7.2. Under Assumption 4.1(b), the following inequalities hold:

1 .
IV6u(y) = Vou(2) = V2ou@)(y — o)l; < 5Lilly — oz, Yo,y € Q with |ly — ol < 5, (65)

1 1 .
oY) < 8u(@) + V()" (y—2)+5(y—0) V20, (2)(y— o)+ Ly ly =23, Y,y € Q with |ly -] < B, (6)
where Q0 and L}Z are given in Assumption 4.1(b) and (64), respectively.
The following lemma shows that all iterates generated by Algorithm 1 lie in S.

Lemma 7.3. Suppose that Assumption 4.1 holds. Let {x'}scr be all the iterates generated by Algorithm 1, where
T is a subset of consecutive nonnegative integers starting from 0. Then {x'}ier C S, where S is defined in (23).

Proof. We first prove {a!};cr C int K by induction. Observe from Algorithm 1 that 2° = u® € int K. Suppose
that x* € int K is generated at iteration ¢ of Algorithm 1 and x'*! is generated at iteration ¢ + 1. We next prove
21 € int K. Indeed, observe from Algorithm 1 that x'*1 = 2! + oy M;d® with oy € (0,1] and d* given in one of
(17)-(19). It follows from (17)-(19) that ||d*|| < 8. By these and and the first relation in (62), one has

62
|2 — e = || Mydt o < My S]| < B, (67)

which, along with ! € int K, 8 < 1 and Lemma 7.1(iii), implies that z'*! € int . Hence, the induction is
completed, and we have {z'};cr C int K.

In addition, observe from Algorithm 1 that {¢, (z')}ser is descent. By this, 2° = u?, {z'}1er C int K, and
(23), one can see that {z'};c7 C S. O

The following lemma provides some properties of the output of Algorithm 3, whose proof is similar to the
ones of [60, Lemma 3] and [58, Lemma 7] and thus omitted here.

Lemma 7.4. Suppose that Assumption 4.1 holds and the direction d* results from the output dt of Algorithm 3 with
a type specified in d_type at some iteration t of Algorithm 1. Let My be given in (16) and v := max{||d"|/3,1}.
Then the following statements hold.

i) If d_type=SOL, then d satisfies
(i) yp s

€H||dt||2 < (dt)T (MtTVQQbM(xt)Mt + 2€HI) dt, (68)
]| < 11eg (| MI Ve, (2], (69)
(@) MIV e, (at) = 7 (d)T (MIV2,,(x*)M; + 2ei1) dt. (70)

If |d*|| < B, then d* also satisfies

1M V2 pu(a') My + 2eg1)d" + MV (a")| < endlld"/2. (71)

(ii) If d-type=NC, then d' satisfies (d')" MV, (z*) <0 and

(@) MV, (at) My

< —|d']| < —en- (72)
ld]?

21

The following lemma shows that when the search direction d* in Algorithm 1 is of type ‘SOL’, the line search
step results in a sufficient reduction on ¢,,.

Lemma 7.5. Suppose that Assumption 4.1 holds and the direction d' results from the output dt of Algorithm 3
with d_type=SOL at some iteration t of Algorithm 1. Then the following statements hold.

(i) The step length oy is well-defined, and moreover,

i 1-— 2
o > minq 1, = min{6(1 = 1), 2} Oepr o . (73)
LALE + (2 = B)/(1 = B)A(UL + uv/9)
(ii) The next iterate x'*1 = x! + oy Myd® satisfies

Su(a") = du(@™1) 2 csormin{([Veu (@) [5e) e €}, (74)
where My and cso1 are given in (16) and (26), respectively.

Proof. Notice from Lemma 7.3 that ' € S, that is, ' € int K and ¢,,(2%) < ¢,,(u®). It then follows from (16),
(24) and Lemma 7.1(i) that

1MV, () = IV, ()5 < IVE(")Ile + pll VBl < US + po. (75)

Since d* results from the output of Algorithm 3 with d_type=SOL, one can see that || MV, (z!)|| > €, and the
relations (68)-(70) hold. Also, one can observe from Algorithm 3 that its output d* satisfies

1MV (") My + 2eD)d" + MV, ()| < (I MV (a")|

for some ¢ € (0,1/6), which together with || MV, (z')|| > e, implies that d* # 0. It then follows from this and
(18) that d* # 0.

We first prove statement (i). If (20) holds for j = 0, then o = 1, which clearly implies that (73) holds. We
now suppose that (20) fails for 7 = 0. Claim that for all j > 0 that violate (20), it holds that

6% > min{6(1 — 1), 2bep (L) [l d"]| 7", (76)

where Lfl is defined in (64). Indeed, we suppose that (20) is violated by some j > 0. We next show that (76)
holds for such j by considering two separate cases below.

Case 1) ¢, (z' + 0T Md?) > ¢, (2?). Let o(a) = ¢, (a! + aMd?). Then p(67) > ¢(0). In addition, by (68),
(70, ¢ = max{||d"||/B,1} > 1, and d* # 0, one has

70 (68)
#(0) = (&) MIVG, () T~y (@) (MIT20(a") My + 2enD)d < —ypen|d’|> < 0.

In view of these, we can observe that there exists a local minimizer a* € (0,67) of ¢ such that ¢(a*) < ¢(0) and
¢ () = Vo (' + o Myd") " Myd" = 0. (77)

By ¢.(z') < ¢,(u”) and ¢(a*) < ¢(0), one has ¢, (z + a*Md") < ¢,(u’). In addition, using (67) and
0 <a* <6 <1, we have ||a*M;d!| ¢ < ||Md?| .+ < B. Hence, (65) holds for x = 2! and y = z* + o* M;d*. By
this, (62), (68), (70), (77), 0 < a* < 1 and ¢ > 1, one has

a*)2LY 62 a*)2LY (65)
O L ars 2 L Myt |2, > [0 ou(at + o Myd') — V() — V26, (et Myd'|

> (@) (MIVS, (" + " Myd') — MTV,(a) — o MTV6,(c") Myd')
D (@) MI V(") — a* ()T ME V2, (at) Md!

T (e — @) (@) (MT V2, (a") My + 26 D)d! + 20" e |2

(68)

> (- at)erlld? + 20" en |2 = (v + 0 erlld!? > e,

22

which along with d* # 0 implies that (a*)? > 2ep(L$)~![|d*||~*. Using this and 67 > a*, we conclude that (76)
holds in this case.

Case 2) ¢, (z" + 67 Md") < ¢, (z*). By this and ¢, (z") < ¢, (u”), one has ¢, (z' + 67 Md") < ¢, (u’). Also,
using (67) and 0 € (0,1), we have |67 M;d?||,+ < || Myd!||.« < B. Hence, (66) holds for z = 2 and y = 2 +67 M,d".
Using this, (62), (68), (70) and the fact that j violates (20), we obtain that

—nert? d'||* < pu(a’ + 67 Mid') — ¢, (")

S t\T t 92j t\NT A 1T 72 t t Lf] 37 t13

(62)(70) j T (7 T2 t e 07 oo t t L%S'ti}
= =0y (d)T (M Vo (a')My + 2 I)d" + T(d) My Ve, (") Md' + ?9 7| d* |
, J . L ..
=07 (3=) (@O MIT 0,0, + 2em D~ PP + S

(68) j 67)2 2j t)2 Li{3jt3 j)2 LQ;ISjth
< =07 (= 5) enlld! | — O enlld! | + SOV &P < ~Wenulld|F + L6, (78)

where the first inequality is due to the violation of (20) by such j. Recall that d # 0. Dividing both sides of
(78) by L%QdetH?’/G and using 7,60 € (0,1) and ~; > 1, we have

0% > 6(y, — 067)er (L%) " d || =" > 6(1 — n)ex (LE) ™ d)|~

Hence, (76) also holds in this case.

Combining the above two cases, we conclude that (76) holds for any j > 0 violating (20). By this and
6 € (0,1), one can see that all j > 0 that violate (20) must be bounded above. It then follows that the step length
ay associated with (20) is well-defined. We next prove (73). Observe from the definition of j; in Algorithm 1 that
j = ji — 1 violates (20) and hence (76) holds for j = j; — 1. Then, by (64), (76) with j = j; — 1, and a; = 67t,
one has

o = 0> \Jmin{6(1 —), 2ben (LG) 0]

= \/min{fi(l —n), 2Yen[LE + u(2 - B)/(1 — B)2)-16]|d*||~*/2, (79)

which along with (69) and (75) implies that (73) holds.

We next prove statement (ii), particularly, (74) by considering three separate cases below.

Case 1) ay = 1 and ||d*|| > 8. It then follows from (18) that df = S8d*/||d!||. Notice from Algorithm 1 that
B > ey. Using this and d* = Bd'/||d"||, we see that ||d’|| = 8 > ez, which together with (20) and oy = 1 implies
that (74) holds.

Case 2) oy = 1 and ||d’|| < 8. Notice from oy = 1 that j = 0 is accepted by (20). Then one can see that
Pu(at + Myd") < ¢ (2') < ¢, (u?). Also, observe from (67) that ||M,d"|,+ < 8. Hence, (65) holds for z = 2 and
y = x' + M,d'. By these, (56) and (71), one has

(1= AT s S (VB3 = [Vp(a® + M) 20
< IVou(at + Md') — V(o) — T,(a) Mol [+ [Vp(a) + V2o () M |2
= [Vbu(at + M) — Vou(at) — V26, (e) Mud' [+ |MF (Vo (a) + V2 (o) My
< IVoulat + M) — Vou(at) — V26, () Mud' |
=+ ||(MtTv2¢u()Mt + ZEHI)dt MtTv¢u(xt)|| + 26H”dt”
LY LI 202+ (4 + Qemlldt /2 D LG22 + (4 + Qenlldt /2

where the second inequality is due to the triangle inequality, and the second equality follows from (4) and the
second relation in (62). Solving the above inequality for ||d'|| and using (64) and the fact that ||d!|| > 0, we

23

obtain that

—(44+Q)er+1/ (4402 +8(1=B) LT, Vo, (@ D17 1y

[2E
- € € - d’e . —
> S0 OO 0D min [T, ()] 3677 1)
H
— 4(1-p) ; 1y || -1
rervarorssaazg VO e eud
(64) 4(1—p) : t41Y||% -1
= mavaorsi e mya e MnlVen@) e

where the second inequality follows from the inequality —a + va? +bs > (—a + va? + b) min{s, 1} for all
a,b,s > 0, which can be easily verified by performing a rationalization to the terms —a + va? + bs and
—a + va? + b, respectively. In view of this, oy = 1, (20) and (26), one can see that (74) holds.

Case 3) oy < 1. By this, one has that j = 0 violates (20) and hence (76) holds for j = 0. Letting j =0 in
(76), we obtain that ||d*|| > min{6(1 — n), Q}GH/L}Z, which along with (20), (64) and (79) implies that

2
(20) , min{6(1 —n),2}0 | 5 (64 min{6(1 —7n),2}6 ? 3
Gul@) = Gu(x'™) = nen®|d'|* =1 €y = €
S L R R Ve I
By this and (26), one can immediately see that (74) also holds in this case. O

The next lemma shows that when the search direction d in Algorithm 1 is of type ‘NC’, the line search step
results in a sufficient reduction on ¢, as well.

Lemma 7.6. Suppose that Assumption 4.1 holds and the direction d* results from either the output dt of
Algorithm 8 with d_type=NC or the output v of Algorithm 4 at some iteration t of Algorithm 1. Then the
following statements hold.

(i) The step length oy is well-defined, and moreover,

o > min {1 (80)

min{1,3(1 —n)}0 }
Lyt u2-p)/1=-8)2)"

(ii) The next iterate '™t = at + ay Myd® satisfies ¢, (xt) — ¢ (ztH1) > cncedy, where My and cye are given in
(16) and (27), respectively.

Proof. 1t follows from Lemma 7.3 that 2* € S, that is, 2! € int K and ¢, (z*) < ¢,,(u®). By the assumption on
d*, one can see from Algorithm 1 that d' is a negative curvature direction given in (17) or (19) and thus d* # 0.
Also, the vector v satisfies ||v]| = 1 whenever it is returned from Algorithm 4. By these, Lemma 7.4(ii), (17) and
(19), one has

Vo (x)TMdt <0, (d)"MIV2¢,(2")Md' < —||d"||> < 0. (81)

We first prove statement (i). If (21) holds for j = 0, then o = 1, which clearly implies that (80) holds. We
now suppose that (21) fails for 7 = 0. Claim that for all j > 0 that violate (21), it holds that

67 > min{1,3(1 —n)}/L%, (82)

where Lfl is defined in (64). Indeed, suppose that (21) is violated by some j > 0. We now prove that (82) holds
for such j by considering two separate cases below.
Case 1) ¢, (z" + 0 Md') > ¢, (). Let p(a) = ¢, (x' + aMd?). Then ¢(67) > ¢(0). Also, by (81), one has

¢'(0) = Vo, (2" Myd' <0, ¢"(0) = (") MIV?¢,(z")M,d" < 0.

From these, we can observe that there exists a local minimizer o* € (0,67) of ¢ such that ¢(a*) < ¢(0). By the
second-order necessary optimality condition of ¢ at a*, one has

¢ (a*) = (d")' MIV?¢, (" + a* Myd") Md' > 0. (83)

24

In addition, by ¢,(z") < ¢,(u") and ¢(a*) < ¢(0), one has ¢, (x! + a*Md') < ¢,(u°). Using (67) and
0 <a* <@ <1, wesee that ||a*Md!||,+ < |Mdt||.« < 3. Hence, (63) holds for x = 2zt and y = 2t + o* M,d".
Using this, (4), (62), (63), (81) and (83), we obtain that

L¢ *dt3(6_2)L¢ *dtQMdt (62) dtQVZ t *Mdt _v2 || *
ot ||ldt)? =" Lot (|do ||| Med || = |71V du(a” + o Med") Oula") |17

4 N *
D |dt I2IMT (V26 (2" + 0" Myd!) — V2, (a1)) My || > (d)T M (V2 (at + a* Mydt) — V26, (2')) Md!

(83) (81)
> —(d) " MIV g () Med' > ||d).

It then follows from this and d* # 0 that o* > 1/L}Z, which along with 67 > o* implies that (82) holds in this
case.

Case 2) ¢, (z" + 07 Md") < ¢, (z'). By this and ¢, (z') < ¢, (u®), one has ¢, (z' + 67 Md*) < ¢, (u®). In
addition, it follows from (67) and 6 € (0,1) that ||67 Myd|| .« < |[M;d?||,+ < 8. Hence, (66) holds for 2 = a2 and
y = x' + 7 M,d'. By this, (62), (81) and the fact that j violates (21), one has

SB[< Gt 0M) — bp(a) S OV (a)T Myl L ()T MEV () My + S0 699 M2,
T e 4 e,

where the first inequality is due to the violation of (21) by such j. Using this and d* # 0, we see that

67 > 3(1 — n)/L%. Hence, (82) also holds in this case.

Combining the above two cases, we conclude that (82) holds for all j > 0 violating (21). By this and 6 € (0,1),
one can see that all j > 0 that violate (21) must be bounded above. It then follows that the step length «y
associated with (21) is well-defined. We next derive a lower bound for a;. Notice that j = j; — 1 violates
(21) and hence (82) holds for j = j; — 1. Then by (82) with j = j; — 1 and a; = 6’t, one can observe that
ap = 67+ > min{1,3(1 — 1) }8/L%, which along with (64) yields (80) as desired.

We next prove statement (ii) by considering two separate cases below.

Case 1) d' results from the output d* of Algorithm 3 with d_type=NC. By this and (72), one has ||d*|| > eg,
which along with statement (i) and (21) implies that statement (ii) holds.

Case 2) d' results from the output v of Algorithm 4. Notice from Algorithm 4 that |v]] = 1 and
vIMEV2¢, (2)My < —ep /2. Tt then follows from (19) and 8 > ey that ||d*|| > ex/2. Using this, (21)
and statement (i), we see that statement (ii) also holds in this case. O

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Notice from Lemma 7.3 that all the iterates generated by Algorithm 1 lie in S. By this,
(4), (62) and (24), one has
(4)(62) * * *
M2 ()Ml =" V()15 < IVPE N5 + pl V2B < Uiy + (84)
where the last inequality follows from (24) and the fact that [[VZB(z")||*, =1 due to (4) and (16).
(i) Suppose for contradiction that the total number of calls of Algorithm 4 in Algorithm 1 is more than T5.
Observe from Algorithm 1 and Lemma 7.6(ii) that each of these calls, except the last one, returns a sufficiently

negative curvature direction, and each of them results in a reduction on ¢, at least by Cnc€yy. Using this and the
fact that 2% = u°, we obtain that

T2Cnc€:}—[S Z[(b#(xt) - ¢M(‘rt+1)] é (b,u(mo) - ¢low = ¢hi - ¢low7

teT

where T is given in Lemma 7.3. This contradicts with the definition of T5 given in (25).
(ii) Suppose for contradiction that the total number of calls of Algorithm 3 in Algorithm 1 is more than T;.
Note that if Algorithm 3 is called at some iteration ¢ and generates '™ satisfying ||V, (z'™1)||%,+1 < €4, then

Algorithm 4 must be called at the next iteration ¢+ 1. Using this and statement (i), we see that the total number
of such iterations t is at most T». Hence, the total number of iterations ¢ of Algorithm 1 at which Algorithm 3 is

25

called and generates 2'*! satisfying |V, (2'1)||*.1 > ¢, is at least Ty — To + 1. Moreover, for each of such
iterations ¢, it follows from Lemmas 7.5(ii) and 7.6(ii) that ¢, (2') — ¢, (z'*!) > min{csol, cnc} min{e2ey', €3 }.
Thus, one has

(Tl -1 + 1) min{csola Cnc} min{egeﬁlv E?I)—I} < Z[¢;L($t) - ¢u($t+1)] < ¢hi - (blowa
teT

where T is given in Lemma 7.3. This contradicts the definitions of 77 and 7% given in (25).

(iii) Notice that either Algorithm 3 or Algorithm 4 is called at each iteration of Algorithm 1. By this and
statements (i) and (ii), one has that the total number of iterations of Algorithm 1 is at most 77 + T5. In addition,
the relation (28) follows from (25), (26) and (27). It is also not hard to see that the output x* of Algorithm 1
satisfies ||V, (z")[|%: < €, deterministically and Amin (M V2, (2') M) > —ey with probability at least 1 — &
for some 0 < t < T + Ty, where the probability is due to Algorithm 4. Hence, statement (iii) holds.

(iv) Recall that each iteration of Algorithm 1 requires Cholesky factorization of V2B at one point only. This
together with statement (iii) implies that the total number of Cholesky factorizations required by Algorithm 1 is
at most Ty + T». By (84) and Theorem A.1 with (H,e) = (M} V2¢,(x')M;,ep), one can see that the number
of products of H and a vector v required by each call of Algorithm 3 is at most O(min{n, [(UL + pu)/en]"/2}).
In addition, by (84), Theorem B.1 with (H,¢) = (MI'V?¢,(z') My, ex), and the fact that each iteration of the
Lanczos method requires only one product of H and a vector v, one can observe that the number of products
of H and a vector v required by each call of Algorithm 4 is also at most O(min{n, (U5 + u)/ex]'/2}). Recall
from Section 4.1 that the product of H and a vector v requires at most three fundamental operations, which are
one Hessian-vector product of F'; one backward and forward substitutions to a triangular linear system. Hence,
each call of Algorithm 3 or 4 requires at most O(min{n, [(UL + 1) /ex]*/?}) fundamental operations. By these
observations and statement (iii), we conclude that statement (iv) holds. O

7.3 Proof of the main results in Section 5

In this subsection we provide a proof of Lemma 5.1 and Theorems 5.2, 5.3, 5.4 and 5.5.
Before proceeding, we recall that |c(z.)|| < €/2 < 1. Using this, (30) and (36), we obtain that

f(@) + uB(x) +9le@)]|* = f(x) + uB(x) + %HC(%)II2 =z)? = fiow =, Vo€ mtk,p € (0, mo], (85)

where the first inequality follows from (36) and |la — b||? > ||a||?/2 — ||b]|? for all a,b € R™. In addition, by (29),
the first relation in (38), and the fact that 0 < pp < po (see Algorithm 2), one has

L., ("N) < fri whenever 27! is generated. (86)

We next present an auxiliary lemma that will be frequently used later. Its proof is identical to the one of [44,
Lemma 5.4] with f replaced by f + uB, and thus omitted here.

Lemma 7.7. Suppose that Assumption 5.1 holds. Let 7y, pg, funi and fiow be given in Assumption 5.1. Assume
that p > 2y, p € (0, 0], A € R™ and x € int K satisfy L,,(z, X; p) < fui, where L,, is defined in (37). Then the
following statements hold.

(i) f(z) +puB(x) < fui + 1A%/ (20).

(i) fle(@)ll < v/2(fui — fiow +7)/(p = 27) + IM2/ (0 — 2)2 + [1All/ (0 — 29).
)
)

(iit) If p > ||\|?/(20¢) for some &5 > 0, then f(z) + puB(x) < fui + ;.
(iv) If p > 2(fui — flow +7)0. 2 + 2| A||6-1 + 2 for some b. > 0, then ||é(z)|| < de.
The following lemma establishes the local Lipschitz continuity of ¢; and V¢; with respect to the local norm.

Lemma 7.8. Under Assumption 5.1, the following inequalities hold:

UC
lei(y) —ci(@)] < 5 _gﬁ ly —2lle, Va,y € Qd7,0e) with [ly —zllo < B, 1 <i<m, (87)

26

Uk
(1-p)?

where Q(Jy,0.) is given in Assumption 5.1, and U, Uf; are defined in (33) and (34), respectively.

IVei(y) = Vel <

ly — 2|z, Yo,y € Q0f,06.) with ||y —x| <8, 1<i<m, (88)

Proof. Fix any z,y € Q(d¢,0.) with ||y — z||; < S and any 1 <i < m. Let 2z =z + t(y —) for all ¢ € [0,1]. Tt
then follows that ||z, — z|ls < 8 and z; € Q(dy,.). By these, (33), (34), (55) and (56), one has

IVeiz)llz, <Us, [IV2ei(z)ls, <UR, lvlls < 0=8)"Hlvlle, oll; < A=) lolZ,, Yo eR™te[0,1].

By virtue of these and (4), we obtain

C

IIy—fEHm

)~ = | [Vet —x] [19et ity - ol <

IVei(y) = Vei(@)llz =

/Vcl(zt) —x)dt
0

/Han —mnw<——/wv@%<fMMd

<1/1||V20‘(Mz ly = 2lldt < — 2L jly — g
_1—ﬁ0 i\ 2t zty Zt _()2y x-

Hence, (87) and (88) hold. O
We are now ready to prove Lemma 5.1.

Proof of Lemma 5.1. The proofs of statements (i) and (ii) follow similar arguments to those used in proving [44,
Lemma 4.1]

(itl) Fix z,y € Q(dy, 6.) with [[y—z||, < B and 1 < i < m. By this, (32), (34), (36), (44), (87) and |lc(z.)|| <1,
one has

12 () V2ei(y) — &) V2ei(@)|l; = 16 (y) (Vieily) — Viei(x)) + (E(y) — &(2)Vei(@)|l;

U
< leiy) — eiz)lIVZeily) = VEei(@)ll; + lei(y) — ei(@)l[V2e@)]; < (1 + UL lly — 2l + g ly — 2/l

UsUj
. c c g~ H
= {(1+U) 9+ 13

In addition, by (33), (56) and (88), one has

]nyﬂu. (89)

IVei(y)Vei(y)" = Vei(2)Vei(@) |1 = [Veiy)(Veily) — Vei()) " + (Veily) — Vei()) Ve (@)
< IVei)zVeily) = Vei@); + [[Veil@) 5[Veily) = Vei(@)ll;

— BYUCUE
<(1iﬁHVq@ME+HVq@ME>HVQ@%—VQ@”Z<(2O?L§3H

In view of (42) and the fact that Vé = Ve and V3¢ = V¢, 1 <i<m, we see that

ly —2lla- (90)

V2, L(x, \F: pr))+ Z N2 () + pre Z Vei(2)Vei ()T + & (x)Viei(x)), (91)
which implies that

V30 L0y, A p1) =V, L, N5)15 < IV2f(y) = V2L @)1+ Y N IIVEely) = Ve(@));

i=1

+sz IVei(y)Vei(y)" = Vei(@) Ve (@) |l + 1|Ei(y) Veily) — é(2)Viei()]7) -

Statement (iii) then follows from this, (89) and (90).

27

(iv) Notice from (42) and Vé = Ve that V, L(x, \¥; pr) = Vf(z) + Ve(z)AF + pp Ve(z)é(z). Also, one can
see from (31), (36) and ||c(z.)|| < 1 that ||é(z)| < 2+ J. for any « € S(df,0.). In addition, by (4), one can
observe that | Ve; (2)Ve;(2)T]|: = (|| Ve (z)]%)? for all 4. In view of these and (91), we have

IV2 L2, A% i)l < IV f(x IIm+Z\>\’“IIIVCz ||z+ka\Cz IIVei@)lz,

IV2a L2, A% i)l < IV2F ()17 + Z NIV 2es (@) 15 + pr Z ((IVes(@)117)? + le(@) Ve (@)]7)

which, together with (33), (34) and the fact that ||é(z)|| < 2 + d. for any = € S(Jy,d.), implies that

Ung= sup ||V2L(z, N5 p0)ll5 <UL+ N0 + pev/m(2 + 60Uy,

:vES(5f,5c)
U= sup V2, L(x, X5 p0)ll; < Uy + N WU + pr(m(Ug)? + /m(2 + 8:)Ufy).-
IGS(éf,(;c)
Hence, statement (iv) holds. O

We now prove Theorem 5.2.

Proof of Theorem 5.2. Suppose that Algorithm 2 terminates at some iteration k, that is, ux < €/(20Y/? +2) and

le(zF+1)|| < € hold. By up < €/(20V/2 4 2), Net1 = N\ 4 ppé(2F+1), VE = Ve, and the second relation in (38),

one has

IV f (@) + Ve(@ M 4y VB) [T = [V F (@) + Va@) + pré(a™) + m VB) |5
= Vo Lo (N i) 50 < e (92)

This along with g > 0 yields that
I(Vf (") + Ve(@ N Jug + VB[< 1.

By this, 2" € int £ and Lemma 7.1(v), one has (V f(z"") + Vc(karj)S\k*l)/uk € K*, which implies that
(9) holds for (z**! A*+1). We next prove that (10) holds for (z**! A**1) with ¢; = e. Indeed, by (92),
pr < €/ (202 +2), 21 € int K and Lemma 7.1(i), one has

IV £ (@) + Ve(@ TNy < [VFEE) + Ve@ N 4 VB |5 + e[VB) e
< g, + 9 = €/2 < e,
and hence (10) holds for (zF1, A¥*1) with ¢; = e. In view of these, [c(z*t1)| < € and 2%+ € int K, we conclude

that 2**1 is a deterministic e-FOSP of problem (1).
In addition, recall from (39) that

Amin (M1 Vi, Lu(@* N pp) Myc1) > — /e

holds with probability at least 1 — J, which implies that CZTM,?_HV%Z L, (kT Ak pe)Miyrd > —\/;Tk|\cf||2 holds
for all d € R™ with probability at least 1 — §. Substituting d = Mk__ﬁlsz(wk“)*l/zd in this inequality and
using (16), ¥+ = \F 4 pré(ab+1), Vé = Ve and V3¢ = V3¢, 1 < i < m, we obtain that with probability at
least 1 — ¢, it holds that

dTsz(ka)—l/z (VQf(xk+1) +Zj\i§+1v20i(xk+l) +pkvc(xk+1)vc(mk+1)T +uksz(ka))V2B(wk+1)_1/2d
i=1

(16)

> — k| M VEB (M) TV 24| = — /g |ld))?, vd e R,

which together with j, < ¢/(209'/2 +2) € (0,1) and ¥ > 1 implies that

dTV2B(mk+1)_1/2 <V2f(xk+1) +Z;\§+1v26i(mk+l)> V2B(£Ck+l)_1/2d > _(/Tbk +/1'k)Hd||2

=1

28

> —2y/lldl* = —24/¢/ (2012 + 2)[|d]|* > —Veld|]?, Vd € C(a"H),

where C(-) is defined in (12). Hence, with probability at least 1 — 4§, the relation (11) holds for (z**1, \k+1)
with €3 = y/e. In view of this and the fact that z**! is a deterministic e-FOSP of (1), we conclude that the
output x**1 is an (e, /€)-SOSP of (1) with probability at least 1 — 4. O

We next provide a proof for Theorem 5.3.
Proof of Theorem 5.3. Notice from (47) that pe1 > 2pg, which along with (45) and (46) implies that

K. = [log e/ logw]) [og?2/logr] < log(peipyt)/logr + 1. (93)

Since {p} is either unchanged or increased by a ratio r as k increases, it follows from (93) that

(93) log(pe,wgl)
max pp <78epg < ¢ owEr oy =1p. . (94)

0<k<K.

In addition, observe from Algorithm 2 that p;, > 2y and [|A¥|| < A. By these, (86), and Lemma 7.7(ii) with
(z, N, p) = (xF1 A* pp), we obtain that

7 2 i w k2 i 2 i~ W A2 A
||5(l‘k+1)|| < (fh flo +’7) + ||/\ H . + ”)‘ || < (fh flo +’7) + . +) (95)
P — 27 (e =27)* pe— 27 PE — 2 (e —27)* pe— 2y

On the other hand, notice from ||¢(z.)|| < €/2 and (36) that

le(@* D1 < fle@™ I + lle(zo)ll < le(@*)] +e/2. (96)

We now prove that K. is finite. Suppose for contradiction that K. is infinite. By this and (48), one has
that ||c(zF1)|| > € for all K > K.. This along with (96) implies that ||é(z*T!)|| > ¢/2 for all k > K.. It
then follows that ||é(z**1)|| > «||é(2*)|| must hold for infinitely many k’s, which, together with the update
scheme on {p;}, further implies py+1 = rpi holds for infinitely many &’s. Using this and the monotonicity
of {p1}, we see that p, — oo as k — oo. This along with (95) yields that ||&(z**1)|| — 0 as & — oo, which
leads to a contradiction with the fact that ||é(z**1)| > €/2 for all k > K.. Hence, K. is finite. In addition,
notice from gy, = max{e,w*}/(20'/2 + 2) and (46) that u, = ¢/(20"/2? 4 2) for all k > K.. Combining this
with the termination criterion of Algorithm 2 and the definition of K., we conclude that Algorithm 2 with
wr = max{e,wF} /(2072 + 2) must terminate at iteration K.

We next prove (49) and that py < rp. 1 holds for 0 < k < K. by considering two separate cases below.

Case 1) |[c(z®<t1)|| < e. Tt then follows from (48) that K. = K., and thus (49) holds due to (93). In addition,
by K. = K. and (94), one has that p, < rp. 1 holds for 0 < k < K, as well.

Case 2) |lc(z®<t1)|| > €. It then follows from (48) that K, > K., and moreover, |c(z**1)| > € for all
K. <k < K. — 1. This along with (96) implies that

le(z || >e/2, VK. <k<K.—1. (97)
By this, |A\¥|| < A, (47), (86), and Lemma 7.7(iv) with (z, A, p, 6c) = (¥, A*, py, €/2), one has
i < 8(fni = fiow +7)e 2 + 4 A [l + 2y
< 8(fni — frow +7)e 2 +4Me ! + 2y (4§7) pe1, VK. <k<K,—1. (98)

In view of this, (94), and the fact PR. S TPR. 1, WE obtain that py < rp.; holds for 0 < k < K.. It remains to
prove (49). To this end, let
K= {k:pk}-‘rl :TpkaKe <k S?6_2}

By (98) and the update scheme of pg, one has r'K‘pKﬁ =maXy . 1Pk < Pe,1, which along with px_ > po
implies that
|K| < log(pe1pi)/ logr < log(peapy ')/ logr. (99)

29

Let {k1,ka,..., ki K|} denote all the elements of K arranged in ascending order, and let kg = K. and k| |41 =
K. — 1. We next derive an upper bound for kjy1 —kj; for j =0,1,...,|K|. Using the definition of K, we see
that py, = pis for k; < k, k' < k;41. By this and the update scheme of p, one can see that

"D < alle@™)l, Vh; <k < kjpa. (100)

In addition, by (43), (95) and px > po, one has ||&(z**1)|| < 6.1 for 0 < k < K. Using this and (97), we obtain
that
€/2 < ||é(a")| <6y, VE <k <K -1 (101)

Now, we notice that either kj.1 —k; = 1 or kj41 — k; > 1. In the latter case, one can apply (100) with
k=kjt1—1,...,k; + 1 along with (101) to deduce that

¢/2 < ezt)| < afle(at T < - < @b TR e | < @b TRy, V=01, KL
Combining the two cases, we deduce that
kjy1 —kj < |log(e(26.1)"1)/loga| +1, Vj=0,1,...,|K]|. (102)

Summing up these inequalities, and using (93), (99), ko = K¢ and k| |41 = K. — 1, we have

+1)

. (102) 1
Ke=1+kgp =1+ko+ X5 ki1 —ky) < 1+ K+ (K| +1) (log(e(20e.1)”)

log
-1) -1 — -1 -
S 2 + IOg(féélrﬂo) + (IOQ(fgélfo) + 1) (1082(6(1?)221) 1) + 1) =1 + (IOg(fgélrpo) + 1) (108(6(12221) 1) + 2) ,
where the second inequality is due to (93) and (99). Hence, (49) holds as well in this case. O

We next prove Theorem 5.4. Before proceeding, we recall from Lemma 5.1 and the discussions in Section 5.1
that the subproblem min, £,,, (z, *; pi) satisfies Assumptions 4.1(b) and 4.1(c) with (F(:),S,Q, L, UF, Uf}) =
(L(-s N5 p1), S(85,8¢), 2S¢, 6¢)s Lig, b1, Uk, g, Uy, ir). Moreover, in view of the fact that [[A¥|| < A, one can see from
(44) and Lemma 5.1(iv) that there exist some constants Lq, La, Uy and Us, depending only on f, ¢, B, 8, A, m,
07 and d., such that

Liyg <L+ pplo, Upwg < Ui+ prUs. (103)

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4. Let T}, and N denote the number of iterations and fundamental operations performed
by Algorithm 1 at outer iteration k& of Algorithm 2, respectively. It then follows from Theorem 5.3 that the total
number of iterations of Algorithm 1 performed in Algorithm 2 is ZkK;O T}, and moreover, the total number of
Cholesky factorizations and other fundamental operations performed by Algorithm 1 in Algorithm 2 are ZkK:‘O Ty
and ZkK;O Ny, respectively. In addition, notice from (47) and Theorem 5.3 that p.1 = O(e2) and px, < rpe1,
which yield py, = O(e72) for all 0 < k < K.

(i) Recall from Lemmas 5.1(i) and 5.1(iii) that Ly g is a Lipschitz constant of V2, L(x, A¥; px) with respect to
the local norm on an open convex neighborhood of {z € int K : £,,, (z, A*; pi) < L, (zF ., \¥; pr) }. In addition,
recall from Lemma 5.1(ii) that infeint i Ly (2, A¥5 p1) > flow — v — Ade. By these, (41), (103), and Theorem

41(111) with ((bhia (blowu L§7 €g, 6H) = (Euk (xfcnitv >\k; pk:)a flow -7 - A507 Lk,H7 M +/ Mk)> one has

(103)

Ti = O((fui — fiow + 7 + A6 LE i %) =7 O(p2 %) = O(e711/2), (104)

where the last equality follows from s > €/(209'/2 +2) and pp = O(e~2). On the other hand, if ¢ is assumed
to be affine, namely, c¢(x) = Az — b for some A € R™*" and b € R™, then Ve(z) = AT and VZ¢;(z) = 0 for
1 <4 < m. Using these and (91), we observe that Ly iy = O(1). By this and the similar arguments as for (104),
one has Ty, = O(,u,;gp) = O(e3/?). Combining these with (104) and K. = O(|loge|?) (see Remark 5.4), we
conclude that statement (i) holds.

30

(ii) By Lemmas 5.1(i) and 5.1(iv), one has

Uk,r 2 SU}tDK{HVim E(CU, Ak; Pk)”; : 'C#k (xv)‘k; Pk) < ‘C#k (x{cnita)‘k; Pk)}-
zEin

In view of this, £,,, (xiknit, s o) < fui, (103), and Theorem 4.1(iv) with (¢ni, Glow, LZ, Ug, €g.€m) = (L, (a:iknit, A& o),
Jiow =7 — ANde, Lie, i1, Uk 11, pis /Hk), We obtain that

Ny = O((fui = frow +7 + A0)LE gy *? min{n, U/ "} (105)
= 6(0%#1:3/2 min{n,p,ﬁﬂﬂ;l/‘l}) -0 (7112 min {n, e=3/1})

where the last equality follows from p > €/(29 + 2) and pr, = O(e~2). On the other hand, if ¢ is assumed to
be affine, it follows from the above discussion that Ly g = O(1). By this, Uy, g < Ui + prUs, and the similar

arguments as for (105), one has Ny = (7)(u,:3/2 min{n, p,lc/zulzl/él}) =0 (6_3/2 min {n, 6_5/4}). Combining these
with (105) and K. = O(|loge|?) (see Remark 5.4), we conclude that statement (ii) holds. O]
g

We next establish two technical lemmas that will be used to prove Theorem 5.5.

Lemma 7.9. Suppose that Assumptions 5.1 and 5.2 hold and that po is sufficiently large such that §;1 < ¢ and
Seq < O, where 671 and 6.1 are defined in (43). Let {(z%,*, pi)} be generated by Algorithm 2. Suppose that

pr > max{A%(26;) 7", 2(fui — frow +7)0. % + 2A8; 1 + 27, 2(U; +vVmUgA + VI +1)(oe)™1} (106)

for some k > 0, where 7y, fui, fiow, 0f, Oc, Ug and Uy are given in Assumption 5.1, and o is given in (50). Then
it holds that |c(z*+1)| < e.

Proof. Using ||A*|| < A (see step 5 of Algorithm 2) and (106), we have
pi > mas{ [N [2(207) 20 s — fiow + 1057 + 205 + 2.

By this, (86), and Lemmas 7.7(iii) and 7.7(iv) with (z, A, i, p, Sf, oc) = (U NF, e, o, 8f,0.), one has f(z"+1)+
pr Bz 1) < fri+ 65 and ||é(@®T1)|| < 5. Also, notice from ||c(z¢)|| < 1 and (36) that [|c(x*T1)|| < 1+||e(zFT1)|.
These along with (31), 2**! € int K, and p, € (0, o] yield that 251 € S(6,d.). It then follows from (33) that
[V f(@F D)% < UJ and [[Vei (25|, < US for all 1 <i <m. By these, up < 1, [A¥]| < A, (36) and the
second relation in (38), one has

pill V2B) T2V e (@) || = il V(@ e) e

<VFEM) + Ve(@ N + ul[VBE)5 + Ve L (@8N o) 500

SIVFEEF) e + D IMNIIVe @) e + meVO + e < US + VmUGA + V0 + 1, (107)

=1

where the first inequality follows from the triangle inequality, and the second inequality follows from ||V B(z**+1) [
V¥ and the second relation in (38). In addition, by z¥*1 € S(4;,4.) and (50), one has
Amin (Ve(zM T V2 B(2k 1) =1V (25 1)) > o2, which along with (107) implies that

e)| < [[[Ve(a®)T V2B) I Ve(ab)] 7 Ve(@" T T V2B (2 T) 712 || V2 B (24 1) 72V e (2 ek)|
= [[[Ve(z*)T V2B M) 7 Ve(@)] 7| V2 | V2B) TV et e) |
= Auin (Ve(@" T TV2B M) I Ve(@) 7V2 [V2B) T2V e(a ()|
< (Uf + VmUSA + V3 + 1)/ (opr). (108)

Observe from (106) that pj > 2(Ug +v/mUgA + VU 41)(0e)~", which along with (108) implies [|&(z*+1)|| < €/2.
Combining this with [c(z.)|| < €/2 and (36), we obtain ||c(z**1)|| < € as desired. O

The next lemma establishes a stronger upper bound for {p;} than the one given in Theorem 5.3.

31

Lemma 7.10. Suppose that Assumptions 5.1 and 5.2 hold and that po is sufficiently large such that 051 < df
and 6.1 < d., where 651 and §.1 are defined in (43). Let {pr} be generated by Algorithm 2 and

pez = max{A*(205) 7", 2(fui — flow +7)0, % + 206, + 29, 2(U] + /mUSA + VI +1)(0€) ", 2p0}, (109)

where v, fui, fiow, 07, Oc, Ugf and Ug are given in Assumption 5.1, and o is given in (50). Then pr < Tpe2
holds for 0 < k < K., where K. is defined in (48).

Proof. Observe from (109) that p.2 > 2po. Using this and similar arguments as for (93), we have K, <
log(peapy ')/ logr + 1, where K, is defined in (46). By this, the update scheme for {p;}, and similar arguments
as for (94), one has
< .

o Lnax p < 7pe2 (110)
If |le(z®<T1)|| <, it follows from (48) that K. = K., which along with (110) implies that py < rp. > holds for
0 < k < K. On the other hand, if ||c(z®<*1)| > ¢, it follows from (48) that ||c(z¥T1)|| > € for K. <k < K. — 1,
which together with Lemma 7.9 and (109) implies that

2 _ 20U + /mUSA + V9 + 1
P < max Aia 2(fh1 flow + ’Y) + % + 277 (g \/ﬁ g f)
26y 02 e oe

(109) —
S Pe,2; VKeSkSKe*]-

Using this, (110), and PR, < TPR,_1, We also conclude that py < rpeo holds for 0 <k < K.. O
We now provide a proof for Theorem 5.5.

Proof of Theorem 5.5. Notice from (109) and Lemma 7.10 that p.o = O(e™!) and px < rp.2, which imply
pr = O(e™1). The rest of the proof follows from the same arguments as for Theorem 5.4 with p, = O(¢~?)
replaced by pr = O(e™1). O

8 Concluding remarks

In this paper we proposed a Newton-CG based barrier-AL method for finding an approximate SOSP of general
nonconvex conic optimization problem (1). We also established the worst-case iteration and operation complexity
bounds of the proposed method for finding an approximate SOSP of problem (1). In addition, we conducted
preliminary numerical experiments to demonstrate the superior solution quality of our method over a well-known
first-order method, SpaRSA.

There are several potential directions for future research. Firstly, conducting extensive numerical studies
could provide new insights into improving the practical performance of our method. Secondly, it would be
interesting to extend our method to solve a more general conic optimization problem, min, , { f (z,y) : &(z,y) =
0, y € K}, which includes the problem min,{f(x) : ¢(x) = 0, d(z) < 0} and, more generally, the problem
min,{f(z) : ¢(x) = 0, d(x) € K} as special cases. Notice the latter problem can be equivalently solved as
ming ,{f(z) : ¢(x) =0, d(z) —y =0, y € K}, which is a specific instance of the problem considered in this
paper. Consequently, it can be suitably solved by our proposed method. Lastly, extending our approach to
finding an approximate SOSP for nonconvex optimization problems with a general convex set constraint, beyond
the convex conic constraint, remains an open question.

Data availability: The codes for generating the random data and implementing the algorithms in the numerical
section are available from the first author upon request.

Competing interests: The third author is an editorial board member of this journal.

32

References

[1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma. Finding approximate local minima faster than
gradient descent. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1195-1199, 2017.

Z. Allen-Zhu and Y. Li. Neon2: Finding local minima via first-order oracles. Advances in Neural Information
Processing Systems, 31:3716-3726, 2018.

R. Andreani, E. G. Birgin, J. M. Martinez, and M. L. Schuverdt. On augmented Lagrangian methods with
general lower-level constraints. SIAM J. Optim., 18(4):1286-1309, 2008.

R. Andreani, G. Haeser, A. Ramos, and P. J. Silva. A second-order sequential optimality condition associated
to the convergence of optimization algorithms. IMA J. Numer. Anal., 37(4):1902-1929, 2017.

M. Argédez and R. Tapia. On the global convergence of a modified augmented Lagrangian linesearch
interior-point Newton method for nonlinear programming. J. Optim. Theory Appl, 114(1):1-25, 2002.

P. Armand and R. Omheni. A mixed logarithmic barrier-augmented Lagrangian method for nonlinear
optimization. J. Optim. Theory Appl., 173(2):523-547, 2017.

P. Armand and N. N. Tran. Rapid infeasibility detection in a mixed logarithmic barrier-augmented
Lagrangian method for nonlinear optimization. Optim. Methods Softw., 34(5):991-1013, 2019.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

S. Bhojanapalli, B. Neyshabur, and N. Srebro. Global optimality of local search for low rank matrix recovery.
Advances in Neural Information Processing Systems, 29:3873-3881, 2016.

W. Bian, X. Chen, and Y. Ye. Complexity analysis of interior point algorithms for non-Lipschitz and
nonconvex minimization. Math. Program., 149(1):301-327, 2015.

E. G. Birgin, J. Gardenghi, J. M. Martinez, S. A. Santos, and P. L. Toint. Evaluation complexity for
nonlinear constrained optimization using unscaled KKT conditions and high-order models. STAM J. Optim.,
26(2):951-967, 2016.

E. G. Birgin, G. Haeser, and A. Ramos. Augmented Lagrangians with constrained subproblems and
convergence to second-order stationary points. Comput. Optim. and Appl., 69(1):51-75, 2018.

E. G. Birgin and J. M. Martinez. Practical Augmented Lagrangian Methods for Constrained Optimization.
SIAM, 2014.

E. G. Birgin and J. M. Martinez. The use of quadratic regularization with a cubic descent condition for
unconstrained optimization. SIAM J. Optim., 27(2):1049-1074, 2017.

J. F. Bonnans and G. Launay. Sequential quadratic programming with penalization of the displacement.
SIAM J. Optim., 5(4):792-812, 1995.

L. F. Bueno and J. M. Martinez. On the complexity of an inexact restoration method for constrained
optimization. SIAM J. Optim., 30(1):80-101, 2020.

R. H. Byrd, R. B. Schnabel, and G. A. Shultz. A trust region algorithm for nonlinearly constrained
optimization. SIAM J. Numer. Anal., 24(5):1152-1170, 1987.

Y. Carmon and J. Duchi. Gradient descent finds the cubic-regularized nonconvex newton step. SIAM J.
Optim., 29(3):2146-2178, 2019.

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. “Convex until proven guilty”: Dimension-free
acceleration of gradient descent on non-convex functions. In International Conference on Machine Learning,
pages 654-663. PMLR, 2017.

33

[20]

[21]

[22]

[29]

[30]

[31]

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Accelerated methods for nonconvex optimization.
SIAM J. Optim., 28(2):1751-1772, 2018.

C. Cartis, N. I. Gould, and P. L. Toint. Adaptive cubic regularisation methods for unconstrained optimization.
Part I: motivation, convergence and numerical results. Math. Program., 127(2):245-295, 2011.

C. Cartis, N. I. Gould, and P. L. Toint. On the evaluation complexity of cubic regularization methods
for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear
optimization. SIAM J. Optim., 23(3):1553-1574, 2013.

C. Cartis, N. I. Gould, and P. L. Toint. On the complexity of finding first-order critical points in constrained
nonlinear optimization. Math. Program., 144(1):93-106, 2014.

C. Cartis, N. I. Gould, and P. L. Toint. On the complexity of finding first-order critical points in constrained
nonlinear optimization. Math. Program., 144(1):93-106, 2014.

C. Cartis, N. I. Gould, and P. L. Toint. On the evaluation complexity of constrained nonlinear least-squares
and general constrained nonlinear optimization using second-order methods. SIAM J. Numer. Anal.,
53(2):836-851, 2015.

C. Cartis, N. I. Gould, and P. L. Toint. Evaluation complexity bounds for smooth constrained nonlinear
optimization using scaled KKT conditions, high-order models and the criticality measure x. In Approzimation
and Optimization: Algorithms, Complexity and Applications, pages 5—26. Springer, 2019.

C. Cartis, N. I. Gould, and P. L. Toint. Optimality of orders one to three and beyond: characterization and
evaluation complexity in constrained nonconvex optimization. J. Complez., 53:68-94, 2019.

X. Chen, L. Guo, Z. Lu, and J. J. Ye. An augmented Lagrangian method for non-Lipschitz nonconvex
programming. SIAM J. Numer. Anal., 55(1):168-193, 2017.

Y. Chi, Y. M. Lu, and Y. Chen. Nonconvex optimization meets low-rank matrix factorization: An overview.
IEEE Trans. Signal Process., 67(20):5239-5269, 2019.

D. Cifuentes and A. Moitra. Polynomial time guarantees for the Burer-Monteiro method. arXiv preprint
arXiw:1912.01745, 2019.

T. F. Coleman, J. Liu, and W. Yuan. A new trust-region algorithm for equality constrained optimization.
Comput. Optim. Appl., 21(2):177-199, 2002.

A. R. Conn, G. Gould, and P. L. Toint. LANCELOT: a Fortran package for large-scale nonlinear optimization
(Release A), volume 17. Springer Science & Business Media, 2013.

A.R. Conn, N. I. Gould, and P. L. Toint. A globally convergent Lagrangian barrier algorithm for optimization
with general inequality constraints and simple bounds. Math. Comput., 66(217):261-288, 1997.

F. E. Curtis, D. P. Robinson, C. W. Royer, and S. J. Wright. Trust-region Newton-CG with strong
second-order complexity guarantees for nonconvex optimization. SIAM J. Optim., 31(1):518-544, 2021.

F. E. Curtis, D. P. Robinson, and M. Samadi. A trust region algorithm with a worst-case iteration complexity
of O(e~3/2) for nonconvex optimization. Math. Program., 1(162):1-32, 2016.

F. E. Curtis, D. P. Robinson, and M. Samadi. Complexity analysis of a trust funnel algorithm for equality
constrained optimization. SIAM J. Optim., 28(2):1533-1563, 2018.

E. P. De Carvalho, A. dos Santos Junior, and T. F. Ma. Reduced gradient method combined with augmented
Lagrangian and barrier for the optimal power flow problem. Appl. Math. Comput., 200(2):529-536, 2008.

P. Dvurechensky and M. Staudigl. Hessian barrier algorithms for non-convex conic optimization. arXiv
preprint arXw:2111.00100, 2021.

34

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[52]

[53]

[54]

[55]

[56]

D. Goldfarb, R. Polyak, K. Scheinberg, and I. Yuzefovich. A modified barrier-augmented Lagrangian method
for constrained minimization. Comput. Optim. Appl., 14(1):55-74, 1999.

F. Goyens, A. Eftekhari, and N. Boumal. Computing second-order points under equality constraints:
revisiting Fletcher’s augmented Lagrangian. arXw preprint arXiv:2204.01448, 2022.

G. N. Grapiglia and Y.-x. Yuan. On the complexity of an augmented Lagrangian method for nonconvex
optimization. IMA J. Numer. Anal., 41(2):1546-1568, 2021.

G. Haeser, H. Liu, and Y. Ye. Optimality condition and complexity analysis for linearly-constrained
optimization without differentiability on the boundary. Math. Program., 178(1):263-299, 2019.

C. He and Z. Lu. A Newton-CG based barrier method for finding a second-order stationary point of
nonconvex conic optimization with complexity guarantees. SIAM J. Optim., 33(2):1191-1222, 2023.

C. He, Z. Lu, and T. K. Pong. A Newton-CG based augmented Lagrangian method for finding a second-order
stationary point of nonconvex equality constrained optimization with complexity guarantees. SIAM J.
Optim., 33(3):1734-1766, 2023.

A. Huck, M. Guillaume, and J. Blanc-Talon. Minimum dispersion constrained nonnegative matrix factoriza-
tion to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens., 48(6):2590-2602, 2010.

C. Jin, P. Netrapalli, and M. 1. Jordan. Accelerated gradient descent escapes saddle points faster than
gradient descent. In Conference On Learning Theory, pages 1042-1085. PMLR, 2018.

C. Kanzow and D. Steck. An example comparing the standard and safeguarded augmented Lagrangian
methods. Oper. Res. Lett., 45(6):598-603, 2017.

J. Kuczynski and H. Wozniakowski. Estimating the largest eigenvalue by the power and Lanczos algorithms
with a random start. STAM J. Matriz Anal. Appl., 13(4):1094-1122, 1992.

R. Kuhlmann and C. Biiskens. A primal-dual augmented Lagrangian penalty-interior-point filter line search
algorithm. Math. Method Oper. Res., 87(3):451-483, 2018.

X. Liu, W. Xia, B. Wang, and L. Zhang. An approach based on constrained nonnegative matrix factorization
to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens., 49(2):757-772, 2010.

S. Lu, M. Razaviyayn, B. Yang, K. Huang, and M. Hong. Finding second-order stationary points efficiently
in smooth nonconvex linearly constrained optimization problems. Advances in Neural Information Processing
Systems, 33:2811-2822, 2020.

Z. Lu and Y. Zhang. An augmented Lagrangian approach for sparse principal component analysis. Math.
Program., 135(1):149-193, 2012.

J. M. Martinez and M. Raydan. Cubic-regularization counterpart of a variable-norm trust-region method
for unconstrained minimization. J. Glob. Optim., 68(2):367-385, 2017.

L. Miao and H. Qi. Endmember extraction from highly mixed data using minimum volume constrained
nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens., 45(3):765-777, 2007.

J. M. Moguerza and F. J. Prieto. An augmented Lagrangian interior-point method using directions of
negative curvature. Math. Program., 95(3):573-616, 2003.

Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in Convexr Programming. STAM,
Philadelphia, 1994.

Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance. Math.
Program., 108(1):177-205, 2006.

M. O’Neill and S. J. Wright. A log-barrier Newton-CG method for bound constrained optimization with
complexity guarantees. IMA J. Numer. Anal., 41(1):84-121, 2021.

35

[59] D. Park, A. Kyrillidis, C. Carmanis, and S. Sanghavi. Non-square matrix sensing without spurious local
minima via the burer-monteiro approach. In Artificial Intelligence and Statistics, pages 65-74. PMLR, 2017.

[60] C. W. Royer, M. O’Neill, and S. J. Wright. A Newton-CG algorithm with complexity guarantees for smooth
unconstrained optimization. Math. Program., 180(1):451-488, 2020.

[61] C. W. Royer and S. J. Wright. Complexity analysis of second-order line-search algorithms for smooth
nonconvex optimization. SIAM J. Optim., 28(2):1448-1477, 2018.

[62] A. Ruszczynski. Nonlinear Optimization. Princeton university press, 2011.

[63] M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher. An inexact augmented Lagrangian
framework for nonconvex optimization with nonlinear constraints. Advances in Neural Information Processing
Systems, 32:632—-650, 2019.

[64] O. V. Thanh, N. Gillis, and F. Lecron. Bounded simplex-structured matrix factorization. In ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
9062-9066. IEEE, 2022.

[65] R. J. Vanderbei and D. F. Shanno. An interior-point algorithm for nonconvex nonlinear programming.
Comput. Optim. Appl., 13(1):231-252, 1999.

[66] A. Wichter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math. Program., 106(1):25-57, 2006.

[67] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An interior algorithm for nonlinear optimization
that combines line search and trust region steps. Math. Program., 107(3):391-408, 2006.

[68] S. J. Wright, R. D. Nowak, and M. A. Figueiredo. Sparse reconstruction by separable approximation. IEEE
Trans. Signal Process., 57(7):2479-2493, 2009.

[69] Y. Xie and S. J. Wright. Complexity of projected Newton methods for bound-constrained optimization.
arXiv preprint arXiv:2103.15989, 2021.

[70] Y. Xie and S. J. Wright. Complexity of proximal augmented Lagrangian for nonconvex optimization with
nonlinear equality constraints. J. Sci. Comput., 86(3):1-30, 2021.

[71] Y. Xu, R. Jin, and T. Yang. NEON+: Accelerated gradient methods for extracting negative curvature for
non-convex optimization. arXiv preprint arXiv:1712.010533, 2017.

[72] L. Yang, D. Sun, and K. C. Toh. SDPNAL+: A majorized semismooth Newton-CG augmented Lagrangian
method for semidefinite programming with nonnegative constraints. Math. Program. Comput., 7(3):331-366,
2015.

[73] X.Zhao, D. Sun, and K. C. Toh. A Newton-CG augmented Lagrangian method for semidefinite programming,.
SIAM J. Optim., 20(4):1737-1765, 2010.

Appendix

A A capped conjugate gradient method

In this part we present the capped CG method proposed in [60, Algorithm 1] for solving a possibly indefinite
linear system (15). As briefly discussed in Section 4, the capped CG method finds either an approximate solution
to (15) or a sufficiently negative curvature direction of the associated matrix H. More details about this method
can be found in [60, Section 3.1].

The following theorem presents the iteration complexity of Algorithm 3, whose proof can be found in [44,
Theorem A.1], and thus omitted here.

36

Algorithm 3 A capped conjugate gradient method

Input: symmetric matrix H € R™*", vector g # 0, damping parameter € € (0, 1), desired relative accuracy ¢ € (0, 1).
Optional input: scalar U > 0 such that ||H|| < U (set to 0 if not provided).

Outputs: CZ, d_type.

Secondary outputs: final values of U, k, é, T, and T

Set
_ 2 ~
H:=H + 2¢l, n::U+ E, g“::i
€ 3k

yO 0,70 <—g,p0 — —g,7 < 0.
if (p°)T Hp® < ¢||p°||? then
Set d + p® and terminate with d_type = NC;
else if ||Hp®| > U||p°|| then
Set U «+ ||Hp||/|lp°|| and update &, C, 7, T accordingly;
end if
while TRUE do
aj < (r))Tri/(p?)T Hp?; {Begin Standard CG Operations}
yj+1 — yj + ajpj;
rItl o pd +ajﬁpj;
Bj+1 < Ilr7 T2 /1177125
pITl « —ritl 4 B,11p7; {End Standard CG Operations}
J<=i+ 1
if |Hp’|| > U||p’|| then
Set U «+ ||Hp?||/||p?|| and update &, ¢, 7, T accordingly;
end if
it ||Hy'| > Ully/| then
Set U < ||[Hy?||/|l¥?|| and update &, (, 7, T accordingly;
end if
if ||Hr7|| > U||r7|| then
Set U « ||H7?||/||[r?|| and update &,(, 7, T accordingly;
end if
if (y/)THy? < elly?||* then
Set d + 7 and terminate with d_type = NC;
else if 7] < {||r°|| then
Set d + y?J and terminate with d_type = SOL;
else if (p/)THpl < ¢||p?||? then
Set d « pJ and terminate with d_type = NC;
else if ||77|| > VT13/2|0|| then
Compute aj, 1711 as in the main loop above;
Find i € {0,...,7 — 1} such that

(T =y TH@ T —) <elly? T — o')1%

Set d y?T1 —y* and terminate with d_type = NC;
end if
end while

Theorem A.1 (iteration complexity of Algorithm 3). Consider applying Algorithm 8 with the optional
input U = 0 to the linear system (15) with g #£0,e >0, and H being an n x n symmetric matriz. Then the
number of iterations of Algorithm 3 is O(min{n, /||H||/e}).

B A randomized Lanczos based minimum eigenvalue oracle

In this part we present the randomized Lanczos method proposed in [60, Section 3.2], which can be used as a
minimum eigenvalue oracle for Algorithm 1. As mentioned in Section 4, this oracle either outputs a sufficiently
negative curvature direction of H or certifies that H is nearly positive semidefinite with high probability. More
details about it can be found in [60, Section 3.2].

The following theorem justifies that Algorithm 4 is a suitable minimum eigenvalue oracle for Algorithm 1. Its
proof is identical to that of [60, Lemma 2] and thus omitted.

Theorem B.1 (iteration complexity of Algorithm 4). Consider Algorithm 4 with tolerance € > 0, probability
parameter 6 € (0,1), and symmetric matriv H € R™™ as its input. Then it either finds a sufficiently negative

37

Algorithm 4 A randomized Lanczos based minimum eigenvalue oracle

Input: symmetric matrix H € R™*", tolerance ¢ > 0, and probability parameter § € (0, 1).

Output: a sufficiently negative curvature direction v satisfying v" Hv < —¢/2 and |jv|| = 1; or a certificate that
Amin (H) > —e with probability at least 1 — 4.

Apply the Lanczos method [48] to estimate Amin(H) starting with a random vector uniformly generated on the unit

sphere, and run it for at most
2
N(e,8) := min {n 1+ {111(2.7571/5) |H”—‘ } (111)

2 €
iterations.
(i) If it finds a unit vector v such that vT Hv < —¢/2 at some iteration, it terminates immediately and returns v.

(ii) Otherwise, it certifies that Amin(H) > —e holds with probability at least 1 — 4.

curvature direction v satisfying vI Hv < —¢/2 and ||v|| = 1 or certifies that Amin(H) > —¢ holds with probability
at least 1 — 0 in at most N(g,d) iterations, where N(g,d) is defined in (111).

Notice that generally, computing ||H|| in Algorithm 4 may not be cheap when n is large. Nevertheless, || H||
can be efficiently estimated via a randomization scheme with high confidence (e.g., see the discussion in [60,
Appendix B3]).

38

