
A Newton-CG based barrier-augmented Lagrangian method for general

nonconvex conic optimization

Chuan He∗ Heng Huang† Zhaosong Lu‡

April 2, 2023 (Revised: March 4, 2024; August 8, 2024; August 25, 2024)

Abstract

In this paper we consider finding an approximate second-order stationary point (SOSP) of general

nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality

constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient

(Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem.

Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of Õ(ϵ−11/2)

and an operation complexity of Õ(ϵ−11/2 min{n, ϵ−5/4}) for finding an (ϵ,
√
ϵ)-SOSP of general nonconvex

conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds

are improved to Õ(ϵ−7/2) and Õ(ϵ−7/2 min{n, ϵ−3/4}), respectively. To the best of our knowledge, this is

the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization.

Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order

methods in terms of solution quality.

Keywords: Nonconvex conic optimization, second-order stationary point, augmented Lagrangian method, barrier method,

Newton-conjugate gradient method, iteration complexity, operation complexity

Mathematics Subject Classification: 49M05, 49M15, 68Q25, 90C26, 90C30, 90C60

1 Introduction

In this paper we consider the following general nonconvex conic optimization problem:

min
x

{f(x) : c(x) = 0, x ∈ K}, (1)

where K ⊆ Rn is a closed and pointed convex cone with a nonempty interior, and f : Rn → R and c : Rn → Rm

are continuous in K and twice continuously differentiable in the interior of K. Assume that problem (1) has at

least one optimal solution. Our goal is to propose an implementable method with complexity guarantees for

finding an approximate second-order stationary point (SOSP) of (1) that will be introduced in Section 3.

In recent years, there has been considerable research on designing algorithms with complexity guarantees for

finding an approximate SOSP of nonconvex optimization problems. In particular, numerous algorithms were

developed for nonconvex unconstrained optimization, such as cubic regularized Newton methods [1, 18, 21, 57],

trust-region methods [34, 35, 53], quadratic regularization method [14], accelerated gradient method [19, 20],

second-order line-search method [61], Newton-conjugate gradient (Newton-CG) method [60], and gradient-based

methods with random perturbations [2, 46, 71]. In addition, several methods with complexity guarantees have

also been proposed for nonconvex optimization with relatively simple constraints. For example, interior-point

method [10], log-barrier method [58], and projected gradient descent method [69] were proposed for nonconvex

∗Department of Mathematics, Linköping University, Sweden (email: chuan.he@liu.se).
†Department of Computer Science, University of Maryland, USA (email: heng@umd.edu). The work of this author was partially

supported by NSF Award IIS-2211492.
‡Department of Industrial and Systems Engineering, University of Minnesota, USA (email: zhaosong@umn.edu). The work of this

author was partially supported by NSF Award IIS-2211491.

1

optimization with sign constraints. Besides, the interior-point method [10] was generalized in [42] for nonconvex

optimization with sign constraints and additional linear equality constraints. Also, a projected gradient descent

method with random perturbations was proposed in [51] for nonconvex optimization with linear inequality

constraints. Iteration complexity of these methods has been established for finding an approximate SOSP.

Besides, operation complexity in terms of the total number of fundamental operations has been studied for the

methods [1, 2, 18, 19, 20, 34, 46, 60, 61, 71].

Several methods, including trust-region methods [17, 31], sequential quadratic programming method [15],

two-phase method [11, 27, 30], penalty method [40], and augmented Lagrangian (AL) methods [4, 12, 44, 63, 70],

were proposed for finding an approximate SOSP of equality constrained optimization:

min
x

{f(x) : c(x) = 0}, (2)

which is special case of (1) with K = Rn. Moreover, total inner iteration complexity and operation complexity,

which are respectively measured by the total number of iterations of the Newton-CG method in [60] and the

total number of gradient evaluations and matrix-vector products performed in the method, were established in

[44, 70] for finding an (ϵ,
√
ϵ)-SOSP x of (2) which together with some λ ∈ Rm satisfies

∥c(x)∥ ≤ ϵ, ∥∇f(x) +∇c(x)λ∥ ≤ ϵ,

dT (∇2f(x) +
∑m

i=1 λi∇2ci(x))d ≥ −
√
ϵ∥d∥2, ∀d ∈ {d : ∇c(x)T d = 0},

where ∇c denotes the transpose of the Jacobian of c. Specifically, under some suitable assumptions, including

a generalized linear independence constraint qualification (GLICQ), the AL method [70] enjoys a total inner

iteration complexity of Õ(ϵ−11/2) and an operation complexity Õ(ϵ−11/2 min{n, ϵ−3/4}),1 while the AL method

[44] achieves a total inner iteration complexity of Õ(ϵ−7/2) and an operation complexity of Õ(ϵ−7/2 min{n, ϵ−3/4})
for finding an (ϵ,

√
ϵ)-SOSP of problem (2) with high probability. On the other hand, when the GLICQ does not

hold, the AL method [44] has a total inner iteration complexity of Õ(ϵ−11/2) and an operation complexity of

Õ(ϵ−11/2 min{n, ϵ−5/4}). Besides, it shall be mentioned that Newton-CG based AL methods were developed for

efficiently solving a variety of convex optimization problems (e.g., see [72, 73]), though their complexities remain

unknown.

In addition, a Newton-CG based barrier method was recently proposed in [43] for finding an approximate

SOSP of a class of nonconvex conic optimization of the form

min
x

{f(x) : Ax− b = 0, x ∈ K} (3)

for some A ∈ Rm×n and b ∈ Rm, which is a special case of (1). Iteration and operation complexity of this

method were established in [43] for finding an (ϵ,
√
ϵ)-SOSP x of (3) which together with some λ ∈ Rm satisfies

Ax = b, x ∈ intK, ∇f(x) +ATλ ∈ K∗, ∥∇f(x) +ATλ∥∗x ≤ ϵ,

dT∇2B(x)−1/2∇2f(x)∇2B(x)−1/2d ≥ −
√
ϵ∥d∥2, ∀d ∈ {d : A∇2B(x)−1/2d = 0},

where intK and K∗ are respectively the interior and dual cone of K, B is a logarithmically homogeneous

self-concordant barrier function for K, and ∥ · ∥∗x is a local norm induced by B at x (see Section 2 for details).

Under some suitable assumptions, this method achieves an iteration complexity of O(ϵ−3/2) and an operation

complexity2 of Õ(ϵ−3/2 min{n, ϵ−1/4}) for finding an (ϵ,
√
ϵ)-SOSP with high probability. Besides, a Hessian

barrier algorithm was proposed in [38] for finding an approximate SOSP of problem (3). Given that this algorithm

requires solving a cubic regularized subproblem exactly per iteration, it is generally expensive to implement.

It shall also be mentioned that finding an approximate first-order stationary point of (1) with K = Rn
+ was

extensively studied in the literature (e.g., [5, 6, 7, 32, 33, 37, 39, 49, 55, 65, 66, 67]). Notably, a hybrid approach

1In fact, a total inner iteration complexity of Õ(ϵ−7) and an operation complexity Õ(ϵ−7 min{n, ϵ−1}) were established in [70]

for finding an (ϵ, ϵ)-SOSP of problem (1) with high probability; see [70, Theorem 4(ii), Corollary 3(ii), Theorem 5]. Nevertheless,

they can be easily modified to obtain the aforementioned complexity for finding an (ϵ,
√
ϵ)-SOSP of (1) with high probability.

2The operation complexity of the barrier method [43] is measured by the amount of fundamental operations consisting of

matrix-vector products, matrix multiplications, Cholesky factorizations, and backward or forward substitutions to a triangular linear

system.

2

by combining barrier and AL methods was commonly used in [5, 6, 7, 33, 37, 39, 49, 55]). However, finding

an approximate SOSP of (1) by such a hybrid approach has not been considered, even for (1) with K = Rn
+.

Inspired by these and [43, 44], in this paper we propose a Newton-CG based barrier-AL method for finding an

approximate SOSP of problem (1) with high probability. Our main contributions are as follows.

• We study first- and second-order optimality conditions for problem (1) and introduce an approximate

counterpart of them.

• We propose an implementable Newton-CG based barrier-AL method for finding an approximate SOSP of

(1), whose main operations consist of Cholesky factorizations and other fundamental operations including

matrix-vector products and backward or forward substitutions to a triangular linear system.3

• We show that under some mild assumptions, our proposed method has a total inner iteration complexity

of Õ(ϵ−11/2) and an operation complexity of Õ(ϵ−11/2 min{n, ϵ−5/4}) for finding an (ϵ,
√
ϵ)-SOSP of (1)

with high probability. Furthermore, under a constraint qualification, we show that our method achieves

an improved total inner iteration complexity of Õ(ϵ−7/2) and an improved operation complexity of

Õ(ϵ−7/2 min{n, ϵ−3/4}).4 To the best of our knowledge, there was no complexity result for finding an

approximate SOSP of problem (1) in the literature before.

The rest of this paper is organized as follows. In Section 2, we introduce some notation. In Section 3, we

study optimality conditions of problem (1) and introduce an inexact counterpart of them. In Section 4, we

propose a preconditioned Newton-CG method for solving a barrier problem and study its complexity. We then

propose a Newton-CG based barrier-AL method for (1) and study its complexity in Section 5. We present in

Section 6 some preliminary numerical results for the proposed method. In Section 7, we present the proofs of the

main results. Finally, we make some concluding remarks in Section 8.

2 Notation and preliminaries

Throughout this paper, we let Rn denote the n-dimensional Euclidean space. The symbol ∥ · ∥ stands for the

Euclidean norm of a vector or the spectral norm of a matrix. The identity matrix is denoted by I. We denote

by λmin(H) the minimum eigenvalue of a real symmetric matrix H. For any two real symmetric matrices M1

and M2, M1 ⪯M2 means that M2 −M1 is positive semidefinite. For any positive semidefinite matrix M , M1/2

denotes a positive semidefinite matrix such that M =M1/2M1/2. For the closed convex cone K, its interior and

dual cone are respectively denoted by intK and K∗. For any x ∈ K, the normal cone and tangent cone of K at x

are denoted by NK(x) and TK(x), respectively. The Euclidean ball centered at the origin with radius R ≥ 0 is

denoted by BR := {x : ∥x∥ ≤ R}, and we use ΠBR
(v) to denote the Euclidean projection of a vector v onto BR.

For a given finite set A, we let | A | denote its cardinality. For any s ∈ R, we let sgn(s) be 1 if s ≥ 0 and let it be

−1 otherwise. In addition, Õ(·) represents O(·) with logarithmic terms omitted.

Logarithmically homogeneous self-concordant (LHSC) barrier function is a key ingredient in the development

of interior-point methods for convex programming (see the monograph [56]). It will also play a crucial role in

the design and analysis of Newton-CG based barrier-AL method for solving problem (1). Throughout this paper,

we assume that the cone K is equipped with a ϑ-logarithmically homogeneous self-concordant (ϑ-LHSC) barrier

function B for some ϑ ≥ 1. That is, B : intK → R satisfies the following conditions:

(i) B is convex and three times continuously differentiable in intK, and moreover, |ψ′′′(0)| ≤ 2(ψ′′(0))3/2 holds

for all x ∈ intK and u ∈ Rn, where ψ(t) = B(x+ tu);

(ii) B is a barrier function for K, that is, B(x) goes to infinity as x approaches the boundary of K;

(iii) B is logarithmically homogeneous, that is, B(tx) = B(x)− ϑ ln t holds for all x ∈ intK and t > 0.

3The arithmetic complexity of Cholesky factorizations for a positive definite matrix is O(n3) in general, while the arithmetic

complexity of matrix-vector products and backward or forward substitutions is at most O(n2), where n is the number of rows of the

matrix.
4It shall be mentioned that the total numbers of Cholesky factorizations are only Õ(ϵ−7/2) and Õ(ϵ−11/2) respectively for the

case where constraint qualification holds or not. See Subsections 5.3 and 5.4 for details.

3

For any x ∈ intK, the function B induces the following local norms:

∥v∥x :=
(
vT∇2B(x)v

)1/2
, ∀v ∈ Rn,

∥v∥∗x :=
(
vT∇2B(x)−1v

)1/2
, ∀v ∈ Rn,

∥M∥∗x := max
∥v∥x≤1

∥Mv∥∗x, ∀M ∈ Rn×n . (4)

In addition, ∇2B(x)−1 is well-defined only in intK but undefined on the boundary of K. To capture the behavior

of ∇2B(x)−1 as x approaches the boundary of K, the concept of the limiting inverse of the Hessian of B was

recently introduced in [43], which can be viewed as a generalization of [∇2B]−1. Specifically, the limiting inverse

of the Hessian of B is defined as follows:

∇−2B(x) :=

{
M :M = lim

k→∞
∇2B(xk)−1 for some {xk} ⊂ intK with xk → x as k → ∞

}
, ∀x ∈ K .

As established in [43, Theorem 1], the inverse of ∇2B(x) is bounded in any nonempty bounded subset of intK.

Consequently, ∇−2B(x) ̸= ∅ for all x ∈ K. Moreover, the following property holds for ∇−2B, whose proof can

be found in [43, Theorem 2].

Lemma 2.1. For any x ∈ K, it holds that {x+M1/2d : ∥d∥ < 1} ⊆ K for all M ∈ ∇−2B(x).

3 Optimality conditions

Classical first- and second-order optimality conditions for nonlinear optimization can be specialized to problem (1)

(e.g., see [62, Theorems 3.38 and 3.46]). However, the inexact counterparts of them are not suitable for the

design and analysis of a barrier-AL method for solving (1). In this section we study some alternative first- and

second-order optimality conditions for (1) and also introduce an inexact counterpart of them.

Suppose that x∗ is a local minimizer of problem (1). To derive optimality conditions, one typically needs to

impose a constraint qualification (CQ) for x∗. The Robinson’s CQ, {∇c(x∗)T d : d ∈ TK(x∗)} = Rm, is a natural

and general one (e.g., see [62, Section 3.3.2]). However, verification of Robinson’s CQ may not be easy for a

general cone K. Thus, we instead consider a more easily verifiable CQ that M1/2∇c(x∗) has full column rank for

some M ∈ ∇−2B(x∗), which turns out to be stronger than Robinson’s CQ. Indeed, suppose that such a CQ

holds at x∗ for some M ∈ ∇−2B(x∗). It then follows from Lemma 2.1 that {M1/2d̃ : ∥d̃∥ < 1} ⊆ TK(x∗) and
hence {M1/2d̃ : d̃ ∈ Rn} ⊆ TK(x∗). By this and the full column rank of M1/2∇c(x∗), one has

{∇c(x∗)T d : d ∈ TK(x∗)} ⊇ {∇c(x∗)TM1/2d̃ : d̃ ∈ Rn} = Rm,

and hence Robinson’s CQ holds at x∗.

We are now ready to establish some first- and second-order optimality conditions for problem (1) under the

aforementioned CQ, whose proof is relegated to Section 7.1.

Theorem 3.1 (first- and second-order optimality conditions). Let x∗ be a local minimizer of problem (1).

Suppose that f is twice continuously differentiable at x∗ and M1/2∇c(x∗) has full column rank for some

M ∈ ∇−2B(x∗). Then there exists a Lagrangian multiplier λ∗ ∈ Rm such that

∇f(x∗) +∇c(x∗)λ∗ ∈ K∗, (5)

M1/2(∇f(x∗) +∇c(x∗)λ∗) = 0, (6)

and additionally,

dTM1/2

(
∇2f(x∗) +

m∑
i=1

λ∗i∇2ci(x
∗)

)
M1/2d ≥ 0, ∀d ∈ {d : ∇c(x∗)TM1/2d = 0}. (7)

Remark 3.1. The relations (5) and (6) are the first-order optimality conditions of problem (1), which are

actually equivalent to the classical optimality condition ∇f(x∗) +∇c(x∗)λ∗ ∈ −NK(x
∗) (see [43, Proposition 1]).

4

Notice that it is generally impossible to find a point exactly satisfying the above first- and second-order

optimality conditions. We are instead interested in finding a point satisfying their approximate counterparts. To

this end, we next introduce the definition of an approximate first-order stationary point (FOSP) and second-order

stationary point (SOSP) of problem (1).

Definition 3.1 (ϵ1-first-order stationary point). For any ϵ1 > 0, a point x is called an ϵ1-first-order

stationary point (ϵ1-FOSP) of problem (1) if it, together with some λ ∈ Rm, satisfies

∥c(x)∥ ≤ ϵ1, x ∈ intK, (8)

∇f(x) +∇c(x)λ ∈ K∗, (9)

∥∇f(x) +∇c(x)λ∥∗x ≤ ϵ1. (10)

Definition 3.2 ((ϵ1, ϵ2)-second-order stationary point). For any ϵ1, ϵ2 > 0, a point x is called an (ϵ1, ϵ2)-

second-order stationary point ((ϵ1, ϵ2)-SOSP) of problem (1) if it, together with some λ ∈ Rm, satisfies (8)-(10)

and additionally

dT∇2B(x)−1/2

(
∇2f(x) +

m∑
i=1

λi∇2ci(x)

)
∇2B(x)−1/2d ≥ −ϵ2∥d∥2, ∀d ∈ C(x), (11)

where C(·) is defined as

C(x) := {d : ∇c(x)T∇2B(x)−1/2d = 0}. (12)

Remark 3.2. Notice that if the pair (x, λ) satisfies (10) and (11), then it nearly satisfies (6) and (7) with

(x∗, λ∗) replaced by (x, λ). Thus, (10) and (11) can be viewed as inexact counterparts of (6) and (7). Moreover,

the above definitions of ϵ1-FOSP and (ϵ1, ϵ2)-SOSP are reduced to the ones introduced in [43] for the case where

c is affine.

4 A preconditioned Newton-CG method for barrier problems

In this section we propose a preconditioned Newton-CG method in Algorithm 1, which is a modification of the

Newton-CG based barrier method [43, Algorithm 2], for finding an approximate SOSP of the barrier problem

min
x

{ϕµ(x) := F (x) + µB(x)}, (13)

where F : Rn → R is twice continuously differentiable in intK and µ > 0 is a given barrier parameter. Specifically,

the proposed method finds an (ϵg, ϵH)-SOSP x of problem (13) that satisfies

∥∇ϕµ(x)∥∗x ≤ ϵg, λmin(∇2B(x)−1/2∇2ϕµ(x)∇2B(x)−1/2) ≥ −ϵH (14)

for any prescribed tolerances ϵg, ϵH ∈ (0, 1). It will be used to solve the subproblems arising in the barrier-AL

method later.

Our preconditioned Newton-CG method (Algorithm 1) consists of two main components. The first main

component is a modified CG method, referred to as capped CG method, which was proposed in [60, Algorithm 1]

for solving a possibly indefinite linear system

(H + 2εI)d̂ = −g, (15)

where 0 ̸= g ∈ Rn, ε > 0, and H ∈ Rn×n is a symmetric matrix. The capped CG method terminates within a

finite number of iterations and returns either an approximate solution d̂ to (15) satisfying ∥(H+2εI)d̂+g∥ ≤ ζ̂∥g∥
and d̂THd̂ ≥ −ε∥d̂∥2 for some ζ̂ ∈ (0, 1) or a sufficiently negative curvature direction d̂ of H with d̂THd̂ < −ε∥d̂∥2.
The second main component is a minimum eigenvalue oracle. Given a symmetric matrix H ∈ Rn×n and ε > 0,

this oracle either produces a sufficiently negative curvature direction v of H with ∥v∥ = 1 and vTHv ≤ −ε/2
or certifies that λmin(H) ≥ −ε holds with high probability. For ease of reference, we present these two main

components in Algorithms 3 and 4 in Appendices A and B, respectively.

5

We are now ready to describe our preconditioned Newton-CG method (Algorithm 1) for solving (13). At

iteration t, if the first relation in (14) is not satisfied at the iterate xt, the capped CG method (Algorithm 3) is

invoked to find a descent direction for ϕµ by solving the following damped preconditioned Newton system

(MT
t ∇2ϕµ(x

t)Mt + 2ϵHI)d̂ = −MT
t ∇ϕµ(xt),

where Mt is a matrix such that

∇2B(xt)−1 =MtM
T
t . (16)

A line search along this descent direction is then performed to result in a reduction on ϕµ. Otherwise, the

minimum eigenvalue oracle (Algorithm 4) is invoked. This oracle either produces a sufficiently negative curvature

direction of MT
t ∇2ϕµ(x

t)Mt along which a line search is performed to result in a reduction on ϕµ, or certifies that

the iterate xt also satisfies the second relation in (14) with high probability and terminates the preconditioned

Newton-CG method. The detailed description of our preconditioned Newton-CG method is presented in

Algorithm 1.

Algorithm 1 A preconditioned Newton-CG method for problem (13)

Input: tolerances ϵg , ϵH ∈ (0, 1), backtracking ratio θ ∈ (0, 1), starting point u0 ∈ intK, CG-accuracy parameter ζ ∈ (0, 1),

maximum step length β ∈ [ϵH , 1), line-search parameter η ∈ (0, 1), probability parameter δ ∈ (0, 1);

Set x0 = u0;

for t = 0, 1, 2, . . . do

if ∥∇ϕµ(xt)∥∗
xt > ϵg then

Call Algorithm 3 (see Appendix A) with H = MT
t ∇2ϕµ(xt)Mt, ε = ϵH , g = MT

t ∇ϕµ(xt), accuracy parameter ζ,

and bound U = 0 to obtain outputs d̂t, d type, where Mt is given in (16);

if d type=NC then

dt ← − sgn((d̂t)TMT
t ∇ϕµ(x

t))min

{
|(d̂t)TMT

t ∇2ϕµ(xt)Mtd̂t|
∥d̂t∥3

,
β

∥d̂t∥

}
d̂t; (17)

else {d type=SOL}

dt ← min

{
1,

β

∥d̂t∥

}
d̂t; (18)

end if

Go to Line Search;

else

Call Algorithm 4 (see Appendix B) with H = MT
t ∇2ϕµ(xt)Mt, ε = ϵH , and probability parameter δ;

if Algorithm 4 certifies that λmin(M
T
t ∇2ϕµ(xt)Mt) ≥ −ϵH then

Output xt and terminate;

else {Sufficiently negative curvature direction v returned by Algorithm 4}
Set d type=NC and

dt ← − sgn(vTMT
t ∇ϕµ(x

t))min{|vTMT
t ∇2ϕµ(x

t)Mtv|, β}v; (19)

Go to Line Search;

end if

end if

Line Search:

if d type=SOL then

Find αt = θjt , where jt is the smallest nonnegative integer j such that

ϕµ(x
t + θjMtd

t) < ϕµ(x
t)− ηϵHθ2j∥dt∥2; (20)

else {d type=NC}
Find αt = θjt , where jt is the smallest nonnegative integer j such that

ϕµ(x
t + θjMtd

t) < ϕµ(x
t)− ηθ2j∥dt∥3/2; (21)

end if

xt+1 = xt + αtMtdt;

end for

4.1 Iteration and operation complexity of Algorithm 1

In this subsection we study iteration and operation complexity of Algorithm 1. To proceed, we make the following

assumptions on problem (13).

6

Assumption 4.1. (a) There exists a finite ϕlow such that

ϕµ(x) ≥ ϕlow, ∀x ∈ intK, (22)

S = {x ∈ intK : ϕµ(x) ≤ ϕµ(u
0)} is bounded, (23)

where u0 ∈ intK is the initial point of Algorithm 1 and ϕµ is given in (13).

(b) There exists LF
H > 0 such that

∥∇2F (y)−∇2F (x)∥∗x ≤ LF
H∥y − x∥x, ∀x, y ∈ Ω with ∥y − x∥x ≤ β,

where Ω ⊂ intK is an open bounded convex neighborhood of S and β ∈ (0, 1) is an input of Algorithm 1.

(c) The quantities UF
g and UF

H are finite, where

UF
g := sup

x∈S
∥∇F (x)∥∗x, UF

H := sup
x∈S

∥∇2F (x)∥∗x. (24)

Before establishing operation complexity of Algorithm 1, let us make some observations on its fundamental

operations. Firstly, at iteration t, the main effort of Algorithm 1 is on the execution of Algorithm 3 or 4 with

H = MT
t ∇2ϕµ(x

t)Mt. Secondly, the main computational cost of Algorithms 3 and 4 per iteration is on the

product of H and a vector v. Consequently, it suffices to focus on computing Hv. Indeed, notice from (13) and

(16) that

Hv =MT
t ∇2ϕµ(x

t)Mtv =MT
t ∇2F (xt)Mtv + µv.

Thus, computing Hv consists of one Hessian-vector product of F and two matrix-vector products involving Mt

and MT
t , respectively. We next discuss how to efficiently compute the product of Mt or M

T
t and a vector.

• When K is the nonnegative orthant, its associated barrier function is B(x) = −
∑n

i=1 lnxi. Notice that

∇2B(x) is a diagonal matrix and so is Mt. As a result, the operation cost for computing the product of

Mt or M
T
t and a vector is O(n), which is typically cheaper than the Hessian-vector product of F .

• When K is a general cone, directly computing Mt may be too expensive. In view of ∇2B(xt) =M−T
t M−1

t

(see (16)), one can instead choose M−T
t as the Cholesky factor of ∇2B(xt), which is computed only once

in each iteration of Algorithm 1. Once M−T
t is available, the product of Mt or M

T
t and a vector can be

computed by performing backward or forward substitution to a linear system with coefficient matrix M−1
t

or M−T
t .

Based on the above discussion, we conclude that: (i) when K is the nonnegative orthant, the fundamental

operations of Algorithm 1 consist only of the Hessian-vector products of F ; (ii) when K is a general cone, the

fundamental operations of Algorithm 1 consist of the Hessian-vector products of F , Cholesky factorizations of

∇2B, and backward or forward substitutions to a triangular linear system.

The following theorem states the iteration and operation complexity of Algorithm 1, whose proof is deferred

to Section 7.2.

Theorem 4.1 (Complexity of Algorithm 1). Suppose that Assumption 4.1 holds. Let

T1 =

⌈
ϕhi − ϕlow

min{csol, cnc}
max{ϵ−2

g ϵH , ϵ
−3
H }
⌉
+

⌈
ϕhi − ϕlow

cnc
ϵ−3
H

⌉
+ 1, T2 =

⌈
ϕhi − ϕlow

cnc
ϵ−3
H

⌉
+ 1, (25)

where ϕhi = ϕµ(u
0), ϕlow is given in (22), and

csol = ηmin

{[
4(1−β)

4+ζ+
√

(4+ζ)2+8[(1−β)LF
H+µ(2−β)/(1−β)]

]2
,
[

min{6(1−η),2}θ
LF

H+µ(2−β)/(1−β)2

]2}
, (26)

cnc =
η
16 min

{
1,
[

min{3(1−η),1}θ
LF

H+µ(2−β)/(1−β)2

]2}
. (27)

Then the following statements hold.

7

(i) The total number of calls of Algorithm 4 in Algorithm 1 is at most T2.

(ii) The total number of calls of Algorithm 3 in Algorithm 1 is at most T1.

(iii) (iteration complexity) Algorithm 1 terminates in at most T1 + T2 iterations with

T1 + T2 = O((ϕhi − ϕlow)(L
F
H)2 max{ϵ−2

g ϵH , ϵ
−3
H }). (28)

Moreover, its output xt satisfies the first relation in (14) deterministically and the second relation in (14)

with probability at least 1− δ for some 0 ≤ t ≤ T1 + T2.

(iv) (operation complexity) The total numbers of Cholesky factorizations and other fundamental operations

consisting of the Hessian-vector products of F and backward or forward substitutions to a triangular linear

system required by Algorithm 1 are at most T1 + T2 and

Õ((ϕhi − ϕlow)(L
F
H)2 max{ϵ−2

g ϵH , ϵ
−3
H }min{n, (UF

H/ϵH)1/2}),

respectively, where UF
H is given in (24).

5 A Newton-CG based barrier-AL method for problem (1)

In this section we propose a Newton-CG based barrier-AL method for finding a stochastic (ϵ,
√
ϵ)-SOSP of

problem (1) for any prescribed tolerance ϵ ∈ (0, 1).

Recall that B is the ϑ-LHSC barrier function associated with K for some ϑ ≥ 1. We now make the following

additional assumptions on problem (1).

Assumption 5.1. (a) An ϵ/2-approximately strictly feasible point zϵ of problem (1), namely satisfying zϵ ∈ intK
and ∥c(zϵ)∥ ≤ ϵ/2, is known.

(b) There exist constants fhi, flow ∈ R and γ, δf , δc > 0, independent of ϵ, such that

f(zϵ) + µB(zϵ) ≤ fhi, ∀µ ∈ (0, µ0], (29)

f(x) + µB(x) + γ∥c(x)∥2/2 ≥ flow, ∀µ ∈ (0, µ0], x ∈ intK, (30)

S(δf , δc) :=
⋃

µ∈(0,µ0]

{x ∈ intK : f(x) + µB(x) ≤ fhi + δf , ∥c(x)∥ ≤ 1 + δc} is bounded, (31)

where µ0 = 1/(2ϑ1/2 + 2) and zϵ is given in (a).

(c) There exist Lf
H , L

c
H > 0 and β ∈ (0, 1) such that

∥∇2f(y)−∇2f(x)∥∗x ≤ Lf
H∥y − x∥x, ∀x, y ∈ Ω(δf , δc) with ∥y − x∥x ≤ β,

∥∇2ci(y)−∇2ci(x)∥∗x ≤ Lc
H∥y − x∥x, ∀x, y ∈ Ω(δf , δc) with ∥y − x∥x ≤ β, 1 ≤ i ≤ m,

(32)

where Ω(δf , δc) ⊂ intK is an open bounded convex neighborhood of S(δf , δc).

(d) The quantities Uf
g , U

c
g , U

f
H and U c

H are finite, where

Uf
g = supx∈Ω(δf ,δc)

∥∇f(x)∥∗x, U c
g = supx∈Ω(δf ,δc)

max1≤i≤m ∥∇ci(x)∥∗x, (33)

Uf
H = supx∈Ω(δf ,δc)

∥∇2f(x)∥∗x, U c
H = supx∈Ω(δf ,δc)

max1≤i≤m ∥∇2ci(x)∥∗x. (34)

We next make some remarks about Assumption 5.1.

Remark 5.1. (i) A similar assumption as Assumption 5.1(a) was considered in the study of AL methods for

nonconvex equality constrained optimization (e.g., see [28, 41, 44, 52, 70]). By imposing Assumption 5.1(a),

we restrict our study on problem (1) for which an ϵ/2-approximately strictly feasible point zϵ can be

found by an inexpensive procedure. Assumption 5.1(a) often holds in practice. For example, when the

constraints of (1) consist of sphere and nonnegative orthant constraints, a strictly feasible point is readily

8

available. Also, when c is an affine mapping and K is the nonnegative orthant, a strictly feasible point

of (1) can be found using interior point methods. In addition, when the generalized LICQ condition

λmin(∇c(x)T∇2B(x)−1∇c(x)) ≥ σ2 (see Assumption 5.2 below) holds on a level set of ∥c(x)∥2 + µB(x)

for µ = σϵ/(2ϑ1/2) and some constant σ > 0 and F (x) = ∥c(x)∥2 satisfies Assumption 4.1, the point zϵ
can be found by applying our preconditioned Newton-CG method (Algorithm 1) to the barrier problem

minx ∥c(x)∥2 + µB(x) to find zϵ satisfying ∥∇(∥c(zϵ)∥2 + µB(zϵ))∥∗zϵ ≤ σϵ/2. It can be verified that such zϵ
satisfies Assumption 5.1(a). As observed from Theorem 4.1, the resulting iteration and operation complexity

for finding such zϵ are respectively O(ϵ−3/2) and Õ(ϵ−3/2 min{n, ϵ−1/4}), which are negligible compared

with those of our barrier-AL method (see Theorems 5.4 and 5.5 below).

(ii) Assumption 5.1(b) is mild. In particular, the assumption in (29) holds if f(x)+µ0[B(x)]+ is bounded above

for all x ∈ intK with ∥c(x)∥ ≤ 1. Besides, the function f(x) + µB(x) + γ∥c(x)∥2/2 is a barrier-quadratic

penalty function of problem (1) and is typically bounded below on intK. In addition, letting z0 be an

arbitrary point in intK, it can be shown that S(δf , δc) ⊆ S1 ∪S2, where

S1 =
{
x ∈ intK : f(x) ≤ fhi + δf + µ0 + µ0[B(z0)]+, B(x) ≥ −1− [B(z0)]+, ∥c(x)∥ ≤ 1 + δc

}
,

S2 =
{
x ∈ intK : f(x)

−B(x) ≤
[fhi+δf]+
1+[B(z0)]+

+ µ0, B(x) ≤ −1− [B(z0)]+, ∥c(x)∥ ≤ 1 + δc

}
,

and t+ = max{0, t} for all t ∈ R. Thus, the assumption in (31) holds if S1 and S2 are bounded. The latter

holds, for example, for the problem with f(x) = ℓ(x) +
∑n

i=1 x
p
i , B(x) = −

∑n
i=1 lnxi and K = Rn

+ studied

in [42], where ℓ : Rn → R+ is a loss function and p > 0.

(iii) Assumptions 5.1(c) means that ∇2f and ∇2ci, 1 ≤ i ≤ m, are locally Lipschitz continuous in Ω(δf , δc) with

respect to the local norms. As pointed out in [43, Section 5], such local Lipschitz continuity is weaker than

the global Lipschitz continuity of ∇2f and ∇2ci, 1 ≤ i ≤ m, in Ω(δf , δc). Besides, Assumption 5.1(d) holds

if f and c are twice continuously differentiable in an open set containing K.

5.1 A Newton-CG based barrier-AL method

We now describe our Newton-CG based barrier-AL method (Algorithm 2) for finding a stochastic (ϵ,
√
ϵ)-SOSP

of problem (1) for a prescribed tolerance ϵ ∈ (0, 1). Instead of solving (1) directly, our method solves a sequence

of perturbed equality constrained barrier problems

min
x

{f(x) + µkB(x) : c̃(x) = 0}, (35)

where µk is given in Algorithm 2, zϵ is given in Assumption 5.1(a), and

c̃(x) := c(x)− c(zϵ). (36)

It follows a similar AL framework as the one proposed in [44]. In particular, at the kth iteration, it first applies

the preconditioned Newton-CG method (Algorithm 1) to find an approximate stochastic SOSP xk+1 of the

subproblem:

min
x

{
Lµk

(x, λk; ρk) := f(x) + µkB(x) + (λk)T c̃(x) +
ρk
2
∥c̃(x)∥2

}
, (37)

which is an AL subproblem associated with (35). Then the standard multiplier estimate λ̃k+1 is updated by

the classical scheme (see step 3 of Algorithm 2), and the truncated Lagrangian multiplier λk+1 is updated by

projecting λ̃k+1 onto a Euclidean ball (see step 5 of Algorithm 2).5 Finally, the penalty parameter ρk+1 is

adaptively updated according to the improvement on constraint violation (see step 6 of Algorithm 2). This

update scheme is very practical and widely used in AL type methods (e.g., see [3, 8, 28]).

Remark 5.2. (i) Notice that the starting point x0init of Algorithm 2 can be different from zϵ and it may be

rather infeasible, though zϵ is a nearly feasible point of (1). Besides, zϵ is used to monitor convergence

of Algorithm 2. Specifically, if the algorithm runs into a “poorly infeasible point” xk, namely satisfying

5The λk+1 is also called a safeguarded Lagrangian multiplier, which has been used in the literature for designing some AL

methods (e.g., see [3, 13, 44, 47]). It has been shown to enjoy many practical and theoretical advantages (e.g., see [13]).

9

Algorithm 2 A Newton-CG based barrier-AL method for problem (1)

Let γ and µ be given in Assumption 5.1.

Input: ϵ ∈ (0, 1), Λ > 0, x0 ∈ intK, λ0 ∈ BΛ, ρ0 > 2γ, α ∈ (0, 1), r > 1, δ ∈ (0, 1), zϵ given in Assumption 5.1(a), and

µk = max{ϵ, rk log ϵ/ log 2}/(2ϑ1/2 + 2) for all k ≥ 0.

1: Set k = 0.

2: Call Algorithm 1 with ϵg = µk, ϵH =
√
µk and u0 = xk

init to find an approximate solution xk+1 ∈ intK to

minx Lµk (x, λ
k; ρk) such that

Lµk (x
k+1, λk; ρk) ≤ f(zϵ) + µkB(zϵ), ∥∇x Lµk (x

k+1, λk; ρk)∥∗xk+1 ≤ µk, (38)

λmin(M
T
k+1∇2

xxLµk (x
k+1, λk; ρk)Mk+1) ≥ −

√
µk with probability at least 1− δ, (39)

where Mk+1 is defined as in (16) and

xk
init =

{
zϵ if Lµk (x

k, λk; ρk) > f(zϵ) + µkB(zϵ),

xk otherwise,
for k ≥ 0. (40)

3: Set λ̃k+1 = λk + ρk c̃(x
k+1).

4: If µk ≤ ϵ/(2ϑ1/2 + 2) and ∥c(xk+1)∥ ≤ ϵ, then output (xk+1, λ̃k+1) and terminate.

5: Set λk+1 = ΠBΛ(λ̃
k+1).

6: If k = 0 or ∥c̃(xk+1)∥ > α∥c̃(xk)∥, set ρk+1 = rρk. Otherwise, set ρk+1 = ρk.

7: Set k ← k + 1, and go to step 2.

Lµk
(xk, λk; ρk) > f(zϵ) + µkB(zϵ), it will be superseded by zϵ (see (40)), which prevents the iterates {xk}

from converging to an infeasible point. Yet, xk may be rather infeasible when k is not large. Thus,

Algorithm 2 substantially differs from a funneling or two-phase type algorithm, in which a nearly feasible

point is found in Phase 1, and then approximate stationarity is sought while near feasibility is maintained

throughout Phase 2 (e.g., see [11, 16, 22, 23, 24, 25, 26, 36]).

(ii) The choice of ρ0 in Algorithm 2 is mainly for the simplicity of complexity analysis. Yet, it may be overly

large and lead to highly ill-conditioned AL subproblems in practice. To make Algorithm 2 practically more

efficient, one can possibly modify it by choosing a relatively small initial penalty parameter, then solving the

subsequent AL subproblems by a first-order method until an ϵ1-first-order stationary point x̂ of (35) along

with a Lagrangian multiplier λ̂ is found, and finally performing the steps described in Algorithm 2 but with

x0 = x̂ and λ0 = ΠBΛ(λ̂).

(iii) Algorithm 2 can be easily extended to find an (ϵ,
√
ϵ)-SOSP of a more general conic optimization problem

of the form minx,y{f̃(x, y) : c̃(x, y) = 0, y ∈ K}. Indeed, one can follow almost the same framework as

Algorithm 2, except that the associated subproblems are solved by a preconditioned Newton-CG method,

which is a slight modification of Algorithm 1 by choosing the preconditioning matrix M̃k as the one satisfying[
I 0

0 ∇2B(yk)

]−1

= M̃kM̃
T
k .

(iv) It is worth mentioning that Algorithm 2 shares some similarities with classical primal interior point methods

for convex conic optimization. Specifically, Algorithm 2 applies a damped Newton’s method to solve a

sequence of barrier-AL subproblems, while the primal interior point method applies a projected Newton’s

method to solve a sequence of constrained barrier subproblems.

Before analyzing the complexity of Algorithm 2, we first argue that it is well-defined if ρ0 is suitably chosen.

Specifically, we will show that when ρ0 is sufficiently large, one can apply Algorithm 1 to the subproblem

minx Lµk
(x, λk; ρk) with x

k
init as the initial point to find an xk+1 satisfying (38) and (39). To this end, we start

by noting from (29), (36), (37) and (40) that

Lµk
(xkinit, λ

k; ρk)
(40)

≤ max{Lµk
(zϵ, λ

k; ρk), f(zϵ) + µkB(zϵ)}
(36)(37)

= f(zϵ) + µkB(zϵ)
(29)

≤ fhi. (41)

Based on this observation, we show in the next lemma that when ρ0 is sufficiently large, Lµk
(·, λk; ρk) is bounded

below and its certain level set is bounded, whose proof is deferred to Section 7.2.

10

Lemma 5.1 (Properties of Lµk
(·, λk; ρk) and L(·, λk; ρk)). Suppose that Assumption 5.1 holds. Let (λk, ρk)

be generated at the kth iteration of Algorithm 2 for some k ≥ 0, and

L(x, λk; ρk) := f(x) + (λk)T c̃(x) +
ρk
2
∥c̃(x)∥2. (42)

Let S(δf , δc) and xkinit be respectively defined in (31) and (40), µk be given in Algorithm 2, and let δf , δc, fhi,

flow, L
f
H , Lc

H , Uf
H , U c

g , U
c
H and Ω(δf , δc) be given in Assumption 5.1. Suppose that ρ0 is sufficiently large such

that δf,1 ≤ δf and δc,1 ≤ δc, where

δf,1 := Λ2/(2ρ0) and δc,1 :=

√
2(fhi − flow + γ)

ρ0 − 2γ
+

Λ2

(ρ0 − 2γ)2
+

Λ

ρ0 − 2γ
. (43)

Then the following statements hold.

(i) {x ∈ intK : Lµk
(x, λk; ρk) ≤ Lµk

(xkinit, λ
k; ρk)} ⊆ S(δf , δc).

(ii) infx∈intK Lµk
(x, λk; ρk) ≥ flow − γ − Λδc.

(iii) ∥∇2
xx L(y, λk; ρk)−∇2

xx L(x, λk; ρk)∥∗x ≤ Lk,H∥y − x∥x for all x, y ∈ Ω(δf , δc) with ∥y − x∥x ≤ β, where

Lk,H := Lf
H + ∥λk∥1Lc

H + ρkm

[
(1 + U c)Lc

H +
U c
gU

c
H

1− β
+

(2− β)U c
gU

c
H

(1− β)3

]
, U c := sup

z∈Ω(δf ,δc)

∥c(z)∥. (44)

(iv) The quantities Uk,g and Uk,H are finite, where

Uk,g := sup
x∈S(δf ,δc)

∥∇x L(x, λk; ρk)∥∗x, Uk,H := sup
x∈S(δf ,δc)

∥∇2
xx L(x, λk; ρk)∥∗x.

Moreover, Uk,g ≤ Uf
g +∥λk∥1U c

g+ρk
√
m(2+δc)U

c
g and Uk,H ≤ Uf

H+∥λk∥1U c
H+ρk(m(U c

g)
2+

√
m(2+δc)U

c
H).

In view of (31) and Lemma 5.1(i) and (ii), one can see that the level set {x ∈ intK : Lµk
(x, λk; ρk) ≤

Lµk
(xkinit, λ

k; ρk)} is bounded and Lµk
(x, λk; ρk) is bounded below for all x ∈ intK. By these and Lemma 5.1(iii)

and (iv), one can further see that Assumption 4.1 holds for F (·) = L(·, λk; ρk) and u0 = xkinit. Based on this and the

discussion in Section 4, we can conclude that Algorithm 1, starting with u0 = xkinit, is applicable to the subproblem

minx Lµk
(x, λk; ρk). Moreover, it follows from Theorem 4.1 that this algorithm with ϵg = µk and ϵH =

√
µk can

produce a point xk+1 satisfying (39) and also the second relation in (38). In addition, since this algorithm is

descent and its starting point is xkinit, its output x
k+1 must satisfy Lµk

(xk+1, λk; ρk) ≤ Lµk
(xkinit, λ

k; ρk), which

along with (41) implies that Lµk
(xk+1, λk; ρk) ≤ f(zϵ) + µkB(zϵ) and thus xk+1 also satisfies the first relation in

(38).

The above discussion leads to the following conclusion concerning the well-definedness of Algorithm 2.

Theorem 5.1 (Well-definedness of Algorithm 2). Under the same settings as in Lemma 5.1, the precondi-

tioned Newton-CG method (Algorithm 1), when applied to the subproblem minx Lµk
(x, λk; ρk) with u

0 = xkinit,

can find a point xk+1 satisfying (38) and (39).

The following theorem characterizes the output of Algorithm 2, whose proof is deferred to Section 7.3.

Theorem 5.2 (Output of Algorithm 2). Suppose that Assumption 5.1 holds and that ρ0 is sufficiently large

such that δf,1 ≤ δf and δc,1 ≤ δc, where δf,1 and δc,1 are defined in (43). If Algorithm 2 terminates at some

iteration k, then its output xk+1 is a deterministic ϵ-FOSP of problem (1), and moreover, it is an (ϵ,
√
ϵ)-SOSP

of (1) with probability at least 1− δ.

Remark 5.3. As seen from Theorem 5.2, the output of Algorithm 2 is a stochastic (ϵ,
√
ϵ)-SOSP of problem (1).

On the other hand, this algorithm can be easily modified to find other approximate solutions of (1) as well.

For example, if only an ϵ-FOSP of (1) is to be sought, one can remove the condition (39) from Algorithm 2.

In addition, if one aims to find a deterministic (ϵ,
√
ϵ)-SOSP of (1), one can replace the condition (39) and

Algorithm 1 by λmin(M
T
k+1∇2

xxLµk
(xk+1, λk; ρk)Mk+1) ≥ −√

µk and a deterministic counterpart, respectively.

11

5.2 Outer iteration complexity of Algorithm 2

In this subsection we establish outer iteration complexity of Algorithm 2, which measures the number of its outer

iterations. Notice that µk can be rewritten as

µk = max{ϵ, ωk}/(2ϑ1/2 + 2) with ω := rlog ϵ/ log 2, ∀k ≥ 0, (45)

where r is an input of Algorithm 2. By ϵ ∈ (0, 1) and r > 1, one has ω ∈ (0, 1). For notational convenience, we

introduce the following quantity that will be frequently used later:

Kϵ :=
⌈
min{k ≥ 0 : ωk ≤ ϵ}

⌉
. (46)

In view of this and (45), we obtain that µk = ϵ/(2ϑ1/2 + 2) for all k ≥ Kϵ. This along with the termination

criterion of Algorithm 2 implies that it runs for at least Kϵ iterations and terminates once ∥c(xk+1)∥ ≤ ϵ for

some k ≥ Kϵ. Consequently, to establish outer iteration complexity of Algorithm 2, it suffices to bound such k.

The resulting outer iteration complexity is presented below, whose proof is deferred to Section 7.3.

Theorem 5.3 (Outer iteration complexity of Algorithm 2). Suppose that Assumption 5.1 holds and that

ρ0 is sufficiently large such that δf,1 ≤ δf and δc,1 ≤ δc, where δf,1 and δc,1 are defined in (43). Let

ρϵ,1 := max
{
8(fhi − flow + γ)ϵ−2 + 4Λϵ−1 + 2γ, 2ρ0

}
, (47)

Kϵ := inf{k ≥ Kϵ : ∥c(xk+1)∥ ≤ ϵ}, (48)

where Kϵ is defined in (46), and γ, fhi and flow are given in Assumption 5.1. Then Kϵ is finite, and Algorithm 2

terminates at iteration Kϵ with

Kϵ ≤
(
log(ρϵ,1ρ

−1
0)

log r
+ 1

)(∣∣∣∣ log(ϵ(2δc,1)−1)

logα

∣∣∣∣+ 2

)
+ 1. (49)

Moreover, ρk ≤ rρϵ,1 holds for 0 ≤ k ≤ Kϵ.

Remark 5.4 (Upper bounds for Kϵ and {ρk}). As seen from Theorem 5.3, the number of outer iterations

of Algorithm 2 for finding a stochastic (ϵ,
√
ϵ)-SOSP of problem (1) is at most of O(| log ϵ|2). In addition, the

penalty parameters {ρk} generated by this algorithm are at most of O(ϵ−2).

5.3 Total inner iteration and operation complexity of Algorithm 2

In this subsection we present the total inner iteration and operation complexity of Algorithm 2, which measures

the total number of iterations and fundamental operations performed by Algorithm 1 in Algorithm 2. Its proof

is deferred to Section 7.3.

Theorem 5.4 (Total inner iteration and operation complexity of Algorithm 2). Suppose that Assump-

tion 5.1 holds and that ρ0 is sufficiently large such that δf,1 ≤ δf and δc,1 ≤ δc, where δf,1 and δc,1 are defined in

(43). Then the following statements hold.

(i) The total number of inner iterations of Algorithm 2, namely, the total number of iterations of Algorithm 1

performed in Algorithm 2, is at most Õ(ϵ−11/2). If c is further assumed to be affine, it is at most Õ(ϵ−3/2).

(ii) The total numbers of Cholesky factorizations and other fundamental operations consisting of the Hessian-

vector products of f and c and backward or forward substitutions to a triangular linear system required by

Algorithm 1 in Algorithm 2 are at most Õ(ϵ−11/2) and Õ(ϵ−11/2 min{n, ϵ−5/4}), respectively. If c is further

assumed to be affine, they are at most Õ(ϵ−3/2) and Õ(ϵ−3/2 min{n, ϵ−5/4}), respectively.
Remark 5.5. (i) It is worth mentioning that the above complexity results are established without assuming any

constraint qualification. Moreover, when K is the nonnegative orthant, these results match the best-known

ones achieved by a Newton-CG based AL method [44] for nonconvex equality constrained optimization

without imposing a constraint qualification.

(ii) For the unconstrained case, where K = Rn and c ≡ 0, we can eliminate the barrier function for handling K
and the AL function for handling c from Algorithm 2. Consequently, Algorithm 2 reduces to the Newton-CG

method presented in [44, Algorithm 1] and [60, Algorithm 3]. The corresponding operation complexity bound

can be improved to Õ(ϵ−3/2 minn, ϵ−1/4), which matches the results provided in [44, Theorem 3.1] and [60,

Theorem 4 and Corollary 2] for unconstrained optimization.

12

5.4 Enhanced complexity of Algorithm 2 under constraint qualification

In this subsection we study complexity of Algorithm 2 under one additional assumption that a generalized linear

independence constraint qualification (GLICQ) holds for problem (1), which is introduced below. In particular,

under GLICQ we will obtain an enhanced total inner iteration complexity of Õ(ϵ−7/2) and an enhanced operation

complexity of Õ(ϵ−7/2 min{n, ϵ−3/4}) for Algorithm 2 when the equality constraints in problem (1) are nonlinear,

which are significantly better than the ones in Theorem 5.4. We now introduce the GLICQ assumption for (1).

Assumption 5.2 (GLICQ). There exists some σ > 0 such that

λmin(∇c(x)T∇2B(x)−1∇c(x)) ≥ σ2, ∀x ∈ S(δf , δc), (50)

where S(δf , δc) is defined in (31).

The following theorem shows that under Assumption 5.2, the total inner iteration and operation complexity

results presented in Theorem 5.4 can be significantly improved, whose proof is deferred to Section 7.3.

Theorem 5.5 (Enhanced total inner iteration and operation complexity of Algorithm 2). Suppose

that Assumptions 5.1 and 5.2 hold and that ρ0 is sufficiently large such that δf,1 ≤ δf and δc,1 ≤ δc, where δf,1
and δc,1 are defined in (43). Then the following statements hold.

(i) The total number of inner iterations of Algorithm 2, namely, the total number of iterations of Algorithm 1

performed in Algorithm 2, is at most Õ(ϵ−7/2). If c is further assumed to be affine, it is at most Õ(ϵ−3/2).

(ii) The total numbers of Cholesky factorizations and other fundamental operations consisting of the Hessian-

vector products of f and c and backward or forward substitutions to a triangular linear system required by

Algorithm 1 in Algorithm 2 are at most Õ(ϵ−7/2) and Õ(ϵ−7/2 min{n, ϵ−3/4}), respectively. If c is further

assumed to be affine, they are at most Õ(ϵ−3/2) and Õ(ϵ−3/2 min{n, ϵ−3/4}), respectively.

Remark 5.6. As seen from Theorem 5.5, under GLICQ and some other suitable assumptions, Algorithm 2

achieves significantly better complexity bounds than the ones in Theorem 5.4 when the equality constraints in (1)

are nonlinear. Moreover, when K is the nonnegative orthant, the complexity results in Theorem 5.5 match the

best-known ones achieved by a Newton-CG based AL method [44] for nonconvex equality constrained optimization

under the constraint qualification that is obtained from the above GLICQ by replacing ∇2B(x) by the identity

matrix.

6 Numerical results

In this section we conduct some preliminary numerical experiments to test the performance of our Newton-CG

based barrier-AL method (Algorithm 2) for solving a low-rank matrix recovery problem, a simplex-constrained

nonnegative matrix factorization problem, and a sphere-constrained nonnegative matrix factorization problem.

In our experiments, all the algorithms are coded in Matlab and all the computations are performed on a desktop

with a 3.79 GHz AMD 3900XT 12-Core processor and 32 GB of RAM.

6.1 Low-rank matrix recovery

In this subsection we consider a low-rank matrix recovery problem (e.g., see [9, 29, 59])

min
U∈Rn×l

{
1

2
∥A(UUT)− y∥2 : ∥U∥2F ≤ b

}
, (51)

where A : Rn×n → Rm is a linear operator and ∥ · ∥F is the Frobenius norm.

For each triple (n, l,m), we randomly generate 10 instances of problem (51) in a similar manner as described

in [9]. In particular, we first randomly generate a linear operator A by setting A(·) = A(vec(·)), where A is

an m× n2 matrix with all entries chosen from the normal distribution with mean zero and standard deviation

1/
√
m, and vec(·) is the vectorization of the associated matrix.6 Then we randomly generate the ground-truth

6The vectorization of a matrix is the column vector obtained by stacking the columns of the matrix on top of one another.

13

Relative error Objective value

n l m Algorithm 2 SpaRSA Algorithm 2 SpaRSA

20 1 40 6.3×10−4 6.3×10−4 9.9×10−4 9.8×10−4

20 2 80 3.3×10−4 0.60 2.0×10−3 7.8×103

40 2 160 1.7×10−4 0.66 4.2×10−3 7.1×104

40 4 320 1.2×10−4 0.81 8.0×10−3 5.5×105

60 3 360 9.2×10−5 0.78 9.3×10−3 8.4×105

60 6 720 6.3×10−5 0.85 1.9×10−2 5.1×106

80 4 640 5.8×10−5 0.83 1.6×10−2 4.4×106

80 8 1280 3.9×10−5 0.90 3.3×10−2 2.5×107

100 5 1000 4.2×10−5 0.89 2.6×10−2 1.6×107

100 10 2000 2.8×10−5 0.92 5.2×10−2 8.1×107

Table 1: Numerical results for problem (51)

low-rank matrix X∗ = Ũ ŨT with all entries of Ũ chosen from the standard normal distribution. We finally set

b = ∥Ũ∥2F and y = A(X∗) + e, where ei, 1 ≤ i ≤ m, is generated according to the normal distribution with mean

zero and standard deviation 0.01.

Observe that problem (51) is equivalent to

min
U,s

{
1

2
∥A(UUT)− y∥2 : ∥U∥2F + s = b, s ≥ 0

}
. (52)

In this experiment, we apply Algorithm 2 to find a (10−4, 10−2)-SOSP of (52) and hence of (51). To ensure

that the output of Algorithm 2 is a deterministic approximate second-order stationary point, we use a minimum

eigenvalue oracle that returns a deterministic output in Algorithm 2 instead, which calls the Matlab subroutine

[v,λ] = eigs(H,1,’smallestreal’) to find the minimum eigenvalue λ and its associated unit eigenvector v of a real

symmetric matrix H. Besides, we apply [68, Algorithm SpaRSA], which is a nonmonotone proximal gradient

method, to find a 10−4-FOSP of (51) by generating a sequence {U t} according to

U t = argmin
U

{∥U − U t−1 +∇f(U t−1)/αt−1∥F : ∥U∥2F ≤ b},

where f is the objective function of (51) and αt−1 is chosen by a backtracking line search scheme such that

f(U t) ≤ max[t−M−1]+≤i≤t−1 f(U
i) − σαt−1∥U t − U t−1∥2F /2 for some σ ∈ (0, 1) and a positive integer M (see

[68] for details). We terminate SpaRSA once the condition

∥αt−1(U
t − U t−1) +∇f(U t−1)−∇f(U t)∥F ≤ 10−4

is met. It can be verified that such U t is a 10−4-FOSP of (51). We choose the initial point U0 with all entries

equal to
√
b/(2nl) for both methods, s0 = b/2 for Algorithm 2, and set

• (Λ, ρ0, λ
0, α, r) = (103, 102, 0, 0.25, 1.5) for Algorithm 2, and (θ, ζ, η, β) = (0.5, 0.5, 0.01, 0.9) for Algorithm 1;

• (σ,M,αmin, αmax, η) = (0.01, 5, 10−30, 1030, 2) for SpaRSA [68].

Notice that the approximate solution obtained by SpaRSA must be a feasible point of (51), while the one

found by Algorithm 2 may not be a feasible point of (51). For a fair comparison, we project the latter one into

the feasible region of (51) to obtain a feasible approximate solution. Then we compare the quality of these

feasible approximate solutions in terms of objective value and relative error defined as ∥UUT −X∗∥F /∥X∗∥F for

a given U . The computational results of Algorithm 2 and SpaRSA for the instances randomly generated above

are presented in Table 1. In detail, the values of n, l and m are listed in the first three columns, respectively.

For each triple (n, l,m), the average relative error and the average objective value of the feasible approximate

solutions found by each method over 10 random instances are given in the rest columns. One can observe that

the approximate SOSP found by Algorithm 2 has significantly lower relative error and objective value than the

approximate FOSP obtained by SpaRSA, except for the instances with (n, l,m) = (20, 1, 40).

14

Figure 1: Left: The total number of inner iterations of Algorithm 2 for finding a (10−4, 10−2)-SOSP of (52)

for each problem size over 10 random instances. Right: The number of iterations of SpaRSA for finding a

10−4-FOSP of (51) for each problem size over 10 random instances.

Figure 2: Numerical results of Algorithm 2 and SpaRSA on a single random instance of problem (51) with

(n, l,m) = (20, 2, 80). These two figures illustrate the convergence behavior of both methods in terms of objective

value 1
2∥A(U t(U t)T)− y∥2 and feasibility [∥U t∥2F − b]+.

For each triple (n, l,m), we use box charts in Figure 1 to present the total number of inner iterations of

Algorithm 2 for finding a (10−4, 10−2)-SOSP of problem (52) and the number of iterations of SpaRSA for finding

a 10−4-FOSP of problem (51) over 10 random instances. We observe that the total number of inner iterations of

Algorithm 2 remains at a similar level when the problem size becomes larger. In addition, Figure 2 illustrates the

convergence behavior of both methods for solving a single random instance of (51) with (n, l,m) = (20, 2, 80).

We observe that SpaRSA converges in fewer (inner) iterations than Algorithm 2. However, it converges to a

suboptimal solution with a significantly larger objective value compared to the solution found by Algorithm 2.

6.2 A simplex-constrained nonnegative matrix factorization

In this subsection we consider a simplex-constrained nonnegative matrix factorization (e.g., see [45, 50, 54, 64])

in the form of

min
U∈Rn×l,V ∈Rl×m

{
1

2
∥X − UV ∥2F + γ(∥U∥2F + ∥V ∥2F) : V T el = em, U ≥ 0, V ≥ 0

}
(53)

for some γ > 0, where ∥ · ∥F is the Frobenius norm and ed is the d-dimensional all-ones vector for any d ≥ 1.

15

Relative error Objective value

n l m Algorithm 2 SpaRSA Algorithm 2 SpaRSA

20 2 10 4.8×10−3 0.15 0.30 3.1

20 2 20 3.6×10−3 0.16 0.35 6.4

20 2 30 3.2×10−3 0.16 0.39 9.7

30 3 15 5.8×10−3 0.16 0.62 7.6

30 3 30 4.3×10−3 0.17 0.70 16.1

30 3 45 3.6×10−3 0.17 0.76 23.8

40 4 20 6.3×10−3 0.15 1.0 11.1

40 4 40 4.6×10−3 0.15 1.2 21.7

40 4 60 4.0×10−3 0.15 1.2 31.8

50 5 25 6.8×10−3 0.14 1.6 15.1

50 5 50 5.0×10−3 0.14 1.8 29.8

50 5 75 4.3×10−3 0.14 1.9 43.9

Table 2: Numerical results for problem (53)

Figure 3: Left: The total inner iterations of Algorithm 2 before finding a (10−4, 10−2)-SOSP of (53) for each

problem size over 10 random instances. Right: The number of iterations of SpaRSA before finding a 10−4-FOSP

of (53) for each problem size over 10 random instances.

For each triple (n, l,m), we randomly generate 10 instances of problem (53). In particular, we first randomly

generate U∗ with all entries chosen from the uniform distribution over [0, 2]. We next randomly generate Ṽ with

all entries chosen from the standard uniform distribution and set V ∗ = Ṽ D, where D is a diagonal matrix such

that (V ∗)T el = em. In addition, we set γ = 0.005 and X = U∗V ∗ + E, where the entries of E follow the normal

distribution with mean zero and standard deviation 0.01.

Our aim is to apply Algorithm 2 and SpaRSA [68] to solve (53) and compare the solution quality of these

methods in terms of objective value and relative error defined as ∥UV − U∗V ∗∥F /∥U∗V ∗∥F . In particular, we

first apply Algorithm 2 to find a (10−4, 10−2)-SOSP of (53), in which a minimum eigenvalue oracle that returns

a deterministic output, namely the Matlab subroutine [v,λ] = eigs(H,1,’smallestreal’) is used. Given that the

obtained approximate SOSP may not be a feasible point of (53), we post-multiply it by a suitable diagonal

matrix to obtain a feasible approximate solution of (53). In addition, we apply SpaRSA [68] to find a 10−4-FOSP

of (53) by generating a sequence {(U t, V t)} according to

(U t, V t) = argmin
U,V

{
∥(U, V)− (U t−1, V t−1) +∇f(U t−1, V t−1)/αt−1∥F : V T el = em, U ≥ 0, V ≥ 0

}
,

where f is the objective function of (53) and αt−1 is chosen by a backtracking line search scheme such that

f(U t, V t) ≤ max[t−M−1]+≤i≤t−1 f(U
i, V i) − σαt−1∥(U t, V t) − (U t−1, V t−1)∥2F /2 for some σ ∈ (0, 1) and a

16

Figure 4: Numerical results of Algorithm 2 and SpaRSA on a single random instance of problem (53) with

(n, l,m) = (20, 2, 20). These two figures illustrate the convergence behavior of both methods in terms of objective

value 1
2∥X − U tV t∥2F + γ(∥U t∥2F + ∥V t∥2F) and feasibility ∥(V t)T el − em∥.

positive integer M (see [68] for details). We terminate SpaRSA once the condition

∥αt−1((U
t, V t)− (U t−1, V t−1)) +∇f(U t−1, V t−1)−∇f(U t, V t)∥F ≤ 10−4

is met. It can be verified that such (U t, V t) is a 10−4-FOSP of (53). In addition, we choose the initial point U0

and V 0 with all entries equal 1 and 1/k respectively for all the methods. We set the parameters for Algorithm 2

as (Λ, ρ0, α, r) = (103, 102, 0.25, 1.5) and λ0 = (0, . . . , 0)T , and choose the same parameters for Algorithm 1 and

SpaRSA as the ones described in Subsection 6.1.

The computational results of Algorithm 2 and SpaRSA [68] for the instances randomly generated above

are presented in Table 2. In detail, the values of n, k and m are listed in the first three columns, respectively.

For each triple (n, k,m), the average relative error and the average objective value of the feasible approximate

solutions found by each method over 10 random instances are given in the rest columns. One can observe that

the approximate SOSP found by Algorithm 2 has significantly lower relative error and objective value than the

approximate FOSP obtained by SpaRSA.

For each triple (n, l,m), we use box charts in Figure 3 to present the total number of inner iterations of

Algorithm 2 for finding a (10−4, 10−2)-SOSP of problem (53) and the number of iterations of SpaRSA for finding

a 10−4-FOSP of problem (53) over 10 random instances. We observe that the total number of inner iterations of

Algorithm 2 increases when the problem size becomes larger. In addition, Figure 4 illustrates the convergence

behavior of both methods for solving a single random instance of (53) with (n, l,m) = (20, 2, 20). We observe

that SpaRSA converges in fewer (inner) iterations than Algorithm 2, but it converges to a poorer approximate

solution. Specifically, it quickly gets stuck at a suboptimal point with a significantly larger objective value

compared to the solution found by Algorithm 2.

6.3 A sphere-constrained nonnegative matrix factorization

In this subsection we consider a sphere-constrained nonnegative matrix factorization in the form of

min
U∈Rn×l,V ∈Rl×m

{
1

2
∥X − UV ∥2F + γ(∥U∥2F + ∥V ∥2F) : ∥V ∥2F = m,U ≥ 0, V ≥ 0

}
, (54)

where ∥ · ∥F is the Frobenius norm.

For each triple (n, l,m), we randomly generate 10 instances of problem (54). In particular, we first randomly

generate U∗ with all entries chosen from the uniform distribution over [0, 2]. We next randomly generate Ṽ

with all entries chosen from the standard uniform distribution and set V ∗ =
√
mṼ /∥Ṽ ∥F . In addition, we

set γ = 0.005 and X = U∗V ∗ + E, where the entries of E follow the normal distribution with mean zero and

standard deviation 0.01.

17

Relative error Objective value

n l m Algorithm 2 SpaRSA Algorithm 2 SpaRSA

20 2 5 5.5×10−3 0.10 0.29 2.3

20 2 10 3.9×10−3 0.12 0.33 5.5

20 2 15 3.4×10−3 0.13 0.36 8.6

20 2 20 3.1×10−3 0.12 0.39 10.9

20 2 25 2.9×10−3 0.12 0.42 13.5

20 2 30 2.8×10−3 0.12 0.45 16.5

40 4 10 4.5×10−3 0.12 1.1 18.1

40 4 20 3.1×10−3 0.12 1.2 36.8

40 4 30 2.8×10−3 0.12 1.3 54.6

40 4 40 2.6×10−3 0.13 1.3 75.0

40 4 50 2.2×10−3 0.13 1.4 94.5

40 4 60 2.3×10−3 0.13 1.5 113.0

Table 3: Numerical results for problem (54)

Our aim is to apply Algorithm 2 and SpaRSA [68] to solve (54) and compare the solution quality of these

methods in terms of objective value and relative error defined as ∥UV − U∗V ∗∥F /∥U∗V ∗∥F . In particular, we

first apply Algorithm 2 to find a (10−4, 10−2)-SOSP of (54), in which a minimum eigenvalue oracle that returns

a deterministic output, namely the Matlab subroutine [v,λ] = eigs(H,1,’smallestreal’) is used. Given that the

obtained approximate SOSP may not be a feasible point of (54), we post-multiply it by a suitable diagonal

matrix to obtain a feasible approximate solution of (54). In addition, we apply SpaRSA [68] to find a 10−4-FOSP

of (53) by generating a sequence {(U t, V t)} according to

(U t, V t) = argmin
U,V

{
∥(U, V)− (U t−1, V t−1) +∇f(U t−1, V t−1)/αt−1∥F : ∥V ∥2F = m,U ≥ 0, V ≥ 0

}
,

where f is the objective function of (54) and αt−1 is chosen by a backtracking line search scheme such that

f(U t, V t) ≤ max[t−M−1]+≤i≤t−1 f(U
i, V i) − σαt−1∥(U t, V t) − (U t−1, V t−1)∥2F /2 for some σ ∈ (0, 1) and a

positive integer M (see [68] for details). We terminate SpaRSA once the condition

∥αt−1((U
t, V t)− (U t−1, V t−1)) +∇f(U t−1, V t−1)−∇f(U t, V t)∥F ≤ 10−4

is met. It can be verified that such (U t, V t) is a 10−4-FOSP of (54). Furthermore, we choose the initial point

U0 and V 0 with all entries equal to 1 and 1/l respectively for all the methods. We set the parameters for

Algorithm 2 as (Λ, ρ0, α, r) = (103, 102, 0.25, 1.5) and λ0 = 0, and choose the same parameters for Algorithm 1

and SpaRSA as the ones described in Subsection 6.1.

The computational results of Algorithm 2 and SpaRSA [68] for the instances randomly generated above

are presented in Table 3. In detail, the values of n, l and m are listed in the first three columns, respectively.

For each triple (n, l,m), the average relative error and the average objective value of the feasible approximate

solutions over 10 random instances are given in the rest columns. One can observe that the approximate SOSP

found by Algorithm 2 has significantly lower relative error and objective value than the approximate FOSP

obtained by SpaRSA.

For each triple (n, l,m), we use box charts in Figure 5 to present the total number of inner iterations of

Algorithm 2 for finding a (10−4, 10−2)-SOSP of problem (54) and the number of iterations of SpaRSA for finding

a 10−4-FOSP of problem (54) over 10 random instances. We observe that the total number of inner iterations of

Algorithm 2 increases when the problem size becomes larger. In addition, Figure 6 illustrates the convergence

behavior of both methods for solving a single random instance of (54) with (n, l,m) = (20, 2, 5). We observe

that SpaRSA converges in fewer (inner) iterations than Algorithm 2. However, it converges to a suboptimal

solution with a much larger objective value compared to the solution found by Algorithm 2.

18

Figure 5: Left: The total inner iterations of Algorithm 2 before finding a (10−4, 10−2)-SOSP of (54) for each

problem size over 10 random instances. Right: The number of iterations of SpaRSA before finding a 10−4-FOSP

of (54) for each problem size over 10 random instances.

Figure 6: Numerical results of Algorithm 2 and SpaRSA on a single random instance of problem (54) with

(n, l,m) = (20, 2, 5). These two figures illustrate the convergence behavior of both methods in terms of objective

value 1
2∥X − U tV t∥2F + γ(∥U t∥2F + ∥V t∥2F) and feasibility |∥V t∥2F −m|.

7 Proof of the main results

In this section we provide a proof of our main results presented in Sections 3, 4, and 5, which are, particularly,

Theorems 3.1 and 4.1, Lemma 5.1, and Theorems 5.2, 5.3, 5.4, and 5.5.

Let us start with the following lemma concerning some properties of the ϑ-LHSC barrier function.

Lemma 7.1. Let x ∈ intK and β ∈ (0, 1) be given. Then the following statements hold for the ϑ-LHSC barrier

function B.

(i) (∥∇B(x)∥∗x)2 = −xT∇B(x) = ∥x∥2x = ϑ.

(ii) −∇B(x) ∈ intK∗.

(iii) {y : ∥y − x∥x < 1} ⊂ intK.

(iv) For any y satisfying ∥y − x∥x ≤ β, it holds that

(1− β)∥v∥x ≤ ∥v∥y ≤ (1− β)−1∥v∥x, ∀v ∈ Rn, (55)

19

(1− β)∥v∥∗x ≤ ∥v∥∗y ≤ (1− β)−1∥v∥∗x, ∀v ∈ Rn . (56)

(v) {s : ∥s+∇B(x)∥∗x ≤ 1} ⊆ K∗.

(vi) ∥∇2B(y)−∇2B(x)∥∗x ≤ 2−β
(1−β)2 ∥y − x∥x holds for all y with ∥y − x∥x ≤ β.

Proof. The proof of statements (i)-(v) can be found in [43, Lemma 1].

We next prove statement (vi). Let y be such that ∥y − x∥x ≤ β. It follows from [56, Theorem 2.1.1] that

(1− ∥y − x∥x)2I ⪯ ∇2B(x)−1/2∇2B(y)∇2B(x)−1/2 ⪯ (1− ∥y − x∥x)−2I. (57)

By (4), (57), and ∥y − x∥x ≤ β, one has

∥∇2B(y)−∇2B(x)∥∗x
(4)
= max∥u∥≤1 ∥∇2B(x)−1/2(∇2B(y)−∇2B(x))∇2B(x)−1/2u∥

= ∥∇2B(x)−1/2∇2B(y)∇2B(x)−1/2 − I∥
(57)

≤ max{1− (1− ∥y − x∥x)2, (1− ∥y − x∥x)−2 − 1} = (1− ∥y − x∥x)−2 − 1

= 2−∥y−x∥x

(1−∥y−x∥x)2
∥y − x∥x ≤ 2−β

(1−β)2 ∥y − x∥x,

where the last inequality is due to ∥y − x∥x ≤ β. Hence, statement (vi) holds as desired.

7.1 Proof of the main results in Section 3

In this subsection we provide a proof of Theorems 3.1.

Proof of Theorem 3.1. By M ∈ ∇−2B(x∗), the full column rank of M1/2∇c(x∗), and also the discussion in

Section 3, one knows that Robinson’s constraint qualification holds at x∗. Since x∗ is a local minimizer of (1), it

then follows from [62, Theorem 3.38] that there exists some λ∗ ∈ Rm such that

∇f(x∗) +∇c(x∗)λ∗ ∈ −NK(x
∗). (58)

Further, by [43, Proposition 1], one knows that (58) holds if and only if (5) and (6) hold. Consequently, (5) and

(6) hold as desired.

We next prove (7). It follows from Lemma 2.1 that {x∗ +M1/2d : ∥d∥ < 1} ⊆ K. Using this and the fact

that x∗ is a local minimizer of (1), we see that d∗ = 0 is a local minimizer of the problem

min
d

{
f(x∗ +M1/2d) : c(x∗ +M1/2d) = 0

}
. (59)

In addition, since M1/2∇c(x∗) has full column rank, it is clear that LICQ holds at d∗ = 0 for (59). By the first-

and second-order optimality conditions of (59) at d∗ = 0, there exists some λ̃∗ ∈ Rm such that

M1/2(∇f(x∗) +∇c(x∗)λ̃∗) = 0, (60)

dTM1/2

(
∇2f(x∗) +

m∑
i=1

λ̃∗i∇2ci(x
∗)

)
M1/2d ≥ 0, ∀d ∈ {d : ∇c(x∗)TM1/2d = 0}. (61)

In view of (6), (60), and the fact that M1/2∇c(x∗) has full column rank, one can see that λ̃∗ = λ∗. Using this

and (61), we conclude that (7) holds.

7.2 Proof of the main results in Section 4

In this subsection we first establish several technical lemmas and then use them to prove Theorem 4.1.

To proceed, by (16) and the definitions of local norms, one can verify that

∥d∥ = ∥Mtd∥xt , ∥d∥∗xt = ∥Mtd∥, ∥H∥∗xt = ∥MtHMt∥, ∀d ∈ Rn, H ∈ Rn×n . (62)

20

In addition, as a consequence of Assumption 4.1(b) and Lemma 7.1(vi), one can observe that ϕµ is locally

Lipschitz continuous in Ω with respect to the local norms, i.e.,

∥∇2ϕµ(y)−∇2ϕµ(x)∥∗x ≤ Lϕ
H∥y − x∥x, ∀x, y ∈ Ω with ∥y − x∥x ≤ β, (63)

where

Lϕ
H := LF

H + µ(2− β)/(1− β)2. (64)

The following lemma directly follows from (63). Its proof can be found in [43, Lemma 3].

Lemma 7.2. Under Assumption 4.1(b), the following inequalities hold:

∥∇ϕµ(y)−∇ϕµ(x)−∇2ϕµ(x)(y − x)∥∗x ≤ 1

2
Lϕ
H∥y − x∥2x, ∀x, y ∈ Ω with ∥y − x∥x ≤ β, (65)

ϕµ(y) ≤ ϕµ(x)+∇ϕµ(x)T (y−x)+
1

2
(y−x)T∇2ϕµ(x)(y−x)+

1

6
Lϕ
H∥y−x∥3x, ∀x, y ∈ Ω with ∥y−x∥x ≤ β, (66)

where Ω and Lϕ
H are given in Assumption 4.1(b) and (64), respectively.

The following lemma shows that all iterates generated by Algorithm 1 lie in S.

Lemma 7.3. Suppose that Assumption 4.1 holds. Let {xt}t∈T be all the iterates generated by Algorithm 1, where

T is a subset of consecutive nonnegative integers starting from 0. Then {xt}t∈T ⊂ S, where S is defined in (23).

Proof. We first prove {xt}t∈T ⊂ intK by induction. Observe from Algorithm 1 that x0 = u0 ∈ intK. Suppose

that xt ∈ intK is generated at iteration t of Algorithm 1 and xt+1 is generated at iteration t+ 1. We next prove

xt+1 ∈ intK. Indeed, observe from Algorithm 1 that xt+1 = xt + αtMtd
t with αt ∈ (0, 1] and dt given in one of

(17)-(19). It follows from (17)-(19) that ∥dt∥ ≤ β. By these and and the first relation in (62), one has

∥xt+1 − xt∥xt = αt∥Mtd
t∥xt ≤ ∥Mtd

t∥xt
(62)
= ∥dt∥ ≤ β, (67)

which, along with xt ∈ intK, β < 1 and Lemma 7.1(iii), implies that xt+1 ∈ intK. Hence, the induction is

completed, and we have {xt}t∈T ⊂ intK.

In addition, observe from Algorithm 1 that {ϕµ(xt)}t∈T is descent. By this, x0 = u0, {xt}t∈T ⊂ intK, and

(23), one can see that {xt}t∈T ⊂ S.

The following lemma provides some properties of the output of Algorithm 3, whose proof is similar to the

ones of [60, Lemma 3] and [58, Lemma 7] and thus omitted here.

Lemma 7.4. Suppose that Assumption 4.1 holds and the direction dt results from the output d̂t of Algorithm 3 with

a type specified in d type at some iteration t of Algorithm 1. Let Mt be given in (16) and γt := max{∥d̂t∥/β, 1}.
Then the following statements hold.

(i) If d type=SOL, then dt satisfies

ϵH∥dt∥2 ≤ (dt)T
(
MT

t ∇2ϕµ(x
t)Mt + 2ϵHI

)
dt, (68)

∥dt∥ ≤ 1.1ϵ−1
H ∥MT

t ∇ϕµ(xt)∥, (69)

(dt)TMT
t ∇ϕµ(xt) = −γt(dt)T

(
MT

t ∇2ϕµ(x
t)Mt + 2ϵHI

)
dt. (70)

If ∥d̂t∥ ≤ β, then dt also satisfies

∥(MT
t ∇2ϕµ(x

t)Mt + 2ϵHI)d
t +MT

t ∇ϕµ(xt)∥ ≤ ϵHζ∥dt∥/2. (71)

(ii) If d type=NC, then dt satisfies (dt)TMT
t ∇ϕµ(xt) ≤ 0 and

(dt)TMT
t ∇2ϕµ(x

t)Mtd
t

∥dt∥2
≤ −∥dt∥ ≤ −ϵH . (72)

21

The following lemma shows that when the search direction dt in Algorithm 1 is of type ‘SOL’, the line search

step results in a sufficient reduction on ϕµ.

Lemma 7.5. Suppose that Assumption 4.1 holds and the direction dt results from the output d̂t of Algorithm 3

with d type=SOL at some iteration t of Algorithm 1. Then the following statements hold.

(i) The step length αt is well-defined, and moreover,

αt ≥ min

{
1,

√
min{6(1− η), 2}

1.1[LF
H + µ(2− β)/(1− β)2](UF

g + µ
√
ϑ)
θϵH

}
. (73)

(ii) The next iterate xt+1 = xt + αtMtd
t satisfies

ϕµ(x
t)− ϕµ(x

t+1) ≥ csol min{(∥∇ϕµ(xt+1)∥∗xt+1)2ϵ
−1
H , ϵ3H}, (74)

where Mt and csol are given in (16) and (26), respectively.

Proof. Notice from Lemma 7.3 that xt ∈ S, that is, xt ∈ intK and ϕµ(x
t) ≤ ϕµ(u

0). It then follows from (16),

(24) and Lemma 7.1(i) that

∥MT
t ∇ϕµ(xt)∥ = ∥∇ϕµ(xt)∥∗xt ≤ ∥∇F (xt)∥∗xt + µ∥∇B(xt)∥∗xt ≤ UF

g + µ
√
ϑ. (75)

Since dt results from the output of Algorithm 3 with d type=SOL, one can see that ∥MT
t ∇ϕµ(xt)∥ > ϵg and the

relations (68)-(70) hold. Also, one can observe from Algorithm 3 that its output d̂t satisfies

∥(MT
t ∇2ϕµ(x

t)Mt + 2ϵHI)d̂
t +MT

t ∇ϕµ(xt)∥ ≤ ζ̂∥MT
t ∇ϕµ(xt)∥

for some ζ̂ ∈ (0, 1/6), which together with ∥MT
t ∇ϕµ(xt)∥ > ϵg implies that d̂t ̸= 0. It then follows from this and

(18) that dt ̸= 0.

We first prove statement (i). If (20) holds for j = 0, then αt = 1, which clearly implies that (73) holds. We

now suppose that (20) fails for j = 0. Claim that for all j ≥ 0 that violate (20), it holds that

θ2j ≥ min{6(1− η), 2}ϵH(Lϕ
H)−1∥dt∥−1, (76)

where Lϕ
H is defined in (64). Indeed, we suppose that (20) is violated by some j ≥ 0. We next show that (76)

holds for such j by considering two separate cases below.

Case 1) ϕµ(x
t + θjMtd

t) > ϕµ(x
t). Let φ(α) = ϕµ(x

t + αMtd
t). Then φ(θj) > φ(0). In addition, by (68),

(70), γt = max{∥d̂t∥/β, 1} ≥ 1, and dt ̸= 0, one has

φ′(0) = (dt)TMT
t ∇ϕµ(xt)

(70)
= −γt(dt)T (MT

t ∇2ϕµ(x
t)Mt + 2ϵHI)d

t
(68)

≤ −γtϵH∥dt∥2 < 0.

In view of these, we can observe that there exists a local minimizer α∗ ∈ (0, θj) of φ such that φ(α∗) < φ(0) and

φ′(α∗) = ∇ϕµ(xt + α∗Mtd
t)TMtd

t = 0. (77)

By ϕµ(x
t) ≤ ϕµ(u

0) and φ(α∗) < φ(0), one has ϕµ(x
t + α∗Mtd

t) < ϕµ(u
0). In addition, using (67) and

0 < α∗ < θj ≤ 1, we have ∥α∗Mtd
t∥xt ≤ ∥Mtd

t∥xt ≤ β. Hence, (65) holds for x = xt and y = xt + α∗Mtd
t. By

this, (62), (68), (70), (77), 0 < α∗ < 1 and γt ≥ 1, one has

(α∗)2Lϕ
H

2 ∥dt∥3 (62)
=

(α∗)2Lϕ
H

2 ∥dt∥∥Mtd
t∥2xt

(65)

≥ ∥dt∥∥∇ϕµ(xt + α∗Mtd
t)−∇ϕµ(xt)− α∗∇2ϕµ(x

t)Mtd
t∥∗xt

≥ (dt)T (MT
t ∇ϕµ(xt + α∗Mtd

t)−MT
t ∇ϕµ(xt)− α∗MT

t ∇2ϕµ(x
t)Mtd

t)

(77)
= −(dt)TMT

t ∇ϕµ(xt)− α∗(dt)TMT
t ∇2ϕµ(x

t)Mtd
t

(70)
= (γt − α∗)(dt)T (MT

t ∇2ϕµ(x
t)Mt + 2ϵHI)d

t + 2α∗ϵH∥dt∥2

(68)

≥ (γt − α∗)ϵH∥dt∥2 + 2α∗ϵH∥dt∥2 = (γt + α∗)ϵH∥dt∥2 ≥ ϵH∥dt∥2,

22

which along with dt ̸= 0 implies that (α∗)2 ≥ 2ϵH(Lϕ
H)−1∥dt∥−1. Using this and θj > α∗, we conclude that (76)

holds in this case.

Case 2) ϕµ(x
t + θjMtd

t) ≤ ϕµ(x
t). By this and ϕµ(x

t) ≤ ϕµ(u
0), one has ϕµ(x

t + θjMtd
t) ≤ ϕµ(u

0). Also,

using (67) and θ ∈ (0, 1), we have ∥θjMtd
t∥xt ≤ ∥Mtd

t∥xt ≤ β. Hence, (66) holds for x = xt and y = xt+θjMtd
t.

Using this, (62), (68), (70) and the fact that j violates (20), we obtain that

−ηϵHθ2j∥dt∥2 ≤ ϕµ(x
t + θjMtd

t)− ϕµ(x
t)

(66)

≤ θj∇ϕµ(xt)TMtd
t +

θ2j

2
(dt)TMT

t ∇2ϕµ(x
t)Mtd

t +
Lϕ
H

6
θ3j∥Mtd

t∥3xt

(62)(70)
= −θjγt(dt)T (MT

t ∇2ϕµ(x
t)Mt + 2ϵHI)d

t +
θ2j

2
(dt)TMT

t ∇2ϕµ(x
t)Mtd

t +
Lϕ
H

6
θ3j∥dt∥3

= −θj
(
γt −

θj

2

)
(dt)T (MT

t ∇2ϕµ(x
t)Mt + 2ϵHI)d

t − θ2jϵH∥dt∥2 +
Lϕ
H

6
θ3j∥dt∥3

(68)

≤ −θj
(
γt −

θj

2

)
ϵH∥dt∥2 − θ2jϵH∥dt∥2 +

Lϕ
H

6
θ3j∥dt∥3 ≤ −θjϵHγt∥dt∥2 +

Lϕ
H

6
θ3j∥dt∥3, (78)

where the first inequality is due to the violation of (20) by such j. Recall that dt ≠ 0. Dividing both sides of

(78) by Lϕ
Hθ

j∥dt∥3/6 and using η, θ ∈ (0, 1) and γt ≥ 1, we have

θ2j ≥ 6(γt − ηθj)ϵH(Lϕ
H)−1∥dt∥−1 ≥ 6(1− η)ϵH(Lϕ

H)−1∥dt∥−1.

Hence, (76) also holds in this case.

Combining the above two cases, we conclude that (76) holds for any j ≥ 0 violating (20). By this and

θ ∈ (0, 1), one can see that all j ≥ 0 that violate (20) must be bounded above. It then follows that the step length

αt associated with (20) is well-defined. We next prove (73). Observe from the definition of jt in Algorithm 1 that

j = jt − 1 violates (20) and hence (76) holds for j = jt − 1. Then, by (64), (76) with j = jt − 1, and αt = θjt ,

one has

αt = θjt ≥
√
min{6(1− η), 2}ϵH(Lϕ

H)−1θ∥dt∥−1/2

=
√
min{6(1− η), 2}ϵH [LF

H + µ(2− β)/(1− β)2]−1θ∥dt∥−1/2, (79)

which along with (69) and (75) implies that (73) holds.

We next prove statement (ii), particularly, (74) by considering three separate cases below.

Case 1) αt = 1 and ∥d̂t∥ ≥ β. It then follows from (18) that dt = βd̂t/∥d̂t∥. Notice from Algorithm 1 that

β ≥ ϵH . Using this and dt = βd̂t/∥d̂t∥, we see that ∥dt∥ = β ≥ ϵH , which together with (20) and αt = 1 implies

that (74) holds.

Case 2) αt = 1 and ∥d̂t∥ < β. Notice from αt = 1 that j = 0 is accepted by (20). Then one can see that

ϕµ(x
t +Mtd

t) ≤ ϕµ(x
t) ≤ ϕµ(u

0). Also, observe from (67) that ∥Mtd
t∥xt ≤ β. Hence, (65) holds for x = xt and

y = xt +Mtd
t. By these, (56) and (71), one has

(1− β)∥∇ϕµ(xt+1)∥∗xt+1

(56)

≤ ∥∇ϕµ(xt+1)∥∗xt = ∥∇ϕµ(xt +Mtd
t)∥∗xt

≤ ∥∇ϕµ(xt +Mtd
t)−∇ϕµ(xt)−∇2ϕµ(x

t)Mtd
t∥∗xt + ∥∇ϕµ(xt) +∇2ϕµ(x

t)Mtd
t∥∗xt

= ∥∇ϕµ(xt +Mtd
t)−∇ϕµ(xt)−∇2ϕµ(x

t)Mtd
t∥∗xt + ∥MT

t (∇ϕµ(xt) +∇2ϕµ(x
t)Mtd

t)∥
≤ ∥∇ϕµ(xt +Mtd

t)−∇ϕµ(xt)−∇2ϕµ(x
t)Mtd

t∥∗xt

+ ∥(MT
t ∇2ϕµ(x

t)Mt + 2ϵHI)d
t +MT

t ∇ϕµ(xt)∥+ 2ϵH∥dt∥
(65)(71)

≤ Lϕ
H∥Mtd

t∥2xt/2 + (4 + ζ)ϵH∥dt∥/2 (62)
= Lϕ

H∥dt∥2/2 + (4 + ζ)ϵH∥dt∥/2,

where the second inequality is due to the triangle inequality, and the second equality follows from (4) and the

second relation in (62). Solving the above inequality for ∥dt∥ and using (64) and the fact that ∥dt∥ > 0, we

23

obtain that

∥dt∥ ≥
−(4+ζ)ϵH+

√
(4+ζ)2ϵ2H+8(1−β)Lϕ

H∥∇ϕµ(xt+1)∥∗
xt+1

2Lϕ
H

≥ −(4+ζ)ϵH+
√

(4+ζ)2ϵ2H+8(1−β)Lϕ
Hϵ2H

2Lϕ
H

min{∥∇ϕµ(xt+1)∥∗xt+1ϵ
−2
H , 1}

= 4(1−β)

4+ζ+
√

(4+ζ)2+8(1−β)Lϕ
H

min{∥∇ϕµ(xt+1)∥∗xt+1ϵ
−1
H , ϵH}

(64)
= 4(1−β)

4+ζ+
√

(4+ζ)2+8[(1−β)LF
H+µ(2−β)/(1−β)]

min{∥∇ϕµ(xt+1)∥∗xt+1ϵ
−1
H , ϵH},

where the second inequality follows from the inequality −a +
√
a2 + bs ≥ (−a +

√
a2 + b)min{s, 1} for all

a, b, s ≥ 0, which can be easily verified by performing a rationalization to the terms −a +
√
a2 + bs and

−a+
√
a2 + b, respectively. In view of this, αt = 1, (20) and (26), one can see that (74) holds.

Case 3) αt < 1. By this, one has that j = 0 violates (20) and hence (76) holds for j = 0. Letting j = 0 in

(76), we obtain that ∥dt∥ ≥ min{6(1− η), 2}ϵH/Lϕ
H , which along with (20), (64) and (79) implies that

ϕµ(x
t)− ϕµ(x

t+1)
(20)

≥ ηϵHθ
2jt∥dt∥2 ≥ η

[
min{6(1− η), 2}θ

Lϕ
H

]2
ϵ3H

(64)
= η

[
min{6(1− η), 2}θ

LF
H + µ(2− β)/(1− β)2

]2
ϵ3H .

By this and (26), one can immediately see that (74) also holds in this case.

The next lemma shows that when the search direction dt in Algorithm 1 is of type ‘NC’, the line search step

results in a sufficient reduction on ϕµ as well.

Lemma 7.6. Suppose that Assumption 4.1 holds and the direction dt results from either the output d̂t of

Algorithm 3 with d type=NC or the output v of Algorithm 4 at some iteration t of Algorithm 1. Then the

following statements hold.

(i) The step length αt is well-defined, and moreover,

αt ≥ min

{
1,

min{1, 3(1− η)}θ
LF
H + µ(2− β)/(1− β)2

}
. (80)

(ii) The next iterate xt+1 = xt + αtMtd
t satisfies ϕµ(x

t)− ϕµ(x
t+1) ≥ cncϵ

3
H , where Mt and cnc are given in

(16) and (27), respectively.

Proof. It follows from Lemma 7.3 that xt ∈ S, that is, xt ∈ intK and ϕµ(x
t) ≤ ϕµ(u

0). By the assumption on

dt, one can see from Algorithm 1 that dt is a negative curvature direction given in (17) or (19) and thus dt ̸= 0.

Also, the vector v satisfies ∥v∥ = 1 whenever it is returned from Algorithm 4. By these, Lemma 7.4(ii), (17) and

(19), one has

∇ϕµ(xt)TMtd
t ≤ 0, (dt)TMT

t ∇2ϕµ(x
t)Mtd

t ≤ −∥dt∥3 < 0. (81)

We first prove statement (i). If (21) holds for j = 0, then αt = 1, which clearly implies that (80) holds. We

now suppose that (21) fails for j = 0. Claim that for all j ≥ 0 that violate (21), it holds that

θj ≥ min{1, 3(1− η)}/Lϕ
H , (82)

where Lϕ
H is defined in (64). Indeed, suppose that (21) is violated by some j ≥ 0. We now prove that (82) holds

for such j by considering two separate cases below.

Case 1) ϕµ(x
t + θjMtd

t) > ϕµ(x
t). Let φ(α) = ϕµ(x

t + αMtd
t). Then φ(θj) > φ(0). Also, by (81), one has

φ′(0) = ∇ϕµ(xt)TMtd
t ≤ 0, φ′′(0) = (dt)TMT

t ∇2ϕµ(x
t)Mtd

t < 0.

From these, we can observe that there exists a local minimizer α∗ ∈ (0, θj) of φ such that φ(α∗) < φ(0). By the

second-order necessary optimality condition of φ at α∗, one has

φ′′(α∗) = (dt)TMT
t ∇2ϕµ(x

t + α∗Mtd
t)Mtd

t ≥ 0. (83)

24

In addition, by ϕµ(x
t) ≤ ϕµ(u

0) and φ(α∗) < φ(0), one has ϕµ(x
t + α∗Mtd

t) < ϕµ(u
0). Using (67) and

0 < α∗ < θj ≤ 1, we see that ∥α∗Mtd
t∥xt ≤ ∥Mtd

t∥xt ≤ β. Hence, (63) holds for x = xt and y = xt + α∗Mtd
t.

Using this, (4), (62), (63), (81) and (83), we obtain that

Lϕ
Hα

∗∥dt∥3 (62)
= Lϕ

Hα
∗∥dt∥2∥Mtd

t∥xt

(63)

≥ ∥dt∥2∥∇2ϕµ(x
t + α∗Mtd

t)−∇2ϕµ(x
t)∥∗xt

(4)
= ∥dt∥2∥MT

t (∇2ϕµ(x
t + α∗Mtd

t)−∇2ϕµ(x
t))Mt∥ ≥ (dt)TMT

t (∇2ϕµ(x
t + α∗Mtd

t)−∇2ϕµ(x
t))Mtd

t

(83)

≥ −(dt)TMT
t ∇2ϕµ(x

t)Mtd
t
(81)

≥ ∥dt∥3.

It then follows from this and dt ̸= 0 that α∗ ≥ 1/Lϕ
H , which along with θj > α∗ implies that (82) holds in this

case.

Case 2) ϕµ(x
t + θjMtd

t) ≤ ϕµ(x
t). By this and ϕµ(x

t) ≤ ϕµ(u
0), one has ϕµ(x

t + θjMtd
t) ≤ ϕµ(u

0). In

addition, it follows from (67) and θ ∈ (0, 1) that ∥θjMtd
t∥xt ≤ ∥Mtd

t∥xt ≤ β. Hence, (66) holds for x = xt and

y = xt + θjMtd
t. By this, (62), (81) and the fact that j violates (21), one has

−η
2θ

2j∥dt∥3 ≤ ϕµ(x
t + θjMtd

t)− ϕµ(x
t)

(66)

≤ θj∇ϕµ(xt)TMtd
t + θ2j

2 (dt)TMT
t ∇2ϕµ(x

t)Mtd
t +

Lϕ
H

6 θ3j∥Mtd
t∥3xt

(62)(81)

≤ − θ2j

2 ∥dt∥3 + Lϕ
H

6 θ3j∥dt∥3,

where the first inequality is due to the violation of (21) by such j. Using this and dt ̸= 0, we see that

θj ≥ 3(1− η)/Lϕ
H . Hence, (82) also holds in this case.

Combining the above two cases, we conclude that (82) holds for all j ≥ 0 violating (21). By this and θ ∈ (0, 1),

one can see that all j ≥ 0 that violate (21) must be bounded above. It then follows that the step length αt

associated with (21) is well-defined. We next derive a lower bound for αt. Notice that j = jt − 1 violates

(21) and hence (82) holds for j = jt − 1. Then by (82) with j = jt − 1 and αt = θjt , one can observe that

αt = θjt ≥ min{1, 3(1− η)}θ/Lϕ
H , which along with (64) yields (80) as desired.

We next prove statement (ii) by considering two separate cases below.

Case 1) dt results from the output d̂t of Algorithm 3 with d type=NC. By this and (72), one has ∥dt∥ ≥ ϵH ,

which along with statement (i) and (21) implies that statement (ii) holds.

Case 2) dt results from the output v of Algorithm 4. Notice from Algorithm 4 that ∥v∥ = 1 and

vTMT
t ∇2ϕµ(x

t)Mtv ≤ −ϵH/2. It then follows from (19) and β ≥ ϵH that ∥dt∥ ≥ ϵH/2. Using this, (21)

and statement (i), we see that statement (ii) also holds in this case.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Notice from Lemma 7.3 that all the iterates generated by Algorithm 1 lie in S. By this,

(4), (62) and (24), one has

∥MT
t ∇2ϕµ(x

t)Mt∥
(4)(62)
= ∥∇2ϕµ(x

t)∥∗xt ≤ ∥∇2F (xt)∥∗xt + µ∥∇2B(xt)∥∗xt ≤ UF
H + µ, (84)

where the last inequality follows from (24) and the fact that ∥∇2B(xt)∥∗xt = 1 due to (4) and (16).

(i) Suppose for contradiction that the total number of calls of Algorithm 4 in Algorithm 1 is more than T2.

Observe from Algorithm 1 and Lemma 7.6(ii) that each of these calls, except the last one, returns a sufficiently

negative curvature direction, and each of them results in a reduction on ϕµ at least by cncϵ
3
H . Using this and the

fact that x0 = u0, we obtain that

T2cncϵ
3
H ≤

∑
t∈T

[ϕµ(x
t)− ϕµ(x

t+1)] ≤ ϕµ(x
0)− ϕlow = ϕhi − ϕlow,

where T is given in Lemma 7.3. This contradicts with the definition of T2 given in (25).

(ii) Suppose for contradiction that the total number of calls of Algorithm 3 in Algorithm 1 is more than T1.

Note that if Algorithm 3 is called at some iteration t and generates xt+1 satisfying ∥∇ϕµ(xt+1)∥∗xt+1 ≤ ϵg, then

Algorithm 4 must be called at the next iteration t+1. Using this and statement (i), we see that the total number

of such iterations t is at most T2. Hence, the total number of iterations t of Algorithm 1 at which Algorithm 3 is

25

called and generates xt+1 satisfying ∥∇ϕµ(xt+1)∥∗xt+1 > ϵg is at least T1 − T2 + 1. Moreover, for each of such

iterations t, it follows from Lemmas 7.5(ii) and 7.6(ii) that ϕµ(x
t)− ϕµ(x

t+1) ≥ min{csol, cnc}min{ϵ2gϵ−1
H , ϵ3H}.

Thus, one has

(T1 − T2 + 1)min{csol, cnc}min{ϵ2gϵ−1
H , ϵ3H} ≤

∑
t∈T

[ϕµ(x
t)− ϕµ(x

t+1)] ≤ ϕhi − ϕlow,

where T is given in Lemma 7.3. This contradicts the definitions of T1 and T2 given in (25).

(iii) Notice that either Algorithm 3 or Algorithm 4 is called at each iteration of Algorithm 1. By this and

statements (i) and (ii), one has that the total number of iterations of Algorithm 1 is at most T1 +T2. In addition,

the relation (28) follows from (25), (26) and (27). It is also not hard to see that the output xt of Algorithm 1

satisfies ∥∇ϕµ(xt)∥∗xt ≤ ϵg deterministically and λmin(M
T
t ∇2ϕµ(x

t)Mt) ≥ −ϵH with probability at least 1 − δ

for some 0 ≤ t ≤ T1 + T2, where the probability is due to Algorithm 4. Hence, statement (iii) holds.

(iv) Recall that each iteration of Algorithm 1 requires Cholesky factorization of ∇2B at one point only. This

together with statement (iii) implies that the total number of Cholesky factorizations required by Algorithm 1 is

at most T1 + T2. By (84) and Theorem A.1 with (H, ε) = (MT
t ∇2ϕµ(x

t)Mt, ϵH), one can see that the number

of products of H and a vector v required by each call of Algorithm 3 is at most Õ(min{n, [(UF
H + µ)/ϵH]1/2}).

In addition, by (84), Theorem B.1 with (H, ε) = (MT
t ∇2ϕµ(x

t)Mt, ϵH), and the fact that each iteration of the

Lanczos method requires only one product of H and a vector v, one can observe that the number of products

of H and a vector v required by each call of Algorithm 4 is also at most Õ(min{n, [(UF
H + µ)/ϵH]1/2}). Recall

from Section 4.1 that the product of H and a vector v requires at most three fundamental operations, which are

one Hessian-vector product of F , one backward and forward substitutions to a triangular linear system. Hence,

each call of Algorithm 3 or 4 requires at most Õ(min{n, [(UF
H + µ)/ϵH]1/2}) fundamental operations. By these

observations and statement (iii), we conclude that statement (iv) holds.

7.3 Proof of the main results in Section 5

In this subsection we provide a proof of Lemma 5.1 and Theorems 5.2, 5.3, 5.4 and 5.5.

Before proceeding, we recall that ∥c(zϵ)∥ ≤ ϵ/2 < 1. Using this, (30) and (36), we obtain that

f(x) + µB(x) + γ∥c̃(x)∥2 ≥ f(x) + µB(x) +
γ

2
∥c(x)∥2 − γ∥c(zϵ)∥2 ≥ flow − γ, ∀x ∈ intK, µ ∈ (0, µ0], (85)

where the first inequality follows from (36) and ∥a− b∥2 ≥ ∥a∥2/2− ∥b∥2 for all a, b ∈ Rn. In addition, by (29),

the first relation in (38), and the fact that 0 < µk ≤ µ0 (see Algorithm 2), one has

Lµk
(xk+1, λk; ρk) ≤ fhi whenever x

k+1 is generated. (86)

We next present an auxiliary lemma that will be frequently used later. Its proof is identical to the one of [44,

Lemma 5.4] with f replaced by f + µB, and thus omitted here.

Lemma 7.7. Suppose that Assumption 5.1 holds. Let γ, µ0, fhi and flow be given in Assumption 5.1. Assume

that ρ > 2γ, µ ∈ (0, µ0], λ ∈ Rm and x ∈ intK satisfy Lµ(x, λ; ρ) ≤ fhi, where Lµ is defined in (37). Then the

following statements hold.

(i) f(x) + µB(x) ≤ fhi + ∥λ∥2/(2ρ).

(ii) ∥c̃(x)∥ ≤
√
2(fhi − flow + γ)/(ρ− 2γ) + ∥λ∥2/(ρ− 2γ)2 + ∥λ∥/(ρ− 2γ).

(iii) If ρ ≥ ∥λ∥2/(2δ̃f) for some δ̃f > 0, then f(x) + µB(x) ≤ fhi + δ̃f .

(iv) If ρ ≥ 2(fhi − flow + γ)δ̃−2
c + 2∥λ∥δ̃−1

c + 2γ for some δ̃c > 0, then ∥c̃(x)∥ ≤ δ̃c.

The following lemma establishes the local Lipschitz continuity of ci and ∇ci with respect to the local norm.

Lemma 7.8. Under Assumption 5.1, the following inequalities hold:

|ci(y)− ci(x)| ≤
U c
g

1− β
∥y − x∥x, ∀x, y ∈ Ω(δf , δc) with ∥y − x∥x ≤ β, 1 ≤ i ≤ m, (87)

26

∥∇ci(y)−∇ci(x)∥∗x ≤ U c
H

(1− β)2
∥y − x∥x, ∀x, y ∈ Ω(δf , δc) with ∥y − x∥x ≤ β, 1 ≤ i ≤ m, (88)

where Ω(δf , δc) is given in Assumption 5.1, and U c
g , U

c
H are defined in (33) and (34), respectively.

Proof. Fix any x, y ∈ Ω(δf , δc) with ∥y − x∥x ≤ β and any 1 ≤ i ≤ m. Let zt = x+ t(y − x) for all t ∈ [0, 1]. It

then follows that ∥zt − x∥x ≤ β and zt ∈ Ω(δf , δc). By these, (33), (34), (55) and (56), one has

∥∇ci(zt)∥∗zt ≤ U c
g , ∥∇2ci(zt)∥∗zt ≤ U c

H , ∥v∥zt ≤ (1−β)−1∥v∥x, ∥v∥∗x ≤ (1−β)−1∥v∥∗zt , ∀v ∈ Rn, t ∈ [0, 1].

By virtue of these and (4), we obtain

|ci(y)− ci(x)| =
∣∣∣∣∫ 1

0

∇ci(zt)T (y − x)dt

∣∣∣∣ ≤ ∫ 1

0

∥∇ci(zt)∥∗zt∥y − x∥ztdt ≤
U c
g

1− β
∥y − x∥x,

∥∇ci(y)−∇ci(x)∥∗x =

∥∥∥∥∫ 1

0

∇2ci(zt)(y − x)dt

∥∥∥∥∗
x

≤
∫ 1

0

∥∇2ci(zt)(y − x)∥∗xdt ≤
1

1− β

∫ 1

0

∥∇2ci(zt)(y − x)∥∗ztdt

≤ 1

1− β

∫ 1

0

∥∇2ci(zt)∥∗zt∥y − x∥ztdt ≤
U c
H

(1− β)2
∥y − x∥x.

Hence, (87) and (88) hold.

We are now ready to prove Lemma 5.1.

Proof of Lemma 5.1. The proofs of statements (i) and (ii) follow similar arguments to those used in proving [44,

Lemma 4.1]

(iii) Fix x, y ∈ Ω(δf , δc) with ∥y−x∥x ≤ β and 1 ≤ i ≤ m. By this, (32), (34), (36), (44), (87) and ∥c(zϵ)∥ ≤ 1,

one has

∥c̃i(y)∇2ci(y)− c̃i(x)∇2ci(x)∥∗x = ∥c̃i(y)(∇2ci(y)−∇2ci(x)) + (c̃i(y)− c̃i(x))∇2ci(x)∥∗x

≤ |ci(y)− ci(zϵ)|∥∇2ci(y)−∇2ci(x)∥∗x + |ci(y)− ci(x)|∥∇2ci(x)∥∗x ≤ (1 + U c)Lc
H∥y − x∥x +

U c
gU

c
H

1− β
∥y − x∥x

=

[
(1 + U c)Lc

H +
U c
gU

c
H

1− β

]
∥y − x∥x. (89)

In addition, by (33), (56) and (88), one has

∥∇ci(y)∇ci(y)T −∇ci(x)∇ci(x)T ∥∗x = ∥∇ci(y)(∇ci(y)−∇ci(x))T + (∇ci(y)−∇ci(x))∇ci(x)T ∥∗x
≤ ∥∇ci(y)∥∗x∥∇ci(y)−∇ci(x)∥∗x + ∥∇ci(x)∥∗x∥∇ci(y)−∇ci(x)∥∗x

≤
(

1

1− β
∥∇ci(y)∥∗y + ∥∇ci(x)∥∗x

)
∥∇ci(y)−∇ci(x)∥∗x ≤

(2− β)U c
gU

c
H

(1− β)3
∥y − x∥x. (90)

In view of (42) and the fact that ∇c̃ = ∇c and ∇2c̃i = ∇2ci, 1 ≤ i ≤ m, we see that

∇2
xx L(x, λk; ρk) = ∇2f(x) +

m∑
i=1

λki∇2ci(x) + ρk

m∑
i=1

(
∇ci(x)∇ci(x)T + c̃i(x)∇2ci(x)

)
, (91)

which implies that

∥∇2
xx L(y, λk; ρk)−∇2

xx L(x, λk; ρk)∥∗x ≤ ∥∇2f(y)−∇2f(x)∥∗x +

m∑
i=1

|λki |∥∇2ci(y)−∇2ci(x)∥∗x

+ ρk

m∑
i=1

(
∥∇ci(y)∇ci(y)T −∇ci(x)∇ci(x)T ∥∗x + ∥c̃i(y)∇2ci(y)− c̃i(x)∇2ci(x)∥∗x

)
.

Statement (iii) then follows from this, (89) and (90).

27

(iv) Notice from (42) and ∇c̃ = ∇c that ∇x L(x, λk; ρk) = ∇f(x) +∇c(x)λk + ρk∇c(x)c̃(x). Also, one can

see from (31), (36) and ∥c(zϵ)∥ ≤ 1 that ∥c̃(x)∥ ≤ 2 + δc for any x ∈ S(δf , δc). In addition, by (4), one can

observe that ∥∇ci(x)∇ci(x)T ∥∗x = (∥∇ci(x)∥∗x)2 for all i. In view of these and (91), we have

∥∇2
x L(x, λk; ρk)∥∗x ≤ ∥∇f(x)∥∗x +

m∑
i=1

|λki |∥∇ci(x)∥∗x + ρk

m∑
i=1

|c̃i(x)|∥∇ci(x)∥∗x,

∥∇2
xx L(x, λk; ρk)∥∗x ≤ ∥∇2f(x)∥∗x +

m∑
i=1

|λki |∥∇2ci(x)∥∗x + ρk

m∑
i=1

(
(∥∇ci(x)∥∗x)2 + |c̃i(x)|∥∇2ci(x)∥∗x

)
,

which, together with (33), (34) and the fact that ∥c̃(x)∥ ≤ 2 + δc for any x ∈ S(δf , δc), implies that

Uk,g = sup
x∈S(δf ,δc)

∥∇2
x L(x, λk; ρk)∥∗x ≤ Uf

g + ∥λk∥1U c
g + ρk

√
m(2 + δc)U

c
g ,

Uk,H = sup
x∈S(δf ,δc)

∥∇2
xx L(x, λk; ρk)∥∗x ≤ Uf

H + ∥λk∥1U c
H + ρk(m(U c

g)
2 +

√
m(2 + δc)U

c
H).

Hence, statement (iv) holds.

We now prove Theorem 5.2.

Proof of Theorem 5.2. Suppose that Algorithm 2 terminates at some iteration k, that is, µk ≤ ϵ/(2ϑ1/2 +2) and

∥c(xk+1)∥ ≤ ϵ hold. By µk ≤ ϵ/(2ϑ1/2 + 2), λ̃k+1 = λk + ρk c̃(x
k+1), ∇c̃ = ∇c, and the second relation in (38),

one has

∥∇f(xk+1) +∇c(xk+1)λ̃k+1 + µk∇B(xk+1)∥∗xk+1 = ∥∇f(xk+1) +∇c̃(xk+1)(λk + ρk c̃(x
k+1)) + µk∇B(xk+1)∥∗xk+1

= ∥∇x Lµk
(xk+1, λk; ρk)∥∗xk+1 ≤ µk. (92)

This along with µk > 0 yields that

∥(∇f(xk+1) +∇c(xk+1)λ̃k+1)/µk +∇B(xk+1)∥∗xk+1 ≤ 1.

By this, xk+1 ∈ intK and Lemma 7.1(v), one has (∇f(xk+1) + ∇c(xk+1)λ̃k+1)/µk ∈ K∗, which implies that

(9) holds for (xk+1, λ̃k+1). We next prove that (10) holds for (xk+1, λ̃k+1) with ϵ1 = ϵ. Indeed, by (92),

µk ≤ ϵ/(2ϑ1/2 + 2), xk+1 ∈ intK and Lemma 7.1(i), one has

∥∇f(xk+1) +∇c(xk+1)λ̃k+1∥∗xk+1 ≤ ∥∇f(xk+1) +∇c(xk+1)λ̃k+1 + µk∇B(xk+1)∥∗xk+1 + µk∥∇B(xk+1)∥∗xk+1

≤ µk + µkϑ
1/2 = ϵ/2 < ϵ,

and hence (10) holds for (xk+1, λ̃k+1) with ϵ1 = ϵ. In view of these, ∥c(xk+1)∥ ≤ ϵ and xk+1 ∈ intK, we conclude

that xk+1 is a deterministic ϵ-FOSP of problem (1).

In addition, recall from (39) that

λmin(M
T
k+1∇2

xx Lµ(x
k+1, λk; ρk)Mk+1) ≥ −√

µk

holds with probability at least 1− δ, which implies that d̂TMT
k+1∇2

xx Lµ(x
k+1, λk; ρk)Mk+1d̂ ≥ −√

µk∥d̂∥2 holds

for all d̂ ∈ Rn with probability at least 1 − δ. Substituting d̂ = M−1
k+1∇2B(xk+1)−1/2d in this inequality and

using (16), λ̃k+1 = λk + ρk c̃(x
k+1), ∇c̃ = ∇c and ∇2c̃i = ∇2ci, 1 ≤ i ≤ m, we obtain that with probability at

least 1− δ, it holds that

dT∇2B(xk+1)−1/2
(
∇2f(xk+1) +

m∑
i=1

λ̃k+1
i ∇2ci(x

k+1) + ρk∇c(xk+1)∇c(xk+1)T + µk∇2B(xk+1)
)
∇2B(xk+1)−1/2d

≥ −√
µk∥M−1

k+1∇
2B(xk+1)−1/2d∥2 (16)

= −√
µk∥d∥2, ∀d ∈ Rn,

which together with µk ≤ ϵ/(2ϑ1/2 + 2) ∈ (0, 1) and ϑ ≥ 1 implies that

dT∇2B(xk+1)−1/2

(
∇2f(xk+1) +

m∑
i=1

λ̃k+1
i ∇2ci(x

k+1)

)
∇2B(xk+1)−1/2d ≥ −(

√
µk + µk)∥d∥2

28

≥ −2
√
µk∥d∥2 = −2

√
ϵ/(2ϑ1/2 + 2)∥d∥2 ≥ −

√
ϵ∥d∥2, ∀d ∈ C(xk+1),

where C(·) is defined in (12). Hence, with probability at least 1 − δ, the relation (11) holds for (xk+1, λ̃k+1)

with ϵ2 =
√
ϵ. In view of this and the fact that xk+1 is a deterministic ϵ-FOSP of (1), we conclude that the

output xk+1 is an (ϵ,
√
ϵ)-SOSP of (1) with probability at least 1 − δ.

We next provide a proof for Theorem 5.3.

Proof of Theorem 5.3. Notice from (47) that ρϵ,1 ≥ 2ρ0, which along with (45) and (46) implies that

Kϵ
(46)
= ⌈log ϵ/ logω⌉ (45)

= ⌈log 2/ log r⌉ ≤ log(ρϵ,1ρ
−1
0)/ log r + 1. (93)

Since {ρk} is either unchanged or increased by a ratio r as k increases, it follows from (93) that

max
0≤k≤Kϵ

ρk ≤ rKϵρ0
(93)

≤ r
log(ρϵ,1ρ

−1
0)

log r +1ρ0 = rρϵ,1. (94)

In addition, observe from Algorithm 2 that ρk > 2γ and ∥λk∥ ≤ Λ. By these, (86), and Lemma 7.7(ii) with

(x, λ, ρ) = (xk+1, λk, ρk), we obtain that

∥c̃(xk+1)∥ ≤

√
2(fhi − flow + γ)

ρk − 2γ
+

∥λk∥2
(ρk − 2γ)2

+
∥λk∥
ρk − 2γ

≤

√
2(fhi − flow + γ)

ρk − 2γ
+

Λ2

(ρk − 2γ)2
+

Λ

ρk − 2γ
. (95)

On the other hand, notice from ∥c(zϵ)∥ ≤ ϵ/2 and (36) that

∥c(xk+1)∥ ≤ ∥c̃(xk+1)∥+ ∥c(zϵ)∥ ≤ ∥c̃(xk+1)∥+ ϵ/2. (96)

We now prove that Kϵ is finite. Suppose for contradiction that Kϵ is infinite. By this and (48), one has

that ∥c(xk+1)∥ > ϵ for all k ≥ Kϵ. This along with (96) implies that ∥c̃(xk+1)∥ > ϵ/2 for all k ≥ Kϵ. It

then follows that ∥c̃(xk+1)∥ > α∥c̃(xk)∥ must hold for infinitely many k’s, which, together with the update

scheme on {ρk}, further implies ρk+1 = rρk holds for infinitely many k’s. Using this and the monotonicity

of {ρk}, we see that ρk → ∞ as k → ∞. This along with (95) yields that ∥c̃(xk+1)∥ → 0 as k → ∞, which

leads to a contradiction with the fact that ∥c̃(xk+1)∥ > ϵ/2 for all k ≥ Kϵ. Hence, Kϵ is finite. In addition,

notice from µk = max{ϵ, ωk}/(2ϑ1/2 + 2) and (46) that µk = ϵ/(2ϑ1/2 + 2) for all k ≥ Kϵ. Combining this

with the termination criterion of Algorithm 2 and the definition of Kϵ, we conclude that Algorithm 2 with

µk = max{ϵ, ωk}/(2ϑ1/2 + 2) must terminate at iteration Kϵ.

We next prove (49) and that ρk ≤ rρϵ,1 holds for 0 ≤ k ≤ Kϵ by considering two separate cases below.

Case 1) ∥c(xKϵ+1)∥ ≤ ϵ. It then follows from (48) that Kϵ = Kϵ, and thus (49) holds due to (93). In addition,

by Kϵ = Kϵ and (94), one has that ρk ≤ rρϵ,1 holds for 0 ≤ k ≤ Kϵ as well.

Case 2) ∥c(xKϵ+1)∥ > ϵ. It then follows from (48) that Kϵ > Kϵ, and moreover, ∥c(xk+1)∥ > ϵ for all

Kϵ ≤ k ≤ Kϵ − 1. This along with (96) implies that

∥c̃(xk+1)∥ > ϵ/2, ∀Kϵ ≤ k ≤ Kϵ − 1. (97)

By this, ∥λk∥ ≤ Λ, (47), (86), and Lemma 7.7(iv) with (x, λ, ρ, δ̃c) = (xk+1, λk, ρk, ϵ/2), one has

ρk < 8(fhi − flow + γ)ϵ−2 + 4∥λk∥ϵ−1 + 2γ

≤ 8(fhi − flow + γ)ϵ−2 + 4Λϵ−1 + 2γ
(47)

≤ ρϵ,1, ∀Kϵ ≤ k ≤ Kϵ − 1. (98)

In view of this, (94), and the fact ρKϵ
≤ rρKϵ−1, we obtain that ρk ≤ rρϵ,1 holds for 0 ≤ k ≤ Kϵ. It remains to

prove (49). To this end, let

K = {k : ρk+1 = rρk,Kϵ ≤ k ≤ Kϵ − 2}.

By (98) and the update scheme of ρk, one has r|K |ρKϵ = maxKϵ≤k≤Kϵ−1 ρk ≤ ρϵ,1, which along with ρKϵ ≥ ρ0
implies that

|K | ≤ log(ρϵ,1ρ
−1
Kϵ

)/ log r ≤ log(ρϵ,1ρ
−1
0)/ log r. (99)

29

Let {k1, k2, . . . , k|K |} denote all the elements of K arranged in ascending order, and let k0 = Kϵ and k|K |+1 =

Kϵ − 1. We next derive an upper bound for kj+1 − kj for j = 0, 1, . . . , |K |. Using the definition of K, we see

that ρk = ρk′ for kj < k, k′ ≤ kj+1. By this and the update scheme of ρk, one can see that

∥c̃(xk+1)∥ ≤ α∥c̃(xk)∥, ∀kj < k < kj+1. (100)

In addition, by (43), (95) and ρk ≥ ρ0, one has ∥c̃(xk+1)∥ ≤ δc,1 for 0 ≤ k ≤ Kϵ. Using this and (97), we obtain

that

ϵ/2 < ∥c̃(xk+1)∥ ≤ δc,1, ∀Kϵ ≤ k ≤ Kϵ − 1. (101)

Now, we notice that either kj+1 − kj = 1 or kj+1 − kj > 1. In the latter case, one can apply (100) with

k = kj+1 − 1, . . . , kj + 1 along with (101) to deduce that

ϵ/2 < ∥c̃(xkj+1)∥ ≤ α∥c̃(xkj+1−1)∥ ≤ · · · ≤ αkj+1−kj−1∥c̃(xkj+1)∥ ≤ αkj+1−kj−1δc,1, ∀j = 0, 1, . . . , |K |.

Combining the two cases, we deduce that

kj+1 − kj ≤ | log(ϵ(2δc,1)−1)/ logα|+ 1, ∀j = 0, 1, . . . , |K |. (102)

Summing up these inequalities, and using (93), (99), k0 = Kϵ and k|K |+1 = Kϵ − 1, we have

Kϵ = 1 + k|K |+1 = 1 + k0 +
∑|K |

j=0(kj+1 − kj)
(102)

≤ 1 +Kϵ + (|K |+ 1)
(∣∣∣ log(ϵ(2δc,1)−1)

logα

∣∣∣+ 1
)

≤ 2 +
log(ρϵ,1ρ

−1
0)

log r +
(

log(ρϵ,1ρ
−1
0)

log r + 1
)(∣∣∣ log(ϵ(2δc,1)−1)

logα

∣∣∣+ 1
)
= 1 +

(
log(ρϵ,1ρ

−1
0)

log r + 1
)(∣∣∣ log(ϵ(2δc,1)−1)

logα

∣∣∣+ 2
)
,

where the second inequality is due to (93) and (99). Hence, (49) holds as well in this case.

We next prove Theorem 5.4. Before proceeding, we recall from Lemma 5.1 and the discussions in Section 5.1

that the subproblem minx Lµk
(x, λk; ρk) satisfies Assumptions 4.1(b) and 4.1(c) with (F (·),S,Ω, LF

H , U
F
g , U

F
H) =

(L(·, λk; ρk),S(δf , δc),Ω(δf , δc), Lk,H , Uk,g, Uk,H). Moreover, in view of the fact that ∥λk∥ ≤ Λ, one can see from

(44) and Lemma 5.1(iv) that there exist some constants L1, L2, U1 and U2, depending only on f , c, B, β, Λ, m,

δf and δc, such that

Lk,H ≤ L1 + ρkL2, Uk,H ≤ U1 + ρkU2. (103)

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4. Let Tk and Nk denote the number of iterations and fundamental operations performed

by Algorithm 1 at outer iteration k of Algorithm 2, respectively. It then follows from Theorem 5.3 that the total

number of iterations of Algorithm 1 performed in Algorithm 2 is
∑Kϵ

k=0 Tk, and moreover, the total number of

Cholesky factorizations and other fundamental operations performed by Algorithm 1 in Algorithm 2 are
∑Kϵ

k=0 Tk

and
∑Kϵ

k=0Nk, respectively. In addition, notice from (47) and Theorem 5.3 that ρϵ,1 = O(ϵ−2) and ρk ≤ rρϵ,1,

which yield ρk = O(ϵ−2) for all 0 ≤ k ≤ Kϵ.

(i) Recall from Lemmas 5.1(i) and 5.1(iii) that Lk,H is a Lipschitz constant of ∇2
xx L(x, λk; ρk) with respect to

the local norm on an open convex neighborhood of {x ∈ intK : Lµk
(x, λk; ρk) ≤ Lµk

(xkinit, λ
k; ρk)}. In addition,

recall from Lemma 5.1(ii) that infx∈intK Lµk
(x, λk; ρk) ≥ flow − γ − Λδc. By these, (41), (103), and Theorem

4.1(iii) with (ϕhi, ϕlow, L
F
H , ϵg, ϵH) = (Lµk

(xkinit, λ
k; ρk), flow − γ − Λδc, Lk,H , µk,

√
µk), one has

Tk = O((fhi − flow + γ + Λδc)L
2
k,Hµ

−3/2
k)

(103)
= O(ρ2kµ

−3/2
k) = O(ϵ−11/2), (104)

where the last equality follows from µk ≥ ϵ/(2ϑ1/2 + 2) and ρk = O(ϵ−2). On the other hand, if c is assumed

to be affine, namely, c(x) = Ax − b for some A ∈ Rm×n and b ∈ Rm, then ∇c(x) = AT and ∇2ci(x) = 0 for

1 ≤ i ≤ m. Using these and (91), we observe that Lk,H = O(1). By this and the similar arguments as for (104),

one has Tk = O(µ
−3/2
k) = O(ϵ−3/2). Combining these with (104) and Kϵ = O(| log ϵ|2) (see Remark 5.4), we

conclude that statement (i) holds.

30

(ii) By Lemmas 5.1(i) and 5.1(iv), one has

Uk,H ≥ sup
x∈intK

{∥∇2
xx L(x, λk; ρk)∥∗x : Lµk

(x, λk; ρk) ≤ Lµk
(xkinit, λ

k; ρk)}.

In view of this, Lµk
(xkinit, λ

k; ρk) ≤ fhi, (103), and Theorem 4.1(iv) with (ϕhi, ϕlow, L
F
H , U

F
H , ϵg, ϵH) = (Lµk

(xkinit, λ
k; ρk),

flow − γ − Λδc, Lk,H , Uk,H , µk,
√
µk), we obtain that

Nk = Õ((fhi − flow + γ + Λδc)L
2
k,Hµ

−3/2
k min{n,U1/2

k,Hµ
−1/4
k })

(103)
= Õ(ρ2kµ

−3/2
k min{n, ρ1/2k µ

−1/4
k }) = Õ

(
ϵ−11/2 min

{
n, ϵ−5/4

})
,

(105)

where the last equality follows from µk ≥ ϵ/(2ϑ+ 2) and ρk = O(ϵ−2). On the other hand, if c is assumed to

be affine, it follows from the above discussion that Lk,H = O(1). By this, Uk,H ≤ U1 + ρkU2, and the similar

arguments as for (105), one has Nk = Õ(µ
−3/2
k min{n, ρ1/2k µ

−1/4
k }) = Õ

(
ϵ−3/2 min

{
n, ϵ−5/4

})
. Combining these

with (105) and Kϵ = O(| log ϵ|2) (see Remark 5.4), we conclude that statement (ii) holds.

We next establish two technical lemmas that will be used to prove Theorem 5.5.

Lemma 7.9. Suppose that Assumptions 5.1 and 5.2 hold and that ρ0 is sufficiently large such that δf,1 ≤ δf and

δc,1 ≤ δc, where δf,1 and δc,1 are defined in (43). Let {(xk, λk, ρk)} be generated by Algorithm 2. Suppose that

ρk ≥ max{Λ2(2δf)
−1, 2(fhi − flow + γ)δ−2

c + 2Λδ−1
c + 2γ, 2(Uf

g +
√
mU c

gΛ +
√
ϑ+ 1)(σϵ)−1} (106)

for some k ≥ 0, where γ, fhi, flow, δf , δc, U
f
g and U c

g are given in Assumption 5.1, and σ is given in (50). Then

it holds that ∥c(xk+1)∥ ≤ ϵ.

Proof. Using ∥λk∥ ≤ Λ (see step 5 of Algorithm 2) and (106), we have

ρk ≥ max{∥λk∥2(2δf)−1, 2(fhi − flow + γ)δ−2
c + 2∥λk∥δ−1

c + 2γ}.

By this, (86), and Lemmas 7.7(iii) and 7.7(iv) with (x, λ, µ, ρ, δ̃f , δ̃c) = (xk+1, λk, µk, ρk, δf , δc), one has f(x
k+1)+

µkB(xk+1) ≤ fhi+δf and ∥c̃(xk+1)∥ ≤ δc. Also, notice from ∥c(zϵ)∥ ≤ 1 and (36) that ∥c(xk+1)∥ ≤ 1+∥c̃(xk+1)∥.
These along with (31), xk+1 ∈ intK, and µk ∈ (0, µ0] yield that xk+1 ∈ S(δf , δc). It then follows from (33) that

∥∇f(xk+1)∥∗xk+1 ≤ Uf
g and ∥∇ci(xk+1)∥∗xk+1 ≤ U c

g for all 1 ≤ i ≤ m. By these, µk ≤ 1, ∥λk∥ ≤ Λ, (36) and the

second relation in (38), one has

ρk∥∇2B(xk+1)−1/2∇c(xk+1)c̃(xk+1)∥ = ρk∥∇c(xk+1)c̃(xk+1)∥∗xk+1

≤ ∥∇f(xk+1) +∇c(xk+1)λk∥∗xk+1 + µk∥∇B(xk+1)∥∗xk+1 + ∥∇x Lµk
(xk+1, λk; ρk)∥∗xk+1

≤ ∥∇f(xk+1)∥∗xk+1 +
m∑
i=1

|λki |∥∇ci(xk+1)∥∗xk+1 + µk

√
ϑ+ µk ≤ Uf

g +
√
mU c

gΛ +
√
ϑ+ 1, (107)

where the first inequality follows from the triangle inequality, and the second inequality follows from ∥∇B(xk+1)∥∗xk+1 =√
ϑ and the second relation in (38). In addition, by xk+1 ∈ S(δf , δc) and (50), one has

λmin(∇c(xk+1)T∇2B(xk+1)−1∇c(xk+1)) ≥ σ2, which along with (107) implies that

∥c̃(xk+1)∥ ≤ ∥[∇c(xk+1)T∇2B(xk+1)−1∇c(xk+1)]−1∇c(xk+1)T∇2B(xk+1)−1/2∥∥∇2B(xk+1)−1/2∇c(xk+1)c̃(xk+1)∥

= ∥[∇c(xk+1)T∇2B(xk+1)−1∇c(xk+1)]−1∥1/2∥∇2B(xk+1)−1/2∇c(xk+1)c̃(xk+1)∥

= λmin(∇c(xk+1)T∇2B(xk+1)−1∇c(xk+1))−1/2∥∇2B(xk+1)−1/2∇c(xk+1)c̃(xk+1)∥

≤ (Uf
g +

√
mU c

gΛ +
√
ϑ+ 1)/(σρk). (108)

Observe from (106) that ρk ≥ 2(Uf
g +

√
mU c

gΛ+
√
ϑ+1)(σϵ)−1, which along with (108) implies ∥c̃(xk+1)∥ ≤ ϵ/2.

Combining this with ∥c(zϵ)∥ ≤ ϵ/2 and (36), we obtain ∥c(xk+1)∥ ≤ ϵ as desired.

The next lemma establishes a stronger upper bound for {ρk} than the one given in Theorem 5.3.

31

Lemma 7.10. Suppose that Assumptions 5.1 and 5.2 hold and that ρ0 is sufficiently large such that δf,1 ≤ δf
and δc,1 ≤ δc, where δf,1 and δc,1 are defined in (43). Let {ρk} be generated by Algorithm 2 and

ρϵ,2 := max{Λ2(2δf)
−1, 2(fhi − flow + γ)δ−2

c + 2Λδ−1
c + 2γ, 2(Uf

g +
√
mU c

gΛ +
√
ϑ+ 1)(σϵ)−1, 2ρ0}, (109)

where γ, fhi, flow, δf , δc, U
f
g and U c

g are given in Assumption 5.1, and σ is given in (50). Then ρk ≤ rρϵ,2
holds for 0 ≤ k ≤ Kϵ, where Kϵ is defined in (48).

Proof. Observe from (109) that ρϵ,2 ≥ 2ρ0. Using this and similar arguments as for (93), we have Kϵ ≤
log(ρϵ,2ρ

−1
0)/ log r + 1, where Kϵ is defined in (46). By this, the update scheme for {ρk}, and similar arguments

as for (94), one has

max
0≤k≤Kϵ

ρk ≤ rρϵ,2. (110)

If ∥c(xKϵ+1)∥ ≤ ϵ, it follows from (48) that Kϵ = Kϵ, which along with (110) implies that ρk ≤ rρϵ,2 holds for

0 ≤ k ≤ Kϵ. On the other hand, if ∥c(xKϵ+1)∥ > ϵ, it follows from (48) that ∥c(xk+1)∥ > ϵ for Kϵ ≤ k ≤ Kϵ − 1,

which together with Lemma 7.9 and (109) implies that

ρk < max

{
Λ2

2δf
,
2(fhi − flow + γ)

δ2c
+

2Λ

δc
+ 2γ,

2(Uf
g +

√
mU c

gΛ +
√
ϑ+ 1)

σϵ

}
(109)

≤ ρϵ,2, ∀Kϵ ≤ k ≤ Kϵ − 1.

Using this, (110), and ρKϵ
≤ rρKϵ−1, we also conclude that ρk ≤ rρϵ,2 holds for 0 ≤ k ≤ Kϵ.

We now provide a proof for Theorem 5.5.

Proof of Theorem 5.5. Notice from (109) and Lemma 7.10 that ρϵ,2 = O(ϵ−1) and ρk ≤ rρϵ,2, which imply

ρk = O(ϵ−1). The rest of the proof follows from the same arguments as for Theorem 5.4 with ρk = O(ϵ−2)

replaced by ρk = O(ϵ−1).

8 Concluding remarks

In this paper we proposed a Newton-CG based barrier-AL method for finding an approximate SOSP of general

nonconvex conic optimization problem (1). We also established the worst-case iteration and operation complexity

bounds of the proposed method for finding an approximate SOSP of problem (1). In addition, we conducted

preliminary numerical experiments to demonstrate the superior solution quality of our method over a well-known

first-order method, SpaRSA.

There are several potential directions for future research. Firstly, conducting extensive numerical studies

could provide new insights into improving the practical performance of our method. Secondly, it would be

interesting to extend our method to solve a more general conic optimization problem, minx,y{f̃(x, y) : c̃(x, y) =
0, y ∈ K}, which includes the problem minx{f(x) : c(x) = 0, d(x) ≤ 0} and, more generally, the problem

minx{f(x) : c(x) = 0, d(x) ∈ K} as special cases. Notice the latter problem can be equivalently solved as

minx,y{f(x) : c(x) = 0, d(x) − y = 0, y ∈ K}, which is a specific instance of the problem considered in this

paper. Consequently, it can be suitably solved by our proposed method. Lastly, extending our approach to

finding an approximate SOSP for nonconvex optimization problems with a general convex set constraint, beyond

the convex conic constraint, remains an open question.

Data availability: The codes for generating the random data and implementing the algorithms in the numerical

section are available from the first author upon request.

Competing interests: The third author is an editorial board member of this journal.

32

References

[1] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma. Finding approximate local minima faster than

gradient descent. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,

pages 1195–1199, 2017.

[2] Z. Allen-Zhu and Y. Li. Neon2: Finding local minima via first-order oracles. Advances in Neural Information

Processing Systems, 31:3716–3726, 2018.

[3] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt. On augmented Lagrangian methods with

general lower-level constraints. SIAM J. Optim., 18(4):1286–1309, 2008.

[4] R. Andreani, G. Haeser, A. Ramos, and P. J. Silva. A second-order sequential optimality condition associated

to the convergence of optimization algorithms. IMA J. Numer. Anal., 37(4):1902–1929, 2017.

[5] M. Argáez and R. Tapia. On the global convergence of a modified augmented Lagrangian linesearch

interior-point Newton method for nonlinear programming. J. Optim. Theory Appl, 114(1):1–25, 2002.

[6] P. Armand and R. Omheni. A mixed logarithmic barrier-augmented Lagrangian method for nonlinear

optimization. J. Optim. Theory Appl., 173(2):523–547, 2017.

[7] P. Armand and N. N. Tran. Rapid infeasibility detection in a mixed logarithmic barrier-augmented

Lagrangian method for nonlinear optimization. Optim. Methods Softw., 34(5):991–1013, 2019.

[8] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[9] S. Bhojanapalli, B. Neyshabur, and N. Srebro. Global optimality of local search for low rank matrix recovery.

Advances in Neural Information Processing Systems, 29:3873–3881, 2016.

[10] W. Bian, X. Chen, and Y. Ye. Complexity analysis of interior point algorithms for non-Lipschitz and

nonconvex minimization. Math. Program., 149(1):301–327, 2015.

[11] E. G. Birgin, J. Gardenghi, J. M. Mart́ınez, S. A. Santos, and P. L. Toint. Evaluation complexity for

nonlinear constrained optimization using unscaled KKT conditions and high-order models. SIAM J. Optim.,

26(2):951–967, 2016.

[12] E. G. Birgin, G. Haeser, and A. Ramos. Augmented Lagrangians with constrained subproblems and

convergence to second-order stationary points. Comput. Optim. and Appl., 69(1):51–75, 2018.

[13] E. G. Birgin and J. M. Mart́ınez. Practical Augmented Lagrangian Methods for Constrained Optimization.

SIAM, 2014.

[14] E. G. Birgin and J. M. Mart́ınez. The use of quadratic regularization with a cubic descent condition for

unconstrained optimization. SIAM J. Optim., 27(2):1049–1074, 2017.

[15] J. F. Bonnans and G. Launay. Sequential quadratic programming with penalization of the displacement.

SIAM J. Optim., 5(4):792–812, 1995.

[16] L. F. Bueno and J. M. Mart́ınez. On the complexity of an inexact restoration method for constrained

optimization. SIAM J. Optim., 30(1):80–101, 2020.

[17] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. A trust region algorithm for nonlinearly constrained

optimization. SIAM J. Numer. Anal., 24(5):1152–1170, 1987.

[18] Y. Carmon and J. Duchi. Gradient descent finds the cubic-regularized nonconvex newton step. SIAM J.

Optim., 29(3):2146–2178, 2019.

[19] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. “Convex until proven guilty”: Dimension-free

acceleration of gradient descent on non-convex functions. In International Conference on Machine Learning,

pages 654–663. PMLR, 2017.

33

[20] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Accelerated methods for nonconvex optimization.

SIAM J. Optim., 28(2):1751–1772, 2018.

[21] C. Cartis, N. I. Gould, and P. L. Toint. Adaptive cubic regularisation methods for unconstrained optimization.

Part I: motivation, convergence and numerical results. Math. Program., 127(2):245–295, 2011.

[22] C. Cartis, N. I. Gould, and P. L. Toint. On the evaluation complexity of cubic regularization methods

for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear

optimization. SIAM J. Optim., 23(3):1553–1574, 2013.

[23] C. Cartis, N. I. Gould, and P. L. Toint. On the complexity of finding first-order critical points in constrained

nonlinear optimization. Math. Program., 144(1):93–106, 2014.

[24] C. Cartis, N. I. Gould, and P. L. Toint. On the complexity of finding first-order critical points in constrained

nonlinear optimization. Math. Program., 144(1):93–106, 2014.

[25] C. Cartis, N. I. Gould, and P. L. Toint. On the evaluation complexity of constrained nonlinear least-squares

and general constrained nonlinear optimization using second-order methods. SIAM J. Numer. Anal.,

53(2):836–851, 2015.

[26] C. Cartis, N. I. Gould, and P. L. Toint. Evaluation complexity bounds for smooth constrained nonlinear

optimization using scaled KKT conditions, high-order models and the criticality measure χ. In Approximation

and Optimization: Algorithms, Complexity and Applications, pages 5–26. Springer, 2019.

[27] C. Cartis, N. I. Gould, and P. L. Toint. Optimality of orders one to three and beyond: characterization and

evaluation complexity in constrained nonconvex optimization. J. Complex., 53:68–94, 2019.

[28] X. Chen, L. Guo, Z. Lu, and J. J. Ye. An augmented Lagrangian method for non-Lipschitz nonconvex

programming. SIAM J. Numer. Anal., 55(1):168–193, 2017.

[29] Y. Chi, Y. M. Lu, and Y. Chen. Nonconvex optimization meets low-rank matrix factorization: An overview.

IEEE Trans. Signal Process., 67(20):5239–5269, 2019.

[30] D. Cifuentes and A. Moitra. Polynomial time guarantees for the Burer-Monteiro method. arXiv preprint

arXiv:1912.01745, 2019.

[31] T. F. Coleman, J. Liu, and W. Yuan. A new trust-region algorithm for equality constrained optimization.

Comput. Optim. Appl., 21(2):177–199, 2002.

[32] A. R. Conn, G. Gould, and P. L. Toint. LANCELOT: a Fortran package for large-scale nonlinear optimization

(Release A), volume 17. Springer Science & Business Media, 2013.

[33] A. R. Conn, N. I. Gould, and P. L. Toint. A globally convergent Lagrangian barrier algorithm for optimization

with general inequality constraints and simple bounds. Math. Comput., 66(217):261–288, 1997.

[34] F. E. Curtis, D. P. Robinson, C. W. Royer, and S. J. Wright. Trust-region Newton-CG with strong

second-order complexity guarantees for nonconvex optimization. SIAM J. Optim., 31(1):518–544, 2021.

[35] F. E. Curtis, D. P. Robinson, and M. Samadi. A trust region algorithm with a worst-case iteration complexity

of O(ϵ−3/2) for nonconvex optimization. Math. Program., 1(162):1–32, 2016.

[36] F. E. Curtis, D. P. Robinson, and M. Samadi. Complexity analysis of a trust funnel algorithm for equality

constrained optimization. SIAM J. Optim., 28(2):1533–1563, 2018.

[37] E. P. De Carvalho, A. dos Santos Júnior, and T. F. Ma. Reduced gradient method combined with augmented

Lagrangian and barrier for the optimal power flow problem. Appl. Math. Comput., 200(2):529–536, 2008.

[38] P. Dvurechensky and M. Staudigl. Hessian barrier algorithms for non-convex conic optimization. arXiv

preprint arXiv:2111.00100, 2021.

34

[39] D. Goldfarb, R. Polyak, K. Scheinberg, and I. Yuzefovich. A modified barrier-augmented Lagrangian method

for constrained minimization. Comput. Optim. Appl., 14(1):55–74, 1999.

[40] F. Goyens, A. Eftekhari, and N. Boumal. Computing second-order points under equality constraints:

revisiting Fletcher’s augmented Lagrangian. arXiv preprint arXiv:2204.01448, 2022.

[41] G. N. Grapiglia and Y.-x. Yuan. On the complexity of an augmented Lagrangian method for nonconvex

optimization. IMA J. Numer. Anal., 41(2):1546–1568, 2021.

[42] G. Haeser, H. Liu, and Y. Ye. Optimality condition and complexity analysis for linearly-constrained

optimization without differentiability on the boundary. Math. Program., 178(1):263–299, 2019.

[43] C. He and Z. Lu. A Newton-CG based barrier method for finding a second-order stationary point of

nonconvex conic optimization with complexity guarantees. SIAM J. Optim., 33(2):1191–1222, 2023.

[44] C. He, Z. Lu, and T. K. Pong. A Newton-CG based augmented Lagrangian method for finding a second-order

stationary point of nonconvex equality constrained optimization with complexity guarantees. SIAM J.

Optim., 33(3):1734–1766, 2023.

[45] A. Huck, M. Guillaume, and J. Blanc-Talon. Minimum dispersion constrained nonnegative matrix factoriza-

tion to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens., 48(6):2590–2602, 2010.

[46] C. Jin, P. Netrapalli, and M. I. Jordan. Accelerated gradient descent escapes saddle points faster than

gradient descent. In Conference On Learning Theory, pages 1042–1085. PMLR, 2018.

[47] C. Kanzow and D. Steck. An example comparing the standard and safeguarded augmented Lagrangian

methods. Oper. Res. Lett., 45(6):598–603, 2017.

[48] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalue by the power and Lanczos algorithms

with a random start. SIAM J. Matrix Anal. Appl., 13(4):1094–1122, 1992.

[49] R. Kuhlmann and C. Büskens. A primal–dual augmented Lagrangian penalty-interior-point filter line search

algorithm. Math. Method Oper. Res., 87(3):451–483, 2018.

[50] X. Liu, W. Xia, B. Wang, and L. Zhang. An approach based on constrained nonnegative matrix factorization

to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens., 49(2):757–772, 2010.

[51] S. Lu, M. Razaviyayn, B. Yang, K. Huang, and M. Hong. Finding second-order stationary points efficiently

in smooth nonconvex linearly constrained optimization problems. Advances in Neural Information Processing

Systems, 33:2811–2822, 2020.

[52] Z. Lu and Y. Zhang. An augmented Lagrangian approach for sparse principal component analysis. Math.

Program., 135(1):149–193, 2012.

[53] J. M. Mart́ınez and M. Raydan. Cubic-regularization counterpart of a variable-norm trust-region method

for unconstrained minimization. J. Glob. Optim., 68(2):367–385, 2017.

[54] L. Miao and H. Qi. Endmember extraction from highly mixed data using minimum volume constrained

nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens., 45(3):765–777, 2007.

[55] J. M. Moguerza and F. J. Prieto. An augmented Lagrangian interior-point method using directions of

negative curvature. Math. Program., 95(3):573–616, 2003.

[56] Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in Convex Programming. SIAM,

Philadelphia, 1994.

[57] Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance. Math.

Program., 108(1):177–205, 2006.

[58] M. O’Neill and S. J. Wright. A log-barrier Newton-CG method for bound constrained optimization with

complexity guarantees. IMA J. Numer. Anal., 41(1):84–121, 2021.

35

[59] D. Park, A. Kyrillidis, C. Carmanis, and S. Sanghavi. Non-square matrix sensing without spurious local

minima via the burer-monteiro approach. In Artificial Intelligence and Statistics, pages 65–74. PMLR, 2017.

[60] C. W. Royer, M. O’Neill, and S. J. Wright. A Newton-CG algorithm with complexity guarantees for smooth

unconstrained optimization. Math. Program., 180(1):451–488, 2020.

[61] C. W. Royer and S. J. Wright. Complexity analysis of second-order line-search algorithms for smooth

nonconvex optimization. SIAM J. Optim., 28(2):1448–1477, 2018.

[62] A. Ruszczynski. Nonlinear Optimization. Princeton university press, 2011.

[63] M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher. An inexact augmented Lagrangian

framework for nonconvex optimization with nonlinear constraints. Advances in Neural Information Processing

Systems, 32:632–650, 2019.

[64] O. V. Thanh, N. Gillis, and F. Lecron. Bounded simplex-structured matrix factorization. In ICASSP

2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

9062–9066. IEEE, 2022.

[65] R. J. Vanderbei and D. F. Shanno. An interior-point algorithm for nonconvex nonlinear programming.

Comput. Optim. Appl., 13(1):231–252, 1999.

[66] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for

large-scale nonlinear programming. Math. Program., 106(1):25–57, 2006.

[67] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An interior algorithm for nonlinear optimization

that combines line search and trust region steps. Math. Program., 107(3):391–408, 2006.

[68] S. J. Wright, R. D. Nowak, and M. A. Figueiredo. Sparse reconstruction by separable approximation. IEEE

Trans. Signal Process., 57(7):2479–2493, 2009.

[69] Y. Xie and S. J. Wright. Complexity of projected Newton methods for bound-constrained optimization.

arXiv preprint arXiv:2103.15989, 2021.

[70] Y. Xie and S. J. Wright. Complexity of proximal augmented Lagrangian for nonconvex optimization with

nonlinear equality constraints. J. Sci. Comput., 86(3):1–30, 2021.

[71] Y. Xu, R. Jin, and T. Yang. NEON+: Accelerated gradient methods for extracting negative curvature for

non-convex optimization. arXiv preprint arXiv:1712.01033, 2017.

[72] L. Yang, D. Sun, and K. C. Toh. SDPNAL+: A majorized semismooth Newton-CG augmented Lagrangian

method for semidefinite programming with nonnegative constraints. Math. Program. Comput., 7(3):331–366,

2015.

[73] X. Zhao, D. Sun, and K. C. Toh. A Newton-CG augmented Lagrangian method for semidefinite programming.

SIAM J. Optim., 20(4):1737–1765, 2010.

Appendix

A A capped conjugate gradient method

In this part we present the capped CG method proposed in [60, Algorithm 1] for solving a possibly indefinite

linear system (15). As briefly discussed in Section 4, the capped CG method finds either an approximate solution

to (15) or a sufficiently negative curvature direction of the associated matrix H . More details about this method

can be found in [60, Section 3.1].

The following theorem presents the iteration complexity of Algorithm 3, whose proof can be found in [44,

Theorem A.1], and thus omitted here.

36

Algorithm 3 A capped conjugate gradient method

Input : symmetric matrix H ∈ Rn×n, vector g ̸= 0, damping parameter ε ∈ (0, 1), desired relative accuracy ζ ∈ (0, 1).

Optional input: scalar U ≥ 0 such that ∥H∥ ≤ U (set to 0 if not provided).

Outputs: d̂, d type.

Secondary outputs: final values of U, κ, ζ̂, τ, and T .

Set

H̄ := H + 2εI, κ :=
U + 2ε

ε
, ζ̂ :=

ζ

3κ
, τ :=

√
κ

√
κ+ 1

, T :=
4κ4

(1−
√
τ)2

,

y0 ← 0, r0 ← g, p0 ← −g, j ← 0.

if (p0)T H̄p0 < ε∥p0∥2 then

Set d̂← p0 and terminate with d type = NC;

else if ∥Hp0∥ > U∥p0∥ then

Set U ← ∥Hp0∥/∥p0∥ and update κ, ζ̂, τ, T accordingly;

end if

while TRUE do

αj ← (rj)T rj/(pj)T H̄pj ; {Begin Standard CG Operations}
yj+1 ← yj + αjp

j ;

rj+1 ← rj + αjH̄pj ;

βj+1 ← ∥rj+1∥2/∥rj∥2;
pj+1 ← −rj+1 + βj+1p

j ; {End Standard CG Operations}
j ← j + 1;

if ∥Hpj∥ > U∥pj∥ then
Set U ← ∥Hpj∥/∥pj∥ and update κ, ζ̂, τ, T accordingly;

end if

if ∥Hyj∥ > U∥yj∥ then

Set U ← ∥Hyj∥/∥yj∥ and update κ, ζ̂, τ, T accordingly;

end if

if ∥Hrj∥ > U∥rj∥ then

Set U ← ∥Hrj∥/∥rj∥ and update κ, ζ̂, τ, T accordingly;

end if

if (yj)T H̄yj < ε∥yj∥2 then

Set d̂← yj and terminate with d type = NC;

else if ∥rj∥ ≤ ζ̂∥r0∥ then
Set d̂← yj and terminate with d type = SOL;

else if (pj)T H̄pj < ε∥pj∥2 then

Set d̂← pj and terminate with d type = NC;

else if ∥rj∥ >
√
Tτ j/2∥r0∥ then

Compute αj , y
j+1 as in the main loop above;

Find i ∈ {0, . . . , j − 1} such that

(yj+1 − yi)T H̄(yj+1 − yi) < ε∥yj+1 − yi∥2;

Set d̂← yj+1 − yi and terminate with d type = NC;

end if

end while

Theorem A.1 (iteration complexity of Algorithm 3). Consider applying Algorithm 3 with the optional

input U = 0 to the linear system (15) with g ̸= 0, ε > 0, and H being an n × n symmetric matrix. Then the

number of iterations of Algorithm 3 is Õ(min{n,
√
∥H∥/ε}).

B A randomized Lanczos based minimum eigenvalue oracle

In this part we present the randomized Lanczos method proposed in [60, Section 3.2], which can be used as a

minimum eigenvalue oracle for Algorithm 1. As mentioned in Section 4, this oracle either outputs a sufficiently

negative curvature direction of H or certifies that H is nearly positive semidefinite with high probability. More

details about it can be found in [60, Section 3.2].

The following theorem justifies that Algorithm 4 is a suitable minimum eigenvalue oracle for Algorithm 1. Its

proof is identical to that of [60, Lemma 2] and thus omitted.

Theorem B.1 (iteration complexity of Algorithm 4). Consider Algorithm 4 with tolerance ε > 0, probability

parameter δ ∈ (0, 1), and symmetric matrix H ∈ Rn×n as its input. Then it either finds a sufficiently negative

37

Algorithm 4 A randomized Lanczos based minimum eigenvalue oracle

Input : symmetric matrix H ∈ Rn×n, tolerance ε > 0, and probability parameter δ ∈ (0, 1).

Output: a sufficiently negative curvature direction v satisfying vTHv ≤ −ε/2 and ∥v∥ = 1; or a certificate that

λmin(H) ≥ −ε with probability at least 1− δ.

Apply the Lanczos method [48] to estimate λmin(H) starting with a random vector uniformly generated on the unit

sphere, and run it for at most

N(ε, δ) := min

{
n, 1 +

⌈
ln(2.75n/δ2)

2

√
∥H∥
ε

⌉}
(111)

iterations.

(i) If it finds a unit vector v such that vTHv ≤ −ε/2 at some iteration, it terminates immediately and returns v.

(ii) Otherwise, it certifies that λmin(H) ≥ −ε holds with probability at least 1 − δ.

curvature direction v satisfying vTHv ≤ −ε/2 and ∥v∥ = 1 or certifies that λmin(H) ≥ −ε holds with probability

at least 1− δ in at most N(ε, δ) iterations, where N(ε, δ) is defined in (111).

Notice that generally, computing ∥H∥ in Algorithm 4 may not be cheap when n is large. Nevertheless, ∥H∥
can be efficiently estimated via a randomization scheme with high confidence (e.g., see the discussion in [60,

Appendix B3]).

38

